

Introduction to Pressure Pipe Rehabilitation with CIPP

RS Technik ODD

Introduction

- Founded in early 1990's RS Technik is a global leader in the rehabilitation of underground pipes
- RS Technik uses Cured-in-Place (CIPP) technology to repair damaged or deteriorated pipes
- RS Technik serves clients around the globe with support locations in Germany, Switzerland, the United States and Singapore

RS Technik ODD

RS Technik

- Over 32 million lineal feet of pipe rehabilitated worldwide
- DOW high-performance epoxies are a key component of RS Technik's unique CIPP technology
 - Formation of a global commercial alliance with Dow Epoxy Systems in June, 2009
- Dedicated to the development and commercialization of rehabilitation systems and materials in the water and wastewater market
- Quality, optimization and innovation are top priorities in the delivery of technology and materials

Dow

RS Systems Technology

Mobile wet-out

RS Technik ODD

- Installation with water column or air inversion
- Curing with water or steam
- 100% flexibility on the job site
- Full project visibility and control

Dow

Mobile Wet Out

- Comprehensive fully mobile wet-out system
- All systems on-board:
 - Liner

RS Technik ODD

- Resin tanks
- Vacuum system
- Impregnation unit with roller bed
- Computer controlled mixing system

Dow

- Climate control materials and work area
- Mobility increases efficiencies

Quality Control and Quality Assurance

- Touch screen controlling of key system aspects
 - Resin temperature
 - Resin volume calculations and pump controls for proportioning, saturation and gap setting
 - Data logging

RS Technik

Owner/Inspector full view
advantage

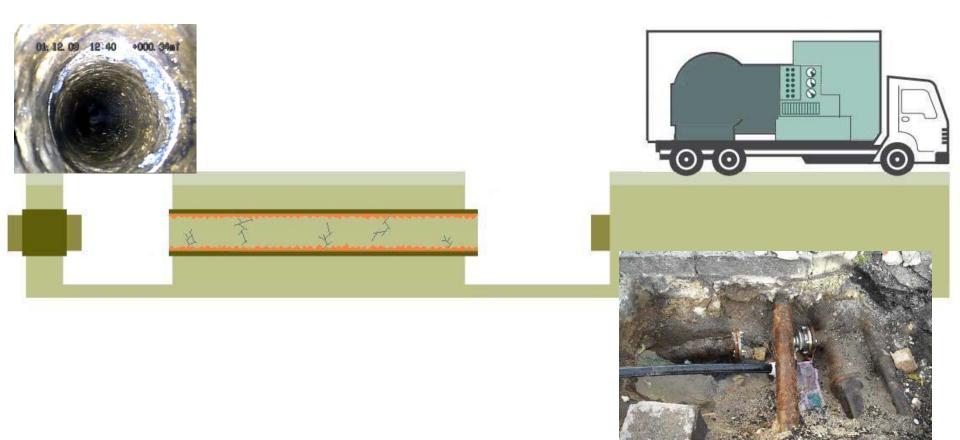
Dow

Application Know-How = Process QC

Resin Mixing

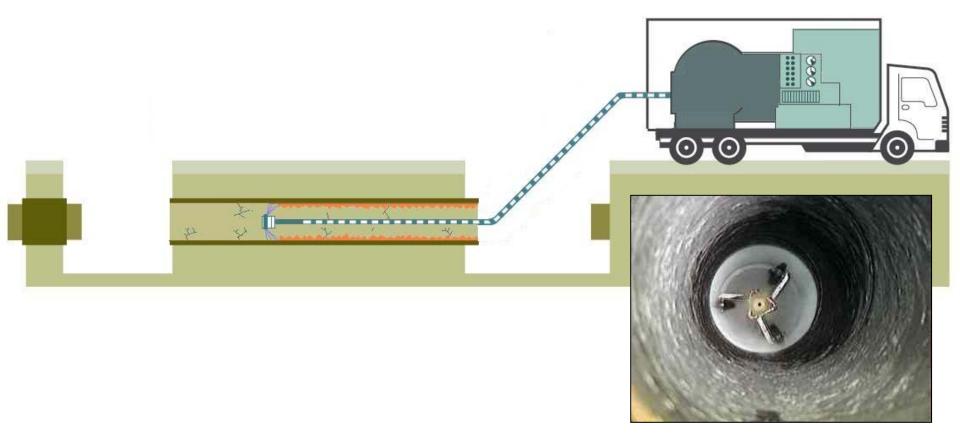
Impregnation

INSTALLATION PROCESS



RS Technik ODD

Access



Dow

Cleaning

High pressure water jetting

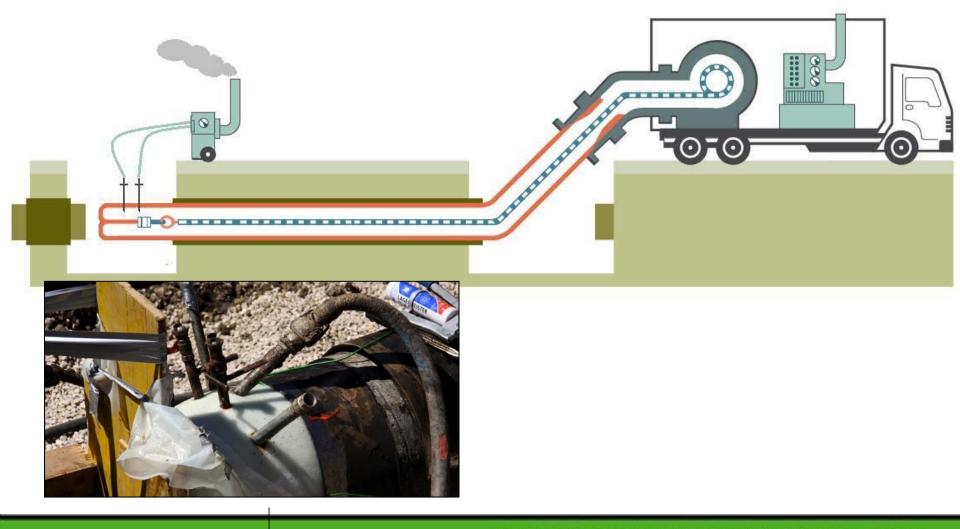
Liner Wet Out

- The lining is laid out on roller bed or impregnation table
- Vacuum is applied to remove the air from the dry liner
- Resin is pumped into the lining to replace the air removed by vacuum
- Resin injection and vacuum holes are sealed and patched

Dow

RS Technik ODD

Positioning of Installation Unit


Installation of CIPP by Air Inversion 000 \odot **T**

RS Technik ODD

Curing by Controlled Steam

RS Technik ODD

RS Technik ODD

Water Inversion and Cure

- As the liner is wet-out, it is immediately inverted into the host pipe using a water column
- Inversion water is then circulated and heated through a boiler, which in turn cures the liner in place

Dow

Air Inversion and Steam Cure

- After wet-out, the liner is inverted into the pipe using an air inversion unit (drum or shooter unit)
- Once inversion is complete, controlled steam is used to elevate the temperature of the air to cure the liner
- Time and energy savings can be realized

RS Technik ODD

Connection Techniques

RS Technik ODD

PRODUCT AND DESIGN

RS BlueLine[®]

- Fully structural pipe-within-a-pipe solution for pressure pipe,
- Final product has inherent ring stiffness and full external and internal load bearing capacity, surviving host pipe failure
- Can be designed as partially deteriorated if host pipe condition allows
- Designed in accordance with ASTM F1216
- 4" 40" diameter
- Class III and IV per AWWA M28
- Compatible with all host pipe materials
- Optional Class II application with bonded liner if pipe condition allows

Key Facts

- Polyolefin coating
- Polyester needle felt with a single or multiple glass layer
- Epoxy resin

RS Technik ODD

- Partially and fully deteriorated structural conditions
- Fulfilling criteria for Class III and IV (AWWA M28)

Dow

- Intrinsic stiffness
- No dependence on bond to host pipe
- Prevents future leakage and corrosion
- Improves or replaces structural integrity of host pipe
- Diameter range from 4 40inch

Host Pipe Impregnated Felt with Glass Layer

Coating

Application and Use

- Where to Use?
 - Pipe condition not structurally sound
 - Leaking and deflected joints
 - Any pipe material
 - Pipe is failing with frequent bursts
- The Key?
 - The liner has a homogenous felt/glass structure, diminishing the impact of imperfections like deflections and bends.

Connection Techniques

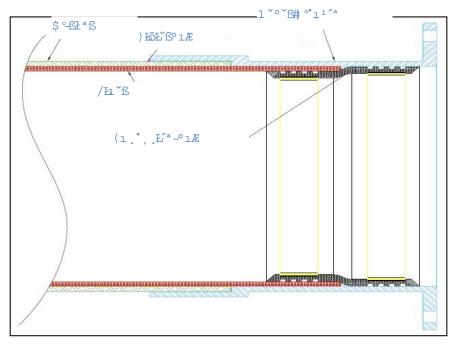
Connection Technique Overview

Diameter	RS BlueLine Pull-In			RS BlueLine Inversion		
	Multi/Joint	End-seal with Flange	Saddle coupling	Multi/Joint	End-seal with Flange	Saddle coupling
4"	X		Х			
6"	Х		Х			
8"	X		Х			
10"	X					
12"		Х			X	
16"		Х			Х	
20"		Х			X	
24"		Х			Х	
28"		Х			Х	
32"		Х			Х	

RS Technik ODD

Connections and Couplings

Coupling


End Seal

Connections

If the liner needs to be completely independent from the existing pipe and end-seal is used, a new flange can be installed prior to liner installation.

T-connection with saddle coupler

Pressure Pipe Product Classification

Classification per AWWA M28

	Non-Structural	Semi-Structural		Fully Structural
	Internal Coating	Internal Lining	Lining with load bearing	Bears full loads
Liner Characteristics according to AWWA	Class I	Class II	Class III	Class IV
Internal corrosion protection	Yes	Yes	Yes	Yes
Hole and gap span at MAOP	Νο	Yes	Yes	Yes
Inherent ring stiffness	Νο	Νο	Yes	Yes
PN Liner <u>></u> MAOP	Νο	Νο	Νο	Yes
Liner survives host pipe failure	Νο	No	Νο	Yes

RS Technik ODD

Dow

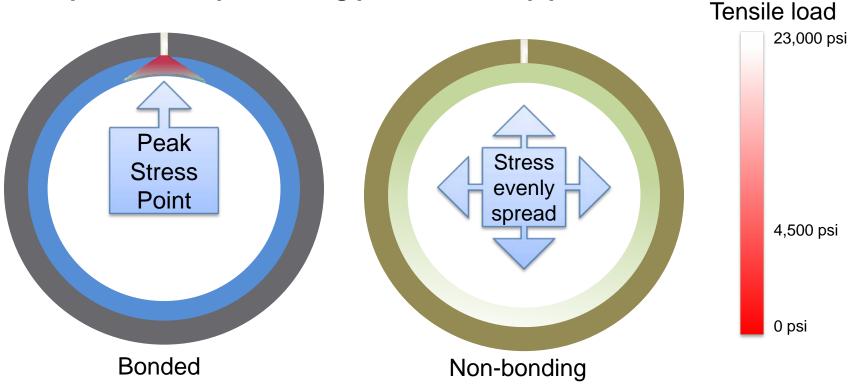
AWWA M28 Classification

- Bonded Lining Class II
- Woven Textile hose with Epoxy resin
- Sometimes combined with a felt layer

RS Technik ODD

- Loose fit structural Liner Class III and IV
- Sliplining with plastic pipes
- Gap between host pipe and new pipe

Dow

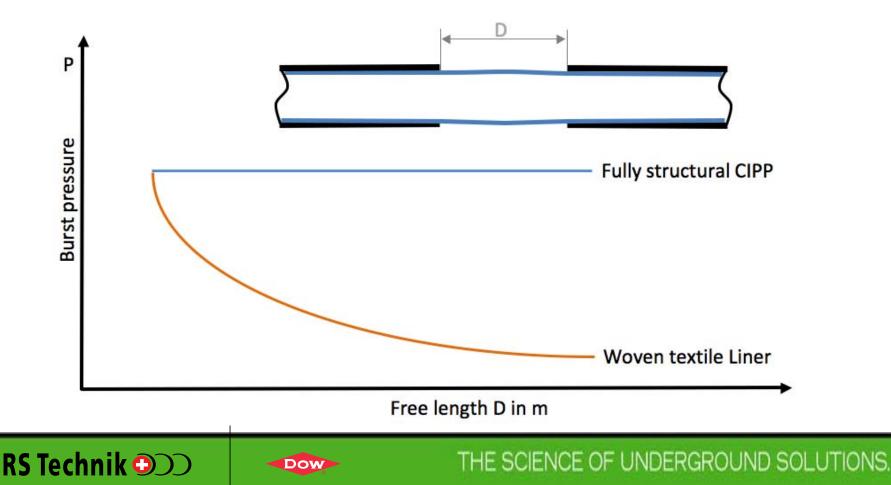

- Close fit structural Liner Class III and IV
- CIPP, Fold in Form, Rolldown, Swagelining
- No gap between host pipe and new pipe

Structural CIPP Linings – Bonded or Non-bonding?

Example for a 100 psi working pressure lined pipe

Any Class III or IV CIPP liner bonding onto the host pipe has limited capabilities for internal pressure resistance, and relies entirely on the structural integrity of the host pipe for its pressure resistance. A bonded liner can never be a fully structural solution because it is not independent of the host pipe.

THE SCIENCE OF UNDERGROUND SOLUTIONS.


RS Technik 🔾 🔿

Comparison of Pressure Resistance

Circular woven textile hose versus fully structural glass reinforced CIPP Liner

Hydropower Case Study

- Hydropower supply pipe in Italy
- 20" diameter, 1,650 lf with slope > 20%
- Pressure pipe, 70 psi with high static load in longitudinal direction

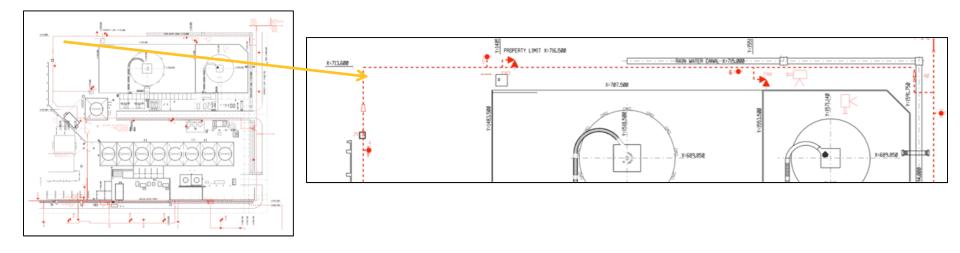
Before

Potable Water Case Study

 4" potable water case rion pipe in Cagliari, Italy with 7 service connections, 1 T-connection

After

03. 12. 09 16:20 +010. 59m²


RS Technik ODD

Fire Main Case Study

• 10" steel pipe, 230 psi working pressure

Dow

 530 feet total length, through a 90 degree bend, plus 4 connections in 2" and 4" to be opened internally with remotely controlled robot

Fire Main Project – Installation Equipment

Computer controlled mixing and impregnation equipment

Dow

RS Technik ODD

Pressure drum installation and steam equipment

Hydraulically driven robot

Fire Main Project - Installation

Difficult truck position – 3 bends before pipe access

Fire Main Project – Access Pit after Install

RS Technik ODD

ND IEC

Fire Main Project – Before and After

TECSAN		TECSAN
DOW S-N	Before	
19 1	cleaning	
ALL BOM STORES	After	
	cleaning	
the section is the		
11. 11. 10 10: 56 CL1: 018.80 m + 01.4 %		17.11.10 14:08 CL1: 000.30 m -00.9 %
TECSAN		TECSAN
	After	
	lining	
	The 90° bend	
Caller and the second		
18.11.10 12:53 CL1: 008.90 m + 00.0 %		18.11.10 12:53 CL1: 014.70 m +01.3 %
RS Technik Đ 🔿 🛛 🛶	THE SCI	ENCE OF UNDERGROUND SOLUTIONS

Green and Energy Efficient

- No styrene
- No VOCs
- Non-toxic

RS Technik ODD

- No excavation
- No landfill materials
- 50-year design life
- Low energy demand
- Reduced carbon footprint

Dow

Sustainable Solutions for Aging and Deteriorating Pipe

- Minimize traffic, trenching and disruption or damage to adjacent infrastructure and environment
- Extend the service life of infrastructure
- High performing, durable epoxy resins
- Technically proven processes
- Professional contractor performing installation consistently and reliably

Thank you!

