Cohomology groups of Lens spaces

Consider the scaling action of \mathbb{C}^{*} on $\mathbb{C}^{n+1} \backslash\{0\} \simeq S^{2 n+1}, n \geq 1$. By identifying \mathbb{Z} / q with the $q^{\text {th }}$ roots of unity in \mathbb{C}^{*} we get an action of \mathbb{Z} / q on $S^{2 n+1}$. We call the quotient $L(n, q)$ a Lens Space. We allow $n=\infty$.

The action of \mathbb{Z} / q on $S^{2 n+1}$ is clearly free, so the quotient map is a covering map with deck group \mathbb{Z} / q. $S^{2 n+1}$ is simply connected so it is the universal cover of $L(n, q)$. This tells us that $\pi_{1} L(n, q)=\mathbb{Z} / q$ and all higher homotopy groups agree with those of the sphere. In particular $L(\infty, q)=K(\mathbb{Z} / q, 1)$.

Covering maps are fibrations so we have a fibration

At this point one is tempted to use the Serre spectral sequence and compute us some cohomology. Alas $L(n, q)$ is not simply connected. Instead we will write $L(n, q)$ as the total space of a fibration.

Note that even after modding out by \mathbb{Z} / q we still have a "leftover" action of $S^{1} /(\mathbb{Z} / q)=S^{1}$ on $L(n, q)$. If we mod out by this action then we get $S^{2 n+1} / S^{1}=\mathbb{C} \mathbb{P}^{n}$:

$$
S^{1} \longrightarrow L(n, q) \longrightarrow \mathbb{C P}^{n}
$$

Now $S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ is a locally trivial fiber bundle with fiber S^{1} - locally it looks like $S^{1} \times U \rightarrow U$. But then $L(n, q) \rightarrow \mathbb{C P}^{n}$ locally looks like $S^{1} /(\mathbb{Z} / q) \times U \rightarrow U$. By Hurwitz's theorem, $L(n, q) \rightarrow \mathbb{C P}^{n}$ is a fibration with fiber S^{1}. This time the base space is simply connected so we get a spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(\mathbb{C P}^{n}, H^{q}\left(S^{1}, \mathbb{Z}\right)\right) \rightarrow H^{p+q}(L(n, q), \mathbb{Z})
$$

The E_{2} page looks like

0	0	0	0		0	
$H^{0}\left(\mathbb{C P}^{n}, H^{1}\left(S^{1}, \mathbb{Z}\right)\right)$	0	$H^{2}\left(\mathbb{C P}^{n}, H^{1}\left(S^{1}, \mathbb{Z}\right)\right)$	0	\cdots	$H^{2 n}\left(\mathbb{C P}^{n}, H^{1}\left(S^{1}, \mathbb{Z}\right)\right)$	0
$H^{0}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$	0	$H^{2}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$	0	\cdots	$H^{2 n}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$	0

where the point is that all other entries are zero. In other words it looks like

0	0	0	0	0		0	0	0
\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	\cdots	\mathbb{Z}	0	0
\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	\cdots	\mathbb{Z}	0	0

Because of the positioning of the nonzero entries, all differentials on pages 3 and higher are zero. So $E_{3}=E_{\infty}$.
Now we claim that d_{2} is multiplication by q. Recall that $H_{1}(L, \mathbb{Z})=\mathbb{Z} / q$. By the universal coefficient theorem so is $H^{2}(L, \mathbb{Z})$. Let x be a generator of $\mathbb{Z}=H^{0}\left(\mathbb{C P}^{n}, H^{1}\left(S^{1}, \mathbb{Z}\right)\right)$ and y be a generator of $\mathbb{Z}=$ $H^{2}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$. Considering the second diagonal of the $E_{\infty}=E_{3}$ page we see that the image of the map $d_{2}: E_{2}^{0,2} \rightarrow E_{2}^{1,0}$ is $q \mathbb{Z}$, so $d_{2}(x)=q y$ - multiplication by q. d_{2} is a differential with respect to the cup product, so $d_{2}(x y)=d_{2}(x) y+x d_{2}(y)=q y^{2}$. Using the Kunneth formula we know the cup product
structure on $H^{*}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$, and this tells us that y^{2} is in fact the generator of $H^{4}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$. Continuing in this fashion we fnd that all the d_{2} maps are multiplication by q, except for the last map $H^{2 n}\left(\mathbb{C P}^{n}, H^{1}\left(S^{1}, \mathbb{Z}\right)\right) \rightarrow H^{2 n+2}\left(\mathbb{C P}^{n}, H^{0}\left(S^{1}, \mathbb{Z}\right)\right)$ which is necessarily zero.

Therefore the E_{3} page is concentrated in the bottom row except for one entry in the top (first) row. The extension problem for going from E_{∞} to the cohomology of the total space is vacuous here, and we conclude

$$
H^{i}(L(n, q), \mathbb{Z})=\left\{\begin{array}{cc}
\mathbb{Z} & i=0 \\
\mathbb{Z} / q \mathbb{Z} & i=2 j, j \leq n \\
\mathbb{Z} & i=2 n+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

These formulas work for $n=\infty$ as well, interpreted in the obvious way.

Computation of $\pi_{n+1}\left(S^{n}\right)$

Let X be a CW complex and n be a natural number. By adding cells of dimension at least $n+2$ to X we can kill off all $\pi_{i}(X)$ for $i>n$, and by CW approximation this will have no effect on $\pi_{i}(X)$ for $i \leq n$. In this way we get a space Y_{n} with an inclusion $X \hookrightarrow Y_{n}$ inducing an isomorphism on π_{i} for $i \leq n$, and with $\pi_{i}\left(Y_{n}\right)=0$ for $i>n$. By adding even more cells of dimension at least $n+1$ we get a space Y_{n-1} satisfying similar conditions. Further, we can assume that the inclusion $Y_{n} \hookrightarrow Y_{n-1}$ is a fibration. By the long exact sequence of fundamental groups associated to a fibration, the fiber of this fibration is a $K\left(\pi_{n}(X), n\right)$. Summarizing the the above discussion, we get:

Lemma 1. Let X be a $C W$ complex. Then for any n there exists a fibration $\pi: Y_{n} \rightarrow Y_{n-1}$ of $C W$ complexes with fiber $K\left(\pi_{n}(X), n\right)$, such that $\pi_{i}\left(Y_{n-1}\right)=\pi_{i}(X)$ for $i \leq n-1$ and $\pi_{i}\left(Y_{n-1}\right)=0$ for $i \geq n$. Finally, Y_{n} (is homotopic to a $C W$ complex that) differs from X only by cells of dimensino $\geq n+2$.

The main result of this section is:
Theorem 1. $\pi_{4}\left(S^{3}\right)=\mathbb{Z} / 2$
Proof. Apply the construction above in the case $n=4, X=S^{3}$, obtaining a fibration $Y_{4} \rightarrow Y_{3}$ with fiber $F=K\left(\pi_{4}\left(S^{3}\right), 4\right)$. Note that to get Y_{3} we killed off all higher homotopy groups of S^{3}, so $Y_{3}=K(\mathbb{Z}, 3)$. By the Hurewicz theorem,

$$
\begin{gathered}
H_{q}\left(Y_{3}, \mathbb{Z}\right)=\left\{\begin{array}{cc}
0 & q=1,2 \\
\mathbb{Z} & q=3 \\
? & q>3
\end{array}\right. \\
H_{q}(F, \mathbb{Z})=\left\{\begin{array}{cc}
0 & q=1,2,3 \\
\pi_{4}\left(S^{3}\right) & q=4 \\
? & q>4
\end{array}\right.
\end{gathered}
$$

Now consider the homology spectral sequence for the fibration $F \hookrightarrow Y_{4} \rightarrow Y_{3}$. The E^{2} page looks like

Note that

$$
Y_{4}=S^{3} \cup(\text { cells of dimension } \geq 6),
$$

hence $H_{4}\left(Y_{4}\right)=0=H_{5}\left(Y_{4}\right)$. Thus all entries on the fourth and fifth diagonals of E^{∞} are zero. The only differential that can affect $\pi_{4}\left(S^{3}\right)$ is $d^{5}: H_{5}(K(\mathbb{Z}, 3), \mathbb{Z}) \rightarrow \pi_{4}\left(S^{3}\right)$, and by the previous remark, this map has to be an isomorphism. Hence

$$
\pi_{4}\left(S^{3}\right) \cong H_{5}(K(\mathbb{Z}, 3), \mathbb{Z})
$$

By the cohomology spectral squence of the path fibration for $K(\mathbb{Z}, 3)$, one easily obtains

$$
\operatorname{Tor} H^{6}(K(\mathbb{Z}, 3))=\mathbb{Z} / 2, \operatorname{Free}^{5}(K(\mathbb{Z}, 3))=0
$$

hence $H_{5}(K(\mathbb{Z}, 3))=\mathbb{Z} / 2$.

Corollary 1. $\pi_{4}\left(S^{2}\right)=\mathbb{Z} / 2$
Proof. Apply the above calculation to the long exact sequence of homotopy groups for the Hopf fibration.
Theorem 2. (Serre) For $n \geq 3, \pi_{n+1}\left(S^{n}\right) \cong \mathbb{Z} / 2$.
Proof. Follows from $\pi_{4}\left(S^{3}\right)=\mathbb{Z} / 2$ and the suspension theorem.

Whitehead Towers

Let X be a connected CW complex.
Definition. A Whitehead tower of X is a sequence of fibrations $\ldots \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \ldots \rightarrow X_{0}=X$, such that

1. X_{n} is n-connected
2. $\pi_{q}\left(X_{n}\right)=\pi_{q}(X)$ for $q \geq n+1$
3. the fiber of $X_{n} \rightarrow X_{n-1}$ is a $K\left(\pi_{n}, n-1\right)$

Up to homotopy this may be viewed as a generalization of the universal cover construction: X_{1} is a 1 -connected space whose higher homtopy groups agree with those of X. The fiber of $X_{1} \rightarrow X_{0}$ is a $K\left(\pi_{1}, 0\right)$, so it is (up to homotopy) a discrete space on $\left|\pi_{1}\right|$ many points.

Lemma 2. For X a $C W$ complex, Whitehead towers exist.
Proof. We construct X_{n} inductively. Suppose that X_{n-1} has already been defined. Add cells to X_{n-1} to kill off $\pi_{q}\left(X_{n-1}\right)$ for $q \geq n+1$. So we get a space Y which, by induction, is a $K\left(\pi_{n}, n\right)$. Now define the space

$$
X_{n}:=\left\{f: I \rightarrow Y, f(o)=*, f(1) \in X_{n-1}\right\}
$$

consisting of of paths in Y beginning at a basepoint $* \in X_{n-1}$ and ending somewhere in X_{n-1}. Give it the compact-open topology. Then the map $\pi: X_{n} \rightarrow X_{n-1}$ defined by $\gamma \rightarrow \gamma(1)$ is a fibration.

Note that the fiber of π is just $\Omega Y=K\left(\pi_{n}, n-1\right)$. In particular it is a $K\left(\pi_{n}, n-1\right)$. Now consider the long exact sequence of homotopy groups associated to the fibration:

$$
\ldots \pi_{i+1}\left(X_{n-1}\right) \rightarrow \pi_{i}(\Omega Y) \rightarrow \pi_{i}\left(X_{n}\right) \rightarrow \pi_{i}\left(X_{n-1}\right) \rightarrow \ldots
$$

For $i<n-1$, and for $i>n$ get that $\pi_{i}\left(X_{n}\right)=\pi_{i}\left(X_{n-1}\right)=\pi_{i}$. The interesting part is

$$
\pi_{n}(\Omega Y) \rightarrow \pi_{n}\left(X_{n}\right) \rightarrow \pi_{n}\left(X_{n-1}\right) \rightarrow \pi_{n-1}(\Omega Y) \rightarrow \pi_{n-1}\left(X_{n}\right) \rightarrow \pi_{n-1}\left(X_{n-1}\right)
$$

or,

$$
0 \rightarrow \pi_{n}\left(X_{n}\right) \rightarrow \pi_{n} \rightarrow \pi_{n} \rightarrow \pi_{n-1}\left(X_{n}\right) \rightarrow 0
$$

If we can show that the map $\pi_{n} \rightarrow \pi_{n}$ in the middle, i.e. the boundary map $\pi_{n}\left(X_{n-1}\right) \rightarrow \pi_{n-1}(\Omega Y)$, is an isomorphism, then we are done.

Note that we have an isomorphism $\pi_{n}\left(X_{n-1}\right) \rightarrow \pi_{n-1}(\Omega Y)$ by taking the map $\left[S^{n}, X_{n-1}\right] \rightarrow\left[S^{n}, Y\right]$ induced by the inclusion (which is an isomorphism by construction of Y) and following it with the natural isomorphism $\left[S^{n}, Y\right] \cong\left[S^{n-1}, \Omega Y\right]$. In fact the resulting map $\pi_{n}\left(X_{n-1}\right) \rightarrow \pi_{n-1}(\Omega Y)$ is precisely the boundary map from the long exact sequence above. Think about the definition of the boundary map. Recall that for $\alpha:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X_{n-1}, x_{0}\right)$ we use the lifting property of the fibration to get a map $\alpha^{\prime}:\left(I^{n}, \partial I^{n}\right) \rightarrow$ $\left(X_{n}, \Omega Y\right)$ and then restrict to get $S^{n-1}=\partial I^{n} \rightarrow \Omega Y$. In our case we can choose an explicit lift α^{\prime}. Namely send $\vec{v} \in I^{n}$ to the path $t \rightarrow \alpha(t \vec{v})$. Restricted to ∂I^{n} this is just the map we get from the natural isomorphism.

Calculation of $\pi_{4}\left(S^{3}\right)$ and $\pi_{5}\left(S^{3}\right)$

Let us consider the Whitehead tower for $X=S^{3} . S^{3}$ is 2-connected so (in the notation from the definition of Whitehead towers) $X=X_{1}=X_{2}$. Let $\pi_{i}:=\pi_{i}(X)$. We have fibrations

Note that $\pi_{3}=\mathbb{Z}$ so $K\left(\pi_{3}, 2\right)=\mathbb{C P}^{\infty}$. Moreover, we have by definition and Hurewicz that :

$$
\begin{aligned}
& \pi_{5}\left(S^{3}\right) \cong \pi_{5}\left(X_{4}\right) \cong H_{5}\left(X_{4}\right) \\
& \pi_{4}\left(S^{3}\right) \cong \pi_{4}\left(X_{3}\right) \cong H_{4}\left(X_{3}\right)
\end{aligned}
$$

Now consider the cohomology spectral sequence for the bottom fibration,

$$
E_{2}^{p, q}=H^{p}\left(S^{3}, H^{q}\left(\mathbb{C P} \mathbb{P}^{\infty}, \mathbb{Z}\right)\right) \rightarrow H^{p+q}\left(X_{3}, \mathbb{Z}\right)
$$

The E_{2} page looks like

$H^{0}\left(S^{3}, H^{4}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right)\right.$	0	0	$H^{3}\left(S^{3}, H^{4}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right)\right)$	0	\cdots
0	0	0	0	0	\cdots
$H^{0}\left(S^{3}, H^{2}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right)\right.$	0	0	$H^{3}\left(S^{3}, H^{2}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right)\right)$	0	\cdots
0	0	0		0	
$H^{0}\left(S^{3}, H^{0}\left(\mathbb{C P} \mathbb{P}^{\infty}, \mathbb{Z}\right)\right.$	0	0	$H^{3}\left(S^{3}, H^{0}\left(\mathbb{C P}{ }^{\infty}, \mathbb{Z}\right)\right)$	0	\cdots

Thus $d_{2}=0$, so $E_{2}=E_{3}$. In addition, for $r \geq 4, d_{r}=0$. So $E_{4}=E_{\infty} . X_{3}$ is 3 -connected so (by Hurewicz) all entries on the 2nd and 3rd diagonals of E_{4} are 0 . In particular, $d_{3}: H^{0}\left(S^{3}, H^{2}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right) \rightarrow\right.$ $H^{3}\left(S^{3}, H^{0}\left(\mathbb{C P}{ }^{\infty}, \mathbb{Z}\right)\right)$ must be an isomorphism. By the Kunneth formula, both of these groups are isomorphic to \mathbb{Z}. Let x be a generator of the former and u be a generator of the latter, so $d_{3}(x)=u$. From what we know of $\mathbb{C P}^{\infty}, x^{n}$ generates $H^{0}\left(S^{3}, H^{2 n}(\mathbb{C P}, \mathbb{Z})\right.$. By the Leibnitz rule, $d_{3} x^{n}=n x^{n-1} d x=n x^{n-1} u$. This tells us exactly what the E_{4} page is like, and we get

$$
\begin{aligned}
H^{3}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H^{4}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H^{5}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 2 \\
H^{6}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H^{7}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 3 \\
H^{8}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H^{9}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 4
\end{aligned}
$$

By the universal coefficient theorem,

$$
\begin{aligned}
H_{3}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H_{4}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 2 \\
H_{5}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H_{6}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 3 \\
H_{7}\left(X_{3}, \mathbb{Z}\right) & =0 \\
H_{8}\left(X_{3}, \mathbb{Z}\right) & =\mathbb{Z} / 4
\end{aligned}
$$

In particular, $\pi_{4}=H_{4}\left(X_{3}\right)=\mathbb{Z} / 2$.

In order to get the next homotopy group, we use the homology spectral sequence for the top fibration. Note that (by Hurewicz) $H_{i}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)$ is zero for $i<3$ and $H_{3}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)=\pi_{4}=\mathbb{Z} / 2$. Thus the E^{2}
page of the homology spectral sequence looks like

$$
\begin{array}{ccccccc}
H_{0}\left(X_{3}, H_{5}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)\right) & 0 & 0 & 0 & & \\
? & 0 & 0 & 0 & & \\
H_{0}\left(X_{3}, H_{3}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)\right) \cong \mathbb{Z} / 2 & 0 & 0 & 0 & H_{4}\left(X_{3}, H^{3}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)\right) & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
H_{0}\left(X_{3}, \mathbb{Z}\right) \cong \mathbb{Z} & 0 & 0 & 0 & H_{4}\left(X_{3}, \mathbb{Z}\right) \cong \mathbb{Z} / 2 & 0 & \mathbb{Z} / 3
\end{array}
$$

On the portion of the spectral sequence shown in the diagram above, $E_{2}=E_{4}$. Further, we know that all entries on diagonals 3 and 4 at E^{∞} are zero. Therefore the map $d^{4}: H_{4}\left(X_{3}, \mathbb{Z}\right) \rightarrow H_{0}\left(X_{3}, H^{3}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right)\right)$ must be an isomorphism. But the former group is $\mathbb{Z} / 2$ and the latter group is $H^{3}\left(K\left(\pi_{4}, 3\right), \mathbb{Z}\right) \cong \pi_{4}$. So we get back $\pi_{4}=\mathbb{Z} / 2$.

Moreover, by a spectral sequence argument on the path fibration of $K(\mathbb{Z} / 2,3)$, we obtain: $H_{5}(K(\mathbb{Z} / 2,3))=$ $\mathbb{Z} / 2$. Note also that $E_{0,5}^{2} \cong \mathbb{Z} / 2$, and this entry can only be affected by $d^{6}: E_{6,0}^{6} \cong \mathbb{Z} / 3 \rightarrow E_{0,5}^{6}=E_{0,5}^{2} \cong \mathbb{Z} / 2$, which is the zero map, so $E_{0,5}^{\infty}=\mathbb{Z} / 2$. Thus, on the fifth diagonal of E^{∞}, all entries are zero except $E_{0,5}^{\infty}=\mathbb{Z} / 2$, which yields $H_{5}\left(X_{4}\right)=\mathbb{Z} / 2$, i.e., $\pi_{5}\left(S^{3}\right)=\mathbb{Z} / 2$.

