
Amazon EMR
Amazon EMR Release Guide

Amazon EMR Amazon EMR Release Guide

Amazon EMR Amazon EMR Release Guide

Amazon EMR: Amazon EMR Release Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon EMR Amazon EMR Release Guide

Table of Contents
 ... vii
About Amazon EMR Releases .. 1

Applications .. 1
Components ... 3
Learn More .. 6

What's New? .. 7
Release 5.2.1 ... 7

Previous Releases .. 8
Configuring Applications ... 17

Configuring Applications to Use Java 8 .. 23
Service ports .. 24
Application users ... 25

Hadoop .. 26
Create or Run a Hadoop Application .. 26

Build Binaries Using Amazon EMR .. 27
Run a Script in a Cluster .. 28
Process Data with Streaming .. 29
Process Data with a Custom JAR .. 32

Configure Hadoop ... 34
Hadoop Daemon Settings ... 35
HDFS Configuration ... 47
Task Configuration .. 47

Ganglia .. 63
Add Ganglia to a Cluster .. 63
View Ganglia Metrics ... 64
Hadoop and Spark Metrics in Ganglia .. 65

HBase ... 66
Creating a Cluster with HBase Using the Console .. 67
Creating a Cluster with HBase Using AWS CLI .. 67
Amazon S3 Storage Mode for HBase ... 68

Enabling Amazon S3 Storage Mode for HBase .. 69
Operational Considerations ... 70

Using the HBase Shell ... 72
Create a Table ... 72
Put a Value .. 72
Get a Value ... 72

Access HBase Tables with Hive .. 72
Using HBase Snapshots ... 74
Configure HBase ... 76

Changes to Memory Allocation in YARN ... 77
HBase Port Numbers ... 77
HBase Site Settings to Optimize .. 77

View the HBase User Interface ... 79
View HBase Log Files ... 80
Monitor HBase with Ganglia ... 81
Migrating from Previous HBase Versions .. 82

HCatalog .. 83
Creating a Cluster with HCatalog ... 83
Using HCatalog ... 84

Hive .. 87
Differences for Hive on Amazon EMR Versions and Default Apache Hive 88

Differences between Apache Hive on Amazon EMR and Apache Hive 88
Differences in Hive Between Amazon EMR Release 4.x and 5.x ... 88
Additional Features of Hive on Amazon EMR .. 89

Create a Hive Metastore Outside the Cluster ... 91

iv

Amazon EMR Amazon EMR Release Guide

Use the Hive JDBC Driver .. 93
Hue ... 95

Create a Cluster with Hue Installed .. 96
Launch the Hue Web Interface .. 97
Use Hue with a Remote Database in Amazon RDS .. 97

Troubleshooting .. 99
Advanced Configurations for Hue .. 99

Configure Hue for LDAP Users ... 99
Metastore Manager Restrictions ... 101

Mahout .. 102
Oozie ... 103
Phoenix .. 104

Creating a Cluster with Phoenix ... 104
Configuring Phoenix ... 105
Phoenix Clients ... 106

Pig .. 109
Submit Pig Work ... 109

Submit Pig Work Using the Amazon EMR Console ... 110
Submit Pig Work Using the AWS CLI ... 110

Call User Defined Functions from Pig ... 111
Call JAR files from Pig ... 111
Call Python/Jython Scripts from Pig .. 111

Presto .. 113
Adding Database Connectors .. 113

Spark ... 115
Create a Cluster With Spark ... 116
Configure Spark .. 117

Spark Defaults Set By Amazon EMR .. 117
Enabling Dynamic Allocation of Executors ... 118
Spark ThriftServer Environment Variable ... 119
Changing Spark Default Settings ... 119

Access the Spark Shell .. 120
Write a Spark Application ... 122

Scala ... 122
Java .. 122
Python ... 123

Adding a Spark Step .. 124
Overriding Spark Default Configuration Settings ... 126

Accessing the Spark Web UIs ... 126
Flink .. 127

Creating a Cluster with Flink ... 128
Configuring Flink ... 128

Parallelism Options .. 129
Configurable Files .. 129

Working with Flink Jobs in Amazon EMR .. 129
Start a Flink Long-Running YARN Job as a Step .. 129
Submit Work to an Existing, Long-Running Flink YARN Job ... 130
Submit a Transient Flink Job ... 131

Using the Scala Shell ... 134
Finding the Flink Web Interface ... 134

Sqoop .. 137
Tez .. 139

Creating a Cluster with Tez .. 139
Configuring Tez ... 140
Using Tez .. 141
Tez Web UI .. 143
Timeline Server ... 143

Zeppelin ... 144

v

Amazon EMR Amazon EMR Release Guide

ZooKeeper .. 145
Data Encryption ... 146

Understanding Encryption Options with Amazon EMR ... 146
At-rest Encryption for Amazon S3 with EMRFS .. 148
At-rest Encryption for Local Disks .. 148
In-Transit Data Encryption .. 149

Enabling Data Encryption with Amazon EMR ... 149
Providing Keys for At-Rest Data Encryption with Amazon EMR ... 150
Providing Certificates for In-Transit Data Encryption with Amazon EMR Encryption 152
Specifying Amazon EMR Encryption Options Using a Security Configuration 153
Specifying Amazon S3 Encryption with EMRFS Using a Cluster Configuration 161

Transparent Encryption in HDFS on Amazon EMR ... 168
Configuring HDFS Transparent Encryption in Amazon EMR ... 169
Considerations for HDFS Transparent Encryption ... 170
Hadoop Key Management Server .. 170

Connectors and Utilities .. 174
EMR File System (EMRFS) (Optional) .. 174

Consistent View .. 174
Creating an AWSCredentialsProvider for EMRFS ... 189
EMRFS Endpoint Resolution ... 190

Export, Query, and Join Tables in DynamoDB ... 190
Set Up a Hive Table to Run Hive Commands .. 191
Hive Command Examples for Exporting, Importing, and Querying Data 196
Optimizing Performance ... 202

Amazon Kinesis .. 205
What Can I Do With Amazon EMR and Amazon Kinesis Integration? 205
Checkpointed Analysis of Amazon Kinesis Streams .. 205
Performance Considerations .. 206
Schedule Amazon Kinesis Analysis with Amazon EMR ... 206

S3DistCp .. 206
S3DistCp Options .. 207
Adding S3DistCp as a Step in a Cluster .. 211

Command Runner ... 213
Links to All Release Guides .. 214
Document History .. 215

vi

Amazon EMR Amazon EMR Release Guide

vii

Amazon EMR Amazon EMR Release Guide
Applications

About Amazon EMR Releases

This documentation is for versions 4.x and 5.x of Amazon EMR. For information about Amazon EMR
AMI versions 2.x and 3.x, see the Amazon EMR Developer Guide (PDF).

This document provides information about Amazon EMR 4.x and 5.x software releases. A release is
a set of software applications and components which can be installed and configured on an Amazon
EMR cluster. Amazon EMR releases are packaged using a system based on Apache BigTop,
which is an open source project associated with the Hadoop ecosystem. In addition to Hadoop and
Spark ecosystem projects, each Amazon EMR release provides components which enable cluster
and resource management, interoperability with other AWS services, and additional configuration
optimizations for installed software.

Topics

• Applications (p. 1)

• Components (p. 3)

• Learn More (p. 6)

Applications
Each Amazon EMR release contains several distributed applications available for installation on
your cluster. Amazon EMR defines each application as not only the set of the components which
comprise that open source project but also a set of associated components which are required for
that the application to function. When you choose to install an application using the console, API, or
CLI, Amazon EMR installs and configures this set of components across nodes in your cluster. The
following applications are supported for this release: Flink, Ganglia, Hadoop, HBase, HCatalog, Hive,
Hue, Mahout, Oozie, Phoenix, Pig, Presto, Spark, Sqoop, Tez, Zeppelin, and ZooKeeper.

1

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
http://bigtop.apache.org/
https://flink.apache.org/
http://ganglia.info
http://hadoop.apache.org/docs/current/
http://hbase.apache.org/
https://cwiki.apache.org/confluence/display/Hive/HCatalog
http://hive.apache.org/
http://gethue.com/
http://mahout.apache.org/
http://oozie.apache.org/
https://phoenix.apache.org/
http://pig.apache.org/
https://prestodb.io/
https://spark.apache.org/docs/latest/
http://sqoop.apache.org/
https://tez.apache.org/
https://zeppelin.incubator.apache.org/
https://zookeeper.apache.org

Amazon EMR Amazon EMR Release Guide
Applications

2

Amazon EMR Amazon EMR Release Guide
Components

Components
The Amazon EMR releases include various components that can be installed by specifying an
application which uses them. The versions of these components are typically those found in the
community. Amazon EMR makes an effort to make community releases available in a timely fashion.
However, there may be a need to make changes to specific components. If those components are
modified, they have a release version such as the following:

communityVersion-amzn-emrReleaseVersion

As an example, assume that the component, ExampleComponent1, has not been modified by
Amazon EMR; the version is 1.0, which is the community version. However, another component,
ExampleComponent2, is modified and its Amazon EMR release version is 1.0.0-amzn-0.

There are also components provided exclusively by Amazon EMR. For example, the DynamoDB
connector component, emr-ddb, is provided by Amazon EMR for use with applications running on
Amazon EMR clusters. Amazon components have just one version number. For example, an emr-ddb
version is 2.1.0. For more information about using Hive to query DynamoDB and an example, see
Amazon EMR Hive Queries to Accommodate Partial DynamoDB Schemas (p. 89).

The following components are included with Amazon EMR:

Component Version Description

emr-ddb 4.2.0 Amazon DynamoDB connector
for Hadoop ecosystem
applications.

emr-goodies 2.2.0 Extra convenience libraries for
the Hadoop ecosystem.

emr-kinesis 3.2.0 Amazon Kinesis connector for
Hadoop ecosystem applications.

emr-s3-dist-cp 2.4.0 Distributed copy application
optimized for Amazon S3.

emrfs 2.13.0 Amazon S3 connector for
Hadoop ecosystem applications.

flink-client 1.1.3 Apache Flink command line
client scripts and applications.

ganglia-monitor 3.7.2 Embedded Ganglia agent for
Hadoop ecosystem applications
along with the Ganglia
monitoring agent.

ganglia-metadata-collector 3.7.2 Ganglia metadata collector
for aggregating metrics from
Ganglia monitoring agents.

ganglia-web 3.7.1 Web application for viewing
metrics collected by the Ganglia
metadata collector.

hadoop-client 2.7.3-amzn-1 Hadoop command-line clients
such as 'hdfs', 'hadoop', or 'yarn'.

3

Amazon EMR Amazon EMR Release Guide
Components

Component Version Description

hadoop-hdfs-datanode 2.7.3-amzn-1 HDFS node-level service for
storing blocks.

hadoop-hdfs-library 2.7.3-amzn-1 HDFS command-line client and
library

hadoop-hdfs-namenode 2.7.3-amzn-1 HDFS service for tracking file
names and block locations.

hadoop-httpfs-server 2.7.3-amzn-1 HTTP endpoint for HDFS
operations.

hadoop-kms-server 2.7.3-amzn-1 Cryptographic key management
server based on Hadoop's
KeyProvider API.

hadoop-mapred 2.7.3-amzn-1 MapReduce execution
engine libraries for running a
MapReduce application.

hadoop-yarn-nodemanager 2.7.3-amzn-1 YARN service for managing
containers on an individual
node.

hadoop-yarn-resourcemanager 2.7.3-amzn-1 YARN service for allocating and
managing cluster resources and
distributed applications.

hadoop-yarn-timeline-server 2.7.3-amzn-1 Service for retrieving current and
historical information for YARN
applications.

hbase-hmaster 1.2.3 Service for an HBase cluster
responsible for coordination
of Regions and execution of
administrative commands.

hbase-region-server 1.2.3 Service for serving one or more
HBase regions.

hbase-client 1.2.3 HBase command-line client.

hbase-rest-server 1.2.3 Service providing a RESTful
HTTP endpoint for HBase.

hbase-thrift-server 1.2.3 Service providing a Thrift
endpoint to HBase.

hcatalog-client 2.1.0-amzn-0 The 'hcat' command line client
for manipulating hcatalog-server.

hcatalog-server 2.1.0-amzn-0 Service providing HCatalog, a
table and storage management
layer for distributed applications.

hcatalog-webhcat-server 2.1.0-amzn-0 HTTP endpoint providing a
REST interface to HCatalog.

hive-client 2.1.0-amzn-0 Hive command line client.

4

Amazon EMR Amazon EMR Release Guide
Components

Component Version Description

hive-metastore-server 2.1.0-amzn-0 Service for accessing the Hive
metastore, a semantic repository
storing metadata for SQL on
Hadoop operations.

hive-server 2.1.0-amzn-0 Service for accepting Hive
queries as web requests.

hue-server 3.10.0-amzn-0 Web application for analyzing
data using Hadoop ecosystem
applications

mahout-client 0.12.2 Library for machine learning.

mysql-server 5.5.52 MySQL database server.

oozie-client 4.2.0 Oozie command-line client.

oozie-server 4.2.0 Service for accepting Oozie
workflow requests.

phoenix-library 4.7.0-HBase-1.2 The phoenix libraries for server
and client

phoenix-query-server 4.7.0-HBase-1.2 A light weight server providing
JDBC access as well as
Protocol Buffers and JSON
format access to the Avatica API

presto-coordinator 0.157.1 Service for accepting queries
and managing query execution
among presto-workers.

presto-worker 0.157.1 Service for executing pieces of a
query.

pig-client 0.16.0-amzn-0 Pig command-line client.

spark-client 2.0.2 Spark command-line clients.

spark-history-server 2.0.2 Web UI for viewing logged
events for the lifetime of a
completed Spark application.

spark-on-yarn 2.0.2 In-memory execution engine for
YARN.

spark-yarn-slave 2.0.2 Apache Spark libraries needed
by YARN slaves.

sqoop-client 1.4.6 Apache Sqoop command-line
client.

tez-on-yarn 0.8.4 The tez YARN application and
libraries.

webserver 2.4.23 Apache HTTP server.

5

Amazon EMR Amazon EMR Release Guide
Learn More

Component Version Description

zeppelin-server 0.6.2 Web-based notebook that
enables interactive data
analytics.

zookeeper-server 3.4.9 Centralized service for
maintaining configuration
information, naming, providing
distributed synchronization, and
providing group services.

zookeeper-client 3.4.9 ZooKeeper command line client.

Learn More
If you are looking for additional information, see the following guides and sites:

• Information about the Amazon EMR service, getting started, and how to launch or manage clusters,
specifically for emr-4.0.0 or greater — Amazon EMR Management Guide

• Amazon EMR API Reference

• AWS SDKs and other tools

• AWS Command Line Interface Reference

• Information about Amazon EMR AMI versions 2.x and 3.x — Amazon EMR Developer Guide

6

http://docs.aws.amazon.com//emr/latest/ManagementGuide/
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/

Amazon EMR Amazon EMR Release Guide
Release 5.2.1

What's New?

This documentation is for versions 4.x and 5.x of Amazon EMR. For information about Amazon EMR
AMI versions 2.x and 3.x, see the Amazon EMR Developer Guide (PDF).

This chapter gives an overview of features and issues resolved in the current release of Amazon EMR
as well as the historical record of this information for previous releases.

Release 5.2.1
The following release notes include information for the Amazon EMR 5.2.1 release. Changes are
relative to the Amazon EMR 5.2.0 release.

Upgrades

The following upgrades are available in this release:

• Upgraded to Presto 0.157.1. For more information, see Presto Release Notes in the Presto
documentation.

• Upgraded to Zookeeper 3.4.9. For more information, see ZooKeeper Release Notes in the Apache
ZooKeeper documentation.

Changes and Enhancements

The following are changes made to Amazon EMR releases for release label emr-5.2.1:

• Added support for the Amazon EC2 m4.16xlarge instance type in Amazon EMR version 4.8.3 and
later, excluding 5.0.0, 5.0.3, and 5.2.0.

• Amazon EMR releases are now based on Amazon Linux 2016.09. For more information, see https://
aws.amazon.com/amazon-linux-ami/2016.09-release-notes/.

• The location of Flink and YARN configuration paths are now set by default in /etc/default/flink
that you don't need to set the environment variables FLINK_CONF_DIR and HADOOP_CONF_DIR
when running the flink or yarn-session.sh driver scripts to launch Flink jobs.

7

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
https://prestodb.io/docs/current/release/release-0.157.1.html
https://zookeeper.apache.org/doc/r3.4.9/releasenotes.html
https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/
https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/

Amazon EMR Amazon EMR Release Guide
Previous Releases

Known Issues Resolved from the Previous Releases

• Fixed an issue in Hadoop where the ReplicationMonitor thread could get stuck for a long time
because of a race between replication and deletion of the same file in a large cluster.

• Fixed an issue where ControlledJob#toString failed with a null pointer exception (NPE) when job
status was not successfully updated.

Previous Releases

Release 5.2.0

The following release notes include information for the Amazon EMR 5.2.0 release. Changes are
relative to the Amazon EMR 5.1.0 release.

Changes and enhancements

The following changes and enhancements are available in this release:

• Added Amazon S3 storage mode for HBase.

• Enables you to specify an Amazon S3 location for the HBase rootdir. For more information, see
Amazon S3 Storage Mode for HBase (p. 68).

Upgrades

The following upgrades are available in this release:

• Upgraded to Spark 2.0.2

Known Issues Resolved from the Previous Releases

• Fixed an issue with /mnt being constrained to 2 TB on EBS-only instance types.

• Fixed an issue with instance-controller and logpusher logs being output to their corresponding .out
files instead of to their normal log4j-configured .log files, which rotate hourly. The .out files don't
rotate, so this would eventually fill up the /emr partition. This issue only affects hardware virtual
machine (HVM) instance types.

Release 5.1.0

The following release notes include information for the Amazon EMR 5.1.0 release. Changes are
relative to the Amazon EMR 5.0.0 release.

Changes and enhancements

The following changes and enhancements are available in this release:

• Added support for Flink 1.1.3.

• Presto has been added as an option in the notebook section of Hue.

Upgrades

The following upgrades are available in this release:

• Upgraded to HBase 1.2.3

• Upgraded to Zeppelin 0.6.2

8

Amazon EMR Amazon EMR Release Guide
Previous Releases

Known Issues Resolved from the Previous Releases

• Fixed an issue with Tez queries on Amazon S3 with ORC files did not perform as well as earlier
Amazon EMR 4.x versions.

Release 5.0.3
The following release notes include information for the Amazon EMR 5.0.3 release. Changes are
relative to the Amazon EMR 5.0.0 release.

Upgrades

The following upgrades are available in this release:

• Upgraded to Hadoop 2.7.3

• Upgraded to Presto 0.152.3, which includes support for the Presto web interface. You can access
the Presto web interface on the Presto coordinator using port 8889. For more information about the
Presto web interface, see Web Interface in the Presto documentation.

• Upgraded to Spark 2.0.1

• Amazon EMR releases are now based on Amazon Linux 2016.09. For more information, see https://
aws.amazon.com/amazon-linux-ami/2016.09-release-notes/.

Release 5.0.0
For more information about other Amazon EMR fixes and features, see Previous Releases (p. 8).

Upgrades

The following upgrades are available in this release:

• Upgraded to Hive 2.1

• Upgraded to Presto 0.150

• Upgraded to Spark 2.0

• Upgraded to Hue 3.10.0

• Upgraded to Pig 0.16.0

• Upgraded to Tez 0.8.4

• Upgraded to Zeppelin 0.6.1

Changes and Enhancements

The following are changes made to Amazon EMR releases for release label emr-5.0.0 or greater:

• Amazon EMR supports the latest open-source versions of Hive (version 2.1) and Pig (version
0.16.0). If you have used Hive or Pig on Amazon EMR in the past, this may affect some use cases.
For more information, see Apache Hive (p. 87) and Apache Pig (p. 109).

• The default execution engine for Hive and Pig is now Tez. To change this, you would edit the
appropriate values in the hive-site and pig-properties configuration classifications,
respectively.

• An enhanced step debugging feature was added, which allows you to see the root cause of
step failures if the service can determine the cause. For more information, see Enhanced Step
Debugging in the Amazon EMR Management Guide.

• Applications that previously ended with "-Sandbox" no longer have that suffix. This may break your
automation, for example, if you are using scripts to launch clusters with these applications. The
following table shows application names in Amazon EMR 4.7.2 versus Amazon EMR 5.0.0.

9

https://prestodb.io/docs/current/admin/web-interface.html
https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/
https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-enhanced-step-debugging.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-enhanced-step-debugging.html

Amazon EMR Amazon EMR Release Guide
Previous Releases

Application name changes

Amazon EMR 4.7.2 Amazon EMR 5.0.0

Oozie-Sandbox Oozie

Presto-Sandbox Presto

Sqoop-Sandbox Sqoop

Zeppelin-Sandbox Zeppelin

ZooKeeper-Sandbox ZooKeeper

• Spark is now compiled for Scala 2.11.

• Java 8 is now the default JVM. All applications run using the Java 8 runtime. There are no changes
to any application’s byte code target. Most applications continue to target Java 7.

• Zeppelin now includes authentication features. For more information, see Apache
Zeppelin (p. 144).

• Added support for security configurations, which allow you to create and apply encryption options
more easily. For more information, see Data Encryption (p. 146).

Release 4.7.2

The following release notes include information for Amazon EMR 4.7.2. For more information about
other Amazon EMR fixes and features, see Previous Releases (p. 8).

Features

The following features are available in this release:

• Upgraded to Mahout 0.12.2

• Upgraded to Presto 0.148

• Upgraded to Spark 1.6.2

• You can now create an AWSCredentialsProvider for use with EMRFS using a URI as a parameter.
For more information, see Creating an AWSCredentialsProvider for EMRFS (p. 189).

• EMRFS now allows users to configure a custom DynamoDB endpoint for their Consistent View
metadata using the fs.s3.consistent.dynamodb.endpoint property in emrfs-site.xml.

• Added a script in /usr/bin called spark-example, which wraps /usr/lib/spark/spark/bin/
run-example so you can run examples directly. For instance, to run the SparkPi example that
comes with the Spark distribution, you can run spark-example SparkPi 100 from the command
line or using command-runner.jar as a step in the API.

Known Issues Resolved from Previous Releases

• Fixed an issue where Oozie had the spark-assembly.jar was not in the correct location when
Spark was also installed, which resulted in failure to launch Spark applications with Oozie.

• Fixed an issue with Spark Log4j-based logging in YARN containers.

Release 4.7.1

Known Issues Resolved from Previous Releases

10

Amazon EMR Amazon EMR Release Guide
Previous Releases

• Fixed an issue that extended the startup time of clusters launched in a VPC with private subnets.
The bug only impacted clusters launched with the Amazon EMR 4.7.0 release.

• Fixed an issue that improperly handled listing of files in Amazon EMR for clusters launched with the
Amazon EMR 4.7.0 release.

Release 4.7.0
Important
Amazon EMR 4.7.0 is deprecated. Use Amazon EMR 4.7.1 or later instead.

Features

The following features are available in this release:

• Added Apache Phoenix 4.7.0

• Added Apache Tez 0.8.3

• Upgraded to HBase 1.2.1

• Upgraded to Mahout 0.12.0

• Upgraded to Presto 0.147

• Upgraded the AWS SDK for Java to 1.10.75

• The final flag was removed from the mapreduce.cluster.local.dir property in mapred-
site.xml to allow users to run Pig in local mode.

Amazon Redshift JDBC Drivers Available on Cluster

Amazon Redshift JDBC drivers are now included at /usr/share/aws/redshift/jdbc. /usr/
share/aws/redshift/jdbc/RedshiftJDBC41.jar is the JDBC 4.1-compatible Amazon Redshift
driver and /usr/share/aws/redshift/jdbc/RedshiftJDBC4.jar is the JDBC 4.0-compatible
Amazon Redshift driver. For more information, see Configure a JDBC Connection in the Amazon
Redshift Cluster Management Guide.

Java 8

Except for Presto, OpenJDK 1.7 is the default JDK used for all applications. However, both OpenJDK
1.7 and 1.8 are installed. For information about how to set JAVA_HOME for applications, see
Configuring Applications to Use Java 8 (p. 23).

Known Issues Resolved from Previous Releases

• Fixed a kernel issue that significantly affected performance on Throughput Optimized HDD (st1) EBS
volumes for Amazon EMR in emr-4.6.0.

• Fixed an issue where a cluster would fail if any HDFS encryption zone were specified without
choosing Hadoop as an application.

• Changed the default HDFS write policy from RoundRobin to
AvailableSpaceVolumeChoosingPolicy. Some volumes were not properly utilized with the
RoundRobin configuration, which resulted in failed core nodes and an unreliable HDFS.

• Fixed an issue with the EMRFS CLI, which would cause an exception when creating the default
DynamoDB metadata table for consistent views.

• Fixed a deadlock issue in EMRFS that potentially occurred during multipart rename and copy
operations.

• Fixed an issue with EMRFS that caused the CopyPart size default to be 5 MB. The default is now
properly set at 128 MB.

• Fixed an issue with the Zeppelin upstart configuration that potentially prevented you from stopping
the service.

11

http://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html

Amazon EMR Amazon EMR Release Guide
Previous Releases

• Fixed an issue with Spark and Zeppelin, which prevented you from using the s3a:// URI scheme
because /usr/lib/hadoop/hadoop-aws.jar was not properly loaded in their respective
classpath.

• Backported HUE-2484.

• Backported a commit from Hue 3.9.0 (no JIRA exists) to fix an issue with the HBase browser sample.

• Backported HIVE-9073.

Release 4.6.0
Features

The following features are available in this release:

• Added HBase 1.2.0

• Added Zookeeper-Sandbox 3.4.8

• Upgraded to Presto-Sandbox 0.143

• Amazon EMR releases are now based on Amazon Linux 2016.03.0. For more information, see
https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/.

Issue Affecting Throughput Optimized HDD (st1) EBS Volume Types

An issue in the Linux kernel versions 4.2 and above significantly affects performance on Throughput
Optimized HDD (st1) EBS volumes for EMR. This release (emr-4.6.0) uses kernel version 4.4.5 and
hence is impacted. Therefore, we recommend not using emr-4.6.0 if you want to use st1 EBS volumes.
You can use emr-4.5.0 or prior Amazon EMR releases with st1 without impact. In addition, we provide
the fix with future releases.

Python Defaults

Python 3.4 is now installed by default, but Python 2.7 remains the system default. You may configure
Python 3.4 as the system default using either a bootstrap action; you can use the configuration API to
set PYSPARK_PYTHON export to /usr/bin/python3.4 in the spark-env classification to affect
the Python version used by PySpark.

Java 8

Except for Presto, OpenJDK 1.7 is the default JDK used for all applications. However, both OpenJDK
1.7 and 1.8 are installed. For information about how to set JAVA_HOME for applications, see
Configuring Applications to Use Java 8 (p. 23).

Known Issues Resolved from Previous Releases

• Fixed an issue where application provisioning would sometimes randomly fail due to a generated
password.

• Previously, mysqld was installed on all nodes. Now, it is only installed on the master instance and
only if the chosen application includes mysql-server as a component. Currently, the following
applications include the mysql-server component: HCatalog, Hive, Hue, Presto-Sandbox, and
Sqoop-Sandbox.

• Changed yarn.scheduler.maximum-allocation-vcores to 80 from the default of 32,
which fixes an issue introduced in emr-4.4.0 that mainly occurs with Spark while using the
maximizeResourceAllocation option in a cluster whose core instance type is one of a few
large instance types that have the YARN vcores set higher than 32; namely c4.8xlarge, cc2.8xlarge,
hs1.8xlarge, i2.8xlarge, m2.4xlarge, r3.8xlarge, d2.8xlarge, or m4.10xlarge were affected by this
issue.

• s3-dist-cp now uses EMRFS for all Amazon S3 nominations and no longer stages to a temporary
HDFS directory.

12

https://issues.cloudera.org/browse/HUE-2484
https://github.com/cloudera/hue/commit/c3c89f085e7a29c9fac7de016d881142d90af3eb
https://issues.apache.org/jira/browse/HIVE-9073
https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/

Amazon EMR Amazon EMR Release Guide
Previous Releases

• Fixed an issue with exception handling for client-side encryption multipart uploads.

• Added an option to allow users to change the Amazon S3 storage class. By default this setting is
STANDARD. The emrfs-site configuration classification setting is fs.s3.storageClass and the
possible values are STANDARD, STANDARD_IA, and REDUCED_REDUNDANCY. For more information
about storage classes, see Storage Classes in the Amazon Simple Storage Service Developer
Guide.

Release 4.5.0
Features

The following features are available in this release:

• Upgraded to Spark 1.6.1

• Upgraded to Hadoop 2.7.2

• Upgraded to Presto 0.140

• Added AWS KMS support for Amazon S3 server-side encryption.

Known Issues Resolved from Previous Releases

• Fixed an issue where MySQL and Apache servers would not start after a node was rebooted.

• Fixed an issue where IMPORT did not work correctly with non-partitioned tables stored in Amazon
S3

• Fixed an issue with Presto where it requires the staging directory to be /mnt/tmp rather than /tmp
when writing to Hive tables.

Release 4.4.0
Features

The following features are available in this release:

• Added HCatalog 1.0.0

• Added Sqoop-Sandbox 1.4.6

• Upgraded to Presto 0.136

• Upgraded to Zeppelin 0.5.6

• Upgraded to Mahout 0.11.1

• Enabled dynamicResourceAllocation by default.

• Added a table of all configuration classifications for the release. For more information, see the
Configuration Classifications table in Configuring Applications (p. 17).

Known Issues Resolved from Previous Releases

• Fixed an issue where the maximizeResourceAllocation setting would not reserve enough
memory for YARN ApplicationMaster daemons.

• Fixed an issue encountered with a custom DNS. If any entries in resolve.conf precede the
custom entries provided, then the custom entries are not resolvable. This behavior was affected by
clusters in a VPC where the default VPC nameserver is inserted as the top entry in resolve.conf.

• Fixed an issue where the default Python moved to version 2.7 and boto was not installed for that
version.

• Fixed an issue where YARN containers and Spark applications would generate a unique Ganglia
round robin database (rrd) file, which resulted in the first disk attached to the instance filling up.

13

http://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html

Amazon EMR Amazon EMR Release Guide
Previous Releases

Because of this fix, YARN container level metrics have been disabled and Spark application level
metrics have been disabled.

• Fixed an issue in log pusher where it would delete all empty log folders. The effect was that the Hive
CLI was not able to log because log pusher was removing the empty user folder under /var/log/
hive.

• Fixed an issue affecting Hive imports, which affected partitioning and resulted in an error during
import.

• Fixed an issue where EMRFS and s3-dist-cp did not properly handle bucket names that contain
periods.

• Changed a behavior in EMRFS so that in versioning-enabled buckets the _$folder$ marker file
is not continuously created, which may contribute to improved performance for versioning-enabled
buckets.

• Changed the behavior in EMRFS such that it does not use instruction files except
for cases where client-side encryption is enabled. If you want to delete instruction
files while using client-side encryption, you can set the emrfs-site.xml property,
fs.s3.cse.cryptoStorageMode.deleteInstructionFiles.enabled, to true.

• Changed YARN log aggregation to retain logs at the aggregation destination for two days. The
default destination is your cluster's HDFS storage. If you want to change this duration, change
the value of yarn.log-aggregation.retain-seconds using the yarn-site configuration
classification when you create your cluster. As always, you can save your application logs to
Amazon S3 using the log-uri parameter when you create your cluster.

Patches Applied

The following patches from open source projects were included in this release:

• HIVE-9655

• HIVE-9183

• HADOOP-12810

Release 4.3.0

Features

The following features are available in this release:

• Upgraded to Hadoop 2.7.1

• Upgraded to Spark 1.6.0

• Upgraded Ganglia to 3.7.2

• Upgraded Presto to 0.130

Amazon EMR made some changes to spark.dynamicAllocation.enabled when
it is set to true; it is false by default. When set to true, this affects the defaults set by the
maximizeResourceAllocation setting:

• If spark.dynamicAllocation.enabled is set to true, spark.executor.instances is not set
by maximizeResourceAllocation.

• The spark.driver.memory setting is now configured based on the instance types in the cluster
in a similar way to how spark.executors.memory is set. However, because the Spark driver
application may run on either the master or one of the core instances (for example, in YARN client
and cluster modes, respectively), the spark.driver.memory setting is set based on the instance
type of the smaller instance type between these two instance groups.

14

https://issues.apache.org/jira/browse/HIVE-9655
https://issues.apache.org/jira/browse/HIVE-9183
https://issues.apache.org/jira/browse/HADOOP-12810

Amazon EMR Amazon EMR Release Guide
Previous Releases

• The spark.default.parallelism setting is now set at twice the number of CPU cores available
for YARN containers. In previous releases, this was half that value.

• The calculations for the memory overhead reserved for Spark YARN processes was adjusted to be
more accurate, resulting in a small increase in the total amount of memory available to Spark (that is,
spark.executor.memory).

Known Issues Resolved from the Previous Releases

• YARN log aggregation is now enabled by default.

• Fixed an issue where logs would not be pushed to a cluster's Amazon S3 logs bucket when YARN
log aggregation was enabled.

• YARN container sizes now have a new minimum of 32 across all node types.

• Fixed an issue with Ganglia that caused excessive disk I/O on the master node in large clusters.

• Fixed an issue that prevented applications logs from being pushed to Amazon S3 when a cluster is
shutting down.

• Fixed an issue in EMRFS CLI that caused certain commands to fail.

• Fixed an issue with Zeppelin that prevented dependencies from being loaded in the underlying
SparkContext.

• Fixed an issue that resulted from issuing a resize attempting to add instances.

• Fixed an issue in Hive where CREATE TABLE AS SELECT makes excessive list calls to Amazon
S3.

• Fixed an issue where large clusters would not provision properly when Hue, Oozie, and Ganglia are
installed.

• Fixed an issue in s3-dist-cp where it would return a zero exit code even if it failed with an error.

Patches Applied

The following patches from open source projects were included in this release:

• OOZIE-2402

• HIVE-12502

• HIVE-10631

• HIVE-12213

• HIVE-10559

• HIVE-12715

• HIVE-10685

Release 4.2.0

Features

The following features are available in this release:

• Added Ganglia support

• Upgraded to Spark 1.5.2

• Upgraded to Presto 0.125

• Upgraded Oozie to 4.2.0

• Upgraded Zeppelin to 0.5.5

• Upgraded the AWS SDK for Java to 1.10.27

15

https://issues.apache.org/jira/browse/OOZIE-2402
https://issues.apache.org/jira/browse/HIVE-12502
https://issues.apache.org/jira/browse/HIVE-10631
https://issues.apache.org/jira/browse/HIVE-12213
https://issues.apache.org/jira/browse/HIVE-10559
https://issues.apache.org/jira/browse/HIVE-12715
https://issues.apache.org/jira/browse/HIVE-10685

Amazon EMR Amazon EMR Release Guide
Previous Releases

Known Issues Resolved from the Previous Releases

• Fixed an issue with the EMRFS CLI where it did not use the default metadata table name.

• Fixed an issue encountered when using ORC-backed tables in Amazon S3.

• Fixed an issue encountered with a Python version mismatch in the Spark configuration.

• Fixed an issue when a YARN node status fails to report because of DNS issues for clusters in a
VPC.

• Fixed an issue encountered when YARN decommissioned nodes, resulting in hanged applications or
the inability to schedule new applications.

• Fixed an issue encountered when clusters terminated with status TIMED_OUT_STARTING.

• Fixed an issue encountered when including the EMRFS Scala dependency in other builds. The
Scala dependency has been removed.

16

Amazon EMR Amazon EMR Release Guide

Configuring Applications

You can override the default configurations for applications you install by supplying a configuration
object when specifying applications you want installed at cluster creation time. Configuration objects
consist of a classification, properties, and optional nested configurations. A classification refers to an
application-specific configuration file. Properties are the settings you want to change in that file. You
typically supply configurations in a list, allowing you to edit multiple configuration files in one JSON list.

Example JSON for a list of configurations is provided below:

[
 {
 "Classification": "core-site",
 "Properties": {
 "hadoop.security.groups.cache.secs": "250"
 }
 },
 {
 "Classification": "mapred-site",
 "Properties": {
 "mapred.tasktracker.map.tasks.maximum": "2",
 "mapreduce.map.sort.spill.percent": "90",
 "mapreduce.tasktracker.reduce.tasks.maximum": "5"
 }
 }
]

The classification usually specifies the file name that you want modified. An exception to this is the
deprecated bootstrap action configure-daemons, which is used to set environment parameters
such as --namenode-heap-size. Now, options like this are subsumed into the hadoop-env and
yarn-env classifications with their own nested export classifications. If any classification ends in "env",
you should use the export sub-classification. Another exception is s3get, which was used to place a
customer EncryptionMaterialsProvider object on each node in a cluster for use in client-side
encryption. An option was added to the emrfs-site classification for this purpose.

An example of the hadoop-env classification is provided below:

[
 {

17

Amazon EMR Amazon EMR Release Guide

 "Classification": "hadoop-env",
 "Properties": {

 },
 "Configurations": [
 {
 "Classification": "export",
 "Properties": {
 "HADOOP_DATANODE_HEAPSIZE": "2048",
 "HADOOP_NAMENODE_OPTS": "-XX:GCTimeRatio=19"
 },
 "Configurations": [

]
 }
]
 }
]

An example of the yarn-env classification is provided below:

[
 {
 "Classification": "yarn-env",
 "Properties": {

 },
 "Configurations": [
 {
 "Classification": "export",
 "Properties": {
 "YARN_RESOURCEMANAGER_OPTS": "-Xdebug -
Xrunjdwp:transport=dt_socket"
 },
 "Configurations": [

]
 }
]
 }
]

The following settings do not belong to a configuration file but are used by Amazon EMR to potentially
set multiple settings on your behalf.

Amazon EMR-curated Settings

Application Release label
classification

Valid properties When to use

Spark spark maximizeResourceAllocationConfigure executors
to utilize the maximum
resources of each
node.

The following are all configuration classifications for this release:

18

Amazon EMR Amazon EMR Release Guide

Configuration Classifications

Classifications Description

capacity-scheduler Change values in Hadoop's capacity-
scheduler.xml file.

core-site Change values in Hadoop's core-site.xml file.

emrfs-site Change EMRFS settings.

flink-conf Change flink-conf.yaml settings.

flink-log4j Change Flink log4j.properties settings.

flink-log4j-yarn-session Change Flink log4j-yarn-session.properties
settings.

flink-log4j-cli Change Flink log4j-cli.properties settings.

hadoop-env Change values in the Hadoop environment for all
Hadoop components.

hadoop-log4j Change values in Hadoop's log4j.properties file.

hadoop-ssl-server Change hadoop ssl server configuration

hadoop-ssl-client Change hadoop ssl client configuration

hbase Amazon EMR-curated settings for Apache
HBase.

hbase-env Change values in HBase's environment.

hbase-log4j Change values in HBase's hbase-log4j.properties
file.

hbase-metrics Change values in HBase's hadoop-metrics2-
hbaase.properties file.

hbase-policy Change values in HBase's hbase-policy.xml file.

hbase-site Change values in HBase's hbase-site.xml file.

hdfs-encryption-zones Configure HDFS encryption zones.

hdfs-site Change values in HDFS's hdfs-site.xml.

hcatalog-env Change values in HCatalog's environment.

hcatalog-server-jndi Change values in HCatalog's jndi.properties.

hcatalog-server-proto-hive-site Change values in HCatalog's proto-hive-site.xml.

hcatalog-webhcat-env Change values in HCatalog WebHCat's
environment.

hcatalog-webhcat-log4j2 Change values in HCatalog WebHCat's
log4j2.properties.

hcatalog-webhcat-site Change values in HCatalog WebHCat's webhcat-
site.xml file.

19

Amazon EMR Amazon EMR Release Guide

Classifications Description

hive-beeline-log4j2 Change values in Hive's beeline-
log4j2.properties file.

hive-env Change values in the Hive environment.

hive-exec-log4j2 Change values in Hive's hive-exec-
log4j2.properties file.

hive-llap-daemon-log4j2 Change values in Hive's llap-daemon-
log4j2.properties file.

hive-log4j2 Change values in Hive's hive-log4j2.properties
file.

hive-site Change values in Hive's hive-site.xml file

hiveserver2-site Change values in Hive Server2's hiveserver2-
site.xml file

hue-ini Change values in Hue's ini file

httpfs-env Change values in the HTTPFS environment.

httpfs-site Change values in Hadoop's httpfs-site.xml file.

hadoop-kms-acls Change values in Hadoop's kms-acls.xml file.

hadoop-kms-env Change values in the Hadoop KMS environment.

hadoop-kms-log4j Change values in Hadoop's kms-log4j.properties
file.

hadoop-kms-site Change values in Hadoop's kms-site.xml file.

mapred-env Change values in the MapReduce application's
environment.

mapred-site Change values in the MapReduce application's
mapred-site.xml file.

oozie-env Change values in Oozie's environment.

oozie-log4j Change values in Oozie's oozie-log4j.properties
file.

oozie-site Change values in Oozie's oozie-site.xml file.

phoenix-hbase-metrics Change values in Phoenix's hadoop-metrics2-
hbase.properties file.

phoenix-hbase-site Change values in Phoenix's hbase-site.xml file.

phoenix-log4j Change values in Phoenix's log4j.properties file.

phoenix-metrics Change values in Phoenix's hadoop-metrics2-
phoenix.properties file.

pig-properties Change values in Pig's pig.properties file.

pig-log4j Change values in Pig's log4j.properties file.

20

Amazon EMR Amazon EMR Release Guide

Classifications Description

presto-log Change values in Presto's log.properties file.

presto-config Change values in Presto's config.properties file.

presto-connector-blackhole Change values in Presto's blackhole.properties
file.

presto-connector-cassandra Change values in Presto's cassandra.properties
file.

presto-connector-hive Change values in Presto's hive.properties file.

presto-connector-jmx Change values in Presto's jmx.properties file.

presto-connector-kafka Change values in Presto's kafka.properties file.

presto-connector-localfile Change values in Presto's localfile.properties file.

presto-connector-mongodb Change values in Presto's mongodb.properties
file.

presto-connector-mysql Change values in Presto's mysql.properties file.

presto-connector-postgresql Change values in Presto's postgresql.properties
file.

presto-connector-raptor Change values in Presto's raptor.properties file.

presto-connector-redis Change values in Presto's redis.properties file.

presto-connector-tpch Change values in Presto's tpch.properties file.

spark Amazon EMR-curated settings for Apache Spark.

spark-defaults Change values in Spark's spark-defaults.conf file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file

spark-log4j Change values in Spark's log4j.properties file.

spark-metrics Change values in Spark's metrics.properties file.

sqoop-env Change values in Sqoop's environment.

sqoop-oraoop-site Change values in Sqoop OraOop's oraoop-
site.xml file.

sqoop-site Change values in Sqoop's sqoop-site.xml file.

tez-site Change values in Tez's tez-site.xml file.

yarn-env Change values in the YARN environment.

yarn-site Change values in YARN's yarn-site.xml file.

zeppelin-env Change values in the Zeppelin environment.

zookeeper-config Change values in ZooKeeper's zoo.cfg file.

21

Amazon EMR Amazon EMR Release Guide

Classifications Description

zookeeper-log4j Change values in ZooKeeper's log4j.properties
file.

Example Supplying a Configuration in the Console

To supply a configuration, you navigate to the Create cluster page and choose Edit software
settings. You can then enter the configuration directly (in JSON or using shorthand syntax
demonstrated in shadow text) in the console or provide a Amazon S3 URI for a file with a JSON
Configurations object.

Example Supplying a Configuration Using the CLI

You can provide a configuration to create-cluster by supplying a path to a JSON file stored locally or
in Amazon S3:

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge
 --instance-count 2 --applications Name=Hive --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

If you configuration is in your local directory, you can use the following:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Hive \
--instance-type m3.xlarge --instance-count 3 --configurations file://./
configurations.json

Example Supplying a Configuration Using the Java SDK

The following program excerpt shows how to supply a configuration using the AWS SDK for Java:

Application hive = new Application().withName("Hive");

Map<String,String> hiveProperties = new HashMap<String,String>();
 hiveProperties.put("hive.join.emit.interval","1000");
 hiveProperties.put("hive.merge.mapfiles","true");

Configuration myHiveConfig = new Configuration()
 .withClassification("hive-site")
 .withProperties(hiveProperties);

RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("Create cluster with ReleaseLabel")
 .withReleaseLabel("emr-5.2.1")
 .withApplications(hive)
 .withConfigurations(myHiveConfig)
 .withServiceRole("EMR_DefaultRole")
 .withJobFlowRole("EMR_EC2_DefaultRole")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKey")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge")
);

22

Amazon EMR Amazon EMR Release Guide
Configuring Applications to Use Java 8

Configuring Applications to Use Java 8
You set JAVA_HOME for an application by supplying the setting to its environment classification,
application-env. For Hadoop and Hive, this would look like:

[
 {
 "Classification": "hadoop-env",
 "Configurations": [
 {
 "Classification": "export",
 "Configurations": [],
 "Properties": {
 "JAVA_HOME": "/usr/lib/jvm/java-1.8.0"
 }
 }
],
 "Properties": {}
 }
]

For Spark, if you are writing a driver for submission in cluster mode, the driver will use Java 7 but
setting the environment can ensure that the executors use Java 8. To do this, we recommend setting
both Hadoop and Spark classifications:

[
 {
 "Classification": "hadoop-env",
 "Configurations": [
 {
 "Classification": "export",
 "Configurations": [],
 "Properties": {
 "JAVA_HOME": "/usr/lib/jvm/java-1.8.0"
 }
 }
],
 "Properties": {}
 },
 {
 "Classification": "spark-env",
 "Configurations": [
 {
 "Classification": "export",
 "Configurations": [],
 "Properties": {
 "JAVA_HOME": "/usr/lib/jvm/java-1.8.0"
 }
 }
],
 "Properties": {}
 }
]

23

Amazon EMR Amazon EMR Release Guide
Service ports

Service ports
The following are YARN and HDFS service ports. These settings reflect Hadoop defaults. Other
application services are hosted at default ports unless otherwise documented. Please see the
application's project documentation for further information.

Port Settings for YARN and HDFS

Setting Hostname/Port

fs.default.name default (hdfs://emrDeterminedIP:8020)

dfs.datanode.address default (0.0.0.0:50010)

dfs.datanode.http.address default (0.0.0.0:50075)

dfs.datanode.https.address default (0.0.0.0:50475)

dfs.datanode.ipc.address default (0.0.0.0:50020)

dfs.http.address default (0.0.0.0:50070)

dfs.https.address default (0.0.0.0:50470)

dfs.secondary.http.address default (0.0.0.0:50090)

yarn.nodemanager.address default (${yarn.nodemanager.hostname}:0)

yarn.nodemanager.localizer.address default (${yarn.nodemanager.hostname}:8040)

yarn.nodemanager.webapp.address default (${yarn.nodemanager.hostname}:8042)

yarn.resourcemanager.address default
(${yarn.resourcemanager.hostname}:8032)

yarn.resourcemanager.admin.address default
(${yarn.resourcemanager.hostname}:8033)

yarn.resourcemanager.resource-tracker.address default
(${yarn.resourcemanager.hostname}:8031)

yarn.resourcemanager.scheduler.address default
(${yarn.resourcemanager.hostname}:8030)

yarn.resourcemanager.webapp.address default
(${yarn.resourcemanager.hostname}:8088)

yarn.web-proxy.address default (no-value)

yarn.resourcemanager.hostname emrDeterminedIP

Note
The term emrDeterminedIP is an IP address that is generated by the Amazon EMR
control plane. In the newer version, this convention has been eliminated except for the
yarn.resourcemanager.hostname and fs.default.name settings.

24

Amazon EMR Amazon EMR Release Guide
Application users

Application users
Applications will run processes as their own user. For example, Hive JVMs will run as user hive,
MapReduce JVMs will run as mapred, and so on. The following process status demonstrates this:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
hive 6452 0.2 0.7 853684 218520 ? Sl 16:32 0:13 /
usr/lib/jvm/java-openjdk/bin/java -Xmx256m -Dhive.log.dir=/var/log/
hive -Dhive.log.file=hive-metastore.log -Dhive.log.threshold=INFO -
Dhadoop.log.dir=/usr/lib/hadoop
hive 6557 0.2 0.6 849508 202396 ? Sl 16:32 0:09 /usr/
lib/jvm/java-openjdk/bin/java -Xmx256m -Dhive.log.dir=/var/log/hive -
Dhive.log.file=hive-server2.log -Dhive.log.threshold=INFO -Dhadoop.log.dir=/
usr/lib/hadoop/l
hbase 6716 0.1 1.0 1755516 336600 ? Sl Jun21 2:20 /usr/
lib/jvm/java-openjdk/bin/java -Dproc_master -XX:OnOutOfMemoryError=kill
 -9 %p -Xmx1024m -ea -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode -
Dhbase.log.dir=/var/
hbase 6871 0.0 0.7 1672196 237648 ? Sl Jun21 0:46 /usr/
lib/jvm/java-openjdk/bin/java -Dproc_thrift -XX:OnOutOfMemoryError=kill
 -9 %p -Xmx1024m -ea -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode -
Dhbase.log.dir=/var/
hdfs 7491 0.4 1.0 1719476 309820 ? Sl 16:32 0:22 /usr/lib/
jvm/java-openjdk/bin/java -Dproc_namenode -Xmx1000m -Dhadoop.log.dir=/var/
log/hadoop-hdfs -Dhadoop.log.file=hadoop-hdfs-namenode-ip-10-71-203-213.log -
Dhadoo
yarn 8524 0.1 0.6 1626164 211300 ? Sl 16:33 0:05 /usr/lib/
jvm/java-openjdk/bin/java -Dproc_proxyserver -Xmx1000m -Dhadoop.log.dir=/var/
log/hadoop-yarn -Dyarn.log.dir=/var/log/hadoop-yarn -Dhadoop.log.file=yarn-
yarn-
yarn 8646 1.0 1.2 1876916 385308 ? Sl 16:33 0:46 /
usr/lib/jvm/java-openjdk/bin/java -Dproc_resourcemanager -Xmx1000m -
Dhadoop.log.dir=/var/log/hadoop-yarn -Dyarn.log.dir=/var/log/hadoop-yarn -
Dhadoop.log.file=yarn-y
mapred 9265 0.2 0.8 1666628 260484 ? Sl 16:33 0:12 /usr/lib/
jvm/java-openjdk/bin/java -Dproc_historyserver -Xmx1000m -Dhadoop.log.dir=/
usr/lib/hadoop/logs -Dhadoop.log.file=hadoop.log -Dhadoop.home.dir=/usr/lib/
hadoop

25

Amazon EMR Amazon EMR Release Guide
Create or Run a Hadoop Application

Apache Hadoop

Apache Hadoop is an open-source Java software framework that supports massive data processing
across a cluster of instances. It can run on a single instance, or thousands of instances. Hadoop uses
a programming model called MapReduce to distribute processing across multiple instances. It also
implements a distributed file system called HDFS that stores data across multiple instances. Hadoop
monitors the health of instances in the cluster, and can recover from the failure of one or more nodes.
In this way, Hadoop provides increased processing and storage capacity, as well as high availability.

For more information, see http://hadoop.apache.org

Release Information

Application Amazon EMR Release Label Components installed with
this application

Hadoop 2.7.3 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-
cp, hadoop-client, hadoop-
hdfs-datanode, hadoop-hdfs-
library, hadoop-hdfs-namenode,
hadoop-httpfs-server, hadoop-
kms-server, hadoop-mapred,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager

Topics

• Create or Run a Hadoop Application (p. 26)

• Configure Hadoop (p. 34)

Create or Run a Hadoop Application
Topics

26

https://aws.amazon.com/elasticmapreduce/details/hadoop/
http://hadoop.apache.org

Amazon EMR Amazon EMR Release Guide
Build Binaries Using Amazon EMR

• Build Binaries Using Amazon EMR (p. 27)

• Run a Script in a Cluster (p. 28)

• Process Data with Streaming (p. 29)

• Process Data with a Custom JAR (p. 32)

Build Binaries Using Amazon EMR
You can use Amazon EMR (Amazon EMR) as a build environment to compile programs for use in your
cluster. Programs that you use with Amazon EMR must be compiled on a system running the same
version of Linux used by Amazon EMR. For a 32-bit version, you should have compiled on a 32-bit
machine or with 32-bit cross compilation options turned on. For a 64-bit version, you need to have
compiled on a 64-bit machine or with 64-bit cross compilation options turned. For more information
about EC2 instance versions, go to http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-
plan-ec2-instances.html. Supported programming languages include C++, Cython, and C#.

The following table outlines the steps involved to build and test your application using Amazon EMR.

Process for Building a Module

1 Connect to the master node of your cluster.

2 Copy source files to the master node.

3 Build binaries with any necessary optimizations.

4 Copy binaries from the master node to Amazon S3.

The details for each of these steps are covered in the sections that follow.

To connect to the master node of the cluster

• Follow these instructions to connect to the master node: Connect to the Master Node Using SSH
in the Amazon EMR Management Guide .

To copy source files to the master node

1. Put your source files in an Amazon S3 bucket. To learn how to create buckets and how to move
data into Amazon S3, see the Amazon Simple Storage Service Getting Started Guide.

2. Create a folder on your Hadoop cluster for your source files by entering a command similar to the
following:

mkdir SourceFiles

3. Copy your source files from Amazon S3 to the master node by typing a command similar to the
following:

hadoop fs -get s3://mybucket/SourceFiles SourceFiles

Build binaries with any necessary optimizations

How you build your binaries depends on many factors. Follow the instructions for your specific build
tools to setup and configure your environment. You can use Hadoop system specification commands
to obtain cluster information to determine how to install your build environment.

27

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-ec2-instances.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-ec2-instances.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon EMR Amazon EMR Release Guide
Run a Script in a Cluster

To identify system specifications

• Use the following commands to verify the architecture you are using to build your binaries.

a. To view the version of Debian, enter the following command:

master$ cat /etc/issue

The output looks similar to the following.

Debian GNU/Linux 5.0

b. To view the public DNS name and processor size, enter the following command:

master$ uname -a

The output looks similar to the following.

Linux domU-12-31-39-17-29-39.compute-1.internal 2.6.21.7-2.fc8xen #1
 SMP Fri Feb 15 12:34:28 EST 2008 x86_64 GNU/Linux

c. To view the processor speed, enter the following command:

master$ cat /proc/cpuinfo

The output looks similar to the following.

processor : 0
vendor_id : GenuineIntel
model name : Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
flags : fpu tsc msr pae mce cx8 apic mca cmov pat pse36 clflush
 dts acpi mmx fxsr sse sse2 ss ht tm syscall nx lm constant_tsc pni
 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr cda lahf_lm
...

Once your binaries are built, you can copy the files to Amazon S3.

To copy binaries from the master node to Amazon S3

• Type the following command to copy the binaries to your Amazon S3 bucket:

hadoop fs -put BinaryFiles s3://mybucket/BinaryDestination

Run a Script in a Cluster
Amazon EMR (Amazon EMR) enables you to run a script at any time during step processing in your
cluster. You specify a step that runs a script either when you create your cluster or you can add a step
if your cluster is in the WAITING state. For more information about adding steps, see Submit Work to a
Cluster.

To run a script before step processing begins, use a bootstrap action. For more information about
bootstrap actions, see (Optional) Create Bootstrap Actions to Install Additional Software.

28

http://docs.aws.amazon.com//emr/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-bootstrap.html

Amazon EMR Amazon EMR Release Guide
Process Data with Streaming

Submitting a Custom JAR Step Using the AWS CLI
Note
You can now use command-runner.jar in many cases instead of script-runner.jar. command-
runner.jar does not need to have a full path for the JAR. For more information, see .

This section describes how to add a step to run a script. The script-runner.jar takes arguments
to the path to a script and any additional arguments for the script. The JAR file runs the script with the
passed arguments.

Important
script-runner.jar is located at s3://region.elasticmapreduce/libs/script-
runner/script-runner.jar where region is the region in which your EMR cluster
resides.

The cluster containing a step that runs a script looks similar to the following examples.

To add a step to run a script using the AWS CLI

• To run a script using the AWS CLI, type the following command, replace myKey with the name
of your EC2 key pair and replace mybucket with your S3 bucket. This cluster runs the script
my_script.sh on the master node when the step is processed.

aws emr create-cluster --name "Test cluster" –-release-label emr-5.2.1
 --applications Name=Hive Name=Pig --use-default-roles --ec2-attributes
 KeyName=myKey --instance-type m3.xlarge --instance-count 3 --steps
 Type=CUSTOM_JAR,Name=CustomJAR,ActionOnFailure=CONTINUE,Jar=s3://
region.elasticmapreduce/libs/script-runner/script-
runner.jar,Args=["s3://mybucket/script-path/my_script.sh"]

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default Amazon EMR service role and EC2
instance profile, type aws emr create-default-roles to create them before typing
the create-cluster subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Process Data with Streaming
Hadoop Streaming is a utility that comes with Hadoop that enables you to develop MapReduce
executables in languages other than Java. Streaming is implemented in the form of a JAR file, so you
can run it from the Amazon EMR (Amazon EMR) API or command line just like a standard JAR file.

This section describes how to use Streaming with Amazon EMR.

Note
Apache Hadoop Streaming is an independent tool. As such, all of its functions and parameters
are not described here. For more information about Hadoop Streaming, go to http://
hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html.

Using the Hadoop Streaming Utility

29

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html
http://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html

Amazon EMR Amazon EMR Release Guide
Process Data with Streaming

This section describes how use to Hadoop's Streaming utility.

Hadoop Process

1 Write your mapper and reducer executable in the programming language of your choice.
Follow the directions in Hadoop's documentation to write your streaming executables. The
programs should read their input from standard input and output data through standard
output. By default, each line of input/output represents a record and the first tab on each
line is used as a separator between the key and value.

2 Test your executables locally and upload them to Amazon S3.

3 Use the Amazon EMR command line interface or Amazon EMR console to run your
application.

Each mapper script launches as a separate process in the cluster. Each reducer executable turns the
output of the mapper executable into the data output by the job flow.

The input, output, mapper, and reducer parameters are required by most Streaming applications.
The following table describes these and other, optional parameters.

Parameter Description Required

-input Location on Amazon S3 of the input data.
Type: String

Default: None

Constraint: URI. If no protocol is specified then it uses the cluster's
default file system.

Yes

-output Location on Amazon S3 where Amazon EMR uploads the
processed data.
Type: String

Default: None

Constraint: URI

Default: If a location is not specified, Amazon EMR uploads the
data to the location specified by input.

Yes

-mapper Name of the mapper executable.
Type: String

Default: None

Yes

-reducer Name of the reducer executable.
Type: String

Default: None

Yes

-cacheFile An Amazon S3 location containing files for Hadoop to copy into
your local working directory (primarily to improve performance).
Type: String

Default: None

Constraints: [URI]#[symlink name to create in working directory]

No

-cacheArchive JAR file to extract into the working directory
Type: String

Default: None

Constraints: [URI]#[symlink directory name to create in working
directory

No

30

Amazon EMR Amazon EMR Release Guide
Process Data with Streaming

Parameter Description Required

-combiner Combines results
Type: String

Default: None

Constraints: Java class name

No

The following code sample is a mapper executable written in Python. This script is part of the
WordCount sample application.

#!/usr/bin/python
import sys

def main(argv):
 line = sys.stdin.readline()
 try:
 while line:
 line = line.rstrip()
 words = line.split()
 for word in words:
 print "LongValueSum:" + word + "\t" + "1"
 line = sys.stdin.readline()
 except "end of file":
 return None
if __name__ == "__main__":
 main(sys.argv)

Submit a Streaming Step

This section covers the basics of submitting a Streaming step to a cluster. A Streaming application
reads input from standard input and then runs a script or executable (called a mapper) against each
input. The result from each of the inputs is saved locally, typically on a Hadoop Distributed File System
(HDFS) partition. After all the input is processed by the mapper, a second script or executable (called
a reducer) processes the mapper results. The results from the reducer are sent to standard output.
You can chain together a series of Streaming steps, where the output of one step becomes the input of
another step.

The mapper and the reducer can each be referenced as a file or you can supply a Java class. You can
implement the mapper and reducer in any of the supported languages, including Ruby, Perl, Python,
PHP, or Bash.

Submit a Streaming Step Using the Console

This example describes how to use the Amazon EMR console to submit a Streaming step to a running
cluster.

To submit a Streaming step

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, select the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog box:

• For Step type, choose Streaming program.

• For Name, accept the default name (Streaming program) or type a new name.

31

https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Process Data with a Custom JAR

• For Mapper, type or browse to the location of your mapper class in Hadoop, or an S3 bucket
where the mapper executable, such as a Python program, resides. The path value must be in
the form BucketName/path/MapperExecutable.

• For Reducer, type or browse to the location of your reducer class in Hadoop, or an S3 bucket
where the reducer executable, such as a Python program, resides. The path value must be
in the form BucketName/path/MapperExecutable. Amazon EMR supports the special
aggregate keyword. For more information, go to the Aggregate library supplied by Hadoop.

• For Input S3 location, type or browse to the location of your input data.

• For Output S3 location, type or browse to the name of your Amazon S3 output bucket.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To
update the status, choose the Refresh icon above the Actions column.

AWS CLI

These examples demonstrate how to use the AWS CLI to create a cluster and submit a Streaming
step.

To create a cluster and submit a Streaming step using the AWS CLI

• To create a cluster and submit a Streaming step using the AWS CLI, type the following command
and replace myKey with the name of your EC2 key pair.

aws emr create-cluster --name "Test cluster" --release-label emr-5.2.1 --
applications Name=Hue Name=Hive Name=Pig --use-default-roles \
--ec2-attributes KeyName=myKey --instance-type m3.xlarge --instance-
count 3 \
--steps Type=STREAMING,Name="Streaming
 Program",ActionOnFailure=CONTINUE,Args=[--files,pathtoscripts,-
mapper,mapperscript,-reducer,reducerscript,aggregate,-
input,pathtoinputdata,-output,pathtooutputbucket]

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default Amazon EMR service role and EC2
instance profile, type aws emr create-default-roles to create them before typing
the create-cluster subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Process Data with a Custom JAR
A custom JAR runs a compiled Java program that you upload to Amazon S3. Compile the program
against the version of Hadoop you want to launch and submit a CUSTOM_JAR step to your Amazon

32

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Amazon EMR Amazon EMR Release Guide
Process Data with a Custom JAR

EMR cluster. For more information about compiling a JAR file, see Build Binaries Using Amazon
EMR (p. 27).

For more information about building a Hadoop MapReduce application, go to http://hadoop.apache.org/
docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html.

Submit a Custom JAR Step

This section covers the basics of submitting a custom JAR step in Amazon EMR. Submitting a custom
JAR step enables you to write a script to process your data using the Java programming language.

Submit a Custom JAR Step Using the Console

This example describes how to use the Amazon EMR console to submit a custom JAR step to a
running cluster.

To submit a custom JAR step using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, select the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog:

• For Step type, choose Custom JAR.

• For Name, accept the default name (Custom JAR) or type a new name.

• For JAR S3 location, type or browse to the location of your JAR file. The value must be in the
form s3://BucketName/path/JARfile.

• For Arguments, type any required arguments as space-separated strings or leave the field
blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To
update the status, choose the Refresh icon above the Actions column.

Launching a cluster and submitting a custom JAR step using the AWS CLI

To launch a cluster and submit a custom JAR step using the AWS CLI

To launch a cluster and submit a custom JAR step using the AWS CLI, type the create-cluster
subcommand with the --steps parameter.

• To launch a cluster and submit a custom JAR step, type the following command, replace myKey
with the name of your EC2 key pair, and replace mybucket with your bucket name.

aws emr create-cluster --name "Test cluster" --release-label emr-5.2.1 \
--applications Name=Hue Name=Hive Name=Pig --use-default-roles \
--ec2-attributes KeyName=myKey --instance-type m3.xlarge --instance-
count 3 \
--steps Type=CUSTOM_JAR,Name="Custom JAR
 Step",ActionOnFailure=CONTINUE,Jar=pathtojarfile,Args=["pathtoinputdata","pathtooutputbucket","arg1","arg2"]

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

33

http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Configure Hadoop

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default Amazon EMR service role and EC2
instance profile, type aws emr create-default-roles to create them before typing
the create-cluster subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Third-party dependencies

Sometimes it may be necessary to include in the MapReduce classpath JARs for use with your
program. You have two options for doing this:

• Include the --libjars s3://URI_to_JAR in the step options for the procedure in Launching a
cluster and submitting a custom JAR step using the AWS CLI (p. 33).

• Launch the cluster with a modified mapreduce.application.classpath setting in mapred-
site.xml using the mapred-site configuration classificiation. To create the cluster with the step
using AWS CLI, this would look like the following:

aws emr create-cluster --release-label \
--applications Name=Hue Name=Hive Name=Pig --use-default-roles \
--instance-type m3.xlarge --instance-count 2 --ec2-attributes KeyName=myKey
 \
--steps Type=CUSTOM_JAR,Name="Custom JAR
 Step",ActionOnFailure=CONTINUE,Jar=pathtojarfile,Args=["pathtoinputdata","pathtooutputbucket","arg1","arg2"]
 \
--configurations https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

myConfig.json:

[
 {
 "Classification": "mapred-site",
 "Properties": {
 "mapreduce.application.classpath": "path1,path2"
 }
 }
]

The comma-separated list of paths should be appended to the classpath for each task's JVM.

Configure Hadoop
The following sections give default configuration settings for Hadoop daemons, tasks, and HDFS.

Topics

• Hadoop Daemon Settings (p. 35)

• HDFS Configuration (p. 47)

• Task Configuration (p. 47)

34

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Hadoop Daemon Settings
The following tables list the default configuration settings for each EC2 instance type in clusters
launched with Amazon EMR.

m1.medium

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE384

YARN_PROXYSERVER_HEAPSIZE 192

YARN_NODEMANAGER_HEAPSIZE 256

HADOOP_JOB_HISTORYSERVER_HEAPSIZE256

HADOOP_NAMENODE_HEAPSIZE 384

HADOOP_DATANODE_HEAPSIZE 192

m1.large

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE768

YARN_PROXYSERVER_HEAPSIZE 384

YARN_NODEMANAGER_HEAPSIZE 512

HADOOP_JOB_HISTORYSERVER_HEAPSIZE512

HADOOP_NAMENODE_HEAPSIZE 768

HADOOP_DATANODE_HEAPSIZE 384

m1.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE1024

YARN_PROXYSERVER_HEAPSIZE 512

YARN_NODEMANAGER_HEAPSIZE 768

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1024

HADOOP_NAMENODE_HEAPSIZE 2304

HADOOP_DATANODE_HEAPSIZE 384

m2.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE1536

35

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1024

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1024

HADOOP_NAMENODE_HEAPSIZE 3072

HADOOP_DATANODE_HEAPSIZE 384

m2.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE1536

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1024

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1536

HADOOP_NAMENODE_HEAPSIZE 6144

HADOOP_DATANODE_HEAPSIZE 384

m2.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2048

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1536

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1536

HADOOP_NAMENODE_HEAPSIZE 12288

HADOOP_DATANODE_HEAPSIZE 384

m3.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2396

YARN_PROXYSERVER_HEAPSIZE 2396

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2396

HADOOP_NAMENODE_HEAPSIZE 1740

HADOOP_DATANODE_HEAPSIZE 757

36

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

m3.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2703

YARN_PROXYSERVER_HEAPSIZE 2703

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2703

HADOOP_NAMENODE_HEAPSIZE 3276

HADOOP_DATANODE_HEAPSIZE 1064

m4.large

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2252

YARN_PROXYSERVER_HEAPSIZE 2252

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2252

HADOOP_NAMENODE_HEAPSIZE 1024

HADOOP_DATANODE_HEAPSIZE 614

m4.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2416

YARN_PROXYSERVER_HEAPSIZE 2416

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2416

HADOOP_NAMENODE_HEAPSIZE 2048

HADOOP_DATANODE_HEAPSIZE 778

m4.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2744

YARN_PROXYSERVER_HEAPSIZE 2744

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2744

37

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

HADOOP_NAMENODE_HEAPSIZE 3481

HADOOP_DATANODE_HEAPSIZE 1105

m4.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3399

YARN_PROXYSERVER_HEAPSIZE 3399

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3399

HADOOP_NAMENODE_HEAPSIZE 6758

HADOOP_DATANODE_HEAPSIZE 1761

m4.10xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE5365

YARN_PROXYSERVER_HEAPSIZE 5365

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE5365

HADOOP_NAMENODE_HEAPSIZE 16588

HADOOP_DATANODE_HEAPSIZE 3727

m4.16xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE7331

YARN_PROXYSERVER_HEAPSIZE 7331

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE7331

HADOOP_NAMENODE_HEAPSIZE 26419

HADOOP_DATANODE_HEAPSIZE 4096

38

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

c1.medium

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE192

YARN_PROXYSERVER_HEAPSIZE 96

YARN_NODEMANAGER_HEAPSIZE 128

HADOOP_JOB_HISTORYSERVER_HEAPSIZE128

HADOOP_NAMENODE_HEAPSIZE 192

HADOOP_DATANODE_HEAPSIZE 96

c1.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE768

YARN_PROXYSERVER_HEAPSIZE 384

YARN_NODEMANAGER_HEAPSIZE 512

HADOOP_JOB_HISTORYSERVER_HEAPSIZE512

HADOOP_NAMENODE_HEAPSIZE 768

HADOOP_DATANODE_HEAPSIZE 384

c3.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2124

YARN_PROXYSERVER_HEAPSIZE 2124

YARN_NODEMANAGER_HEAPSIZE 2124

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2124

HADOOP_NAMENODE_HEAPSIZE 972

HADOOP_DATANODE_HEAPSIZE 588

c3.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2396

YARN_PROXYSERVER_HEAPSIZE 2396

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2396

39

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

HADOOP_NAMENODE_HEAPSIZE 1740

HADOOP_DATANODE_HEAPSIZE 757

c3.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2703

YARN_PROXYSERVER_HEAPSIZE 2703

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2703

HADOOP_NAMENODE_HEAPSIZE 3276

HADOOP_DATANODE_HEAPSIZE 1064

c3.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3317

YARN_PROXYSERVER_HEAPSIZE 3317

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3317

HADOOP_NAMENODE_HEAPSIZE 6348

HADOOP_DATANODE_HEAPSIZE 1679

c4.large

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE1152

YARN_PROXYSERVER_HEAPSIZE 1152

YARN_NODEMANAGER_HEAPSIZE 1152

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1152

HADOOP_NAMENODE_HEAPSIZE 576

HADOOP_DATANODE_HEAPSIZE 384

40

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

c4.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2124

YARN_PROXYSERVER_HEAPSIZE 2124

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2124

HADOOP_NAMENODE_HEAPSIZE 972

HADOOP_DATANODE_HEAPSIZE 588

c4.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2396

YARN_PROXYSERVER_HEAPSIZE 2396

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2396

HADOOP_NAMENODE_HEAPSIZE 1740

HADOOP_DATANODE_HEAPSIZE 757

c4.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2703

YARN_PROXYSERVER_HEAPSIZE 2703

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2703

HADOOP_NAMENODE_HEAPSIZE 3276

HADOOP_DATANODE_HEAPSIZE 1064

c4.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3317

YARN_PROXYSERVER_HEAPSIZE 3317

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3317

41

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

HADOOP_NAMENODE_HEAPSIZE 6348

HADOOP_DATANODE_HEAPSIZE 1679

cc2.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2048

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1536

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1536

HADOOP_NAMENODE_HEAPSIZE 12288

HADOOP_DATANODE_HEAPSIZE 384

cg1.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2048

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1536

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1536

HADOOP_NAMENODE_HEAPSIZE 3840

HADOOP_DATANODE_HEAPSIZE 384

cr1.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE7086

YARN_PROXYSERVER_HEAPSIZE 7086

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE7086

HADOOP_NAMENODE_HEAPSIZE 25190

HADOOP_DATANODE_HEAPSIZE 4096

42

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

d2.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2713

YARN_PROXYSERVER_HEAPSIZE 2713

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2713

HADOOP_NAMENODE_HEAPSIZE 3328

HADOOP_DATANODE_HEAPSIZE 1075

d2.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3338

YARN_PROXYSERVER_HEAPSIZE 3338

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3338

HADOOP_NAMENODE_HEAPSIZE 6451

HADOOP_DATANODE_HEAPSIZE 1699

d2.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE4587

YARN_PROXYSERVER_HEAPSIZE 4587

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE4587

HADOOP_NAMENODE_HEAPSIZE 12697

HADOOP_DATANODE_HEAPSIZE 2949

d2.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE7089

YARN_PROXYSERVER_HEAPSIZE 7086

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE7086

43

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

HADOOP_NAMENODE_HEAPSIZE 25190

HADOOP_DATANODE_HEAPSIZE 4096

hi1.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3328

YARN_PROXYSERVER_HEAPSIZE 3328

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3328

HADOOP_NAMENODE_HEAPSIZE 6400

HADOOP_DATANODE_HEAPSIZE 1689

hs1.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2048

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1536

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1536

HADOOP_NAMENODE_HEAPSIZE 12288

HADOOP_DATANODE_HEAPSIZE 384

i2.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2713

YARN_PROXYSERVER_HEAPSIZE 2713

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2713

HADOOP_NAMENODE_HEAPSIZE 3328

HADOOP_DATANODE_HEAPSIZE 1075

44

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

i2.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3338

YARN_PROXYSERVER_HEAPSIZE 3338

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3338

HADOOP_NAMENODE_HEAPSIZE 6451

HADOOP_DATANODE_HEAPSIZE 1699

i2.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE4587

YARN_PROXYSERVER_HEAPSIZE 4587

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE4587

HADOOP_NAMENODE_HEAPSIZE 12697

HADOOP_DATANODE_HEAPSIZE 2949

i2.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE7086

YARN_PROXYSERVER_HEAPSIZE 7086

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE7086

HADOOP_NAMENODE_HEAPSIZE 25190

HADOOP_DATANODE_HEAPSIZE 4096

g2.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE1536

YARN_PROXYSERVER_HEAPSIZE 1024

YARN_NODEMANAGER_HEAPSIZE 1024

HADOOP_JOB_HISTORYSERVER_HEAPSIZE1024

45

Amazon EMR Amazon EMR Release Guide
Hadoop Daemon Settings

Parameter Value

HADOOP_NAMENODE_HEAPSIZE 2304

HADOOP_DATANODE_HEAPSIZE 384

r3.xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE2713

YARN_PROXYSERVER_HEAPSIZE 2713

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE2713

HADOOP_NAMENODE_HEAPSIZE 3328

HADOOP_DATANODE_HEAPSIZE 1075

r3.2xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE3338

YARN_PROXYSERVER_HEAPSIZE 3338

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE3338

HADOOP_NAMENODE_HEAPSIZE 6451

HADOOP_DATANODE_HEAPSIZE 1699

r3.4xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE4587

YARN_PROXYSERVER_HEAPSIZE 4587

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE4587

HADOOP_NAMENODE_HEAPSIZE 12697

HADOOP_DATANODE_HEAPSIZE 2949

46

Amazon EMR Amazon EMR Release Guide
HDFS Configuration

r3.8xlarge

Parameter Value

YARN_RESOURCEMANAGER_HEAPSIZE7086

YARN_PROXYSERVER_HEAPSIZE 7086

YARN_NODEMANAGER_HEAPSIZE 2048

HADOOP_JOB_HISTORYSERVER_HEAPSIZE7086

HADOOP_NAMENODE_HEAPSIZE 25190

HADOOP_DATANODE_HEAPSIZE 4096

HDFS Configuration
The following table describes the default Hadoop Distributed File System (HDFS) parameters and their
settings.

Parameter Definition Default value

dfs.block.size The size of HDFS blocks. When operating on data stored in
HDFS, the split size is generally the size of an HDFS block.
Larger numbers provide less task granularity, but also put
less strain on the cluster NameNode.

134217728 (128
MB)

dfs.replication The number of copies of each block to store for durability.
For small clusters, set this to 2 because the cluster is small
and easy to restart in case of data loss. You can change
the setting to 1, 2, or 3 as your needs dictate. Amazon EMR
automatically calculates the replication factor based on
cluster size. To overwrite the default value, use the hdfs-
site classification.

1 for clusters < four
nodes

2 for clusters < ten
nodes

3 for all other
clusters

Task Configuration
Topics

• Task JVM Memory Settings (p. 47)

There are a number of configuration variables for tuning the performance of your MapReduce jobs.
This section describes some of the important task-related settings.

Task JVM Memory Settings

Hadoop 2 uses two parameters to configure memory for map and reduce: mapreduce.map.java.opts
and mapreduce.reduce.java.opts, respectively. These replace the single configuration option from
previous Hadoop versions: mapreduce.map.java.opts.

The defaults for these settings per instance type are shown in the following tables. The settings change
when HBase is installed and those are also provided along with the initial defaults.

Note
HBase is only supported on Amazon EMR releases 4.6.0 or later.

47

Amazon EMR Amazon EMR Release Guide
Task Configuration

m1.medium

Configuration Option Default Value

mapreduce.map.java.opts -Xmx512m

mapreduce.reduce.java.opts -Xmx768m

mapreduce.map.memory.mb 768

mapreduce.reduce.memory.mb 1024

yarn.app.mapreduce.am.resource.mb 1024

yarn.scheduler.minimum-allocation-mb 256

yarn.scheduler.maximum-allocation-mb 2048

yarn.nodemanager.resource.memory-mb 2048

m1.large

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx512m -Xmx512m

mapreduce.reduce.java.opts -Xmx1024m -Xmx1024m

mapreduce.map.memory.mb 768 768

mapreduce.reduce.memory.mb 1536 1536

yarn.app.mapreduce.am.resource.mb 1536 1536

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 5120 2560

yarn.nodemanager.resource.memory-mb 5120 2560

m1.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx512m -Xmx512m

mapreduce.reduce.java.opts -Xmx1536m -Xmx1536m

mapreduce.map.memory.mb 768 768

mapreduce.reduce.memory.mb 2048 2048

yarn.app.mapreduce.am.resource.mb 2048 2048

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 12288 6144

yarn.nodemanager.resource.memory-mb 12288 6144

48

Amazon EMR Amazon EMR Release Guide
Task Configuration

m2.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx864m -Xmx864m

mapreduce.reduce.java.opts -Xmx1536m -Xmx1536m

mapreduce.map.memory.mb 1024 1024

mapreduce.reduce.memory.mb 2048 2048

yarn.app.mapreduce.am.resource.mb 2048 2048

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 14336 7168

yarn.nodemanager.resource.memory-mb 14336 7168

m2.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1280m -Xmx1280m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 2560 2560

yarn.app.mapreduce.am.resource.mb 2560 2560

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 30720 15360

yarn.nodemanager.resource.memory-mb 30720 15360

m2.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1280m -Xmx1280m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 2560 2560

yarn.app.mapreduce.am.resource.mb 2560 2560

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 61440 30720

yarn.nodemanager.resource.memory-mb 61440 30720

49

Amazon EMR Amazon EMR Release Guide
Task Configuration

m3.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 11520 5760

yarn.nodemanager.resource.memory-mb 11520 5760

m3.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23040 11520

yarn.nodemanager.resource.memory-mb 23040 11520

m4.large

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2458m -Xmx2458m

mapreduce.reduce.java.opts -Xmx4916m -Xmx4916m

mapreduce.map.memory.mb 3072 3072

mapreduce.reduce.memory.mb 6144 6144

yarn.app.mapreduce.am.resource.mb 6144 6144

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 6144 3072

yarn.nodemanager.resource.memory-mb 6144 3072

50

Amazon EMR Amazon EMR Release Guide
Task Configuration

m4.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1229m -Xmx1229m

mapreduce.reduce.java.opts -Xmx2548m -Xmx2458m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 3072 3072

yarn.app.mapreduce.am.resource.mb 3072 3072

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 12288 6144

yarn.nodemanager.resource.memory-mb 12288 6144

m4.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1229m -Xmx1229m

mapreduce.reduce.java.opts -Xmx2458m -Xmx2458m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 3072 3072

yarn.app.mapreduce.am.resource.mb 3072 3072

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 24576 12288

yarn.nodemanager.resource.memory-mb 24576 12288

m4.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1434m -Xmx1434m

mapreduce.reduce.java.opts -Xmx2868m -Xmx2868m

mapreduce.map.memory.mb 1792 1792

mapreduce.reduce.memory.mb 3584 3584

yarn.app.mapreduce.am.resource.mb 3584 3584

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 57344 28672

yarn.nodemanager.resource.memory-mb 57344 28672

51

Amazon EMR Amazon EMR Release Guide
Task Configuration

m4.10xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1557m -Xmx1557m

mapreduce.reduce.java.opts -Xmx3114m -Xmx3114m

mapreduce.map.memory.mb 1946 1946

mapreduce.reduce.memory.mb 3892 3892

yarn.app.mapreduce.am.resource.mb 3892 3892

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 155648 124544

yarn.nodemanager.resource.memory-mb 155648 124544

m4.16xlarge

Configuration Option Default Value

mapreduce.map.java.opts -Xmx1587m

mapreduce.reduce.java.opts -Xmx3114m

mapreduce.map.memory.mb 1984

mapreduce.reduce.memory.mb 3968

yarn.app.mapreduce.am.resource.mb 3968

yarn.scheduler.minimum-allocation-mb 32

yarn.scheduler.maximum-allocation-mb 253952

yarn.nodemanager.resource.memory-mb 253952

c1.medium

Configuration Option Default Value

io.sort.mb 100

mapreduce.map.java.opts -Xmx288m

mapreduce.reduce.java.opts -Xmx288m

mapreduce.map.memory.mb 512

mapreduce.reduce.memory.mb 512

yarn.app.mapreduce.am.resource.mb

yarn.scheduler.minimum-allocation-mb 32

yarn.scheduler.maximum-allocation-mb 512

yarn.nodemanager.resource.memory-mb 1024

52

Amazon EMR Amazon EMR Release Guide
Task Configuration

c1.xlarge

Configuration Option Default Value With HBase Installed

io.sort.mb 150 150

mapreduce.map.java.opts -Xmx864m -Xmx864m

mapreduce.reduce.java.opts -Xmx1536m -Xmx1536m

mapreduce.map.memory.mb 1024 1024

mapreduce.reduce.memory.mb 2048 2048

yarn.app.mapreduce.am.resource.mb 2048 2048

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 5120 2560

yarn.nodemanager.resource.memory-mb 5120 2560

c3.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1126m -Xmx1126m

mapreduce.reduce.java.opts -Xmx2252m -Xmx2252m

mapreduce.map.memory.mb 1408 1408

mapreduce.reduce.memory.mb 2816 2816

yarn.app.mapreduce.am.resource.mb 2816 2816

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 5632 2816

yarn.nodemanager.resource.memory-mb 5632 2816

c3.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 11520 5760

yarn.nodemanager.resource.memory-mb 11520 5760

53

Amazon EMR Amazon EMR Release Guide
Task Configuration

c3.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23040 11520

yarn.nodemanager.resource.memory-mb 23040 11520

c3.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1331m -Xmx1331m

mapreduce.reduce.java.opts -Xmx2662m -Xmx2662m

mapreduce.map.memory.mb 1664 1664

mapreduce.reduce.memory.mb 3328 3328

yarn.app.mapreduce.am.resource.mb 3328 3328

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 53248 26624

yarn.nodemanager.resource.memory-mb 53248 26624

c4.large

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx717m -Xmx717m

mapreduce.reduce.java.opts -Xmx1434m -Xmx1434m

mapreduce.map.memory.mb 896 896

mapreduce.reduce.memory.mb 1792 1792

yarn.app.mapreduce.am.resource.mb 1792 1792

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 1792 896

yarn.nodemanager.resource.memory-mb 1792 896

54

Amazon EMR Amazon EMR Release Guide
Task Configuration

c4.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1126m -Xmx1126m

mapreduce.reduce.java.opts -Xmx2252m -Xmx2252m

mapreduce.map.memory.mb 1408 1408

mapreduce.reduce.memory.mb 2816 2816

yarn.app.mapreduce.am.resource.mb 2816 2816

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 5632 2816

yarn.nodemanager.resource.memory-mb 5632 2816

c4.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 11520 5760

yarn.nodemanager.resource.memory-mb 11520 5760

c4.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1152m -Xmx1152m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1440 1440

mapreduce.reduce.memory.mb 2880 2880

yarn.app.mapreduce.am.resource.mb 2880 2880

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23040 11520

yarn.nodemanager.resource.memory-mb 23040 11520

55

Amazon EMR Amazon EMR Release Guide
Task Configuration

c4.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1183m -Xmx1183m

mapreduce.reduce.java.opts -Xmx2366m -Xmx2366m

mapreduce.map.memory.mb 1479 1479

mapreduce.reduce.memory.mb 2958 2958

yarn.app.mapreduce.am.resource.mb 2958 2958

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 53248 26624

yarn.nodemanager.resource.memory-mb 53248 26624

cg1.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1280m -Xmx1280m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 2560 2560

yarn.app.mapreduce.am.resource.mb 2560 2560

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 20480 10240

yarn.nodemanager.resource.memory-mb 20480 10240

cc2.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1280m -Xmx1280m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 2560 2560

yarn.app.mapreduce.am.resource.mb 2560 2560

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 56320 28160

yarn.nodemanager.resource.memory-mb 56320 28160

56

Amazon EMR Amazon EMR Release Guide
Task Configuration

cr1.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx6042m -Xmx6042m

mapreduce.reduce.java.opts -Xmx12084m -Xmx12084m

mapreduce.map.memory.mb 7552 7552

mapreduce.reduce.memory.mb 15104 15104

yarn.app.mapreduce.am.resource.mb 15104 15104

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 241664 211456

yarn.nodemanager.resource.memory-mb 241664 211456

d2.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2342m -Xmx2342m

mapreduce.reduce.java.opts -Xmx4684m -Xmx4684m

mapreduce.map.memory.mb 2928 2928

mapreduce.reduce.memory.mb 5856 5856

yarn.app.mapreduce.am.resource.mb 5856 5856

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23424 11712

yarn.nodemanager.resource.memory-mb 23424 11712

d2.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2714m -Xmx2714m

mapreduce.reduce.java.opts -Xmx5428m -Xmx5428m

mapreduce.map.memory.mb 3392 3392

mapreduce.reduce.memory.mb 6784 6784

yarn.app.mapreduce.am.resource.mb 6784 6784

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 54272 27136

yarn.nodemanager.resource.memory-mb 54272 27136

57

Amazon EMR Amazon EMR Release Guide
Task Configuration

d2.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2918m -Xmx2918m

mapreduce.reduce.java.opts -Xmx5836m -Xmx5836m

mapreduce.map.memory.mb 3648 3648

mapreduce.reduce.memory.mb 7296 7296

yarn.app.mapreduce.am.resource.mb 7296 7296

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 116736 87552

yarn.nodemanager.resource.memory-mb 116736 87552

d2.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2417m -Xmx2417m

mapreduce.reduce.java.opts -Xmx4384m -Xmx4834m

mapreduce.map.memory.mb 3021 3021

mapreduce.reduce.memory.mb 6042 6042

yarn.app.mapreduce.am.resource.mb 6042 6042

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 241664 211470

yarn.nodemanager.resource.memory-mb 241664 211470

g2.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx512m -Xmx512m

mapreduce.reduce.java.opts -Xmx1536m -Xmx1536m

mapreduce.map.memory.mb 768 768

mapreduce.reduce.memory.mb 2048 2048

yarn.app.mapreduce.am.resource.mb 2048 2048

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 12288 6144

yarn.nodemanager.resource.memory-mb 12288 6144

58

Amazon EMR Amazon EMR Release Guide
Task Configuration

hi1.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2688m -Xmx2688m

mapreduce.reduce.java.opts -Xmx5376m -Xmx5376m

mapreduce.map.memory.mb 3360 3360

mapreduce.reduce.memory.mb 6720 6720

yarn.app.mapreduce.am.resource.mb 6720 6720

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 53760 26880

yarn.nodemanager.resource.memory-mb 53760 26880

hs1.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx1280m -Xmx1280m

mapreduce.reduce.java.opts -Xmx2304m -Xmx2304m

mapreduce.map.memory.mb 1536 1536

mapreduce.reduce.memory.mb 2560 2560

yarn.app.mapreduce.am.resource.mb 2560 2560

yarn.scheduler.minimum-allocation-mb 256 32

yarn.scheduler.maximum-allocation-mb 8192 28160

yarn.nodemanager.resource.memory-mb 56320 28160

i2.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2342m -Xmx2342m

mapreduce.reduce.java.opts -Xmx4684m -Xmx4684m

mapreduce.map.memory.mb 2928 2928

mapreduce.reduce.memory.mb 5856 5856

yarn.app.mapreduce.am.resource.mb 5856 5856

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23424 11712

yarn.nodemanager.resource.memory-mb 23424 11712

59

Amazon EMR Amazon EMR Release Guide
Task Configuration

i2.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2714m -Xmx2714m

mapreduce.reduce.java.opts -Xmx5428m -Xmx5428m

mapreduce.map.memory.mb 3392 3392

mapreduce.reduce.memory.mb 6784 6784

yarn.app.mapreduce.am.resource.mb 6784 6784

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 54272 27136

yarn.nodemanager.resource.memory-mb 54272 27136

i2.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2918m -Xmx2918m

mapreduce.reduce.java.opts -Xmx5836m -Xmx5836m

mapreduce.map.memory.mb 3648 3648

mapreduce.reduce.memory.mb 7296 7296

yarn.app.mapreduce.am.resource.mb 7296 7296

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 116736 87552

yarn.nodemanager.resource.memory-mb 116736 87552

i2.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx3021m -Xmx3021m

mapreduce.reduce.java.opts -Xmx6042m -Xmx6042m

mapreduce.map.memory.mb 3776 3776

mapreduce.reduce.memory.mb 7552 7552

yarn.app.mapreduce.am.resource.mb 7552 7552

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 241664 211456

yarn.nodemanager.resource.memory-mb 241664 211456

60

Amazon EMR Amazon EMR Release Guide
Task Configuration

r3.xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2342m -Xmx2342m

mapreduce.reduce.java.opts -Xmx4684m -Xmx4684m

mapreduce.map.memory.mb 2982 2982

mapreduce.reduce.memory.mb 5856 5856

yarn.app.mapreduce.am.resource.mb 5856 5856

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 23424 11712

yarn.nodemanager.resource.memory-mb 23424 11712

r3.2xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2714m -Xmx2714m

mapreduce.reduce.java.opts -Xmx5428m -Xmx5428m

mapreduce.map.memory.mb 3392 3392

mapreduce.reduce.memory.mb 6784 6784

yarn.app.mapreduce.am.resource.mb 6784 6784

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 54272 27136

yarn.nodemanager.resource.memory-mb 54272 27136

r3.4xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx2918m -Xmx2918m

mapreduce.reduce.java.opts -Xmx5836m -Xmx5836m

mapreduce.map.memory.mb 3648 3648

mapreduce.reduce.memory.mb 7296 7296

yarn.app.mapreduce.am.resource.mb 7296 7296

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 116736 87552

yarn.nodemanager.resource.memory-mb 116736 87552

61

Amazon EMR Amazon EMR Release Guide
Task Configuration

r3.8xlarge

Configuration Option Default Value With HBase Installed

mapreduce.map.java.opts -Xmx3021m -Xmx3021m

mapreduce.reduce.java.opts -Xmx6042m -Xmx6042m

mapreduce.map.memory.mb 3776 3776

mapreduce.reduce.memory.mb 7552 7552

yarn.app.mapreduce.am.resource.mb 7552 7552

yarn.scheduler.minimum-allocation-mb 32 32

yarn.scheduler.maximum-allocation-mb 241664 211456

yarn.nodemanager.resource.memory-mb 241664 211456

Use the mapred.job.reuse.jvm.num.tasks option to configure the JVM reuse settings.

If you have not previously created the default EMR service role and EC2 instance profile, type aws emr
create-default-roles to create them before typing the create-cluster subcommand.

Note
Amazon EMR sets the value of mapred.job.reuse.jvm.num.tasks to 20, but you can
override it. A value of -1 means infinite reuse within a single job, and 1 means do not reuse
tasks.

For more information, see Amazon EMR commands in the AWS CLI.

62

http://docs.aws.amazon.com/cli/latest/reference/emr/index.html

Amazon EMR Amazon EMR Release Guide
Add Ganglia to a Cluster

Ganglia

The Ganglia open source project is a scalable, distributed system designed to monitor clusters and
grids while minimizing the impact on their performance. When you enable Ganglia on your cluster,
you can generate reports and view the performance of the cluster as a whole, as well as inspect
the performance of individual node instances. Ganglia is also configured to ingest and visualize
Hadoop and Spark metrics. For more information about the Ganglia open-source project, go to http://
ganglia.info/.

When you view the Ganglia web UI in a browser, you see an overview of the cluster’s performance,
with graphs detailing the load, memory usage, CPU utilization, and network traffic of the cluster. Below
the cluster statistics are graphs for each individual server in the cluster.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Ganglia 3.7.2 emr-5.2.1 emrfs, emr-goodies, ganglia-
monitor, ganglia-metadata-
collector, ganglia-web, hadoop-
client, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-
kms-server, hadoop-yarn-
nodemanager, hadoop-yarn-
resourcemanager, webserver

Topics

• Add Ganglia to a Cluster (p. 63)

• View Ganglia Metrics (p. 64)

• Hadoop and Spark Metrics in Ganglia (p. 65)

Add Ganglia to a Cluster
To add Ganglia to a cluster using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

63

http://ganglia.info/
http://ganglia.info/
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
View Ganglia Metrics

2. Choose Create cluster.

3. In Software configuration, choose either All Applications, Core Hadoop, or Spark.

4. Proceed with creating the cluster with configurations as appropriate.

To add Ganglia to a cluster using the AWS CLI

In the AWS CLI, you can add Ganglia to a cluster by using create-cluster subcommand with the
--applications parameter. If you specify only Ganglia using the --applications parameter,
Ganglia is the only application installed.

• Type the following command to add Ganglia when you create a cluster and replace myKey with the
name of your EC2 key pair.

aws emr create-cluster --name "Spark cluster with Ganglia" --release-
label emr-5.2.1 \
--applications Name=Spark Name=Ganglia --ec2-attributes KeyName=myKey --
instance-type m3.xlarge --instance-count 3 --use-default-roles

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-
cluster subcommand.

For more information about using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

View Ganglia Metrics
Ganglia provides a web-based user interface that you can use to view the metrics Ganglia collects.
When you run Ganglia on Amazon EMR, the web interface runs on the master node and can be
viewed using port forwarding, also known as creating an SSH tunnel. For more information about
viewing web interfaces on Amazon EMR, see View Web Interfaces Hosted on Amazon EMR Clusters
in the Amazon EMR Management Guide.

To view the Ganglia web interface

1. Use SSH to tunnel into the master node and create a secure connection. For information about
how to create an SSH tunnel to the master node, see Option 2, Part 1: Set Up an SSH Tunnel to
the Master Node Using Dynamic Port Forwarding in the Amazon EMR Management Guide.

2. Install a web browser with a proxy tool, such as the FoxyProxy plug-in for Firefox, to create a
SOCKS proxy for domains of the type *ec2*.amazonaws.com*. For more information, see Option
2, Part 2: Configure Proxy Settings to View Websites Hosted on the Master Node in the Amazon
EMR Management Guide.

3. With the proxy set and the SSH connection open, you can view the Ganglia UI by opening a
browser window with http://master-public-dns-name/ganglia/, where master-public-dns-
name is the public DNS address of the master server in the EMR cluster.

64

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html

Amazon EMR Amazon EMR Release Guide
Hadoop and Spark Metrics in Ganglia

Hadoop and Spark Metrics in Ganglia
Ganglia reports Hadoop metrics for each instance. The various types of metrics are prefixed by
category: distributed file system (dfs.*), Java virtual machine (jvm.*), MapReduce (mapred.*), and
remote procedure calls (rpc.*).

Ganglia metrics for Spark generally have prefixes for YARN application ID and Spark DAGScheduler.
So prefixes follow this form:

• DAGScheduler.*

• application_xxxxxxxxxx_xxxx.driver.*

• application_xxxxxxxxxx_xxxx.executor.*

You can view a complete list of these metrics by choosing the Gmetrics link, on the Host Overview
page.

65

Amazon EMR Amazon EMR Release Guide

Apache HBase

This documentation is for versions 4.x and 5.x of Amazon EMR. For information about Amazon EMR
AMI versions 2.x and 3.x, see the Amazon EMR Developer Guide (PDF).

HBase is an open source, non-relational, distributed database. It was developed as part of Apache
Software Foundation's Hadoop project and runs on top of Hadoop Distributed File System (HDFS) to
provide non-relational database capabilities for the Hadoop ecosystem. HBase provides you a fault-
tolerant, efficient way of storing large quantities of sparse data using column-based compression
and storage. In addition, it provides fast lookup of data because large portions of data are cached in-
memory. Cluster instance storage is still used. HBase is optimized for sequential write operations, and
is highly efficient for batch inserts, updates, and deletes. HBase also supports cell versioning so you
can look up and use several previous versions of a cell or a row.

HBase works seamlessly with Hadoop, sharing its file system and serving as a direct input and output
to the MapReduce framework and execution engine. HBase also integrates with Apache Hive, enabling
SQL-like queries over HBase tables, joins with Hive-based tables, and support for Java Database
Connectivity (JDBC).

Additionally, HBase on Amazon EMR provides the ability to create snapshots of your HBase data
directly to Amazon Simple Storage Service (Amazon S3). You can restore from previously created
snapshots. Another option is Amazon S3 storage mode, which allows you to use Amazon S3 directly
for the HBase root directory and metadata. Using Amazon S3 storage mode, you can start a new
cluster, seamlessly pointing the new cluster to the root directory location in Amazon S3.

For more information, see the HBase website and documentation.

For an example of how to use HBase with Hive, see the AWS Big Data Blog post Combine NoSQL and
Massively Parallel Analytics Using Apache HBase and Apache Hive on Amazon EMR.

Release Information

Application Amazon EMR Release Label Components installed with
this application

HBase 1.2.3 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-
cp, hadoop-client, hadoop-
hdfs-datanode, hadoop-hdfs-

66

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
https://aws.amazon.com//elasticmapreduce/details/hbase/
http://hbase.apache.org
http://hbase.apache.org/book.html
http://blogs.aws.amazon.com//bigdata/post/Tx3EGE8Z90LZ9WX/Combine-NoSQL-and-Massively-Parallel-Analytics-Using-Apache-HBase-and-Apache-Hiv
http://blogs.aws.amazon.com//bigdata/post/Tx3EGE8Z90LZ9WX/Combine-NoSQL-and-Massively-Parallel-Analytics-Using-Apache-HBase-and-Apache-Hiv

Amazon EMR Amazon EMR Release Guide
Creating a Cluster with HBase Using the Console

Application Amazon EMR Release Label Components installed with
this application

library, hadoop-hdfs-namenode,
hadoop-httpfs-server, hadoop-
kms-server, hadoop-mapred,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hbase-hmaster, hbase-client,
hbase-region-server, hbase-
rest-server, hbase-thrift-server,
zookeeper-client, zookeeper-
server

Topics

• Creating a Cluster with HBase Using the Console (p. 67)

• Creating a Cluster with HBase Using AWS CLI (p. 67)

• Amazon S3 Storage Mode for HBase (p. 68)

• Using the HBase Shell (p. 72)

• Access HBase Tables with Hive (p. 72)

• Using HBase Snapshots (p. 74)

• Configure HBase (p. 76)

• View the HBase User Interface (p. 79)

• View HBase Log Files (p. 80)

• Monitor HBase with Ganglia (p. 81)

• Migrating from Previous HBase Versions (p. 82)

Creating a Cluster with HBase Using the Console
The following procedure creates a cluster with HBase installed. For more information about launching
clusters with the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR
Management Guide.

To launch a cluster with HBase installed using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster and Go to advanced options.

3. For Software Configuration, choose Amazon Release Version emr-5.2.1 or later. Choose
HBase and other applications as desired.

4. Under HBase Storage Settings, for Storage mode, select HDFS or Amazon S3. For more
information, see Amazon S3 Storage Mode for HBase (p. 68).

5. Select other options as necessary and then choose Create cluster.

Creating a Cluster with HBase Using AWS CLI
Use the following command to create a cluster with HBase installed:

67

http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Amazon S3 Storage Mode for HBase

aws emr create-cluster --name "Test cluster" --release-label emr-5.2.1 \
--applications Name=HBase --use-default-roles --ec2-attributes KeyName=myKey
 \
--instance-type m3.xlarge --instance-count 3

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

If you are using Amazon S3 storage mode for HBase, specify the --configurations option
with a reference to a configuration object. The configuration object must contain an hbase-site
classification that specifies the location in Amazon S3 where HBase data is stored using the
hbase.rootdir property. It also must contain an hbase classification, which specifies s3 using the
hbase.emr.storageMode property. The following example demonstrates a JSON snippet with these
configuration settings.

{
 "Classification": "hbase-site",
 "Properties": {
 "hbase.rootdir": "s3://MyBucket/MyHBaseStore",}
},
{
 "Classification": "hbase",
 "Properties": {
 "hbase.emr.storageMode":"s3",
 }
}

For more information about Amazon S3 storage mode for HBase, see Amazon S3 Storage Mode for
HBase (p. 68). For more information about classifications, see Configuring Applications (p. 17).

Amazon S3 Storage Mode for HBase
When you run HBase on Amazon EMR version 5.2.0 or later, you can enable Amazon S3 storage
mode, which offers the following advantages:

• The HBase root directory is stored in Amazon S3, including store files (HFiles) and table metadata.
This data is persistent outside of the cluster, available across Amazon EC2 Availability Zones, and
you don't need to recover using snapshots or other methods.

• With store files in Amazon S3, you can size your Amazon EMR cluster for your compute
requirements instead of data requirements, with 3x replication in HDFS.

The following illustration shows the HBase components relevant to Amazon S3 storage mode.

68

Amazon EMR Amazon EMR Release Guide
Enabling Amazon S3 Storage Mode for HBase

Enabling Amazon S3 Storage Mode for HBase
You can enable Amazon S3 storage mode using the Amazon EMR console, the AWS CLI, or
the Amazon EMR API. The configuration is an option during cluster creation. When you use the
console, you choose the setting using Advanced options. When you use the AWS CLI, use the --
configurations option to provide a configuration object. Properties of the configuration object
specify the storage mode and the root directory location in Amazon S3. The Amazon S3 location that
you specify should be in the same region as your Amazon EMR cluster, and only one active cluster at
a time can use the same HBase root directory in Amazon S3. For console steps and a detailed create-
cluster example using the AWS CLI, see Creating a Cluster with HBase Using the Console (p. 67).
An example configuration object is shown in the following JSON snippet.

Important
We strongly recommend that you use EMRFS consistent view when you enable Amazon S3
storage mode for production workloads. Not using consistent view may result in performance
impacts for specific operations. For more information about configuring consistent view, see
Consistent View in the Amazon EMR Management Guide.

{
 "Classification": "hbase-site",
 "Properties": {
 "hbase.rootdir": "s3://my-bucket/my-hbase-rootdir"}
},
{
 "Classification": "hbase",
 "Properties": {
 "hbase.emr.storageMode":"s3"
 }
}

69

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-consistent-view.html

Amazon EMR Amazon EMR Release Guide
Operational Considerations

Operational Considerations
HBase region servers use BlockCache to store data reads in memory and BucketCache to store data
reads on local disk. In addition, region servers use MemStore to store data writes in-memory, and
use write-ahead logs to store data writes in HDFS before the data is written to store files in Amazon
S3. The read performance of your cluster relates to how often a record can be retrieved from the in-
memory or on-disk caches. A cache miss results in the record being read from the store file in Amazon
S3, which has significantly higher latency and higher standard deviation than reading from HDFS.
In addition, the maximum request rates for Amazon S3 are lower than what can be achieved from
the local cache, so caching data may be important for read-heavy workloads. For more information
abut Amazon S3 performance, see Performance Optimization in the Amazon Simple Storage Service
Developer Guide.

To improve performance, we recommend that you cache as much of your dataset as possible in
EC2 instance storage. Because the BucketCache uses the region server's EC2 instance storage,
you can choose an instance type with a sufficient instance store and add Amazon EBS storage to
accommodate the required cache size. You can also increase the BucketCache size on attached
instance stores and EBS volumes using the hbase.bucketcache.size property. The default setting
is 8,192 MB.

For writes, the frequency of MemStore flushes and the number of store files during minor and major
compactions can contribute significantly to an increase in region server response times. For optimal
performance, consider increasing the size of the MemStore flush and HRegion block multiplier, which
increases the elapsed time between major compactions. Also, in some cases, you may get better
performance using larger file block sizes (but less than 5 GB) to trigger Amazon S3 multipart upload
functionality in EMRFS. Additionally, HBase compactions and region servers perform optimally when
fewer store files need to be compacted.

Tables can take a significant amount of time to drop on Amazon S3 because large directories need to
be renamed. Consider disabling tables instead of dropping.

There is an HBase cleaner process that cleans up old WAL files and archived HFiles. Cleaner
operation can affect query performance when running heavy workloads, so we recommend you enable
the cleaner only during off-peak times. The cleaner has the following HBase shell commands:

• cleaner_enabled queries whether the cleaner is enabled.

• cleaner_run manually runs the cleaner to remove files.

• cleaner_switch enables or disables the cleaner and returns the previous state of the cleaner. For
example, cleaner-switch true enables the cleaner.

HBase Properties for Amazon S3 Storage Mode Performance
Tuning

The following parameters can be adjusted to tune the performance of your workload when you use
Amazon S3 storage mode.

Configuration Property Default Value Description

hbase.bucketcache.size 8,192 The amount of disk space,
in MB, reserved on region
server Amazon EC2 instance
stores and EBS volumes for
BucketCache storage. The
setting applies to all region
server instances. Larger

70

http://docs.aws.amazon.com/AmazonS3/latest/dev/PerformanceOptimization.html

Amazon EMR Amazon EMR Release Guide
Operational Considerations

Configuration Property Default Value Description

BucketCache sizes generally
correspond to improved
performance

hbase.region.memstore.flush.size134217728 The maximum limit, in bytes,
that a single memstore flushes
data to Amazon S3.

hbase.region.memstore.block.multiplier4 A multiplier that determines
the MemStore upper limit at
which updates are blocked.
If the MemStore exceeds
hbase.hregion.memstore.flush.size
multiplied by this value, updates
are blocked. MemStore flushes
and compaction may happen to
unblock updates.

hbase.hstore.blockingStoreFiles10 The maximum number of store
files that can exist in a store
before updates are blocked.

hbase.hregion.max.filesize10737418240 The maximum combined size of
HFiles, in bytes, that can exist
in a region before the region is
split.

Shutting Down and Restoring a Cluster Without Data Loss

To shut down an Amazon EMR cluster without losing data that hasn't been written to Amazon S3, the
MemStore cache needs to flush to Amazon S3 to write new store files. To do this, you can run a shell
script provided on the EMR cluster. You can either add it as a step or run it directly using the on-cluster
CLI. The script disables all HBase tables, which causes the MemStore in each region server to flush to
Amazon S3. If the script completes successfully, the data persists in Amazon S3 and the cluster can be
terminated.

The following step configuration can be used when you add a step to the cluster. For more information,
see Work with Steps Using the CLI and Console in the Amazon EMR Management Guide.

Name="Disable all tables",Jar="command-runner.jar",Args=["/bin/bash","/usr/
lib/hbase/bin/disable_all_tables.sh"]

Alternatively, you can run the following bash command directly.

bash /usr/lib/hbase/bin/disable_all_tables.sh

To restart a cluster with the same HBase data, specify the same Amazon S3 location as the previous
cluster either in the AWS Management Console or using the hbase.rootdir configuration property.

71

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-work-with-steps.html

Amazon EMR Amazon EMR Release Guide
Using the HBase Shell

Using the HBase Shell
After you create an HBase cluster, the next step is to connect to HBase so you can begin reading and
writing data. You can use the HBase shell to test commands.

To open the HBase shell

1. Use SSH to connect to the master server in the HBase cluster. For information about how to
connect to the master node using SSH, see Connect to the Master Node Using SSH in the
Amazon EMR Management Guide.

2. Run hbase shell. The HBase shell opens with a prompt similar to the following example:

hbase(main):001:0>

You can issue HBase shell commands from the prompt. For more information about the shell
commands and how to call them, type help at the HBase prompt and press Enter.

Create a Table
The following command creates a table named 't1' that has a single column family named 'f1':

hbase(main):001:0>create 't1', 'f1'

Put a Value
The following command puts value 'v1' for row 'r1' in table 't1' and column 'f1':

hbase(main):001:0>put 't1', 'r1', 'f1:col1', 'v1'

Get a Value
The following command gets the values for row 'r1' in table 't1':

hbase(main):001:0>get 't1', 'r1'

Access HBase Tables with Hive
HBase and Apache Hive (p. 87) are tightly integrated, allowing you run massively parallel
processing workloads directly on data stored in HBase. To use Hive with HBase, you can usually
launch them on the same cluster. You can, however, launch Hive and HBase on separate clusters.
Running HBase and Hive separately on different clusters can improve performance because this
allows each application to use cluster resources more efficiently.

72

https://hbase.apache.org/book.html#shell
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Access HBase Tables with Hive

The following procedures show how to connect to HBase on a cluster using Hive.

Note
You can only connect a Hive cluster to a single HBase cluster.

To connect Hive to HBase

1. Create separate clusters with Hive and HBase installed or create a single cluster with both HBase
and Hive installed.

2. If you are using separate clusters, modify your security groups so that HBase and Hive ports are
open between these two master nodes.

3. Use SSH to connect to the master node for the cluster with Hive installed. For more information,
see Connect to the Master Node Using SSH in the Amazon EMR Management Guide.

4. Launch the Hive shell with the following command.

hive

5. (Optional) You do not need to do this if HBase and Hive are located on the same cluster. Connect
the HBase client on your Hive cluster to the HBase cluster that contains your data. In the following
example, public-DNS-name is replaced by the public DNS name of the master node of the
HBase cluster, for example: ec2-50-19-76-67.compute-1.amazonaws.com.

set hbase.zookeeper.quorum=public-DNS-name;

6. Proceed to run Hive queries on your HBase data as desired or see the next procedure.

To access HBase data from Hive

• After the connection between the Hive and HBase clusters has been made (as shown in the
previous procedure), you can access the data stored on the HBase cluster by creating an external
table in Hive.

The following example, when run from the Hive prompt, creates an external table that references
data stored in an HBase table called inputTable. You can then reference inputTable in Hive
statements to query and modify data stored in the HBase cluster.

Note

set hbase.zookeeper.quorum=ec2-107-21-163-157.compute-1.amazonaws.com ;

create external table inputTable (key string, value string)
 stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 with serdeproperties ("hbase.columns.mapping" = ":key,f1:col1")
 tblproperties ("hbase.table.name" = "t1");

select count(*) from inputTable ;

For a more advanced use case and example combining HBase and Hive, see the AWS Big Data Blog
post, Combine NoSQL and Massively Parallel Analytics Using Apache HBase and Apache Hive on
Amazon EMR.

73

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://blogs.aws.amazon.com//bigdata/post/Tx3EGE8Z90LZ9WX/Combine-NoSQL-and-Massively-Parallel-Analytics-Using-Apache-HBase-and-Apache-Hiv
http://blogs.aws.amazon.com//bigdata/post/Tx3EGE8Z90LZ9WX/Combine-NoSQL-and-Massively-Parallel-Analytics-Using-Apache-HBase-and-Apache-Hiv

Amazon EMR Amazon EMR Release Guide
Using HBase Snapshots

Using HBase Snapshots
HBase uses a built-in snapshot functionality to create lightweight backups of tables. In EMR clusters,
these backups can be exported to Amazon S3 using EMRFS. You can create a snapshot on the
master node using the HBase shell. This topic shows you how to run these commands interactively
with the shell or through a step using command-runner.jar with either the AWS CLI or AWS SDK
for Java. For more information about other types of HBase backups, see HBase Backup in the HBase
documentation.

Create a snapshot using a table

hbase snapshot create -n snapshotName -t tableName

Using command-runner.jar from the AWS CLI:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps Name="HBase Shell Step",Jar="command-runner.jar",\
Args=["hbase", "snapshot", "create","-n","snapshotName","-t","tableName"]

AWS SDK for Java:

HadoopJarStepConfig hbaseSnapshotConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("hbase","snapshot","create","-n","snapshotName","-
t","tableName");

Note
If your snapshot name is not unique, the create operation fails with a return code of -1 or
255 but you may not see an error message that states what went wrong. To use the same
snapshot name, delete it and then re-create it.

Delete a snapshot

hbase shell
>> delete_snapshot 'snapshotName'

View snapshot info

hbase snapshot info -snapshot snapshotName

Export a snapshot to Amazon S3

hbase snapshot export -snapshot snapshotName \
-copy-to s3://bucketName/folder -mappers 2

Using command-runner.jar from the AWS CLI:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps Name="HBase Shell Step",Jar="command-runner.jar",\
Args=["hbase", "snapshot", "export","-snapshot","snapshotName","-copy-
to","s3://bucketName/folder","-mappers","2"]

74

https://hbase.apache.org/book.html#ops.snapshots
https://hbase.apache.org/book.html#ops.backup

Amazon EMR Amazon EMR Release Guide
Using HBase Snapshots

AWS SDK for Java:

HadoopJarStepConfig hbaseImportSnapshotConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("hbase","snapshot","export",
 "-snapshot","snapshotName","-copy-to",
 ""s3://bucketName/folder",
 "-mappers","2");

Import snapshot from Amazon S3

Note
Although this is an import, the HBase option used here is still export.

sudo -u hbase hbase snapshot export \
-D hbase.rootdir=s3://bucketName/folder \
-snapshot snapshotName \
-copy-to hdfs://masterPublicDNSName:8020/user/hbase \
-mappers 2

Using command-runner.jar from the AWS CLI:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps Name="HBase Shell Step",Jar="command-runner.jar", \
Args=["sudo","-u","hbase","hbase snapshot export","-snapshot","snapshotName",
 \
"-D","hbase.rootdir=s3://bucketName/folder", \
"-copy-to","hdfs://masterPublicDNSName:8020/user/hbase","-mappers","2","-
chmod","700"]

AWS SDK for Java:

HadoopJarStepConfig hbaseImportSnapshotConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("sudo","-u","hbase","hbase","snapshot","export", "-
D","hbase.rootdir=s3://bucketName/folder",
 "-snapshot","snapshotName","-copy-to",
 "hdfs://masterPublicDNSName:8020/user/hbase",
 "-mappers","2","-chuser","hbase");

Restore a table from snapshots within the HBase shell

hbase shell
>> disable tableName
>> restore_snapshot snapshotName
>> enable tableName

HBase currently does not support all snapshot commands found in the HBase shell. For example,
there is no HBase command-line option to restore a snapshot, so you must restore it within a shell.
This means that command-runner.jar must run a Bash command.

Note
Because the command used here is echo, it is possible that your shell command will still fail
even if the command run by Amazon EMR returns a 0 exit code. Check the step logs if you
choose to run a shell command as a step.

75

Amazon EMR Amazon EMR Release Guide
Configure HBase

echo 'disable tableName; \
restore_snapshot snapshotName; \
enable tableName' | hbase shell

Here is the step using the AWS CLI. First, create the following snapshot.json file:

[
 {
 "Name": "restore",
 "Args": ["bash", "-c", "echo $'disable \"tableName\"; restore_snapshot
 \"snapshotName\"; enable \"tableName\"' | hbase shell"],
 "Jar": "command-runner.jar",
 "ActionOnFailure": "CONTINUE",
 "Type": "CUSTOM_JAR"
 }
]

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps file://./snapshot.json

AWS SDK for Java:

HadoopJarStepConfig hbaseRestoreSnapshotConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("bash","-c","echo $'disable \"tableName\"; restore_snapshot
 \"snapshotName\"; enable \"snapshotName\"' | hbase shell");

Configure HBase
Although the default settings should work for most applications, you have the flexibility to modify your
HBase configuration settings. To do this, use the configuration API when you create the cluster:

The following example creates a cluster with an alternate HBase root directory:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=HBase \
--instance-type m3.xlarge --instance-count 2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification":"hbase-site",
 "Properties": {
 "hbase.rootdir": "hdfs://ip-XXX-XX-XX-XXX.ec2.internal:8020/user/
myCustomHBaseDir"
 }
 }
]

76

Amazon EMR Amazon EMR Release Guide
Changes to Memory Allocation in YARN

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of the
object. For example:

aws emr create-cluster --release-label emr-5.2.1 --applications
 Name=HBase \
--instance-type m3.xlarge --instance-count 3 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Changes to Memory Allocation in YARN
HBase is not running as a YARN application, thus it is necessary to recalculate the memory allocated
to YARN and its applications, which results in a reduction in overall memory available to YARN if
HBase is installed. You should take this into account when planning to co-locate YARN applications
and HBase on the same clusters. The instance types with less than 64 GB of memory have half the
memory available to NodeManager, which is then allocated to the HBase RegionServer. For instance
types with memory greater than 64 GB, HBase RegionServer memory is capped at 32 GB. As a
general rule, YARN setting memory is some multiple of MapReduce reducer task memory.

The tables in Task JVM Memory Settings (p. 47) show changes to YARN settings based on the
memory needed for HBase.

HBase Port Numbers
Some port numbers chosen for HBase are different from the default. The following are interfaces and
ports for HBase on Amazon EMR.

HBase Ports

Interface Port Protocol

HMaster 16000 TCP

HMaster UI 16010 HTTP

RegionServer 16020 TCP

RegionServer Info 16030 HTTP

REST server 8070 HTTP

REST UI 8085 HTTP

Thrift server 9090 TCP

Thrift server UI 9095 HTTP

Important
The Hadoop KMS port is changed in Amazon EMR release 4.6 or later. kms-http-port is
now 9700 and kms-admin-port is 9701.

HBase Site Settings to Optimize
You can set any or all of the HBase site settings to optimize the HBase cluster for your application's
workload. We recommend the following settings as a starting point in your investigation.

77

Amazon EMR Amazon EMR Release Guide
HBase Site Settings to Optimize

zookeeper.session.timeout

The default timeout is three minutes (180000 ms). If a region server crashes, this is how long it takes
the master server to notice the absence of the region server and start recovery. To help the master
server recover faster, you can reduce this value to a shorter time period. The following example uses
one minute, or 60000 ms:

[
 {
 "Classification":"hbase-site",
 "Properties": {
 "zookeeper.session.timeout": "60000"
 }
 }
]

hbase.regionserver.handler.count

This defines the number of threads the region server keeps open to serve requests to tables. The
default of 10 is low, in order to prevent users from killing their region servers when using large write
buffers with a high number of concurrent clients. The rule of thumb is to keep this number low when the
payload per request approaches the MB range (big puts, scans using a large cache) and high when
the payload is small (gets, small puts, ICVs, deletes). The following example raises the number of open
threads to 30:

[
 {
 "Classification":"hbase-site",
 "Properties": {
 "hbase.regionserver.handler.count": "30"
 }
 }
]

hbase.hregion.max.filesize

This parameter governs the size, in bytes, of the individual regions. By default, it is set to 256 MB. If
you are writing a lot of data into your HBase cluster and it's causing frequent splitting, you can increase
this size to make individual regions bigger. It reduces splitting but takes more time to load balance
regions from one server to another.

[
 {
 "Classification":"hbase-site",
 "Properties": {
 "hbase.hregion.max.filesize": "1073741824"
 }
 }
]

hbase.hregion.memstore.flush.size

This parameter governs the maximum size of memstore, in bytes, before it is flushed to disk. By
default, it is 64 MB. If your workload consists of short bursts of write operations, you might want to

78

Amazon EMR Amazon EMR Release Guide
View the HBase User Interface

increase this limit so all writes stay in memory during the burst and get flushed to disk later. This can
boost performance during bursts.

[
 {
 "Classification":"hbase-site",
 "Properties": {
 "hbase.hregion.memstore.flush.size": "134217728"
 }
 }
]

View the HBase User Interface
HBase provides a web-based user interface that you can use to monitor your HBase cluster. When you
run HBase on Amazon EMR, the web interface runs on the master node and can be viewed using port
forwarding, also known as creating an SSH tunnel.

To view the HBase User Interface

1. Use SSH to tunnel into the master node and create a secure connection. For more information,
see Option 2, Part 1: Set Up an SSH Tunnel to the Master Node Using Dynamic Port Forwarding
in the Amazon EMR Management Guide.

2. Install a web browser with a proxy tool, such as the FoxyProxy plug-in for Firefox, to create a
SOCKS proxy for AWS domains. For more information, see Option 2, Part 2: Configure Proxy
Settings to View Websites Hosted on the Master Node in the Amazon EMR Management Guide.

3. With the proxy set and the SSH connection open, you can view the HBase UI by opening a
browser window with http://master-public-dns-name:16010/master-status, where master-
public-dns-name is the public DNS address of the master server in the HBase cluster.

79

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html

Amazon EMR Amazon EMR Release Guide
View HBase Log Files

You can also view HBase in Hue. For example, the following shows the table, t1, created in Using the
HBase Shell (p. 72):

For more information about Hue, see Hue (p. 95).

View HBase Log Files
As part of its operation, HBase writes log files with details about configuration settings, daemon
actions, and exceptions. These log files can be useful for debugging issues with HBase as well as for
tracking performance.

If you configure your cluster to persist log files to Amazon S3, you should know that logs are written to
Amazon S3 every five minutes, so there may be a slight delay before the latest log files are available.

To view HBase logs on the master node

• You can view the current HBase logs by using SSH to connect to the master node, and navigating
to the /var/log/hbase directory. These logs are not available after the cluster is terminated
unless you enable logging to Amazon S3 when the cluster is launched. For more information, see
Connect to the Master Node Using SSH in the Amazon EMR Management Guide. After you have
connected to the master node using SSH, you can navigate to the log directory using a command
like the following:

cd /var/log/hbase

To view HBase logs on Amazon S3

• To access HBase logs and other cluster logs on Amazon S3, and to have them available after the
cluster ends, you must specify an Amazon S3 bucket to receive these logs when you create the
cluster. This is done using the --log-uri option. For more information about enabling logging for

80

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Monitor HBase with Ganglia

your cluster, see Configure Logging and Debugging (Optional) in the Amazon EMR Management
Guide.

Monitor HBase with Ganglia
The Ganglia open-source project is a scalable, distributed system designed to monitor clusters and
grids while minimizing the impact on their performance. When you enable Ganglia on your cluster,
you can generate reports and view the performance of the cluster as a whole, as well as inspect the
performance of individual node instances. For more information about the Ganglia open-source project,
see http://ganglia.info/. For more information about using Ganglia with Amazon EMR clusters, see
Ganglia (p. 63).

After the cluster is launched with Ganglia configured, you can access the Ganglia graphs and reports
using the graphical interface running on the master node.

Ganglia also stores log files on the server at /var/log/ganglia/rrds. If you configured your cluster
to persist log files to an Amazon S3 bucket, the Ganglia log files are persisted there as well.

To configure a cluster for Ganglia and HBase using the AWS CLI

• Create the cluster with HBase and Ganglia installed using the AWS CLI:

aws emr create-cluster --name "Test cluster" --release-label emr-5.2.1 \
--applications Name=HBase Name=Ganglia --use-default-roles \
--ec2-attributes KeyName=myKey --instance-type c1.xlarge \
--instance-count 3 --use-default-roles

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default Amazon EMR service role and Amazon
EC2 instance profile, type aws emr create-default-roles to create them before
typing the create-cluster subcommand.

For more information, see Amazon EMR commands in the AWS CLI.

To view HBase metrics in the Ganglia web interface

1. Use SSH to tunnel into the master node and create a secure connection. For more information,
see Option 2, Part 1: Set Up an SSH Tunnel to the Master Node Using Dynamic Port Forwarding
in the Amazon EMR Management Guide.

2. Install a web browser with a proxy tool, such as the FoxyProxy plug-in for Firefox, to create a
SOCKS proxy for AWS domains. For more information, see Option 2, Part 2: Configure Proxy
Settings to View Websites Hosted on the Master Node in the Amazon EMR Management Guide.

3. With the proxy set and the SSH connection open, you can view the Ganglia metrics by opening a
browser window with http://master-public-dns-name/ganglia/, where master-public-dns-
name is the public DNS address of the master server in the HBase cluster.

To view Ganglia log files on the master node

• If the cluster is still running, you can access the log files by using SSH to connect to the master
node and navigating to the /var/log/ganglia/rrds directory. For more information, see
Connect to the Master Node Using SSH in the Amazon EMR Management Guide.

81

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-debugging.html
http://ganglia.info/
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Migrating from Previous HBase Versions

To view Ganglia log files on Amazon S3

• If you configured the cluster to persist log files to Amazon S3 when you launched it, the Ganglia
log files are written there as well. Logs are written to Amazon S3 every five minutes, so there may
be a slight delay before the latest log files are available. For more information, see View HBase
Log Files (p. 80).

Migrating from Previous HBase Versions
To migrate data from a previous HBase version, see Upgrading and HBase version number and
compatibility in the Apache HBase Reference Guide. You may need to pay special attention to the
requirements for upgrading from pre-1.0 versions of HBase.

82

https://hbase.apache.org/book.html#upgrading
https://hbase.apache.org/book.html#hbase.versioning
https://hbase.apache.org/book.html#hbase.versioning

Amazon EMR Amazon EMR Release Guide
Creating a Cluster with HCatalog

Apache HCatalog

HCatalog is a tool that allows you to access Hive metastore tables within Pig, Spark SQL, and/or
custom MapReduce applications. HCatalog has a REST interface and command line client that allows
you to create tables or do other operations. You then write your applications to access the tables using
HCatalog libraries. For more information, see Using HCatalog.

Release Information

Application Amazon EMR Release Label Components installed with
this application

HCatalog 2.1.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, hadoop-client,
hadoop-mapred, hadoop-
hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hcatalog-client, hcatalog-server,
hcatalog-webhcat-server, hive-
client, mysql-server

Creating a Cluster with HCatalog
Although HCatalog is included in the Hive project, you still must install it on EMR clusters as its own
application.

To launch a cluster with HCatalog installed using the console

The following procedure creates a cluster with HCatalog installed. For more information about
launching clusters with the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR
Management Guide;

83

https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat
http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html

Amazon EMR Amazon EMR Release Guide
Using HCatalog

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster to use Quick Create.

3. For the Software Configuration field, choose Amazon Release Version emr-4.4.0 or later.

4. In the Select Applications field, choose either All Applications or HCatalog.

5. Select other options as necessary and then choose Create cluster.

To launch a cluster with HCatalog using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Cluster with Hcat" --release-
label emr-5.2.1 \
--applications Name=HCatalog --ec2-attributes KeyName=myKey \
--instance-type m3.xlarge --instance-count 3 --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Using HCatalog
You can use HCatalog within various applications that use the Hive metastore. The following examples
show how to create a table and use it in the context of Pig and Spark SQL.

84

https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Using HCatalog

Example Create a Table Using the HCat CLI and Use That Data in Pig

Create the following script, impressions.q, on your cluster:

CREATE EXTERNAL TABLE impressions (
 requestBeginTime string, adId string, impressionId string, referrer
 string,
 userAgent string, userCookie string, ip string
)
 PARTITIONED BY (dt string)
 ROW FORMAT
 serde 'org.apache.hive.hcatalog.data.JsonSerDe'
 with serdeproperties ('paths'='requestBeginTime, adId, impressionId,
 referrer, userAgent, userCookie, ip')
 LOCATION 's3://[your region].elasticmapreduce/samples/hive-ads/tables/
impressions/';
ALTER TABLE impressions ADD PARTITION (dt='2009-04-13-08-05');

Execute the script using the HCat CLI:

% hcat -f impressions.q
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-
log4j.properties
OK
Time taken: 4.001 seconds
OK
Time taken: 0.519 seconds

Open the Grunt shell and access the data in impressions:

% pig -useHCatalog -e "A = LOAD 'impressions' USING
 org.apache.hive.hcatalog.pig.HCatLoader();
B = LIMIT A 5;
dump B;"
<snip>
(1239610346000,m9nwdo67Nx6q2kI25qt5On7peICfUM,omkxkaRpNhGPDucAiBErSh1cs0MThC,cartoonnetwork.com,Mozilla/4.0
 (compatible; MSIE 7.0; Windows NT 6.0; FunWebProducts;
 GTB6; SLCC1; .NET CLR 2.0.50727; Media Center PC
 5.0; .NET,wcVWWTascoPbGt6bdqDbuWTPPHgOPs,69.191.224.234,2009-04-13-08-05)
(1239611000000,NjriQjdODgWBKnkGJUP6GNTbDeK4An,AWtXPkfaWGOaNeL9OOsFU8Hcj6eLHt,cartoonnetwork.com,Mozilla/4.0
 (compatible; MSIE 7.0; Windows NT 5.1; GTB6; .NET CLR
 1.1.4322),OaMU1F2gE4CtADVHAbKjjRRks5kIgg,57.34.133.110,2009-04-13-08-05)
(1239610462000,Irpv3oiu0I5QNQiwSSTIshrLdo9cM1,i1LDq44LRSJF0hbmhB8Gk7k9gMWtBq,cartoonnetwork.com,Mozilla/4.0
 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322;
 InfoPath.1),QSb3wkLR4JAIut4Uq6FNFQIR1rCVwU,42.174.193.253,2009-04-13-08-05)
(1239611007000,q2Awfnpe0JAvhInaIp0VGx9KTs0oPO,s3HvTflPB8JIE0IuM6hOEebWWpOtJV,cartoonnetwork.com,Mozilla/4.0
 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322;
 InfoPath.1),QSb3wkLR4JAIut4Uq6FNFQIR1rCVwU,42.174.193.253,2009-04-13-08-05)
(1239610398000,c362vpAB0soPKGHRS43cj6TRwNeOGn,jeas5nXbQInGAgFB8jlkhnprN6cMw7,cartoonnetwork.com,Mozilla/4.0
 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB6; .NET CLR
 1.1.4322),k96n5PnUmwHKfiUI0TFP0TNMfADgh9,51.131.29.87,2009-04-13-08-05)
7120 [main] INFO org.apache.pig.Main - Pig script completed in 7 seconds
 and 199 milliseconds (7199 ms)
16/03/08 23:17:10 INFO pig.Main: Pig script completed in 7 seconds and 199
 milliseconds (7199 ms)

85

Amazon EMR Amazon EMR Release Guide
Using HCatalog

Example Accessing the Table using Spark SQL

This example creates a Spark DataFrame from the table created in the first example and shows the
first 20 lines:

% spark-shell --jars /usr/lib/hive-hcatalog/share/hcatalog/hive-hcatalog-
core-1.0.0-amzn-3.jar
<snip>
scala> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc);
scala> val df = hiveContext.sql("SELECT * FROM impressions")
scala> df.show()
<snip>
16/03/09 17:18:46 INFO DAGScheduler: ResultStage 0 (show at <console>:32)
 finished in 10.702 s
16/03/09 17:18:46 INFO DAGScheduler: Job 0 finished: show at <console>:32,
 took 10.839905 s
+----------------+--------------------+--------------------
+------------------+--------------------+--------------------+--------------
+----------------+
|requestbegintime| adid| impressionid|
 referrer| useragent| usercookie| ip|
 dt|
+----------------+--------------------+--------------------
+------------------+--------------------+--------------------+--------------
+----------------+
| 1239610346000|m9nwdo67Nx6q2kI25...|omkxkaRpNhGPDucAi...|
cartoonnetwork.com|Mozilla/4.0 (comp...|wcVWWTascoPbGt6bd...|69.191.224.234|
2009-04-13-08-05|
| 1239611000000|NjriQjdODgWBKnkGJ...|AWtXPkfaWGOaNeL9O...|
cartoonnetwork.com|Mozilla/4.0 (comp...|OaMU1F2gE4CtADVHA...| 57.34.133.110|
2009-04-13-08-05|
| 1239610462000|Irpv3oiu0I5QNQiwS...|i1LDq44LRSJF0hbmh...|
cartoonnetwork.com|Mozilla/4.0 (comp...|QSb3wkLR4JAIut4Uq...|42.174.193.253|
2009-04-13-08-05|
| 1239611007000|q2Awfnpe0JAvhInaI...|s3HvTflPB8JIE0IuM...|
cartoonnetwork.com|Mozilla/4.0 (comp...|QSb3wkLR4JAIut4Uq...|42.174.193.253|
2009-04-13-08-05|
| 1239610398000|c362vpAB0soPKGHRS...|jeas5nXbQInGAgFB8...|
cartoonnetwork.com|Mozilla/4.0 (comp...|k96n5PnUmwHKfiUI0...| 51.131.29.87|
2009-04-13-08-05|
| 1239610600000|cjBTpruoaiEtqLuMX...|XwlohBSs8Ipxs1bRa...|
cartoonnetwork.com|Mozilla/4.0 (comp...|k96n5PnUmwHKfiUI0...| 51.131.29.87|
2009-04-13-08-05|
| 1239610804000|Ms3eJHNAEItpxvimd...|4SIj4pGmgVLl625BD...|
cartoonnetwork.com|Mozilla/4.0 (comp...|k96n5PnUmwHKfiUI0...| 51.131.29.87|
2009-04-13-08-05|
| 1239610872000|h5bccHX6wJReDi1jL...|EFAWIiBdVfnxwAMWP...|
cartoonnetwork.com|Mozilla/4.0 (comp...|k96n5PnUmwHKfiUI0...| 51.131.29.87|
2009-04-13-08-05|
| 1239610365000|874NBpGmxNFfxEPKM...|xSvE4XtGbdtXPF2Lb...|
cartoonnetwork.com|Mozilla/5.0 (Maci...|eWDEVVUphlnRa273j...| 22.91.173.232|
2009-04-13-08-05|
| 1239610348000|X8gISpUTSqh1A5reS...|TrFblGT99AgE75vuj...|
 corriere.it|Mozilla/4.0 (comp...|tX1sMpnhJUhmAF7AS...| 55.35.44.79|
2009-04-13-08-05|
| 1239610743000|kbKreLWB6QVueFrDm...|kVnxx9Ie2i3OLTxFj...|
 corriere.it|Mozilla/4.0 (comp...|tX1sMpnhJUhmAF7AS...| 55.35.44.79|
2009-04-13-08-05|
| 1239610812000|9lxOSRpEi3bmEeTCu...|1B2sff99AEIwSuLVV...|
 corriere.it|Mozilla/4.0 (comp...|tX1sMpnhJUhmAF7AS...| 55.35.44.79|
2009-04-13-08-05|
| 1239610876000|lijjmCf2kuxfBTnjL...|AjvufgUtakUFcsIM9...|
 corriere.it|Mozilla/4.0 (comp...|tX1sMpnhJUhmAF7AS...| 55.35.44.79|
2009-04-13-08-05|
| 1239610941000|t8t8trgjNRPIlmxuD...|agu2u2TCdqWP08rAA...|
 corriere.it|Mozilla/4.0 (comp...|tX1sMpnhJUhmAF7AS...| 55.35.44.79|
2009-04-13-08-05|
| 1239610490000|OGRLPVNGxiGgrCmWL...|mJg2raBUpPrC8OlUm...|
 corriere.it|Mozilla/4.0 (comp...|r2k96t1CNjSU9fJKN...| 71.124.66.3|
2009-04-13-08-05|
| 1239610556000|OnJID12x0RXKPUgrD...|P7Pm2mPdW6wO8KA3R...|
 corriere.it|Mozilla/4.0 (comp...|r2k96t1CNjSU9fJKN...| 71.124.66.3|
2009-04-13-08-05|
| 1239610373000|WflsvKIgOqfIE5KwR...|TJHd1VBspNcua0XPn...|
 corriere.it|Mozilla/5.0 (Maci...|fj2L1ILTFGMfhdrt3...| 75.117.56.155|
2009-04-13-08-05|
| 1239610768000|4MJR0XxiVCU1ueXKV...|1OhGWmbvKf8ajoU8a...|
 corriere.it|Mozilla/5.0 (Maci...|fj2L1ILTFGMfhdrt3...| 75.117.56.155|
2009-04-13-08-05|
| 1239610832000|gWIrpDiN57i3sHatv...|RNL4C7xPi3tdar2Uc...|
 corriere.it|Mozilla/5.0 (Maci...|fj2L1ILTFGMfhdrt3...| 75.117.56.155|
2009-04-13-08-05|
| 1239610789000|pTne9k62kJ14QViXI...|RVxJVIQousjxUVI3r...|
 pixnet.net|Mozilla/5.0 (Maci...|1bGOKiBD2xmui9OkF...| 33.176.101.80|
2009-04-13-08-05|
+----------------+--------------------+--------------------
+------------------+--------------------+--------------------+--------------
+----------------+
only showing top 20 rows

scala>

86

Amazon EMR Amazon EMR Release Guide

Apache Hive

Hive is an open-source, data warehouse, and analytic package that runs on top of a Hadoop cluster.
Hive scripts use an SQL-like language called Hive QL (query language) that abstracts programming
models and supports typical data warehouse interactions. Hive enables you to avoid the complexities
of writing Tez jobs based on directed acyclic graphs (DAGs) or MapReduce programs in a lower level
computer language, such as Java.

Hive extends the SQL paradigm by including serialization formats, as well as the ability to customize
query processing by creating table schemas that match your data, without touching the data itself.
In contrast to SQL, which only supports primitive value types (such as dates, numbers, and strings),
values in Hive tables are structured elements, such as JSON objects, any user-defined data type, or
any function written in Java.

For more information about Hive, see http://hive.apache.org/.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Hive 2.1.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-cp,
hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hadoop-yarn-timeline-server,
hive-client, hcatalog-server,
hive-server, mysql-server, tez-
on-yarn

Samples

Amazon EMR sample applications are included with each release. You can view these samples by
logging into the master node of your cluster at /usr/share/aws/emr/samples.

87

http://hive.apache.org/

Amazon EMR Amazon EMR Release Guide
Differences for Hive on Amazon EMR

Versions and Default Apache Hive

Topics

• Differences for Hive on Amazon EMR Versions and Default Apache Hive (p. 88)

• Create a Hive Metastore Outside the Cluster (p. 91)

• Use the Hive JDBC Driver (p. 93)

Differences for Hive on Amazon EMR Versions
and Default Apache Hive

Topics

• Differences between Apache Hive on Amazon EMR and Apache Hive (p. 88)

• Differences in Hive Between Amazon EMR Release 4.x and 5.x (p. 88)

• Additional Features of Hive on Amazon EMR (p. 89)

Differences between Apache Hive on Amazon EMR
and Apache Hive
This section describes the differences between Hive on Amazon EMR and the default versions of Hive
available at http://svn.apache.org/viewvc/hive/branches/.

Hive Live Long and Process (LLAP) not Supported

LLAP functionality added in version 2.0 of default Apache Hive is not supported in Hive 2.1.0 on
Amazon EMR release 5.0.

Differences in Hive Between Amazon EMR Release
4.x and 5.x
This section covers differences to consider before you migrate a Hive implementation from Hive
version 1.0.0 on Amazon EMR release 4.x to Hive 2.x on Amazon EMR release 5.x.

Operational Differences and Considerations

• Support added for ACID (Atomicity, Consistency, Isolation, and Durability)transactions: This
difference between Hive 1.0.0 on Amazon EMR 4.x and default Apache Hive has been eliminated.

• Direct writes to Amazon S3 eliminated: This difference between Hive 1.0.0 on Amazon EMR and
the default Apache Hive has been eliminated. Hive 2.1.0 on Amazon EMR release 5.x now creates,
reads from, and writes to temporary files stored in Amazon S3. As a result, to read from and write
to the same table you no longer have to create a temporary table in the cluster's local HDFS file
system as a workaround. If you use versioned buckets, be sure to manage these temporary files as
described below.

• Manage temp files when using Amazon S3 versioned buckets: When you run Hive queries
where the destination of generated data is Amazon S3, many temporary files and directories are
created. This is new behavior as described earlier. If you use versioned S3 buckets, these temp
files clutter Amazon S3 and incur cost if they're not deleted. Adjust your lifecycle rules so that data
with a /_tmp prefix is deleted after a short period, such as five days. See Specifying a Lifecycle
Configuration for more information.

• Log4j updated to log4j 2: If you use log4j, you may need to change your logging configuration
because of this upgrade. See Apache log4j 2 for details.

88

http://svn.apache.org/viewvc/hive/branches/
https://cwiki.apache.org/confluence/display/Hive/LLAP
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
http://docs.aws.amazon.com/AmazonS3/latest/dev/how-to-set-lifecycle-configuration-intro.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/how-to-set-lifecycle-configuration-intro.html
http://logging.apache.org/log4j/2.x/

Amazon EMR Amazon EMR Release Guide
Additional Features of Hive on Amazon EMR

Performance differences and considerations

• Performance differences with Tez: With Amazon EMR release 5.x , Tez is the default execution
engine for Hive instead of MapReduce. Tez provides improved performance for most workflows.

• ORC file performance: Query performance may be slower than expected for ORC files.

• Tables with many partitions: Queries that generate a large number of dynamic partitions may fail,
and queries that select from tables with many partitions may take longer than expected to execute.
For example, a select from 100,000 partitions may take 10 minutes or more.

Additional Features of Hive on Amazon EMR
Amazon EMR extends Hive with new features that support Hive integration with other AWS services,
such as the ability to read from and write to Amazon Simple Storage Service (Amazon S3) and
DynamoDB.

Topics

• Amazon EMR Hive Queries to Accommodate Partial DynamoDB Schemas (p. 89)

• Copy Data Between DynamoDB Tables in Different AWS Regions (p. 90)

• Set DynamoDB Throughput Values Per Table (p. 90)

Amazon EMR Hive Queries to Accommodate Partial
DynamoDB Schemas
Amazon EMR Hive provides maximum flexibility when querying DynamoDB tables by allowing you to
specify a subset of columns on which you can filter data, rather than requiring your query to include all
columns. This partial schema query technique is effective when you have a sparse database schema
and want to filter records based on a few columns, such as filtering on time stamps.

The following example shows how to use a Hive query to:

• Create a DynamoDB table.

• Select a subset of items (rows) in DynamoDB and further narrow the data to certain columns.

• Copy the resulting data to Amazon S3.

DROP TABLE dynamodb;
DROP TABLE s3;

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT,
 fullColumn map<String, String>)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.throughput.read.percent" = ".1000",
 "dynamodb.column.mapping" =
 "hashKey:HashKey,recordTimeStamp:RangeKey");

CREATE EXTERNAL TABLE s3(map<String, String>)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3 SELECT item fullColumn FROM dynamodb WHERE
 recordTimeStamp < "2012-01-01";

89

Amazon EMR Amazon EMR Release Guide
Additional Features of Hive on Amazon EMR

The following table shows the query syntax for selecting any combination of items from DynamoDB.

Query example Result description

SELECT * FROM table_name; Selects all items (rows) from a given table and
includes data from all columns available for those
items.

SELECT * FROM table_name WHERE
field_name =value;

Selects some items (rows) from a given table and
includes data from all columns available for those
items.

SELECT column1_name, column2_name,
column3_name FROM table_name;

Selects all items (rows) from a given table and
includes data from some columns available for those
items.

SELECT column1_name, column2_name,
column3_name FROM table_name
WHERE field_name =value;

Selects some items (rows) from a given table and
includes data from some columns available for those
items.

Copy Data Between DynamoDB Tables in Different AWS
Regions

Amazon EMR Hive provides a dynamodb.region property you can set per DynamoDB table.
When dynamodb.region is set differently on two tables, any data you copy between the tables
automatically occurs between the specified regions.

The following example shows you how to create a DynamoDB table with a Hive script that sets the
dynamodb.region property:

Note
Per-table region properties override the global Hive properties.

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT,
 map<String, String> fullColumn)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.region" = "eu-west-1",
 "dynamodb.throughput.read.percent" = ".1000",
 "dynamodb.column.mapping" = "hashKey:HashKey,recordTimeStamp:RangeKey");

Set DynamoDB Throughput Values Per Table

Amazon EMR Hive enables you to set the DynamoDB readThroughputPercent and
writeThroughputPercent settings on a per table basis in the table definition. The following Amazon
EMR Hive script shows how to set the throughput values. For more information about DynamoDB
throughput values, see Specifying Read and Write Requirements for Tables.

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT,
 map<String, String> fullColumn)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.throughput.read.percent" = ".4",
 "dynamodb.throughput.write.percent" = "1.0",

90

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#ProvisionedThroughput

Amazon EMR Amazon EMR Release Guide
Create a Hive Metastore Outside the Cluster

 "dynamodb.column.mapping" = "hashKey:HashKey,recordTimeStamp:RangeKey");

Create a Hive Metastore Outside the Cluster
Hive records metastore information in a MySQL database that is located, by default, on the master
node. The metastore contains a description of the input data, including the partition names and data
types, contained in the input files.

When a cluster terminates, all associated cluster nodes shut down. All data stored on a cluster node,
including the Hive metastore, is deleted. Information stored elsewhere, such as in your Amazon S3
bucket, persists.

If you have multiple clusters that share common data and update the metastore, you should locate the
shared metastore on persistent storage.

To share the metastore between clusters, override the default location of the MySQL database to an
external persistent storage location on an Amazon RDS instance.

Note
Hive neither supports nor prevents concurrent write access to metastore tables. If you share
metastore information between two clusters, you must ensure that you do not write to the
same metastore table concurrently—unless you are writing to different partitions of the same
metastore table.

The following procedure shows you how to override the default configuration values for the Hive
metastore location and start a cluster using the reconfigured metastore location.

To create a metastore located outside of the cluster

1. Create a MySQL database.

Relational Database Service (RDS) provides a cloud-based MySQL database. For information
about how to create an Amazon RDS database, see https://aws.amazon.com/rds/.

2. Modify your security groups to allow JDBC connections between your MySQL database and the
ElasticMapReduce-Master security group.

For information about how to modify your security groups for access, see https://aws.amazon.com/
rds/faqs/#security.

3. Set JDBC configuration values in hive-site.xml:

• Important
If you supply sensitive information, such as passwords, to the Amazon EMR
configuration API, this information is displayed for those accounts that have
sufficient permissions. If you are concerned that this information could be displayed
to other users, create the cluster with an administrative account and limit other
users (IAM users or those with delegated credentials) to accessing services
on the cluster by creating a role which explicitly denies permissions to the
elasticmapreduce:DescribeCluster API key.

Create a configuration file called hiveConfiguration.json containing edits to hive-
site.xml:

[
 {
 "Classification": "hive-site",
 "Properties": {

91

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/faqs/#security
https://aws.amazon.com/rds/faqs/#security

Amazon EMR Amazon EMR Release Guide
Create a Hive Metastore Outside the Cluster

 "javax.jdo.option.ConnectionURL": "jdbc:mysql:\/
\/hostname:3306\/hive?createDatabaseIfNotExist=true",
 "javax.jdo.option.ConnectionDriverName":
 "org.mariadb.jdbc.Driver",
 "javax.jdo.option.ConnectionUserName": "username",
 "javax.jdo.option.ConnectionPassword": "password"
 }
 }
]

Note
For Amazon EMR versions 4.0.0 or below, the driver used is
org.mysql.jdbc.Driver for javax.jdo.option.ConnectionDriverName.

Use hiveConfiguration.json with the following AWS CLI command to create the cluster:

aws emr create-cluster --release-label emr-5.2.1 --instance-type
 m3.xlarge --instance-count 2 \
--applications Name=Hive --configurations ./hiveConfiguration.json --
use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret
(^).

Note
If you plan to store your configuration in Amazon S3, you must specify the URL
location of the object. For example:

aws emr create-cluster --release-label emr-5.2.1 --instance-type
 m3.xlarge --instance-count 3 \
--applications Name=Hive --configurations https://
s3.amazonaws.com/mybucket/myfolder/hiveConfiguration.json --use-
default-roles

<hostname> is the DNS address of the Amazon RDS instance running MySQL.
<username> and <password> are the credentials for your MySQL database.
javax.jdo.option.ConnectionURL is the JDBC connect string for a JDBC metastore.
javax.jdo.option.ConnectionDriverName is the driver class name for a JDBC
metastore.

The MySQL JDBC drivers are installed by Amazon EMR.

Note
The value property should not contain any spaces or carriage returns. It should
appear all on one line.

4. Connect to the master node of your cluster.

Instructions on how to connect to the master node are available at Connect to the Master Node
Using SSH in the Amazon EMR Management Guide.

5. Create your Hive tables specifying the location on Amazon S3 by entering a command similar to
the following:

CREATE EXTERNAL TABLE IF NOT EXISTS table_name
(
key int,

92

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Use the Hive JDBC Driver

value int
)
LOCATION s3://mybucket/hdfs/

6. Add your Hive script to the running cluster.

Your Hive cluster runs using the metastore located in Amazon RDS. Launch all additional Hive clusters
that share this metastore by specifying the metastore location.

Use the Hive JDBC Driver
You can use popular business intelligence tools like Microsoft Excel, MicroStrategy, QlikView, and
Tableau with Amazon EMR to explore and visualize your data. Many of these tools require an ODBC
(Open Database Connectivity) or JDBC (Java Database Connectivity) driver. Amazon EMR supports
both JDBC and ODBC connectivity.

To connect to Hive via JDBC requires you to download the JDBC driver and install a SQL client. The
following example demonstrates using SQL Workbench/J to connect to Hive using JDBC.

To download JDBC drivers

Download and extract the drivers for Amazon EMR 4.x releases at the following location:

• Hive 1.0 JDBC drivers (driver version 1.0.4): https://amazon-odbc-jdbc-drivers.s3.amazonaws.com/
public/AmazonHiveJDBC_1.0.4.1004.zip

To install and configure SQL Workbench

1. Download the SQL Workbench/J client for your operating system from http://www.sql-
workbench.net/downloads.html.

2. Go to the Installing and starting SQL Workbench/J page and follow the instructions for installing
SQL Workbench/J on your system.

3. • Linux, Unix, Mac OS X users: In a terminal session, create an SSH tunnel to the master node of
your cluster using the following command. Replace master-public-dns-name with the public
DNS name of the master node and path-to-key-file with the location and file name of your
Amazon EC2 private key (.pem) file.

Hive
version

Command

1.0 ssh -o ServerAliveInterval=10 -i path-to-key-file -N -L
10000:localhost:10000 hadoop@master-public-dns-name

• Windows users: In a PuTTY session, create an SSH tunnel to the master node of your cluster
(using local port forwarding) with the following settings. Replace master-public-dns-name
with the public DNS name of the master node. For more information about creating an SSH
tunnel to the master node, see Option 1: Set Up an SSH Tunnel to the Master Node Using
Local Port Forwarding in the Amazon EMR Management Guide.

Hive
version

Tunnel settings

1.0 Source port: 10000 Destination: master-public-dns-name:10000

4. Add the JDBC driver to SQL Workbench/J.

93

https://amazon-odbc-jdbc-drivers.s3.amazonaws.com/public/AmazonHiveJDBC_1.0.4.1004.zip
https://amazon-odbc-jdbc-drivers.s3.amazonaws.com/public/AmazonHiveJDBC_1.0.4.1004.zip
http://www.sql-workbench.net/downloads.html
http://www.sql-workbench.net/downloads.html
http://www.sql-workbench.net/manual/install.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel-local.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel-local.html

Amazon EMR Amazon EMR Release Guide
Use the Hive JDBC Driver

a. In the Select Connection Profile dialog box, click Manage Drivers.

b. Click the Create a new entry (blank page) icon.

c. In the Name field, type Hive JDBC.

d. For Library, click the Select the JAR file(s) icon.

e. Browse to the location containing the extracted drivers, select the following JAR files and click
Open.

hive_metastore.jar
hive_service.jar
HiveJDBC41.jar
libfb303-0.9.0.jar
libthrift-0.9.0.jar
log4j-1.2.14.jar
ql.jar
slf4j-api-1.5.11.jar
slf4j-log4j12-1.5.11.jar
TCLIServiceClient.jar
zookeeper-3.4.6.jar

f. In the Please select one driver dialog box, select the following driver and click OK.

com.amazon.hive.jdbc41.HS2Driver

5. When you return to the Manage Drivers dialog box, verify that the Classname field is populated
and click OK.

6. When you return to the Select Connection Profile dialog box, verify that the Driver field is set to
Hive JDBC and provide the JDBC connection string in the URL field.

jdbc:hive2://localhost:10000/default

7. Click OK to connect. After the connection is complete, connection details appear at the top of the
SQL Workbench/J window.

For more information about using Hive and the JDBC interface, go to http://wiki.apache.org/hadoop/
Hive/HiveClient and http://wiki.apache.org/hadoop/Hive/HiveJDBCInterface.

94

http://wiki.apache.org/hadoop/Hive/HiveClient
http://wiki.apache.org/hadoop/Hive/HiveClient
http://wiki.apache.org/hadoop/Hive/HiveJDBCInterface

Amazon EMR Amazon EMR Release Guide

Hue

Hue (Hadoop User Experience) is an open-source, web-based, graphical user interface for use with
Amazon EMR and Apache Hadoop. Hue groups together several different Hadoop ecosystem projects
into a configurable interface for your Amazon EMR cluster. Amazon has also added customizations
specific to Hue in Amazon EMR releases. Launch your cluster using the Amazon EMR console and
you can interact with Hadoop and related components on your cluster using Hue. For more information
about Hue, go to http://gethue.com.

Supported and unsupported features of Hue on Amazon EMR

Hue on Amazon EMR supports the following:

• Amazon S3 and Hadoop File System (HDFS) Browser—With the appropriate permissions, you can
browse and move data between the ephemeral HDFS storage and S3 buckets belonging to your
account.

• Hive—Run interactive queries on your data. This is also a useful way to prototype programmatic or
batched querying.

• Pig—Run scripts on your data or issue interactive commands.

• Oozie—Create and monitor Oozie workflows.

• Metastore Manager—View and manipulate the contents of the Hive metastore (import/create, drop,
and so on).

• Job browser—See the status of your submitted Hadoop jobs.

• User management—Manage Hue user accounts and integrate LDAP users with Hue.

• AWS Samples—There are several "ready-to-run" examples, which process sample data from
various AWS services using applications in Hue. When you log in to Hue, you are taken to the Hue
Home application where the samples are pre-installed.

Hue on Amazon EMR does not support the following:

• Livy Server

• Spark notebook functionality

Using Hue or the AWS Management Console

Cluster administrators use the AWS Management Console to launch and administer clusters. This is
also the case when you want to launch a cluster with Hue installed. On the other hand, end users may

95

http://gethue.com

Amazon EMR Amazon EMR Release Guide
Create a Cluster with Hue Installed

interact entirely with their Amazon EMR cluster through an application such as Hue. Hue acts as a front
end for the applications on the cluster and it allows users to interact with their cluster in a more user-
friendly interface. The applications in Hue, such as the Hive and Pig editors, replace the need to log in
to the cluster to run scripts interactively with their respective shell applications.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Hue 3.10.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, hadoop-client,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hue-server, mysql-server, oozie-
client, oozie-server

Topics

• Create a Cluster with Hue Installed (p. 96)

• Launch the Hue Web Interface (p. 97)

• Use Hue with a Remote Database in Amazon RDS (p. 97)

• Advanced Configurations for Hue (p. 99)

• Metastore Manager Restrictions (p. 101)

Create a Cluster with Hue Installed
To launch a cluster with Hue installed using the console

1. Choose Go to Advanced Options.

2. Navigate to Software Configuration and choose Amazon for Hadoop distribution and 4.1.0 or
later for the Release label.

3. In Software Configuration > Applications to be installed, Hue should appear in the list by default.

4. In the Hardware Configuration section, accept the default EC2 instance types: m3.xlarge for
instance types. You can change the instance types to suit your needs. If you will have more than
20 concurrent users accessing Hue, we recommend an instance type of m3.2xlarge or greater for
the master node. We also recommend that you have a minimum of two core nodes for clusters
running Hue.

5. In Security and Access, select a key pair for connecting to your cluster. You will need to use a
key pair to open an SSH tunnel to connect to the Hue Web interface on the master node.

6. Click Create cluster.

To launch a cluster with Hue installed using the AWS CLI

To launch a cluster with Hue installed using the AWS CLI, type the create-cluster subcommand
with the --applications parameter.

Note
You will need to install the current version of the AWS CLI. To download the latest release,
see https://aws.amazon.com//cli/.

96

https://aws.amazon.com/cli

Amazon EMR Amazon EMR Release Guide
Launch the Hue Web Interface

1. If you have not previously created the default EMR role and EC2 instance profile, type
the following command to create them. Alternatively, you can specify your own roles. For
more information on using your own roles, see http://docs.aws.amazon.com//emr/latest/
ManagementGuide/emr-iam-roles.html.

aws emr create-default-roles

2. To launch an Amazon EMR cluster with Hue installed using the default roles, type the following
command and replace myKey with the name of your EC2 key pair.

aws emr create-cluster --name "Hue cluster" --release-label emr-5.2.1 \
--applications Name=Hue Name=Hive Name=Pig --use-default-roles --ec2-
attributes KeyName=myKey --instance-type m3.xlarge --instance-count 3

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Note
When you specify the instance count without using the --instance-groups parameter,
a single Master node is launched, and the remaining instances are launched as core
nodes. All nodes will use the instance type specified in the command.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Launch the Hue Web Interface
Launching Hue is the same as connecting to any HTTP interface hosted on the master node of a
cluster. The following procedure describes how to access the Hue interface. For more information on
accessing web interfaces hosted on the master node, see: http://docs.aws.amazon.com//emr/latest/
ManagementGuide/emr-web-interfaces.html.

To launch the Hue web interface

1. Follow these instructions to create an SSH tunnel to the master node and to configure an HTTP
proxy add-in for your browser: http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-
ssh-tunnel.html.

2. Type the following address in your browser to open the Hue web interface: http://master
public DNS:8888.

3. At the Hue login screen, if you are the administrator logging in for the first time, enter a username
and password to create your Hue superuser account and then click Create account. Otherwise,
type your username and password and click Create account or enter the credentials provided by
your administrator.

Use Hue with a Remote Database in Amazon
RDS

By default, Hue user information and query histories are stored in a local MySQL database on the
master node. However, you can create one or more Hue-enabled clusters using a configuration stored
in Amazon S3 and a MySQL database in Amazon RDS. This allows you to persist user information
and query history created by Hue without keeping your Amazon EMR cluster running. We recommend
using Amazon S3 server-side encryption to store the configuration file.

97

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-iam-roles.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-iam-roles.html
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html

Amazon EMR Amazon EMR Release Guide
Use Hue with a Remote Database in Amazon RDS

First create the remote database for Hue.

To create the external MySQL database

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Click Launch a DB Instance.

3. Choose MySQL and click Select.

4. Leave the default selection of Multi-AZ Deployment and Provisioned IOPS Storage and click
Next.

5. Leave the Instance Specifications at their defaults, specify Settings, and click Next.

6. On the Configure Advanced Settings page, choose a proper security group and database name.
The security group you use must at least allow ingress TCP access for port 3306 from the master
node of your cluster. If you have not created your cluster at this point, you can allow all hosts
to connect to port 3306 and adjust the security group after you have launched the cluster. Click
Launch DB Instance.

7. From the RDS Dashboard, click on Instances and select the instance you have just created.
When your database is available, you can open a text editor and copy the following information:
dbname, username, password, and RDS instance hostname. You will use information when you
create and configure your cluster.

To specify an external MySQL database for Hue when launching a cluster using the
AWS CLI

To specify an external MySQL database for Hue when launching a cluster using the AWS CLI, use the
information you noted when creating your RDS instance for configuring hue.ini with a configuration
object

Note
You can create multiple clusters that use the same external database, but each cluster will
share query history and user information.

• Create a cluster with Hue installed, using the external database you created:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Hue
 Name=Spark Name=Hive \
--instance-type m3.xlarge --instance-count 2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[{
 "Classification": "hue-ini",
 "Properties": {},
 "Configurations": [
 {
 "Classification": "desktop",
 "Properties": {},
 "Configurations": [
 {
 "Classification": "database",
 "Properties": {
 "name": "dbname",

98

https://console.aws.amazon.com/rds/

Amazon EMR Amazon EMR Release Guide
Troubleshooting

 "user": "username",
 "password": "password",
 "host": "hueinstance.c3b8apyyjyzi.us-
east-1.rds.amazonaws.com",
 "port": "3306",
 "engine": "mysql"
 },
 "Configurations": []
 }
]
 }
]
}]

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Troubleshooting
In the event of Amazon RDS failover

It is possible users may encounter delays when running a query because the Hue database instance
is non-responsive or is in the process of failover. The following are some facts and guidelines for this
issue:

• If you login to the Amazon RDS console, you can search for failover events. For example, to see if a
failover is in process or has occurred, look for events such as "Multi-AZ instance failover started" and
"Multi-AZ instance failover completed."

• It takes about 30 seconds for an RDS instance to complete a failover.

• If you are experiencing longer-than-normal responses for queries in Hue, try to re-execute the query.

Advanced Configurations for Hue
This section includes the following topics.

Topics

• Configure Hue for LDAP Users (p. 99)

Configure Hue for LDAP Users
Integration with LDAP allows users to log into Hue using existing credentials stored in an LDAP
directory. When you integrate Hue with LDAP, you do not need to independently manage user
information in Hue. The information below demonstrates Hue integration with Microsoft Active
Directory, but the configuration options are analogous to any LDAP directory.

LDAP authentication first binds to the server and establishes the connection. Then, the established
connection is used for any subsequent queries to search for LDAP user information. Unless your Active
Directory server allows anonymous connections, a connection needs to be established using a bind

99

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Amazon EMR Amazon EMR Release Guide
Configure Hue for LDAP Users

distinguished name and password. The bind distinguished name (or DN) is defined by the bind_dn
configuration setting. The bind password is defined by the bind_password configuration setting. Hue
has two ways to bind LDAP requests: search bind and direct bind. The preferred method for using Hue
with Amazon EMR is search bind.

When search bind is used with Active Directory, Hue uses the user name attribute (defined by
user_name_attr config) to find the attribute that needs to be retrieved from the base distinguished
name (or DN). Search bind is useful when the full DN is not known for the Hue user.

For example, you may have user_name_attr config set to use the common name (or CN). In that
case, the Active Directory server uses the Hue username provided during login to search the directory
tree for a common name that matches, starting at the base distinguished name. If the common name
for the Hue user is found, the user's distinguished name is returned by the server. Hue then constructs
a distinguished name used to authenticate the user by performing a bind operation.

Note
Search bind searches usernames in all directory subtrees beginning at the base distinguished
name. The base distinguished name specified in the Hue LDAP configuration should be the
closest parent of the username, or your LDAP authentication performance may suffer.

When direct bind is used with Active Directory, the exact nt_domain or ldap_username_pattern
must be used to authenticate. When direct bind is used, if the nt domain (defined by the nt_domain
configuration setting) attribute is defined, a user distinguished name template is created using the
form: <login username>@nt_domain. This template is used to search all directory subtrees
beginning at the base distinguished name. If the nt domain is not configured, Hue searches for an
exact distinguished name pattern for the user (defined by the ldap_username_pattern configuration
setting). In this instance, the server searches for a matching ldap_username_pattern value in all
directory subtrees beginning at the base distinguished name.

To Launch an Amazon EMR cluster with LDAP properties for Hue using AWS CLI

• To specify LDAP properties for hue-ini, create a cluster with Hue installed using the following
commands with AWS CLI:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Hue
 Name=Spark Name=Hive \
--instance-type m3.xlarge --instance-count 2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

myConfig.json:

[
 {
 "Classification": "hue-ini",
 "Properties": {},
 "Configurations": [
 {
 "Classification": "desktop",
 "Properties": {},
 "Configurations": [
 {
 "Classification": "ldap",
 "Properties": {},
 "Configurations": [
 {
 "Classification": "ldap_servers",
 "Properties": {},
 "Configurations": [

100

Amazon EMR Amazon EMR Release Guide
Metastore Manager Restrictions

 {
 "Classification": "yourcompany",
 "Properties": {
 "base_dn": "DC=yourcompany,DC=hue,DC=com",
 "ldap_url": "ldap://ldapurl",
 "search_bind_authentication": "true",
 "bind_dn":
 "CN=hue,CN=users,DC=yourcompany,DC=hue,DC=com",
 "bind_password": "password"
 },
 "Configurations": []
 }
]
 }
]
 }
]
 }
]
 }
]

To View LDAP Settings in Hue

1. Verify you have an active VPN connection or SSH tunnel to the Amazon EMR cluster's master
node. Then, in your browser, type master-public-dns:8888 to open the Hue web interface.

2. Log in using your Hue administrator credentials. If the Did you know? window opens, click Got it,
prof! to close it.

3. Click the Hue icon in the toolbar.

4. On the About Hue page, click Configuration.

5. In the Configuration Sections and Variables section, click Desktop.

6. Scroll to the ldap section to view your settings.

Metastore Manager Restrictions
The Metastore Manager default database exists in HDFS. You cannot import a table from Amazon S3
using a database stored in HDFS. To import a table from Amazon S3, create a new database, change
the default location of the database to Amazon S3, create a table in the database, and then import your
table from Amazon S3.

101

Amazon EMR Amazon EMR Release Guide

Apache Mahout

Amazon EMR (Amazon EMR) supports Apache Mahout, a machine learning framework for Hadoop.
For more information about Mahout, go to http://mahout.apache.org/.

Mahout is a machine learning library with tools for clustering, classification, and several types of
recommenders, including tools to calculate most-similar items or build item recommendations for users.
Mahout employs the Hadoop framework to distribute calculations across a cluster, and now includes
additional work distribution methods, including Spark.

For more information and an example of how to use Mahout with Amazon EMR, see the Building a
Recommender with Apache Mahout on Amazon EMR post on the AWS Big Data blog.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Mahout 0.12.2 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-cp,
hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
mahout-client

102

http://mahout.apache.org/
https://blogs.aws.amazon.com/bigdata/post/Tx1TDK3HHBD4EZL/Building-a-Recommender-with-Apache-Mahout-on-Amazon-Elastic-MapReduce-EMR
https://blogs.aws.amazon.com/bigdata/post/Tx1TDK3HHBD4EZL/Building-a-Recommender-with-Apache-Mahout-on-Amazon-Elastic-MapReduce-EMR

Amazon EMR Amazon EMR Release Guide

Apache Oozie

Use the Apache Oozie Workflow Scheduler to manage and coordinate Hadoop jobs.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Oozie 4.2.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-cp,
hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hadoop-yarn-timeline-server,
oozie-client, oozie-server, tez-
on-yarn

For more information about Apache Oozie, see http://oozie.apache.org/.

Important
The Oozie native web interface is not supported on Amazon EMR. If you would like to use a
front-end interface for Oozie, try the Hue Oozie application.

103

http://oozie.apache.org/

Amazon EMR Amazon EMR Release Guide
Creating a Cluster with Phoenix

Apache Phoenix

Apache Phoenix is an application used for OLTP workloads and low-level latency SQL. Phoenix
uses Apache HBase as its backing store and you can connect to it using a JDBC driver bundled with
Phoenix. For more information, see https://phoenix.apache.org/.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Phoenix 4.7.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-
cp, hadoop-client, hadoop-
hdfs-datanode, hadoop-hdfs-
library, hadoop-hdfs-namenode,
hadoop-httpfs-server, hadoop-
kms-server, hadoop-mapred,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hbase-hmaster, hbase-client,
hbase-region-server, phoenix-
library, phoenix-query-server,
zookeeper-client, zookeeper-
server

Creating a Cluster with Phoenix
Install Phoenix by choosing that application when you create the cluster. The following procedure
creates a cluster with Phoenix and HBase installed. For more information about launching clusters with
the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR Management Guide.

To launch a cluster with Phoenix installed using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster to use Quick Create.

104

https://phoenix.apache.org/
http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Configuring Phoenix

3. For Software Configuration, choose Amazon Release Version emr-4.7.0 or later.

4. For Select Applications, choose either All Applications or Phoenix and HBase.

Note
Selecting Phoenix always includes and installs HBase components, but this is made
explicit in examples.

5. Select other options as necessary and then choose Create cluster.

To launch a cluster with Phoenix and HBase using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Cluster with Phoenix" --release-
label emr-5.2.1 \
--applications Name=Phoenix Name=HBase --ec2-attributes KeyName=myKey \
--instance-type m3.xlarge --instance-count 3 --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Configuring Phoenix
You configure Phoenix by setting values in hbase-site.xml using the hbase-site configuration
classification when you create your cluster.

For more information, see Configuration and Tuning in the Phoenix documentation.

To change a setting in Phoenix

• Create a cluster with Phoenix and HBase installed and set phoenix.schema.dropMetaData to
false, using the following command:

aws emr create-cluster --release-label emr-5.2.1 --applications
 Name=Phoenix \
Name=HBase --instance-type m3.xlarge --instance-count 2 --configurations
 https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "hbase-site",
 "Properties": {
 "phoenix.schema.dropMetaData": "false"
 }
 }
]

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of
the object. For example:

105

https://phoenix.apache.org/tuning.html

Amazon EMR Amazon EMR Release Guide
Phoenix Clients

aws emr create-cluster --release-label emr-5.2.1 --applications
 Name=Phoenix Name=Hive \
Name=HBase --instance-type m3.xlarge --instance-count 3 --
configurations https://s3.amazonaws.com/mybucket/myfolder/
myConfig.json

Phoenix Clients
You connect to Phoenix using either a JDBC client built with full dependencies or using the "thin client"
that uses the Phoenix Query Server and can only be run on a master node of a cluster (e.g. by using
an SQL client, a step, command line, SSH port forwarding, etc.). When using the "fat" JDBC client, it
still needs to have access to all nodes of the cluster because it connects to HBase services directly.
The "thin" Phoenix client only needs access to the Phoenix Query Server at a default port 8765. There
are several scripts within Phoenix that use these clients.

Use an Amazon EMR step to query using Phoenix

The following procedure restores a snapshot from HBase and uses that data to run a Phoenix query.
You can extend this example or create a new script that leverages Phoenix's clients to suit your needs.

1. Create a cluster with Phoenix installed, using the following command:

aws emr create-cluster --name "Cluster with Phoenix" --log-uri
 s3://myBucket/myLogFolder --release-label emr-5.2.1 \
--applications Name=Phoenix Name=HBase --ec2-attributes KeyName=myKey \
--instance-type m3.xlarge --instance-count 3 --use-default-roles

2. Create then upload the following files to Amazon S3:

copySnapshot.sh

sudo su hbase -s /bin/sh -c 'hbase snapshot export \
-D hbase.rootdir=s3://us-east-1.elasticmapreduce.samples/hbase-demo-
customer-data/snapshot/.hbase-snapshot \
-snapshot customer_snapshot1 \
-copy-to hdfs://masterDNSName:8020/user/hbase \
-mappers 2 -chuser hbase -chmod 700'

runQuery.sh

aws s3 cp s3://myBucket/phoenixQuery.sql /home/hadoop/
/usr/lib/phoenix/bin/sqlline-thin.py http://localhost:8765 /home/hadoop/
phoenixQuery.sql

phoenixQuery.sql

CREATE VIEW "customer" (
pk VARCHAR PRIMARY KEY,
"address"."state" VARCHAR,
"address"."street" VARCHAR,
"address"."city" VARCHAR,
"address"."zip" VARCHAR,

106

https://github.com/apache/phoenix/tree/master/bin

Amazon EMR Amazon EMR Release Guide
Phoenix Clients

"cc"."number" VARCHAR,
"cc"."expire" VARCHAR,
"cc"."type" VARCHAR,
"contact"."phone" VARCHAR);

CREATE INDEX my_index ON "customer" ("customer"."state") INCLUDE("PK",
 "customer"."city", "customer"."expire", "customer"."type");

SELECT "customer"."type" AS credit_card_type, count(*) AS
 num_customers FROM "customer" WHERE "customer"."state" = 'CA' GROUP BY
 "customer"."type";

Use the AWS CLI to submit the files to the S3 bucket:

aws s3 cp copySnapshot.sh s3://myBucket/
aws s3 cp runQuery.sh s3://myBucket/
aws s3 cp phoenixQuery.sql s3://myBucket/

3. Create a table using the following step submitted to the cluster that you created in Step 1:

createTable.json

[
 {
 "Name": "Create HBase Table",
 "Args": ["bash", "-c", "echo $'create \"customer\",\"address\",\"cc\",
\"contact\"' | hbase shell"],
 "Jar": "command-runner.jar",
 "ActionOnFailure": "CONTINUE",
 "Type": "CUSTOM_JAR"
 }
]

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps file://./createTable.json

4. Use script-runner.jar to run the copySnapshot.sh script that you previously uploaded to
your S3 bucket:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps Type=CUSTOM_JAR,Name="HBase Copy
 Snapshot",ActionOnFailure=CONTINUE,\
Jar=s3://region.elasticmapreduce/libs/script-runner/script-
runner.jar,Args=["s3://myBucket/copySnapshot.sh"]

This runs a MapReduce job to copy your snapshot data to the cluster HDFS.

5. Restore the snapshot that you copied to the cluster using the following step:

restoreSnapshot.json

[
 {
 "Name": "restore",
 "Args": ["bash", "-c", "echo $'disable \"customer\"; restore_snapshot
 \"customer_snapshot1\"; enable \"customer\"' | hbase shell"],

107

Amazon EMR Amazon EMR Release Guide
Phoenix Clients

 "Jar": "command-runner.jar",
 "ActionOnFailure": "CONTINUE",
 "Type": "CUSTOM_JAR"
 }
]

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps file://./restoreSnapshot.json

6. Use script-runner.jar to run the runQuery.sh script that you previously uploaded to your
S3 bucket:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF \
--steps Type=CUSTOM_JAR,Name="Phoenix Run Query",ActionOnFailure=CONTINUE,
\
Jar=s3://region.elasticmapreduce/libs/script-runner/script-
runner.jar,Args=["s3://myBucket/runQuery.sh"]

The query runs and returns the results to the step's stdout. It may take a few minutes for this
step to complete.

7. Inspect the results of the step's stdout at the log URI that you used when you created the cluster
in Step 1. The results should look like the following:

+--
+-----------------------------------+
| CREDIT_CARD_TYPE | NUM_CUSTOMERS
 |
+--
+-----------------------------------+
| american_express | 5728
 |
| dankort | 5782
 |
| diners_club | 5795
 |
| discover | 5715
 |
| forbrugsforeningen | 5691
 |
| jcb | 5762
 |
| laser | 5769
 |
| maestro | 5816
 |
| mastercard | 5697
 |
| solo | 5586
 |
| switch | 5781
 |
| visa | 5659
 |
+--
+-----------------------------------+

108

Amazon EMR Amazon EMR Release Guide
Submit Pig Work

Apache Pig

Amazon EMR (Amazon EMR) supports Apache Pig, a programming framework you can use to analyze
and transform large data sets. For more information about Pig, go to http://pig.apache.org/.

Pig is an open-source, Apache library that runs on top of Hadoop. The library takes SQL-like
commands written in a language called Pig Latin and converts those commands into Tez jobs based
on directed acyclic graphs (DAGs) or MapReduce programs. You do not have to write complex code
using a lower level computer language, such as Java.

You can execute Pig commands interactively or in batch mode. To use Pig interactively, create an
SSH connection to the master node and submit commands using the Grunt shell. To use Pig in batch
mode, write your Pig scripts, upload them to Amazon S3, and submit them as cluster steps. For
more information on submitting work to a cluster, see Submit Work to a Cluster in the Amazon EMR
Management Guide.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Pig 0.16.0 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
emr-kinesis, emr-s3-dist-cp,
hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
hadoop-yarn-timeline-server,
pig-client, tez-on-yarn

Submit Pig Work
This section demonstrates submitting Pig work to an Amazon EMR cluster. The examples that follow
are based on the Amazon EMR sample: Apache Log Analysis using Pig. The sample evaluates
Apache log files and then generates a report containing the total bytes transferred, a list of the
top 50 IP addresses, a list of the top 50 external referrers, and the top 50 search terms using Bing
and Google. The Pig script is located in the Amazon S3 bucket s3://elasticmapreduce/

109

http://pig.apache.org/
http://docs.aws.amazon.com//emr/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://aws.amazon.com/jobflows/2728

Amazon EMR Amazon EMR Release Guide
Submit Pig Work Using the Amazon EMR Console

samples/pig-apache/do-reports2.pig. Input data is located in the Amazon S3 bucket s3://
elasticmapreduce/samples/pig-apache/input. The output is saved to an Amazon S3 bucket.

Important
For EMR 4.x or greater, you must copy and modify the Pig script do-reports.pig to make it
work. In your modified script, replace the following line

register file:/home/hadoop/lib/pig/piggybank.jar

with this:

register file:/usr/lib/pig/lib/piggybank.jar

Then replace this script in your own bucket in Amazon S3.

Submit Pig Work Using the Amazon EMR Console
This example describes how to use the Amazon EMR console to add a Pig step to a cluster.

To submit a Pig step

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, select the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog:

• For Step type, choose Pig program.

• For Name, accept the default name (Pig program) or type a new name.

• For Script S3 location, type the location of the Pig script. For example: s3://
elasticmapreduce/samples/pig-apache/do-reports2.pig.

• For Input S3 location, type the location of the input data. For example: s3://
elasticmapreduce/samples/pig-apache/input.

• For Output S3 location, type or browse to the name of your Amazon S3 output bucket.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To
update the status, choose the Refresh icon above the Actions column.

Submit Pig Work Using the AWS CLI
To submit a Pig step using the AWS CLI

When you launch a cluster using the AWS CLI, use the --applications parameter to install Pig. To
submit a Pig step, use the --steps parameter.

• To launch a cluster with Pig installed and to submit a Pig step, type the following command,
replace myKey with the name of your EC2 key pair, and replace mybucket with the name of your
Amazon S3 bucket.

•
aws emr create-cluster --name "Test cluster" --release-label emr-5.2.1
 --applications Name=Pig \

110

https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Call User Defined Functions from Pig

--use-default-roles --ec2-attributes KeyName=myKey --instance-
type m3.xlarge --instance-count 3 \
--steps Type=PIG,Name="Pig Program",ActionOnFailure=CONTINUE,Args=[-
f,s3://elasticmapreduce/samples/pig-apache/do-reports2.pig,-
p,INPUT=s3://elasticmapreduce/samples/pig-apache/input,-p,OUTPUT=s3://
mybucket/pig-apache/output]

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-
cluster subcommand.

For more information about using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Call User Defined Functions from Pig
Pig provides the ability to call user-defined functions (UDFs) from within Pig scripts. You can do this to
implement custom processing to use in your Pig scripts. The languages currently supported are Java,
Python/Jython, and JavaScript (though JavaScript support is still experimental.)

The following sections describe how to register your functions with Pig so you can call them either from
the Pig shell or from within Pig scripts. For more information about using UDFs with Pig, go to http://
pig.apache.org/docs/r0.14.0/udf.html.

Call JAR files from Pig
You can use custom JAR files with Pig using the REGISTER command in your Pig script. The JAR
file is local or a remote file system such as Amazon S3. When the Pig script runs, Amazon EMR
downloads the JAR file automatically to the master node and then uploads the JAR file to the Hadoop
distributed cache. In this way, the JAR file is automatically used as necessary by all instances in the
cluster.

To use JAR files with Pig

1. Upload your custom JAR file into Amazon S3.

2. Use the REGISTER command in your Pig script to specify the bucket on Amazon S3 of the custom
JAR file.

REGISTER s3://mybucket/path/mycustomjar.jar;

Call Python/Jython Scripts from Pig
You can register Python scripts with Pig and then call functions in those scripts from the Pig shell or in
a Pig script. You do this by specifying the location of the script with the register keyword.

111

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://pig.apache.org/docs/r0.16.0/udf.html
http://pig.apache.org/docs/r0.16.0/udf.html

Amazon EMR Amazon EMR Release Guide
Call Python/Jython Scripts from Pig

Because Pig in written in Java, it uses the Jython script engine to parse Python scripts. For more
information about Jython, go to http://www.jython.org/.

To call a Python/Jython script from Pig

1. Write a Python script and upload the script to a location in Amazon S3. This should be a bucket
owned by the same account that creates the Pig cluster, or that has permissions set so the
account that created the cluster can access it. In this example, the script is uploaded to s3://
mybucket/pig/python.

2. Start a Pig cluster. If you are accessing Pig from the Grunt shell, run an interactive cluster. If
you are running Pig commands from a script, start a scripted Pig cluster. This example starts
an interactive cluster. For more information about how to create a Pig cluster, see Submit Pig
Work (p. 109).

3. For an interactive cluster, use SSH to connect into the master node and run the Grunt shell. For
more information, see SSH into the Master Node.

4. Run the Grunt shell for Pig by typing pig at the command line:

pig

5. Register the Jython library and your Python script with Pig using the register keyword at
the Grunt command prompt, as shown in the following command, where you would specify the
location of your script in Amazon S3:

grunt> register 'lib/jython.jar';
grunt> register 's3://mybucket/pig/python/myscript.py' using jython as
 myfunctions;

6. Load the input data. The following example loads input from an Amazon S3 location:

grunt> input = load 's3://mybucket/input/data.txt' using TextLoader as
 (line:chararray);

7. You can now call functions in your script from within Pig by referencing them using myfunctions:

grunt> output=foreach input generate myfunctions.myfunction($1);

112

http://www.jython.org/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_SetUp_SSH.html

Amazon EMR Amazon EMR Release Guide
Adding Database Connectors

Presto

Use Presto as a fast SQL query engine for large data sources.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Presto 0.157.1 emr-5.2.1 emrfs, emr-goodies, hadoop-
client, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-
kms-server, hadoop-yarn-
nodemanager, hadoop-yarn-
resourcemanager, hive-client,
hcatalog-server, mysql-server,
presto-coordinator, presto-
worker

For more information about Presto, go to https://prestodb.io/.

Note

• Certain Presto properties or properties that pertain to Presto cannot be configured
directly with the configuration API. You can configure log.properties and
config.properties. However, the following properties cannot be configured:

• node.properties

• jvm.config

For more information about these configuration files, go to the Presto documentation.

• Presto is not configured to use EMRFS. It instead uses PrestoS3FileSystem.

• You can access the Presto web interface on the Presto coordinator using port 8889.

Adding Database Connectors
You can add JDBC connectors at cluster launch using the configuration classifications. The connectors
currently available match those supported by Presto. For further information about connectors, see
https://prestodb.io/docs/current/connector.html.

113

https://prestodb.io/
https://prestodb.io/docs/current/
https://prestodb.io/docs/current/connector.html

Amazon EMR Amazon EMR Release Guide
Adding Database Connectors

These classifications are called:

• presto-connector-blackhole

• presto-connector-cassandra

• presto-connector-hive

• presto-connector-jmx

• presto-connector-kafka

• presto-connector-localfile

• presto-connector-mongodb

• presto-connector-mysql

• presto-connector-postgresql

• presto-connector-raptor

• presto-connector-redis

• presto-connector-tpch

Example Configuring a Cluster with the PostgreSQL JDBC

To launch a cluster with the PostgreSQL connector installed and configured create a file,
myConfig.json, like the following:

[
 {
 "Classification": "presto-connector-postgresql",
 "Properties": {
 "connection-url": "jdbc:postgresql://example.net:5432/database",
 "connection-user": "MYUSER",
 "connection-password": "MYPASS"
 },
 "Configurations": []
 }
]

Then use the following to create the cluster:

aws emr create-cluster --name PrestoConnector --release-label emr-5.2.1 --
instance-type m3.xlarge \
--instance-count 2 --applications Name=Hadoop Name=Hive Name=Pig Name=Presto
 \
--use-default-roles --no-auto-terminate --ec2-attributes KeyName=myKey \
--log-uri s3://my-bucket/logs --enable-debugging \
--configurations file://./myConfig.json

114

Amazon EMR Amazon EMR Release Guide

Apache Spark

This documentation is for versions 4.x and 5.x of Amazon EMR. For information about Amazon EMR
AMI versions 2.x and 3.x, see the Amazon EMR Developer Guide (PDF).

Apache Spark is a cluster framework and programming model that helps you do machine learning,
stream processing, or graph analytics using Amazon EMR clusters. Similar to Apache Hadoop,
Spark is an open-source, distributed processing system commonly used for big data workloads.
However, Spark has several notable differences from Hadoop MapReduce. Spark has an optimized
directed acyclic graph (DAG) execution engine and actively caches data in-memory, which can boost
performance especially for certain algorithms and interactive queries.

Spark natively supports applications written in Scala, Python, and Java and includes several tightly
integrated libraries for SQL (Spark SQL), machine learning (MLlib), stream processing (Spark
Streaming), and graph processing (GraphX). These tools make it easier to leverage the Spark
framework for a wide variety of use cases.

Spark can be installed alongside the other Hadoop applications available in Amazon EMR, and it
can also leverage the EMR file system (EMRFS) to directly access data in Amazon S3. Hive is also
integrated with Spark. So you can use a HiveContext object to run Hive scripts using Spark. A Hive
context is included in the spark-shell as sqlContext.

To view an end-to-end example using Spark on Amazon EMR, see the New — Apache Spark on
Amazon EMR post on the AWS official blog.

To view a machine learning example using Spark on Amazon EMR, see the Large-Scale Machine
Learning with Spark on Amazon EMR post on the AWS Big Data blog.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Spark 2.0.2 emr-5.2.1 emrfs, emr-goodies, hadoop-
client, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
spark-client, spark-history-
server, spark-on-yarn, spark-
yarn-slave

115

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
https://aws.amazon.com/elasticmapreduce/details/spark/
https://spark.apache.org/sql/
https://spark.apache.org/mllib/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/graphx/
https://aws.amazon.com/blogs/aws/new-apache-spark-on-amazon-emr/
https://aws.amazon.com/blogs/aws/new-apache-spark-on-amazon-emr/
http://blogs.aws.amazon.com//bigdata/post/Tx21LOP0UQ2ZA9N/Large-Scale-Machine-Learning-with-Spark-on-Amazon-EMR
http://blogs.aws.amazon.com//bigdata/post/Tx21LOP0UQ2ZA9N/Large-Scale-Machine-Learning-with-Spark-on-Amazon-EMR

Amazon EMR Amazon EMR Release Guide
Create a Cluster With Spark

Topics

• Create a Cluster With Spark (p. 116)

• Configure Spark (p. 117)

• Access the Spark Shell (p. 120)

• Write a Spark Application (p. 122)

• Adding a Spark Step (p. 124)

• Accessing the Spark Web UIs (p. 126)

Create a Cluster With Spark
To launch a cluster with Spark installed using the console

The following procedure creates a cluster with Spark installed. For more information about launching
clusters with the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR
Management Guide.

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster to use Quick Create.

3. For Software Configuration, choose Amazon Release Version emr-5.2.1 or later.

4. For Select Applications, choose either All Applications or Spark.

5. Select other options as necessary and then choose Create cluster.

Note
To configure Spark when you are creating the cluster, see Configure Spark (p. 117).

To launch a cluster with Spark installed using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Spark cluster" --release-label emr-5.2.1 --
applications Name=Spark \
--ec2-attributes KeyName=myKey --instance-type m3.xlarge --instance-count
 3 --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

To launch a cluster with Spark installed using the SDK for Java

Specify Spark as an application with SupportedProductConfig used in RunJobFlowRequest.

• The following Java program excerpt shows how to create a cluster with Spark:

AmazonElasticMapReduceClient emr = new
 AmazonElasticMapReduceClient(credentials);

Application sparkApp = new Application()
 .withName("Spark");
Applications myApps = new Applications();
myApps.add(sparkApp);

RunJobFlowRequest request = new RunJobFlowRequest()

116

http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Configure Spark

 .withName("Spark Cluster")
 .withApplications(myApps)
 .withReleaseLabel("emr-5.2.1")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKeyName")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge")
);
RunJobFlowResult result = emr.runJobFlow(request);

Configure Spark
You can configure Spark on Amazon EMR using the spark-defaults configuration classification.
For more information about the options, see the Spark Configuration topic in the Apache Spark
documentation. It is also possible to configure Spark dynamically at the time of each application
submission. For more information, see Enabling Dynamic Allocation of Executors (p. 118).

Topics

• Spark Defaults Set By Amazon EMR (p. 117)

• Enabling Dynamic Allocation of Executors (p. 118)

• Spark ThriftServer Environment Variable (p. 119)

• Changing Spark Default Settings (p. 119)

Spark Defaults Set By Amazon EMR

The following defaults are set by Amazon EMR regardless of whether other settings are set to true,
such as spark.dynamicAllocation.enabled or maximizeResourceAllocation.

• spark.executor.memory

• spark.executor.cores

Note
In releases 4.4.0 or greater, spark.dynamicAllocation.enabled is set to true by default.

The following table shows how Spark defaults that affect applications are set.

Spark defaults set by Amazon EMR

Setting Description Value

spark.executor.memory Amount of memory to use per
executor process. (for example,
1g, 2g)

Setting is configured based on
the slave instance types in the
cluster.

spark.executor.cores The number of cores to use on
each executor.

Setting is configured based on
the slave instance types in the
cluster.

spark.dynamicAllocation.enabled Whether to use dynamic
resource allocation, which
scales the number of executors

true (emr-4.4.0 or greater)

117

https://aws.amazon.com/elasticmapreduce/details/spark/
http://spark.apache.org/docs/latest/configuration.html

Amazon EMR Amazon EMR Release Guide
Enabling Dynamic Allocation of Executors

Setting Description Value

registered with an application
up and down based on the
workload.

Note
Spark Shuffle Service
is automatically
configured by Amazon
EMR.

You can configure your executors to utilize the maximum resources possible on each node in a cluster
by enabling the maximizeResourceAllocation option when creating the cluster. This option
calculates the maximum compute and memory resources available for an executor on a node in the
core node group and sets the corresponding spark-defaults settings with this information.

Spark defaults set when maximizeResourceAllocation is enabled

Setting Description Value

spark.default.parallelism Default number of partitions
in RDDs returned by
transformations like join,
reduceByKey, and parallelize
when not set by user.

2X number of CPU cores
available to YARN containers.

spark.driver.memory Amount of memory to use for
the driver process, i.e. where
SparkContext is initialized. (for
example, 1g, 2g).

Setting is configured based on
the instance types in the cluster.
However, because the Spark
driver application may run on
either the master or one of the
core instances (for example, in
YARN client and cluster modes,
respectively), this is set based
on the smaller of the instance
types in these two instance
groups.

spark.executor.memory Amount of memory to use per
executor process. (for example,
1g, 2g)

Setting is configured based on
the slave instance types in the
cluster.

spark.executor.cores The number of cores to use on
each executor.

Setting is configured based on
the slave instance types in the
cluster.

spark.executor.instances The number of executors. Setting is configured based
on the slave instance types
in the cluster. Set unless
spark.dynamicAllocation.enabled
explicitly set to true at the same
time.

Enabling Dynamic Allocation of Executors
Spark on YARN has the ability to scale the number of executors used for a Spark application
dynamically. In releases 4.4.0 or greater, this is the default behavior.

To learn more about dynamic allocation, see the Dynamic Allocation topic in the Apache Spark
documentation.

118

https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation

Amazon EMR Amazon EMR Release Guide
Spark ThriftServer Environment Variable

Spark ThriftServer Environment Variable
Spark sets the Hive Thrift Server Port environment variable, HIVE_SERVER2_THRIFT_PORT, to 10001.

Changing Spark Default Settings
You change the defaults in spark-defaults.conf using the spark-defaults configuration
classification when you create the cluster or the maximizeResourceAllocation setting in the
spark configuration classification.

The following procedures show how to modify settings using the CLI or console.

To create a cluster with spark.executor.memory set to 2G using the CLI

• Create a cluster with Spark installed and spark.executor.memory set to 2G, using the
following:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Spark
 \
--instance-type m3.xlarge --instance-count 2 --service-role
 EMR_DefaultRole --ec2-attributes InstanceProfile=EMR_EC2_DefaultRole --
configurations https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.executor.memory": "2G"
 }
 }
]

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of
the object. For example:

aws emr create-cluster --release-label emr-5.2.1 --applications
 Name=Spark \
--instance-type m3.xlarge --instance-count 3 --
service-role EMR_DefaultRole --ec2-attributes
 InstanceProfile=EMR_EC2_DefaultRole --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

To create a cluster with spark.executor.memory set to 2G using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster.

3. Choose Go to advanced options

119

https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Access the Spark Shell

4. For the Software Configuration field, choose Release or later.

5. Choose either Spark or All Applications from the list, then choose Configure and add.

6. Choose Edit software settings and enter the following configuration:

classification=spark-defaults,properties=[spark.executor.memory=2G]

7. Select other options as necessary and then choose Create cluster.

To set maximizeResourceAllocation

• Create a cluster with Spark installed and maximizeResourceAllocation set to true using the
AWS CLI:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Spark
 \
--instance-type m3.xlarge --instance-count 2 --service-role
 EMR_DefaultRole --ec2-attributes InstanceProfile=EMR_EC2_DefaultRole --
configurations file://./myConfig.json

Or using Amazon S3:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Spark
 \
--instance-type m3.xlarge --instance-count 2 --service-role
 EMR_DefaultRole --ec2-attributes InstanceProfile=EMR_EC2_DefaultRole --
configurations https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "spark",
 "Properties": {
 "maximizeResourceAllocation": "true"
 }
 }
]

Access the Spark Shell
The Spark shell is based on the Scala REPL (Read-Eval-Print-Loop). It allows you to create Spark
programs interactively and submit work to the framework. You can access the Spark shell by
connecting to the master node with SSH and invoking spark-shell. For more information about
connecting to the master node, see Connect to the Master Node Using SSH in the Amazon EMR
Management Guide . The following examples use Apache HTTP Server access logs stored in Amazon
S3.

Note
The bucket used in these examples is available to clients that can access US East (N.
Virginia).

120

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Access the Spark Shell

By default, the Spark shell creates its own SparkContext object called sc. You can use this context if it
is required within the REPL. sqlContext is also available in the shell and it is a HiveContext.

Example Using the Spark shell to count the occurrences of a string in a file stored in
Amazon S3

This example uses sc to read a textFile in Amazon S3.

scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@404721db

scala> val textFile = sc.textFile("s3://elasticmapreduce/
samples/hive-ads/tables/impressions/dt=2009-04-13-08-05/
ec2-0-51-75-39.amazon.com-2009-04-13-08-05.log")

Spark creates the textFile and associated data structure. Next, the example counts the number of lines
in the log file with the string "cartoonnetwork.com":

scala> val linesWithCartoonNetwork = textFile.filter(line =>
 line.contains("cartoonnetwork.com")).count()
linesWithCartoonNetwork: org.apache.spark.rdd.RDD[String] =
 MapPartitionsRDD[2] at filter at <console>:23
<snip>
<Spark program runs>
scala> linesWithCartoonNetwork
res2: Long = 9

Example Using the Python-based Spark shell to count the occurrences of a string in a
file stored in Amazon S3

Spark also includes a Python-based shell, pyspark, that you can use to prototype Spark programs
written in Python. Just as with spark-shell, invoke pyspark on the master node; it also has the
same SparkContext object.

>>> sc
<pyspark.context.SparkContext object at 0x7fe7e659fa50>
>>> textfile = sc.textFile("s3://elasticmapreduce/
samples/hive-ads/tables/impressions/dt=2009-04-13-08-05/
ec2-0-51-75-39.amazon.com-2009-04-13-08-05.log")

Spark creates the textFile and associated data structure. Next, the example counts the number of lines
in the log file with the string "cartoonnetwork.com".

>>> linesWithCartoonNetwork = textfile.filter(lambda line:
 "cartoonnetwork.com" in line).count()
15/06/04 17:12:22 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library
 from the embedded binaries
15/06/04 17:12:22 INFO lzo.LzoCodec: Successfully loaded & initialized
 native-lzo library [hadoop-lzo rev EXAMPLE]
15/06/04 17:12:23 INFO fs.EmrFileSystem: Consistency disabled, using
 com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem as filesystem
 implementation
<snip>
<Spark program continues>
>>> linesWithCartoonNetwork
9

121

https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.SparkContext
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.hive.HiveContext
https://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.SparkContext
https://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds

Amazon EMR Amazon EMR Release Guide
Write a Spark Application

Write a Spark Application
Spark applications can be written in Scala, Java, or Python. The are several examples of Spark
applications located on Spark Examples topic in the Apache Spark documentation. The Estimating
Pi example is shown below in the three natively supported applications. You can also view complete
examples in $SPARK_HOME/examples and at GitHub. For more information about how to build JARs
for Spark, see the Quick Start topic in the Apache Spark documentation.

Scala

package org.apache.spark.examples
import scala.math.random
import org.apache.spark._

/** Computes an approximation to pi */
object SparkPi {
 def main(args: Array[String]) {
 val conf = new SparkConf().setAppName("Spark Pi")
 val spark = new SparkContext(conf)
 val slices = if (args.length > 0) args(0).toInt else 2
 val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
 val count = spark.parallelize(1 until n, slices).map { i =>
 val x = random * 2 - 1
 val y = random * 2 - 1
 if (x*x + y*y < 1) 1 else 0
 }.reduce(_ + _)
 println("Pi is roughly " + 4.0 * count / n)
 spark.stop()
 }
}

Java

package org.apache.spark.examples;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import java.util.ArrayList;
import java.util.List;

/**
 * Computes an approximation to pi
 * Usage: JavaSparkPi [slices]
 */
public final class JavaSparkPi {

 public static void main(String[] args) throws Exception {
 SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi");
 JavaSparkContext jsc = new JavaSparkContext(sparkConf);

 int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;

122

https://aws.amazon.com/elasticmapreduce/details/spark/
https://spark.apache.org/examples.html
https://github.com/apache/spark/tree/master/examples/src/main
https://spark.apache.org/docs/latest/quick-start.html

Amazon EMR Amazon EMR Release Guide
Python

 int n = 100000 * slices;
 List<Integer> l = new ArrayList<Integer>(n);
 for (int i = 0; i < n; i++) {
 l.add(i);
 }

 JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

 int count = dataSet.map(new Function<Integer, Integer>() {
 @Override
 public Integer call(Integer integer) {
 double x = Math.random() * 2 - 1;
 double y = Math.random() * 2 - 1;
 return (x * x + y * y < 1) ? 1 : 0;
 }
 }).reduce(new Function2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer integer, Integer integer2) {
 return integer + integer2;
 }
 });

 System.out.println("Pi is roughly " + 4.0 * count / n);

 jsc.stop();
 }
}

Python

import sys
from random import random
from operator import add

from pyspark import SparkContext

if __name__ == "__main__":
 """
 Usage: pi [partitions]
 """
 sc = SparkContext(appName="PythonPi")
 partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
 n = 100000 * partitions

 def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 < 1 else 0

 count = sc.parallelize(xrange(1, n + 1), partitions).map(f).reduce(add)
 print "Pi is roughly %f" % (4.0 * count / n)

 sc.stop()

123

Amazon EMR Amazon EMR Release Guide
Adding a Spark Step

Adding a Spark Step
You can use Amazon EMR Steps in the Amazon EMR Management Guide to submit work to the Spark
framework installed on an EMR cluster. In the console and CLI, you do this using a Spark application
step, which runs the spark-submit script as a step on your behalf. With the API, you use a step to
invoke spark-submit using script-runner.jar.

For more information about submitting applications to Spark, see the Submitting Applications topic in
the Apache Spark documentation.

Note
If you choose to deploy work to Spark using the client deploy mode, your application files must
be in a local path on the EMR cluster. You cannot currently use S3 URIs for this location in
client mode. However, you can use S3 URIs with cluster deploy mode.

To submit a Spark step using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, choose the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog box:

• For Step type, choose Spark application.

• For Name, accept the default name (Spark application) or type a new name.

• For Deploy mode, choose Cluster or Client mode. Cluster mode launches your driver program
on the cluster (for JVM-based programs, this is main()), while client mode launches the
driver program locally. For more information, see Cluster Mode Overview in the Apache Spark
documentation.

Note
Cluster mode allows you to submit work using S3 URIs. Client mode requires that you
put the application in the local file system on the cluster master node.

• Specify the desired Spark-submit options. For more information about spark-submit
options, see Launching Applications with spark-submit.

• For Application location, specify the local or S3 URI path of the application.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To
update the status, choose the Refresh icon above the Actions column.

7. The results of the step are located in the Amazon EMR console Cluster Details page next to your
step under Log Files if you have logging configured. You can optionally find step information in
the log bucket you configured when you launched the cluster.

To submit work to Spark using the AWS CLI

Submit a step when you create the cluster or use the aws emr add-steps subcommand in an
existing cluster.

1. Use create-cluster.

aws emr create-cluster --name "Add Spark Step Cluster" --release-
label emr-5.2.1 --applications Name=Spark \
--ec2-attributes KeyName=myKey --instance-type m3.xlarge --instance-count
 3 \

124

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-overview.html#emr-overview-data-processing
https://spark.apache.org/docs/latest/submitting-applications.html
https://console.aws.amazon.com/elasticmapreduce/
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/submitting-applications.html#launching-applications-with-spark-submit

Amazon EMR Amazon EMR Release Guide
Adding a Spark Step

--steps Type=Spark,Name="Spark Program",ActionOnFailure=CONTINUE,Args=[--
class,org.apache.spark.examples.SparkPi,/usr/lib/spark/lib/spark-
examples.jar,10] --use-default-roles

An alternative using command-runner.jar:

aws emr create-cluster --name "Add Spark Step Cluster" --release-
label emr-5.2.1 \
--applications Name=Spark --ec2-attributes KeyName=myKey --instance-type
 m3.xlarge --instance-count 3 \
--steps Type=CUSTOM_JAR,Name="Spark Program",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[spark-example,SparkPi,10] --
use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

2. Alternatively, add steps to a cluster already running. Use add-steps.

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps
 Type=Spark,Name="Spark Program",ActionOnFailure=CONTINUE,Args=[--
class,org.apache.spark.examples.SparkPi,/usr/lib/spark/lib/spark-
examples.jar,10]

An alternative using command-runner.jar:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps
 Type=CUSTOM_JAR,Name="Spark Program",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[spark-example,SparkPi,10]

To submit work to Spark using the SDK for Java

• To submit work to a cluster, use a step to run the spark-submit script on your EMR cluster. Add
the step using the addJobFlowSteps method in AmazonElasticMapReduceClient:

AWSCredentials credentials = new BasicAWSCredentials(accessKey,
 secretKey);
AmazonElasticMapReduce emr = new
 AmazonElasticMapReduceClient(credentials);

StepFactory stepFactory = new StepFactory();
AmazonElasticMapReduceClient emr = new
 AmazonElasticMapReduceClient(credentials);
AddJobFlowStepsRequest req = new AddJobFlowStepsRequest();
req.withJobFlowId("j-1K48XXXXXXHCB");

List<StepConfig> stepConfigs = new ArrayList<StepConfig>();

HadoopJarStepConfig sparkStepConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("spark-submit","--executor-memory","1g","--
class","org.apache.spark.examples.SparkPi","/usr/lib/spark/lib/spark-
examples.jar","10");

StepConfig sparkStep = new StepConfig()

125

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/AmazonElasticMapReduceClient.html

Amazon EMR Amazon EMR Release Guide
Overriding Spark Default Configuration Settings

 .withName("Spark Step")
 .withActionOnFailure("CONTINUE")
 .withHadoopJarStep(sparkStepConf);

stepConfigs.add(sparkStep);
req.withSteps(stepConfigs);
AddJobFlowStepsResult result = emr.addJobFlowSteps(req);

View the results of the step by examining the logs for the step. You can do this in the AWS
Management Console if you have enabled logging by choosing Steps, selecting your step, and then,
for Log files, choosing either stdout or stderr. To see the logs available, choose View Logs.

Overriding Spark Default Configuration Settings
You may want to override Spark default configuration values on a per-application basis. You can do
this when you submit applications using a step, which essentially passes options to spark-submit.
For example, you may wish to change the memory allocated to an executor process by changing
spark.executor.memory. You would supply the --executor-memory switch with an argument like
the following:

spark-submit --executor-memory 1g --class org.apache.spark.examples.SparkPi /
usr/lib/spark/lib/spark-examples.jar 10

Similarly, you can tune --executor-cores and --driver-memory. In a step, you would provide the
following arguments to the step:

--executor-memory 1g --class org.apache.spark.examples.SparkPi /usr/lib/
spark/lib/spark-examples.jar 10

You can also tune settings that may not have a built-in switch using the --conf option. For more
information about other settings that are tunable, see the Dynamically Loading Spark Properties topic
in the Apache Spark documentation.

Accessing the Spark Web UIs
You can view the Spark web UIs by following the procedures to create an SSH tunnel or create a
proxy in the section called Connect to the Cluster in the Amazon EMR Management Guide and then
navigating to the YARN ResourceManager for your cluster. Choose the link under Tracking UI for your
application. If your application is running, you see ApplicationMaster. This takes you to the Spark
application driver's web UI at port 4040 wherever the driver is located. The driver may be located on
the cluster's master node if you run in YARN client mode. If you are running an application in YARN
cluster mode, the driver is located in the ApplicationMaster for the application on the cluster. If your
application has finished, you see History, which takes you to the Spark HistoryServer UI port number
at 18080 of the EMR cluster's master node. This is for applications that have already completed. You
can also navigate to the Spark HistoryServer UI directly at http://master-public-dns-name:18080/.

126

https://spark.apache.org/docs/latest/configuration.html#dynamically-loading-spark-properties
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node.html

Amazon EMR Amazon EMR Release Guide

Apache Flink

Apache Flink is a streaming dataflow engine that makes it easy to run real-time stream processing on
high-throughput data sources. It supports event time semantics for out-of-order events, exactly-once
semantics, backpressure control, and APIs optimized for writing both streaming and batch applications.

Additionally, Flink has connectors for third-party data sources, such as the following:

• Amazon Kinesis Streams

• Apache Kafka

• Elasticsearch

• Twitter Streaming API

• Cassandra

Currently, Amazon EMR supports Flink as a YARN application so that you can manage resources
along with other applications within a cluster. Flink-on-YARN has an easy way to submit transient
Flink jobs or you can create a long-running cluster that accepts multiple jobs and allocates resources
according to the overall YARN reservation.

Note
Currently, the FlinkKinesisConsumer class does not work on Amazon EMR.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Flink 1.1.3 emr-5.2.1 emrfs, hadoop-client, hadoop-
mapred, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
flink-client

127

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/apis/streaming/connectors/kinesis.html
https://ci.apache.org/projects/flink/flink-docs-master/apis/streaming/connectors/kafka.html
https://ci.apache.org/projects/flink/flink-docs-master/apis/streaming/connectors/elasticsearch2.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/twitter.html
https://ci.apache.org/projects/flink/flink-docs-master/apis/streaming/connectors/cassandra.html

Amazon EMR Amazon EMR Release Guide
Creating a Cluster with Flink

Creating a Cluster with Flink
Clusters can be launched using the AWS Management Console, AWS CLI, or an AWS SDK.

To launch a cluster with Flink installed using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster, Go to advanced options.

3. For Software Configuration, choose EMR Release emr-5.1.0 or later.

4. Choose Flink as an application, along with any others to install.

5. Select other options as necessary and choose Create cluster.

To launch a cluster with Flink using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Cluster with Flink" --release-
label emr-5.2.1 \
--applications Name=Flink --ec2-attributes KeyName=myKey \
--instance-type m3.xlarge --instance-count 3 --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Configuring Flink
You may want to configure Flink using a configuration file. For example, the main configuration file for
Flink is called flink-conf.yaml. This is configurable using the Amazon EMR configuration API so
when you start your cluster, you supply a configuration for the file to modify.

To configure the number of task slots used for Flink using the AWS CLI

1. Create a file, configuration.json, with the following content:

[
 {
 "Classification": "flink-conf",
 "Properties": {
 "taskmanager.numberOfTaskSlots":"2"
 }
 }
]

2. Next, create a cluster with the following configuration:

aws emr create-cluster --release-label emr-5.2.1 \
--applications Name=Flink \
--configurations file://./configurations.json \
--region us-east-1 \
--log-uri s3://myLogUri \
--instance-type m3.xlarge \
--instance-count 2 \

128

https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Parallelism Options

--service-role EMR_DefaultRole \
--ec2-attributes KeyName=YourKeyName,InstanceProfile=EMR_EC2_DefaultRole

Note
It is also possible to change some configurations using the Flink API. For more information,
see Basic API Concepts in the Flink documentation.

Parallelism Options
As the owner of your application, you know best what resources should be assigned to tasks within
Flink. For the purposes of the examples in this documentation, use the same number of tasks as the
slave instances that you use for the application. We generally recommend this for the initial level of
parallelism but you can also increase the granularity of parallelism using task slots, which should
generally not exceed the number of virtual cores per instance. For more information about Flink’s
architecture, see Concepts in the Flink documentation.

Configurable Files
Currently, the files that are configurable within the Amazon EMR configuration API are:

• flink-conf.yaml

• log4j.properties

• log4j-yarn-session.properties

• log4j-cli.properties

Working with Flink Jobs in Amazon EMR
There are several ways to interact with Flink on Amazon EMR: through Amazon EMR steps, the Flink
interface found on the ResourceManager Tracking UI, and at the command line. All of these also allow
you to submit a JAR file of a Flink application to run.

Additionally, you can run Flink applications as a long-running YARN job or as a transient cluster. In a
long-running job, you can submit multiple Flink applications to one Flink cluster running on Amazon
EMR. If you run Flink as a transient job, your Amazon EMR cluster exists only for the time it takes to
run the Flink application, so you are only charged for the resources and time used. In either case, you
can submit a Flink job using the Amazon EMR AddSteps API operation, or as a step argument to the
RunJobFlow operation or AWS CLI create-cluster command.

Start a Flink Long-Running YARN Job as a Step
You may want to start a long-running Flink job that multiple clients can submit to through YARN API
operations. You start a Flink YARN session and submit jobs to the Flink JobManager, which is located
on the YARN node that hosts the Flink session Application Master daemon. To start a YARN session,
use the following steps from the console, AWS CLI, or Java SDK.

To submit a long-running job using the console

Submit the long-running Flink session by running the yarn-session.sh Flink shell script in an
existing cluster.

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the cluster list, select the cluster you previously launched.

129

https://ci.apache.org/projects/flink/flink-docs-master/dev/api_concepts.html
https://aws.amazon.com/ec2/virtualcores/
https://ci.apache.org/projects/flink/flink-docs-master/concepts/index.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Submit Work to an Existing,

Long-Running Flink YARN Job

3. In the cluster details page, choose Steps, Add Step.

4. Enter the arguments as shown and choose Add.

The -d option runs the long-running Flink cluster in a “detached” state.

To submit a long-running Flink job using the AWS CLI

• To launch a long-running Flink cluster within EMR, use the create-cluster command:

aws emr create-cluster --release-label emr-5.2.1 \
--applications Name=Flink \
--configurations file://./configurations.json \
--region us-east-1 \
--log-uri s3://myLogUri \
--instance-type m3.xlarge \
--instance-count 2 \
--service-role EMR_DefaultRole \
--ec2-attributes KeyName=MyKeyName,InstanceProfile=EMR_EC2_DefaultRole \
--steps Type=CUSTOM_JAR,Jar=command-
runner.jar,Name=Flink_Long_Running_Session,\
Args="bash","-c","/usr/lib/flink/bin/yarn-session.sh -n 2 -d""

Submit Work to an Existing, Long-Running Flink
YARN Job
You can submit work using a command-line option but you can also use Flink’s native interface proxied
through the YARN ResourceManager. To submit through an EMR step using the Flink CLI, specify the
long-running Flink cluster’s YARN application ID. To do this, run yarn application –list on the
EMR command line or through the YarnClient API operation:

130

https://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/client/api/YarnClient.html

Amazon EMR Amazon EMR Release Guide
Submit a Transient Flink Job

$ yarn application -list
16/09/07 19:32:13 INFO client.RMProxy: Connecting to ResourceManager at
 ip-10-181-83-19.ec2.internal/10.181.83.19:8032
Total number of applications (application-types: [] and states: [SUBMITTED,
 ACCEPTED, RUNNING]):1
Application-Id Application-Name Application-Type User Queue
 State Final-State Progress Tracking-URL
application_1473169569237_0002 Flink session with 14 TaskManagers
 (detached) Apache Flink hadoop default RUNNING
 UNDEFINED 100% http://ip-10-136-154-194.ec2.internal:33089

SDK for Java

List<StepConfig> stepConfigs = new ArrayList<StepConfig>();

HadoopJarStepConfig flinkWordCountConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("flink", "run", "-m", "yarn-cluster", “-yid”,
 “application_1473169569237_0002”, "-yn", "2", "/usr/lib/flink/examples/
streaming/WordCount.jar",
 "--input", "s3://myBucket/pg11.txt", "--output", "s3://myBucket/
alice2/");

StepConfig flinkRunWordCount = new StepConfig()
 .withName("Flink add a wordcount step")
 .withActionOnFailure("CONTINUE")
 .withHadoopJarStep(flinkWordCountConf);

stepConfigs.add(flinkRunWordCount);

AddJobFlowStepsResult res = emr.addJobFlowSteps(new AddJobFlowStepsRequest()
 .withJobFlowId("myClusterId")
 .withSteps(stepConfigs));

AWS CLI

Use the add-steps subcommand to submit new jobs to an existing Flink cluster:

aws emr add-steps --cluster-id myClusterId \
--steps Type=CUSTOM_JAR,Name=Flink_Submit_To_Long_Running,Jar=command-
runner.jar,\
Args="flink","run","-m","yarn-cluster","-
yid","application_1473169569237_0002","-yn","2",\
"/usr/lib/flink/examples/streaming/WordCount.jar",\
"--input","s3://myBucket/pg11.txt","--output","s3://myBucket/alice2/" \
--region myRegion

Submit a Transient Flink Job
The following example launches the Flink WordCount example by adding a step to an existing cluster.

Console

In the console details page for an existing cluster, add the step by choosing Add Step for the Steps
field.

131

Amazon EMR Amazon EMR Release Guide
Submit a Transient Flink Job

SDK for Java

The following examples illustrate two approaches to running a Flink job. The first example submits
a Flink job to a running cluster. The second example creates a cluster that runs a Flink job and then
terminates on completion.

List<StepConfig> stepConfigs = new ArrayList<StepConfig>();

HadoopJarStepConfig flinkWordCountConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("flink", "run", "-m", "yarn-cluster", "-yn", "2", "/usr/lib/
flink/examples/streaming/WordCount.jar",
 "--input", "s3://myBucket/pg11.txt", "--output", "s3://
myBucket/alice/");

StepConfig flinkRunWordCount = new StepConfig()
 .withName("Flink add a wordcount step")
 .withActionOnFailure("CONTINUE")
 .withHadoopJarStep(flinkWordCountConf);

stepConfigs.add(flinkRunWordCount);

AddJobFlowStepsResult res = emr.addJobFlowSteps(new AddJobFlowStepsRequest()
 .withJobFlowId("myClusterId")

132

Amazon EMR Amazon EMR Release Guide
Submit a Transient Flink Job

 .withSteps(stepConfigs));

 List<StepConfig> stepConfigs = new ArrayList<StepConfig>();
 HadoopJarStepConfig flinkWordCountConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("bash","-c", "flink run -m yarn-cluster -yn 2 /usr/lib/flink/
examples/streaming/WordCount.jar "
 + "--input", "s3://myBucket/pg11.txt", "--output", "s3://myBucket/
alice/");

 StepConfig flinkRunWordCountStep = new StepConfig()
 .withName("Flink add a wordcount step and terminate")
 .withActionOnFailure("CONTINUE")
 .withHadoopJarStep(flinkWordCountConf);

 stepConfigs.add(flinkRunWordCountStep);

 RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("flink-transient")
 .withReleaseLabel("emr-5.2.1")
 .withApplications(myApps)
 .withServiceRole("EMR_DefaultRole")
 .withJobFlowRole("EMR_EC2_DefaultRole")
 .withLogUri("s3://myLogBucket")
 .withInstances(
 new
 JobFlowInstancesConfig().withEc2KeyName("myKeyName").withInstanceCount(2)

 .withKeepJobFlowAliveWhenNoSteps(false).withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge"))
 .withSteps(stepConfigs);

 RunJobFlowResult result = emr.runJobFlow(request);

AWS CLI

Use the add-steps subcommand to submit new jobs to an existing Flink cluster:

aws emr add-steps --cluster-id myClusterId \
--steps Type=CUSTOM_JAR,Name=Flink_Transient_No_Terminate,Jar=command-
runner.jar,\
Args="flink","run","-m","yarn-cluster","-
yid","application_1473169569237_0002","-yn","2",\
"/usr/lib/flink/examples/streaming/WordCount.jar",\
"--input","s3://myBucket/pg11.txt","--output","s3://myBucket/alice2/" \
--region myRegion

Use the create-cluster subcommand to create a transient EMR cluster that terminates when the
Flink job completes:

aws emr create-cluster --release-label emr-5.2.1 \
--name "Flink_Transient" \
--applications Name=Flink \
--configurations file://./configurations.json \

133

Amazon EMR Amazon EMR Release Guide
Using the Scala Shell

--region us-east-1 \
--log-uri s3://myLogUri \
--auto-terminate
--instance-type m3.xlarge \
--instance-count 2 \
--service-role EMR_DefaultRole \
--ec2-attributes KeyName=YourKeyName,InstanceProfile=EMR_EC2_DefaultRole \
--steps Type=CUSTOM_JAR,Jar=command-
runner.jar,Name=Flink_Long_Running_Session,\
Args="bash","-c","\"flink run -m yarn-cluster -yn 2 /usr/lib/flink/examples/
streaming/WordCount.jar
--input s3://myBucket/pg11.txt --output s3://myBucket/alice/""

Using the Scala Shell
Currently, the Flink Scala shell for EMR clusters is only configured to start new YARN sessions. You
can use the Scala shell by following the procedure below.

Using the Flink Scala shell on the master node

1. Log in to the master node using SSH as described in http://docs.aws.amazon.com//emr/latest/
ManagementGuide/emr-connect-master-node-ssh.html.

2. Type the following to start a shell:

% /usr/lib/flink/bin/start-scala-shell.sh yarn -n 1

This will start the Flink Scala shell so you can interactively use Flink. Just as with other interfaces
and options, you can scale the -n option value used in the example based on the number of tasks
you want to run from the shell.

Finding the Flink Web Interface
The Application Master that belongs to the Flink application hosts the Flink web interface, which
is an alternative way to submit a JAR as a job or to view the current status of other jobs. The Flink
web interface is active as long as you have a Flink session running. If you have a long-running
YARN job already active, you can follow the instructions in the Connect to the Master Node Using
SSH topic in the Amazon EMR Management Guide to connect to the YARN ResourceManager. For
example, if you’ve set up an SSH tunnel and have activated a proxy in your browser, you choose the
ResourceManager connection under Connections in your EMR cluster details page.

After you find the ResourceManager, select the YARN application that’s hosting a Flink session.
Choose the link under the Tracking UI column.

134

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Finding the Flink Web Interface

In the Flink web interface, you can view configuration, submit your own custom JAR as a job, or
monitor jobs in progress.

135

Amazon EMR Amazon EMR Release Guide
Finding the Flink Web Interface

136

Amazon EMR Amazon EMR Release Guide

Apache Sqoop

Sqoop is a tool for transferring data between Amazon S3, Hadoop, HDFS, and RDBMS databases.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Sqoop 1.4.6 emr-5.2.1 emrfs, emr-ddb, emr-goodies,
hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-
hdfs-library, hadoop-hdfs-
namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
mysql-server, sqoop-client

By default, Sqoop has a MariaDB and PostgresSQL driver installed. The PostgresSQL driver installed
for Sqoop will only work for PostgreSQL 8.4. To install an alternate set of JDBC connectors for
Sqoop, you need to install them in /usr/lib/sqoop/lib. The following are links for various JDBC
connectors:

• MariaDB: About MariaDB Connector/J.

• PostgreSQL: Version 9.4-1208 Released.

• SQLServer: Microsoft JDBC Drivers 6.0 (Preview), 4.2, 4.1, and 4.0 for SQL Server.

• MySQL: Download Connector/J

• Oracle: Get Oracle JDBC drivers and UCP from the Oracle Maven Repository

Sqoop's supported databases are shown here: http://sqoop.apache.org/docs/1.4.6/
SqoopUserGuide.html#_supported_databases. If the JDBC connect string does not match those in this
list, you will need to specify a driver.

For example, you can export to an Amazon Redshift database table with the following command (for
JDBC 4.1):

137

https://mariadb.com/kb/en/mariadb/about-mariadb-connector-j/
https://jdbc.postgresql.org/
https://www.microsoft.com/en-us/download/details.aspx?id=11774
https://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_supported_databases
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_supported_databases

Amazon EMR Amazon EMR Release Guide

sqoop export --connect jdbc:redshift://$MYREDSHIFTHOST:5439/mydb --
table mysqoopexport --export-dir s3://mybucket/myinputfiles/ --driver
 com.amazon.redshift.jdbc41.Driver --username master --password Mymasterpass1

You can use both the MariaDB and MySQL connection strings but if you specify the MariaDB
connection string, you need to specify the driver:

sqoop export --connect jdbc:mariadb://$HOSTNAME:3306/mydb --
table mysqoopexport --export-dir s3://mybucket/myinputfiles/ --driver
 org.mariadb.jdbc.Driver --username master --password Mymasterpass1

If you are using Secure Socket Layer encryption to access your database, you need to use a JDBC
URI like in the following Sqoop export example:

sqoop export --connect jdbc:mariadb://$HOSTNAME:3306/mydb?
verifyServerCertificate=false&useSSL=true&requireSSL=true --
table mysqoopexport --export-dir s3://mybucket/myinputfiles/ --driver
 org.mariadb.jdbc.Driver --username master --password Mymasterpass1

For more information about SSL encryption in RDS, see Using SSL to Encrypt a Connection to a DB
Instance in the Amazon Relational Database Service User Guide.

For more information, see the Apache Sqoop documentation.

138

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
http://sqoop.apache.org

Amazon EMR Amazon EMR Release Guide
Creating a Cluster with Tez

Apache Tez

Apache Tez is a framework for creating a complex directed acyclic graph (DAG) of tasks for processing
data. In some cases, it is used as an alternative to Hadoop MapReduce. For example, Pig and Hive
workflows can run using Hadoop MapReduce or they can use Tez as an execution engine. For more
information, see https://tez.apache.org/.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Tez 0.8.4 emr-5.2.1 emrfs, emr-goodies, hadoop-
client, hadoop-mapred, hadoop-
hdfs-datanode, hadoop-hdfs-
library, hadoop-hdfs-namenode,
hadoop-kms-server, hadoop-
yarn-nodemanager, hadoop-
yarn-resourcemanager, hadoop-
yarn-timeline-server, tez-on-yarn

Creating a Cluster with Tez
Install Tez by choosing that application when you create the cluster.

To launch a cluster with Tez installed using the console

The following procedure creates a cluster with Tez installed. For more information about launching
clusters with the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR
Management Guide.

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster to use Quick Create.

3. For Software Configuration, choose Amazon Release Version emr-4.7.0 or later.

139

https://tez.apache.org/
http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Configuring Tez

4. For Select Applications, choose either All Applications or Tez.

5. Select other options as necessary and then choose Create cluster.

To launch a cluster with Tez using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Cluster with Tez" --release-label emr-5.2.1
 \
--applications Name=Tez --ec2-attributes KeyName=myKey \
--instance-type m3.xlarge --instance-count 3 --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Configuring Tez
You configure Tez by setting values in tez-site.xml using the tez-site configuration classification
when you create your cluster. If you want to use Hive with Tez, you must also modify the hive-site
configuration classification.

To change the root logging level in Tez

• Create a cluster with Tez installed and set tez.am.log.level to DEBUG, using the following
command:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Tez \
--instance-type m3.xlarge --instance-count 2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "tez-site",
 "Properties": {
 "tez.am.log.level": "DEBUG"
 }
 }
]

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of
the object. For example:

aws emr create-cluster --release-label emr-5.2.1 --applications
 Name=Tez Name=Hive \
--instance-type m3.xlarge --instance-count 3 --configurations
 https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

140

Amazon EMR Amazon EMR Release Guide
Using Tez

To change the Hive or Pig execution engine to Tez

1. Create a cluster with Hive and Tez installed and set hive.execution.engine to tez, using the
following command:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Tez
 Name=Hive \
--instance-type m3.xlarge --instance-count 2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "hive-site",
 "Properties": {
 "hive.execution.engine": "tez"
 }
 }
]

2. To set the execution engine for Pig, modify pig.properties by setting myConfig.json to the
following:

[
 {
 "Classification": "hive-site",
 "Properties": {
 "hive.execution.engine": "tez"
 }
 },
 {
 "Classification": "pig-properties",
 "Properties": {
 "exectype": "tez"
 }
 }
]

3. Create the cluster as above but add Pig as an application.

Using Tez
The following examples show you how to use Tez for the data and scripts used in the tutorial called
Getting Started: Analyzing Big Data with Amazon EMR shown in Step 3.

Compare the Hive runtimes of MapReduce vs. Tez

1. Create a cluster as shown in the procedure called To launch a cluster with Tez installed using the
console (p. 139). Choose Hive as an application in addition to Tez.

2. Connect to the cluster using SSH. For more information, see Connect to the Master Node Using
SSH.

141

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-gs.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-gs-prepare-data-and-script.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Using Tez

3. Run the Hive_CloudFront.q script using MapReduce with the following command, where
region is the region in which your cluster is located:

hive -f s3://region.elasticmapreduce.samples/cloudfront/code/
Hive_CloudFront.q \
-d INPUT=s3://region.elasticmapreduce.samples -d OUTPUT=s3://myBucket/mr-
test/

The output should look something like the following:

<snip>
Starting Job = job_1464200677872_0002, Tracking URL = http://ec2-
host:20888/proxy/application_1464200677872_0002/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill
 job_1464200677872_0002
Hadoop job information for Stage-1: number of mappers: 1; number of
 reducers: 1
2016-05-27 04:53:11,258 Stage-1 map = 0%, reduce = 0%
2016-05-27 04:53:25,820 Stage-1 map = 13%, reduce = 0%, Cumulative CPU
 10.45 sec
2016-05-27 04:53:32,034 Stage-1 map = 33%, reduce = 0%, Cumulative CPU
 16.06 sec
2016-05-27 04:53:35,139 Stage-1 map = 40%, reduce = 0%, Cumulative CPU
 18.9 sec
2016-05-27 04:53:37,211 Stage-1 map = 53%, reduce = 0%, Cumulative CPU
 21.6 sec
2016-05-27 04:53:41,371 Stage-1 map = 100%, reduce = 0%, Cumulative CPU
 25.08 sec
2016-05-27 04:53:49,675 Stage-1 map = 100%, reduce = 100%, Cumulative CPU
 29.93 sec
MapReduce Total cumulative CPU time: 29 seconds 930 msec
Ended Job = job_1464200677872_0002
Moving data to: s3://myBucket/mr-test/os_requests
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 29.93 sec HDFS Read:
 599 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 29 seconds 930 msec
OK
Time taken: 49.699 seconds

4. Using a text editor, replace the hive.execution.engine value with tez in /etc/hive/conf/
hive-site.xml.

5. Kill the HiveServer2 process with the following command:

sudo kill -9 $(pgrep -f HiveServer2)

Upstart automatically restarts the Hive server with your configuration changes loaded.

6. Now run the job with the Tez execution engine using the following command:

hive -f s3://region.elasticmapreduce.samples/cloudfront/code/
Hive_CloudFront.q \
-d INPUT=s3://region.elasticmapreduce.samples -d OUTPUT=s3://myBucket/tez-
test/

142

Amazon EMR Amazon EMR Release Guide
Tez Web UI

The output should look something like the following:

Time taken: 0.517 seconds
Query ID = hadoop_20160527050505_dcdc075f-8338-4041-adc3-d2ffe69dfcdd
Total jobs = 1
Launching Job 1 out of 1

Status: Running (Executing on YARN cluster with App id
 application_1464200677872_0003)

--
 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED
 KILLED
--
Map 1 SUCCEEDED 1 1 0 0 0
 0
Reducer 2 SUCCEEDED 1 1 0 0 0
 0
--
VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 27.61
 s
--
Moving data to: s3://myBucket/tez-test/os_requests
OK
Time taken: 30.711 seconds

The time to run the same application took approximately 20 seconds (40%) less time using Tez.

Tez Web UI
Tez has its own web user interface. To view the web UI, see:

http://masterDNS:8080/tez-ui

Timeline Server
The YARN Timeline Service is configured to run when Tez is installed. To view jobs submitted through
Tez or MapReduce execution engines using the timeline service, view the web UI:

http://masterDNS:8188

For more information, see View Web Interfaces Hosted on Amazon EMR Clusters in the Amazon EMR
Management Guide.

143

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html

Amazon EMR Amazon EMR Release Guide

Apache Zeppelin

Use Apache Zeppelin as an interactive notebook that enables interactive data exploration.

Release Information

Application Amazon EMR Release Label Components installed with
this application

Zeppelin 0.6.2 emr-5.2.1 emrfs, emr-goodies, hadoop-
client, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
spark-client, spark-history-
server, spark-on-yarn, spark-
yarn-slave, zeppelin-server

For more information about Apache Zeppelin, go to https://zeppelin.apache.org/.

Note

• Connect to Zeppelin using the same SSH tunneling method to connect to other web servers
on the master node. Zeppelin server is found at port 8890.

• Zeppelin does not use some of the settings defined in your cluster’s spark-
defaults.conf configuration file (though it instructs YARN to allocate executors
dynamically if you have enabled that setting). You must set executor settings (such as
memory and cores) on the Interpreter tab and then restart the interpreter for them to be
used.

• Zeppelin on Amazon EMR does not support the SparkR interpreter.

144

https://zeppelin.apache.org/
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-ssh-tunnel.html

Amazon EMR Amazon EMR Release Guide

Apache ZooKeeper

ZooKeeper is a centralized service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services.

Release Information

Application Amazon EMR Release Label Components installed with
this application

ZooKeeper 3.4.9 emr-5.2.1 emrfs, emr-goodies, hadoop-
client, hadoop-hdfs-datanode,
hadoop-hdfs-library, hadoop-
hdfs-namenode, hadoop-httpfs-
server, hadoop-kms-server,
hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager,
zookeeper-client, zookeeper-
server

For more information about Apache ZooKeeper, see http://zookeeper.apache.org/.

145

https://zookeeper.apache.org/

Amazon EMR Amazon EMR Release Guide
Understanding Encryption Options with Amazon EMR

Data Encryption

Data encryption helps prevent unauthorized users from reading data on a cluster and associated data
storage systems. This includes data saved to persistent media, known as data at-rest, and data that
may be intercepted as it travels the network, known as data in-transit.

Beginning with Amazon EMR version 4.8.0, you can use Amazon EMR security configurations to
configure data encryption settings for clusters more easily. In earlier versions of Amazon EMR, you had
to specify Amazon S3 encryption options individually as part of a cluster configuration. We recommend
using security configurations because it simplifies setup, allows you to reuse security configurations,
and provides additional encryption options.

Data encryption works in tandem with access control. A solid defense strategy includes both
components. For more information about setting up access control, see Configure Access to the
Cluster in the Amazon EMR Management Guide.

Topics

• Understanding Encryption Options with Amazon EMR (p. 146)

• Enabling Data Encryption with Amazon EMR (p. 149)

• Transparent Encryption in HDFS on Amazon EMR (p. 168)

Understanding Encryption Options with Amazon
EMR

Amazon EMR enables you to use a security configuration to specify settings for Amazon S3 encryption
with EMR file system (EMRFS), local disk encryption, and in-transit encryption. You create a security
configuration that specifies encryption settings and then use the security configuration when you create
a cluster.

The following diagram shows the different data encryption options available with security
configurations.

146

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-access.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-access.html

Amazon EMR Amazon EMR Release Guide
Understanding Encryption Options with Amazon EMR

You can use a security configuration to encrypt data at-rest, data in-transit, or both. Each security
configuration is stored in Amazon EMR rather than in the cluster configuration, so you can easily reuse
a configuration to specify data encryption settings whenever a cluster is created.

Data encryption requires keys and certificates. A security configuration gives you the flexibility to
choose from several options, including keys managed by AWS Key Management Service, keys
managed by Amazon S3, and keys and certificates from custom providers that you supply.

When using AWS KMS as your key provider, charges apply for the storage and use of encryption keys.
For more information, see AWS KMS Pricing.

You can use the Amazon EMR console, the AWS Command Line Interface (AWS CLI), or the AWS
SDKs to create security configurations and to enable encryption options when a cluster is created.
Before you specify encryption options, decide on the key and certificate management systems you
want to use, so you can first create the keys and certificates or the custom providers that you specify
as part of encryption settings.

Amazon S3 encryption and local disk encryption options are specified together when you configure at-
rest encryption. You can choose to enable only at-rest encryption, only in-transit encryption, or both.

147

https://aws.amazon.com/kms/pricing/

Amazon EMR Amazon EMR Release Guide
At-rest Encryption for Amazon S3 with EMRFS

At-rest Encryption for Amazon S3 with EMRFS
Amazon S3 encryption works with EMR File System (EMRFS) objects read from and written to
Amazon S3. You specify Amazon S3 server-side encryption (SSE) or client-side encryption (CSE)
when you enable at-rest encryption. Amazon S3 SSE and CSE encryption with EMRFS are mutually
exclusive; you can choose either but not both. Regardless of whether Amazon S3 encryption is
enabled, transport layer security (TLS) encrypts the EMRFS objects in-transit between Amazon EMR
cluster nodes and Amazon S3. For in-depth information about Amazon S3 encryption, see Protecting
Data Using Encryption in the Amazon Simple Storage Service Developer Guide.

Amazon S3 Server-Side Encryption

When you set up Amazon S3 SSE, Amazon S3 encrypts data at the object level as it writes the data to
disk and decrypts the data when it is accessed. For more information about SSE, see Protecting Data
Using Server-Side Encryption in the Amazon Simple Storage Service Developer Guide.

You can choose between two different key management systems when you specify SSE in Amazon
EMR:

• SSE-S3: Amazon S3 manages keys for you.

• SSE-KMS: You use an AWS KMS customer master key (CMK) set up with policies suitable for
Amazon EMR. When you use AWS KMS, charges apply for the storage and use of encryption keys.
For more information, see AWS KMS Pricing.

SSE with customer-provided keys (SSE-C) is not available for use with Amazon EMR.

Amazon S3 Client-Side Encryption

With Amazon S3 CSE, the Amazon S3 encryption and decryption takes place in the EMRFS client on
your cluster. Objects are encrypted before being uploaded to Amazon S3 and decrypted after they
are downloaded. The provider you specify supplies the encryption key that the client uses. The client
can use keys provided by AWS KMS (CSE-KMS) or a custom Java class that provides the client-side
master key (CSE-C). The encryption specifics are slightly different between CSE-KMS and CSE-C,
depending on the specified provider and the metadata of the object being decrypted or encrypted. For
more information about these differences, see Protecting Data Using Client-Side Encryption in the
Amazon Simple Storage Service Developer Guide.

Note
Amazon S3 CSE only ensures that EMRFS data exchanged with Amazon S3 is encrypted;
not all data on cluster instance volumes is encrypted. Furthermore, because Hue does not use
EMRFS, objects that the Hue S3 File Browser writes to Amazon S3 are not encrypted. These
are important considerations if you use an Amazon EMR version earlier than 4.8.0. In later
versions, Amazon S3 encryption is enabled as part of at-rest encryption, which includes local
disk encryption. For more information, see Local Disk Encryption below.

At-rest Encryption for Local Disks
Two mechanisms work together to encrypt cluster instance volumes when you enable at-rest data
encryption:

• Open-source HDFS Encryption: HDFS exchanges data between cluster instances during
distributed processing, and also reads from and writes data to instance store volumes and the Elastic
Block Store (EBS) volumes attached to instances. The following open-source Hadoop encryption
options are activated when you enable local-disk encryption:

• Secure Hadoop RPC is set to "Privacy", which uses Simple Authentication Security Layer (SASL).

148

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption
https://aws.amazon.com/kms/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-data-encryption-options.html#emr-encryption-localdisk
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html#Data_Encryption_on_RPC

Amazon EMR Amazon EMR Release Guide
In-Transit Data Encryption

• Data encryption on HDFS block data transfer is set to true and is configured to use AES 256
encryption.

Note
You can activate additional Apache Hadoop encryption by enabling in-transit encryption
(see In-Transit Data Encryption (p. 149)). These encryption settings do not activate HDFS
transparent encryption, which you can configure manually. For more information, see
Transparent Encryption in HDFS on Amazon EMR (p. 168).

• LUKS. In addition to HDFS encryption, the Amazon EC2 instance store volumes (except boot
volumes) and the attached Amazon EBS volumes of cluster instances are encrypted using LUKS.
For more information about LUKS encryption, see the LUKS on-disk specification..

For your key provider, you can use an AWS KMS CMK set up with policies suitable for Amazon
EMR, or a custom Java class that provides the encryption artifacts. When you use AWS KMS,
charges apply for the storage and use of encryption keys. For more information, see AWS KMS
Pricing.

In-Transit Data Encryption
Several encryption mechanisms are enabled with in-transit encryption. These are open-source
features, are application-specific, and may vary by Amazon EMR release. In this release, the following
application-specific encryption features can be enabled using security configurations:

• Hadoop (for more information, see Hadoop in Secure Mode in Apache Hadoop documentation):

• Hadoop MapReduce Encrypted Shuffle uses TLS.

• Secure Hadoop RPC is set to "Privacy" and uses SASL (activated in Amazon EMR when at-rest
encryption is enabled).

• Data encryption on HDFS block data transfer uses AES 256 (activated in Amazon EMR when at-
rest encryption is enabled in the security configuration).

• Tez:

• Tez Shuffle Handler uses TLS (tez.runtime.ssl.enable).

• Spark (for more information, see Spark security settings):

• Akka protocol (file and broadcast server) uses TLS.

• Block transfer service uses SASL and 3DES.

• External shuffle service uses SASL. Applications that are not set up to use SASL encryption will
fail to connect to the shuffle service.

You specify the encryption artifacts used for in-transit encryption in one of two ways: either by providing
a zipped file of certificates that you upload to Amazon S3, or by referencing a custom Java class
that provides encryption artifacts. For more information, see Providing Certificates for In-Transit Data
Encryption with Amazon EMR Encryption (p. 152).

Enabling Data Encryption with Amazon EMR
You have two ways to enable encryption and specify options in Amazon EMR. The preferred method
is to use security configurations, which are available beginning with Amazon EMR version 4.8.0 and
later, or you can use a cluster configuration to specify Amazon S3 encryption with EMR file system
(EMRFS). For information about using security configurations, see Specifying Encryption Options
Using a Security Configuration.

Important
We recommend against specifying Amazon S3 encryption options individually with a cluster
configuration. Using security configurations simplifies setup, allows you to reuse security

149

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html#Data_Encryption_on_Block_data_transfer.
https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification
https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/EncryptedShuffle.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html#Data_Encryption_on_RPC
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html#Data_Encryption_on_Block_data_transfer.
https://tez.apache.org/releases/0.8.4/tez-runtime-library-javadocs/configs/TezRuntimeConfiguration.html
http://spark.apache.org/docs/latest/security.html
http://spark.apache.org/docs/latest/configuration.html#encryption
http://spark.apache.org/docs/latest/configuration.html#security
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-encryption-enable-security-configuration.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-encryption-enable-security-configuration.html

Amazon EMR Amazon EMR Release Guide
Providing Keys for At-Rest Data
Encryption with Amazon EMR

configurations, and provides additional encryption options. If you configure Amazon S3
encryption using both a cluster configuration and a security configuration, the security
configuration overrides the cluster configuration.

Before you specify encryption options, decide on the provider you want to use for keys and encryption
artifacts (for example, AWS KMS or a custom provider that you create) and create the keys or key
provider as required.

Topics

• Providing Keys for At-Rest Data Encryption with Amazon EMR (p. 150)

• Providing Certificates for In-Transit Data Encryption with Amazon EMR Encryption (p. 152)

• Specifying Amazon EMR Encryption Options Using a Security Configuration (p. 153)

• Specifying Amazon S3 Encryption with EMRFS Using a Cluster Configuration (p. 161)

Providing Keys for At-Rest Data Encryption with
Amazon EMR
You can use AWS Key Management Service (AWS KMS) or a custom key provider for at-rest data
encryption in Amazon EMR. When you use AWS KMS, charges apply for the storage and use of
encryption keys. For more information, see AWS KMS Pricing.

This topic provides key policy details for an AWS KMS CMK to be used with Amazon EMR, as well
as guidelines and code examples for writing a custom key provider class for Amazon S3 encryption.
For more information about creating keys, see Creating Keys in the AWS Key Management Service
Developer Guide.

Using AWS KMS Customer Master Keys (CMKs) for
Encryption
When using SSE-KMS or CSE-KMS, the AWS KMS encryption key must be created in the same
region as your Amazon EMR cluster instance and the Amazon S3 buckets used with EMRFS. In
addition, the Amazon EC2 instance role used for a cluster must have permission to use the CMK you
specify. The default instance role is EMR_EC2_DefaultRole. If you have assigned a different instance
role to a cluster, make sure that the role is added as a key user, which gives the role permission to
use the CMK. For more information, see Using Key Policies in the AWS Key Management Service
Developer Guide and Create and Use IAM Roles for Amazon EMR in the Amazon EMR Management
Guide. Although you may use the same AWS KMS customer master key (CMK) for Amazon S3 data
encryption as you use for local disk encryption, using separate keys is recommended.

You can use the AWS Management Console to add your instance profile or EC2 role to the list of key
users for the specified AWS KMS CMK, or you can use the AWS CLI or an AWS SDK to attach an
appropiate key policy.

Add the EMR Instance Role to an AWS KMS CMK

The following procedure describes how to add the default EMR instance role, EMR_EC2_DefaultRole
as a key user using the AWS Management Console. It assumes you have already created a CMK. To
create a new CMK, see Creating Keys in the AWS Key Management Service Developer Guide.

To add the default instance role for Amazon EC2 to the list of encryption key users

1. Open the Encryption Keys section of the Identity and Access Management (IAM) console at
https://console.aws.amazon.com/iam/home#encryptionKeys.

2. For Filter, choose the appropriate AWS region. Do not use the region selector in the menu bar
(top right corner).

150

https://aws.amazon.com/kms/pricing/
http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-iam-roles-creatingroles.html
http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/iam/home#encryptionKeys

Amazon EMR Amazon EMR Release Guide
Providing Keys for At-Rest Data
Encryption with Amazon EMR

3. Choose the alias of the CMK to modify.

4. On the key details page under Key Users, choose Add.

5. In the Attach dialog box, choose the appropriate role. The default name for the role is
EMR_EC2_DefaultRole.

6. Choose Attach.

Creating a Custom Key Provider
When you create a custom key provider, the application is expected to implement the
EncryptionMaterialsProvider interface, which is available in the AWS SDK for Java version 1.11.0 and
later. The implementation can use any strategy to provide encryption materials. You may, for example,
choose to provide static encryption materials or integrate with a more complex key management
system. You must use a different provider class name for local disk encryption and Amazon S3
encryption.

The EncryptionMaterialsProvider class gets encryption materials by encryption context, which is used
when Amazon EMR fetches encryption materials to encrypt data. Amazon EMR populates encryption
context information at runtime to help the caller determine which encryption materials to return.

Example: Using a Custom Key Provider for Amazon S3 Encryption with
EMRFS

When Amazon EMR fetches the encryption materials from the EncryptionMaterialsProvider class
to perform encryption, EMRFS optionally populates the materialsDescription argument with two
fields: the Amazon S3 URI for the object and the JobFlowId of the cluster, which can be used by the
EncryptionMaterialsProvider class to return encryption materials selectively.

For example, the provider may return different keys for different Amazon S3 URI prefixes. Note that
it is the description of the returned encryption materials that is eventually stored with the Amazon
S3 object rather than the materialsDescription value that is generated by EMRFS and passed to the
provider. While decrypting an Amazon S3 object, the encryption materials description is passed to the
EncryptionMaterialsProvider class, so that it can, again, selectively return the matching key to decrypt
the object.

An EncryptionMaterialsProvider reference implementation is provided below. Another custom provider,
EMRFSRSAEncryptionMaterialsProvider, is available from GitHub.

import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.EncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.KMSEncryptionMaterials;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.conf.Configuration;

import java.util.Map;

/**
 * Provides KMSEncryptionMaterials according to Configuration
 */
public class MyEncryptionMaterialsProviders implements
 EncryptionMaterialsProvider, Configurable{
 private Configuration conf;
 private String kmsKeyId;
 private EncryptionMaterials encryptionMaterials;

 private void init() {
 this.kmsKeyId = conf.get("my.kms.key.id");
 this.encryptionMaterials = new KMSEncryptionMaterials(kmsKeyId);

151

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/EncryptionMaterialsProvider.html
https://github.com/awslabs/emr-sample-apps/tree/master/emrfs-plugins/EMRFSRSAEncryptionMaterialsProvider

Amazon EMR Amazon EMR Release Guide
Providing Certificates for In-Transit Data
Encryption with Amazon EMR Encryption

 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 init();
 }

 @Override
 public Configuration getConf() {
 return this.conf;
 }

 @Override
 public void refresh() {

 }

 @Override
 public EncryptionMaterials getEncryptionMaterials(Map<String, String>
 materialsDescription) {
 return this.encryptionMaterials;
 }

 @Override
 public EncryptionMaterials getEncryptionMaterials() {
 return this.encryptionMaterials;
 }
}

Providing Certificates for In-Transit Data Encryption
with Amazon EMR Encryption
For in-transit data encryption, you have to two options to specify the artifacts used for encryption:

• You can manually create PEM certificates, include them in a zip file, and then reference the zip file in
Amazon S3.

• You can implement a custom certificate provider as a Java class. You specify the JAR file of the
application in Amazon S3, and then provide the full class name of the provider as declared in the
application. The class must implement the TLSArtifactsProvider interface available beginning with
AWS SDK for Java version 1.11.0.

Amazon EMR automatically downloads artifacts to each node in the cluster and later uses them
to implement the open-source, in-transit encryption features. For more information about available
options, see In-Transit Data Encryption (p. 149).

Using PEM Certificates
When you specify a zip file for in-transit encryption, the security configuration expects PEM files within
the zip file to be named exactly as they appear below:

In-transit encryption certificates

File name Required/optional Details

privateKey.pem Required Private key

152

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

File name Required/optional Details

certificateChain.pem Required Certificate chain

trustedCertificates.pemOptional Required if the provided
certificate is signed neither by
the Java default trusted root
certification authority (CA) nor
an intermediate CA that can link
to the Java default trusted root
CA. The Java default trusted
root CAs can be found in jre/
lib/security/cacerts.

You likely want to configure the private key PEM file to be a wildcard certificate that enables access to
the Amazon VPC domain in which your cluster instances reside. For example, if your cluster resides
in us-east-1, you may choose to specify a common name in the certificate configuration that allows
access to the cluster by specifying CN=*.ec2.internal in the certificate subject definition. For more
information about Amazon EMR cluster configuration within Amazon VPC, see Select an Amazon VPC
Subnet for the Cluster.

The following example demonstrates how to use OpenSSL to generate a self-signed X.509 certificate
with a 1024-bit RSA private key that allows access to the issuer's Amazon EMR cluster instances in the
US East (N. Virginia) region. This is identified by the *.ec2.internal domain name as the common
name. Other optional subject items—such as country (C), state (S), Locale (L), etc.—are specified.
Because a self-signed certificate is generated, the example then copies the certificateChain.pem
file to the trustedCertificates.pem file. The zip command is then used to create the my-
certs.zip file that contains the certificates.

Important
This example is a proof-of-concept demonstration only. Using self-signed certificates is not
recommended and presents a potential security risk. For production systems, use a trusted
certification authority (CA) to issue certificates.

$ openssl req -x509 -newkey rsa:1024 -keyout privateKey.pem -out
 certificateChain.pem -days 365 -nodes -subj '/C=US/S=Washington/L=Seattle/
O=MyOrg/OU=MyDept/CN=*.ec2.internal'
$ cp certificateChain.pem trustedCertificates.pem
$ zip -r -X my-certs.zip certificateChain.pem privateKey.pem

Using a Custom Certificate Provider

Custom certificate providers must implement the TLSArtifacts provider interface.

Specifying Amazon EMR Encryption Options Using
a Security Configuration
Using a security configuration to specify cluster encryption settings is a two-step process. First,
you create a security configuration, which you can use for any number of clusters. Then you
specify the security configuration to use when you create a cluster. Before you create a security
configuration, decide on the key and certificate management systems you want to use and create
the keys and certificates. For more information, see Providing Keys for At-Rest Data Encryption with
Amazon EMR (p. 150) and Providing Certificates for In-Transit Data Encryption with Amazon EMR
Encryption (p. 152).

153

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-vpc-subnet.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-vpc-subnet.html
https://www.openssl.org/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/spi/security/TLSArtifactsProvider.html

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

Creating a Security Configuration

When you create a security configuration, you specify two sets of encryption options: at-rest data
encryption and in-transit data encryption. At-rest data encryption options include both Amazon S3 with
EMRFS and local-disk encryption. In-transit encryption options enable the open-source encryption
features for certain applications that support transport layer security (TLS). At-rest options and in-
transit options can be enabled together or separately. You can use the AWS Management Console,
the AWS CLI, or the AWS SDKs to create a security configuration.

Creating a Security Configuration Using the Console

To create a security configuration:

1. Sign in to the AWS Management Console and open the Amazon EMR console at https://
console.aws.amazon.com/elasticmapreduce/.

2. In the navigation pane, choose Security Configurations, Create security configuration.

3. Type a Name for the security configuration.

4. Choose At rest encryption to encrypt data stored within the file system. This also enables
Hadoop Distributed File System (HDFS) block-transfer encryption and RPC encryption, which
need no further configuration.

5. Under S3 data encryption, choose a value for Encryption mode, which determines how Amazon
EMR encrypts Amazon S3 data with EMRFS.

What you do next depends on the encryption mode you chose:

• SSE-S3

Specifies Server-side encryption with Amazon S3-managed encryption keys. You don't need to
do anything more because Amazon S3 handles keys for you.

• SSE-KMS or CSE-KMS

Specifies server-side encryption with AWS KMS-managed keys (SSE-KMS) or client-side
encryption with AWS KMS-managed keys (CSE-KMS). For AWS KMS Key, select a key. The
key must exist in the same region as your Amazon EMR cluster. For key requirements, see
Using AWS KMS Customer Master Keys (CMKs) for Encryption (p. 150).

• CSE-Custom

Specifies client-side encryption using a custom client-side master key (CSE-Custom). In the
S3 object box, enter the location in Amazon S3, or the Amazon S3 ARN, of your custom key-
provider JAR file. Then, in the Key provider class field, enter the full class name of a class
declared in your application that implements the EncryptionMaterialsProvider interface.

6. Under Local disk encryption, choose a value for Key provider type. Amazon EMR uses this
key for Linux Unified Key System (LUKS) encryption for the local volumes (except boot volumes)
attached to your cluster nodes.

• AWS KMS

Select this option to specify an AWS KMS customer master key (CMK). For AWS KMS Key,
select a key. The key must exist in the same region as your Amazon EMR cluster. For more
information about key requirements, see Using AWS KMS Customer Master Keys (CMKs) for
Encryption (p. 150).

• Custom

Select this option to specify a custom key provider. For S3 object, enter the location in
Amazon S3, or the Amazon S3 ARN, of your custom key-provider JAR file. For Key provider
class, enter the full class name of a class declared in your application that implements the

154

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

EncryptionMaterialsProvider interface. The class name you provide here must be different from
the class name provided for CSE-Custom.

7. Choose In-transit encryption to enable the open-source TLS encryption features for in-transit
data. Choose a Certificate provider type according to the following guidelines:

• PEM

Select this option to use PEM files that you provide within a zip file. Two artifacts are required
within the zip file: privateKey.pem and certificateChain.pem. A third file, trustedCertificates.pem,
is optional. See Providing Certificates for In-Transit Data Encryption with Amazon EMR
Encryption (p. 152) for details. Specify the location in Amazon S3, or the Amazon S3 ARN, of
the zip file in the S3 object box.

• Custom

Select this option to specify a custom certificate provider and then, for S3 object, enter the
location in Amazon S3, or the Amazon S3 ARN, of your custom certificate-provider JAR file.
For Key provider class, enter the full class name of a class declared in your application that
implements the TLSArtifactsProvider interface.

8. Click Create.

Creating a Security Configuration Using the AWS CLI

To create a security configuration with the AWS CLI, use the following command:

aws emr create-security-configuration --name "SecConfigName" --security-
configuration SecConfigDef

• --name SecConfigName specifies the name of the security configuration, which you will specify
when you create a cluster.

• --security-configuration 'SecConfigDef' specifies a JSON blob (examples below) or the
path to a JSON file in Amazon S3 (such as file://./MySecConfig.json) that defines encryption
parameters.

The sections that follow use sample scenarios to illustrate well-formed --security-configuration JSON
for different configurations and key providers, as well as a reference for JSON parameters.

Example In-Transit Data Encryption Options

The example below illustrates the following scenario:

• In-transit data encryption is enabled and at-rest data encryption is disabled.

• A zip file with certificates in Amazon S3 is used as the key provider (see Providing Certificates for In-
Transit Data Encryption with Amazon EMR Encryption (p. 152) for certificate requirements.

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : true,
 "EnableAtRestEncryption" : false,
 "InTransitEncryptionConfiguration" : {
 "TLSCertificateConfiguration" : {

155

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

 "CertificateProviderType" : "PEM",
 "S3Object" : "s3://MyConfigStore/artifacts/MyCerts.zip"
 }
 }
 }
}'

The example below illustrates the following scenario:

• In-transit data encryption is enabled and at-rest data encryption is disabled.

• A custom key provider is used (see Providing Certificates for In-Transit Data Encryption with Amazon
EMR Encryption (p. 152) for certificate requirements).

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : true,
 "EnableAtRestEncryption" : false,
 "InTransitEncryptionConfiguration" : {
 "TLSCertificateConfiguration" : {
 "CertificateProviderType" : "Custom",
 "S3Object" : "s3://MyConfig/artifacts/MyCerts.jar",
 "CertificateProviderClass" : "com.mycompany.MyCertProvider"
 }
 }
 }
}'

Example At-rest Data Encryption Options

The example below illustrates the following scenario:

• In-transit data encryption is disabled and at-rest data encryption is enabled

• SSE-S3 is used for Amazon S3 encryption

• Local disk encryption uses AWS KMS as the key provider

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : false,
 "EnableAtRestEncryption" : true,
 "AtRestEncryptionConfiguration" : {
 "S3EncryptionConfiguration" : {
 "EncryptionMode" : "SSE-S3"
 },
 "LocalDiskEncryptionConfiguration" : {
 "EncryptionKeyProviderType" : "AwsKms",
 "AwsKmsKey" : "arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012"
 }
 }
 }
}'

156

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

The example below illustrates the following scenario:

• In-transit data encryption is enabled and references a zip file with PEM certificates in Amazon S3,
using the ARN

• SSE-KMS is used for Amazon S3 encryption

• Local disk encryption uses AWS KMS as the key provider

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : true,
 "EnableAtRestEncryption" : true,
 "InTransitEncryptionConfiguration" : {
 "TLSCertificateConfiguration" : {
 "CertificateProviderType" : "PEM",
 "S3Object" : "arn:aws:s3:::MyConfigStore/artifacts/MyCerts.zip"
 }
 },
 "AtRestEncryptionConfiguration" : {
 "S3EncryptionConfiguration" : {
 "EncryptionMode" : "SSE-KMS",
 "AwsKmsKey" : "arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012"
 },
 "LocalDiskEncryptionConfiguration" : {
 "EncryptionKeyProviderType" : "AwsKms",
 "AwsKmsKey" : "arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012"
 }
 }
 }
}'

The example below illustrates the following scenario:

• In-transit data encryption is enabled and references a zip file with PEM certificates in Amazon S3

• CSE-KMS is used for Amazon S3 encryption

• Local disk encryption uses a custom key provider referenced by its ARN

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : true,
 "EnableAtRestEncryption" : true,
 "InTransitEncryptionConfiguration" : {
 "TLSCertificateConfiguration" : {
 "CertificateProviderType" : "PEM",
 "S3Object" : "s3://MyConfigStore/artifacts/MyCerts.zip"
 }
 },
 "AtRestEncryptionConfiguration" : {
 "S3EncryptionConfiguration" : {
 "EncryptionMode" : "CSE-KMS",

157

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

 "AwsKmsKey" : "arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012"
 },
 "LocalDiskEncryptionConfiguration" : {
 "EncryptionKeyProviderType" : "Custom",
 "S3Object" : "arn:aws:s3:::artifacts/MyKeyProvider.jar",
 "EncryptionKeyProviderClass" : "com.mycompany.MyKeyProvider.jar"
 }
 }
 }
}'

The example below illustrates the following scenario:

• In-transit data encryption is enabled with a custom key provider

• CSE-Custom is used for Amazon S3 data

• Local disk encryption uses a custom key provider

aws emr create-security-configuration --name "MySecConfig" --security-
configuration '{
 "EncryptionConfiguration": {
 "EnableInTransitEncryption" : "true",
 "EnableAtRestEncryption" : "true",
 "InTransitEncryptionConfiguration" : {
 "TLSCertificateConfiguration" : {
 "CertificateProviderType" : "Custom",
 "S3Object" : "s3://MyConfig/artifacts/MyCerts.jar",
 "CertificateProviderClass" : "com.mycompany.MyCertProvider"
 }
 },
 "AtRestEncryptionConfiguration" : {
 "S3EncryptionConfiguration" : {
 "EncryptionMode" : "CSE-Custom",
 "S3Object" : "s3://MyConfig/artifacts/MyCerts.jar",
 "EncryptionKeyProviderClass" : "com.mycompany.MyKeyProvider"
 },
 "LocalDiskEncryptionConfiguration" : {
 "EncryptionKeyProviderType" : "Custom",
 "S3Object" : "s3://MyConfig/artifacts/MyCerts.jar",
 "EncryptionKeyProviderClass" : "com.mycompany.MyKeyProvider"
 }
 }
 }
}'

AWS CLI Security Configuration JSON Reference

The following table lists the JSON parameters for encryption settings and provides a description of
acceptable values for each parameter.

Parameter Description

"EnableInTransitEncryption" : true |
false

Specify true to enable in-transit encryption
and false to disable it. If omitted, false is
assumed, and in-transit encryption is disabled.

158

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

Parameter Description

"EnableAtRestEncryption" : true |
false

Specify true to enable at-rest encryption and
false to disable it. If omitted, false is assumed
and at-rest encryption is disabled.

In-transit encryption parameters

"InTransitEncryptionConfiguration" : Specifies a collection of values used
to configure in-transit encryption when
EnableInTransitEncryption is true.

"CertificateProviderType" : "PEM" |
"Custom"

Specifies whether to use PEM certificates
referenced with a zipped file, or a Custom
certificate provider. If PEM is specified, S3Object
must be a reference to the location in Amazon S3
of a zip file containing the certificates. If Custom
is specified, S3Object must be a reference to
the location in Amazon S3 of a JAR file, followed
by a CertificateProviderClass entry.

"S3Object" : "ZipLocation" |
"JarLocation"

Provides the location in Amazon S3 to a zip
file when PEM is specified, or to a JAR file
when Custom is specified. The format can
be a path (for example, s3://MyConfig/
articfacts/CertFiles.zip) or an
ARN (for example, arn:aws:s3:::Code/
MyCertProvider.jar). If a zip
file is specified, it must contain files
named exactly privateKey.pem and
certificateChain.pem. A file named
trustedCertificates.pem is optional.

"CertificateProviderClass" :
"MyClassID"

Required only if Custom is specified for
CertificateProviderType. MyClassID
specifies a full class name declared
in the JAR file, which implements the
TLSArtifactsProvider interface. For example,
com.mycompany.MyCertProvider.

At-rest encryption parameters

"AtRestEncryptionConfiguration" : Specifies a collection of values for at-rest
encryption when EnableAtRestEncryption is
true, including Amazon S3 encryption and local
disk encryption.

Amazon S3 encryption parameters

"S3EncryptionConfiguration" : Specifies a collection of values used for Amazon
S3 encryption with the EMR File System
(EMRFS).

159

Amazon EMR Amazon EMR Release Guide
Specifying Amazon EMR Encryption

Options Using a Security Configuration

Parameter Description

"EncryptionMode" : "SSE-S3" | "SSE-KMS" |
"CSE-KMS" | "CSE-Custom"

Specifies the type of Amazon S3 encryption
to use. If SSE-S3 is specified, no further
S3 encryption values are required. If either
SSE-KMS or CSE-KMS is specified, an AWS
KMS customer master key (CMK) ARN must
be specified as the AwsKmsKey value. If
CSE-Custom is specified, S3Object and
EncryptionKeyProviderClass values must
be specified.

"AwsKmsKey" : "MyKeyARN" Required only when either SSE-KMS or CSE-
KMS is specified for EncryptionMode.
MyKeyARN must be a fully specified ARN
to a key (for example, arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012).

"S3Object" : "JarLocation" Required only when CSE-Custom is specified for
CertificateProviderType. JarLocation
provides the location in Amazon S3 to a
JAR file. The format can be a path (for
example, s3://MyConfig/articfacts/
MyKeyProvider.jar) or an ARN (for example,
arn:aws:s3:::Code/MyKeyProvider.jar).

"EncryptionKeyProviderClass" :
"MyS3KeyClassID"

Required only when CSE-Custom is specified
for EncryptionMode. MyS3KeyClassID
specifies a full class name of a class declared
in the application that implements the
EncryptionMaterialsProvider interface; for
example, com.mycompany.MyS3KeyProvider.

Local disk encryption parameters

"LocalDiskEncryptionKeyProvider" Specifies the key provider and corresponding
values to be used for local disk encryption.

"Type" : "AwsKms" | "Custom" Specifies the key provider. If AwsKms is
specified, an AWS KMS CMK ARN must
be specified as the AwsKmsKey value.
If Custom is specified, S3Object and
EncryptionKeyProviderClass values must
be specified.

"AwsKmsKey : "MyKeyARN" Required only when AwsKms is specified for
Type. MyKeyARN must be a fully specified ARN
to a key (for example, arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-456789012123).

"S3Object" : "JarLocation" Required only when CSE-Custom is specified for
CertificateProviderType. JarLocation
provides the location in Amazon S3 to a
JAR file. The format can be a path (for
example, s3://MyConfig/articfacts/
MyKeyProvider.jar) or an ARN (for example,
arn:aws:s3:::Code/MyKeyProvider.jar).

160

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

Parameter Description

"EncryptionKeyProviderClass" :
"MyLocalDiskKeyClassID"

Required only when Custom is specified for
Type. MyLocalDiskKeyClassID specifies a full
class name of a class declared in the application
that implements the EncryptionMaterialsProvider
interface; for example,
com.mycompany.MyLocalDiskKeyProvider.

Using a Security Configuration To Specify Cluster Encryption
Settings
You can specify encryption settings when you create a cluster by specifying the security configuration.
You can use the AWS Management Console or the AWS CLI.

Specifying a Security Configuration Using the Console

When using the AWS console to create an Amazon EMR cluster, you choose the security configuration
during Step 4: Security of the advanced options creation process.

1. Sign in to the AWS Management Console and open the Amazon EMR console at https://
console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster, Go to advanced options.

3. On theStep 1: Software and Steps screen, from the Release list, choose emr-4.8.0 or a more
recent release. Choose the settings you want and choose Next.

4. On the Step 2: Hardware screen, choose the settings you want and choose Next. Do the same for
Step 3: General Cluster Settings.

5. On the Step 4: Security screen, under Encryption Options, choose a value for Security
configuration.

6. Configure other security options as desired and choose Create cluster.

Specifying a Security Configuration Using the CLI

When you use aws emr create-cluster, you can optionally apply a security configuration using
--security-configuration MySecConfig, where MySecConfig is the name of the security
configuration, as shown in the following example. The --release-label specified must be 4.8.0 or
later and the --instance-type can be any available.

aws emr create-cluster --instance-type m3.xlarge --release-label emr-5.0.0 --
security-configuration mySecConfig

Specifying Amazon S3 Encryption with EMRFS
Using a Cluster Configuration
When you create a cluster, you can specify Amazon S3 server-side encryption (SSE) or client-side
encryption (CSE) using the emrfs-site classification. Amazon S3 SSE and CSE are mutually
exclusive; you can choose either but not both. For more information about Amazon S3 encryption
options, see Amazon S3 Server-Side Encryption (p. 148). Beginning with Amazon EMR release
4.8.0, you can use security configurations to apply encryption settings more easily and with more
options.

161

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

Important
Although you can still use cluster configurations to apply encryption with current versions of
Amazon EMR, it is not recommended. If you configure Amazon S3 encryption in the cluster
configuration and in a security configuration, the security configuration overrides the cluster
configuration.

For information about how to create security configurations, see Amazon EMR Data Encryption with
Security Configurations.

Specifying Amazon S3 Server-Side Encryption
Amazon EMR supports server-side encryption with Amazon S3-provided keys (SSE-S3) and with AWS
KMS-managed encryption keys (SSE-KMS). Amazon EMR does not support the Amazon S3 option to
use SSE with customer-provided encryption keys (SSE-C). For more information about these options,
see At-rest Encryption for Amazon S3 with EMRFS (p. 148).

Creating a Cluster with Amazon S3 SSE-S3 Enabled

To configure SSE-S3 as part of a cluster configuration, you can use the AWS Management
Console or the AWS CLI. You can also use the configure-hadoop bootstrap action to set
fs.s3.enableServerSideEncryption to true.

Note
The following AWS Management Console procedure is not available beginning with Amazon
EMR version 4.8.0. Use a security configuration to specify encryption options. For more
information, see Specifying a Security Configuration Using the Console (p. 161).

To create a cluster with SSE-S3 enabled using the console

1. Choose Create Cluster.

2. Navigate to the File System Configuration section.

3. To use Server-side encryption, choose Enabled.

4. Choose Create cluster.

To create a cluster with SSE-S3 enabled using the AWS CLI

• Type the following command:

aws emr create-cluster --release-label emr-5.2.1 \
--instance-count 3 --instance-type m1.large --emrfs Encryption=ServerSide

Creating a Cluster with Amazon S3 SSE-KMS Enabled

To configure SSE-KMS as part of a cluster configuration, you must use the AWS CLI or the AWS
SDKs. There is no SSE-KMS configuration for Amazon EMR using the AWS Management Console.
You enable SSE-KMS much the same as you do for SSE-S3, but you also provide an AWS KMS CMK
ID or ARN (Amazon Resource Name) using the fs.s3.serverSideEncryption.kms.keyId setting
in the emrfs-site configuration classification.

To create a cluster with SSE-KMS enabled using the AWS CLI

• Type the following AWS CLI command to create a cluster with SSE-KMS, where keyID is an AWS
KMS customer master key (CMK):

aws emr create-cluster --release-label emr-4.5.0 --instance-count 3 \
--instance-type m1.xlarge --use-default-roles \

162

http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-encryption-enable-security-configuration.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-encryption-enable-security-configuration.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

--emrfs
 Encryption=ServerSide,Args=[fs.s3.serverSideEncryption.kms.keyId=keyId]

--OR--

Type the following AWS CLI command using the configuration API and providing a configuration
JSON file with contents as shown (myConfig.json in the example):

aws emr create-cluster --release-label emr-4.5.0 --instance-count 3 \
--instance-type m1.xlarge --applications Name=Hadoop \
--configurations file://./myConfig.json --use-default-roles

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json

[
 {
 "Classification":"emrfs-site",
 "Properties": {
 "fs.s3.enableServerSideEncryption": "true",

 "fs.s3.serverSideEncryption.kms.keyId":"a4567b8-9900-12ab-1234-123a45678901"
 }
 }
]

emrfs-site.xml Properties for SSE-S3 and SSE-KMS

Property Default value Description

fs.s3.enableServerSideEncryption false When set to true, objects stored
in Amazon S3 are encrypted using
server-side encryption. If no key is
specified, SSE-S3 is used.

fs.s3.serverSideEncryption.kms.keyId n/a Specifies an AWS KMS key ID or
ARN. If a key is specified, SSE-
KMS is used.

Specifying Amazon S3 Client-Side Encryption

Amazon EMR supports Amazon S3 client-side encryption (CSE) using an AWS KMS-managed
CMK or using a custom client-side master key you provide in a Java class implementation. For more
information about Amazon S3 CSE, see Protecting Data Using Client-Side Encryption in the Amazon
Simple Storage Service Developer Guide.

Enabling Amazon S3 Client-Side Encryption in the Console

To configure client-side encryption using the console

1. Choose Create Cluster.

2. Fill in the fields as appropriate for Cluster Configuration and Tags.

163

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

3. For the Software Configuration field, choose AMI 3.6.0 or later.

4. In the File System Configuration section, select one of the following client-side encryption types
for the Encryption field: S3 client-side encryption with AWS Key Management Service (KMS)
or S3 client-side encryption with custom encryption materials provider.

a. If you chose S3 client-side encryption with AWS Key Management Service (KMS),
select the master key alias from the list of master keys that you have previously configured.
Alternately, you can choose Enter a Key ARN and enter the ARN of an AWS KMS master
key that belongs to a different account, provided that you have permissions to use that key.
If you have assigned an instance profile to your EMR cluster, make sure that the role in that
profile has permissions to use the key.

b. If you chose S3 client-side encryption with custom encryption materials provider,
provide the full class name and Amazon S3 location of your EncryptionMaterialsProvider
class. Amazon EMR automatically downloads your provider to each node in your cluster when
it is created.

5. Fill in the fields as appropriate for Hardware Configuration, Security and Access, Bootstrap
Actions, and Steps.

6. Choose Create cluster.

Selecting a Master Key Stored in AWS KMS Using an SDK or CLI

When you enable Amazon S3 client-side encryption and specify keys stored in AWS KMS, you provide
the KeyId value, key alias, or ARN of the key that Amazon EMR will use to encrypt objects written to
Amazon S3. For decryption, EMRFS tries to access whichever key encrypted the object. You create
the key using the IAM console, AWS CLI, or the AWS SDKs.

If you have assigned an instance profile to your EMR cluster, make sure that the role in that profile has
permission to use the key. AWS KMS charges apply for API calls during each encryption or decryption
activity and for storing your key. For more information, see the AWS KMS pricing page.

To use an AWS KMS master key for Amazon S3 encryption, provide the master key by reference using
any of three possible identifiers:

• KeyId (a 32-character GUID)

• Alias mapped to the KeyId value (you must include the alias/ prefix in this value)

• Full ARN of the key, which includes the region, account ID, and KeyId value

MyKMSKeyId in the example below can be any of the three values:

aws emr create-cluster --release-label emr-5.2.1 \
--emrfs Encryption=ClientSide,ProviderType=KMS,KMSKeyId=MyKMSKeyId

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Note
You must use the ARN of the AWS KMS master key to use a key owned by an account
different than the one you are using to configure Amazon EMR.

Configuring Amazon S3 Client-side Encryption Using a Custom Provider

To use the AWS CLI, pass the Encryption, ProviderType, CustomProviderClass, and
CustomProviderLocation arguments to the emrfs option.

aws emr create-cluster --instance-type m3.xlarge --release-label emr-5.2.1 \

164

https://aws.amazon.com/kms/pricing/

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

--emrfs
 Encryption=ClientSide,ProviderType=Custom,CustomProviderLocation=s3://
mybucket/myfolder/provider.jar,CustomProviderClass=classname

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Setting Encryption to ClientSide enables client-side encryption, CustomProviderClass is the
name of your EncryptionMaterialsProvider object, and CustomProviderLocation is the local or
Amazon S3 location from which Amazon EMR copies CustomProviderClass to each node in the
cluster and places it in the classpath.

Custom EncryptionMaterialsProvider with Arguments

You may need to pass arguments directly to the provider, so you can use a configuration to supply
arguments using emrfs-site.xml. Here is the configuration:

[
 {
 "Classification": "emrfs-site",
 "Properties": {
 "myProvider.arg1":"value1",
 "myProvider.arg2":"value2"
 }
 }
]

Then, use the configuration with the CLI:

aws emr create-cluster --release-label emr-5.2.1 \
--instance-type m3.xlarge --instance-count 2 --configurations file://./
myConfig.json --emrfs Encryption=ClientSide,CustomProviderLocation=s3://
mybucket/myfolder/myprovider.jar,CustomProviderClass=classname

To use an SDK, you can set the property fs.s3.cse.encryptionMaterialsProvider.uri to
download the custom EncryptionMaterialsProvider class that you store in Amazon S3 to each node
in your cluster. You configure this in emrfs-site.xml file along with CSE enabled and the proper
location of the custom provider.

For example, in the AWS SDK for Java using RunJobFlowRequest, your code might look like the
following:

<snip>
 Map<String,String> emrfsProperties = new HashMap<String,String>();
 emrfsProperties.put("fs.s3.cse.encryptionMaterialsProvider.uri","s3://
mybucket/MyCustomEncryptionMaterialsProvider.jar");
 emrfsProperties.put("fs.s3.cse.enabled","true");
 emrfsProperties.put("fs.s3.consistent","true");

 emrfsProperties.put("fs.s3.cse.encryptionMaterialsProvider","full.class.name.of.EncryptionMaterialsProvider");

 Configuration myEmrfsConfig = new Configuration()
 .withClassification("emrfs-site")
 .withProperties(emrfsProperties);

 RunJobFlowRequest request = new RunJobFlowRequest()

165

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

 .withName("Custom EncryptionMaterialsProvider")
 .withReleaseLabel("emr-5.2.1")
 .withApplications(myApp)
 .withConfigurations(myEmrfsConfig)
 .withServiceRole("EMR_DefaultRole")
 .withJobFlowRole("EMR_EC2_DefaultRole")
 .withLogUri("s3://myLogUri/")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myEc2Key")
 .withInstanceCount(2)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge")
);

 RunJobFlowResult result = emr.runJobFlow(request);
</snip>

For more information about a list of configuration key values to use to configure emrfs-site.xml,
see emrfs-site.xml Properties for SSE-S3 and SSE-KMS (p. 163).

Reference Implementation of Amazon S3 EncryptionMaterialsProvider

When fetching the encryption materials from the EncryptionMaterialsProvider class to perform
encryption, EMRFS optionally populates the materialsDescription argument with two fields:
the Amazon S3 URI for the object and the JobFlowId of the cluster, which can be used by the
EncryptionMaterialsProvider class to return encryption materials selectively. You can enable this
behavior by setting fs.s3.cse.materialsDescription.enabled to true in emrfs-site.xml.
For example, the provider may return different keys for different Amazon S3 URI prefixes. Note that
it is the description of the returned encryption materials that is eventually stored with the Amazon
S3 object rather than the materialsDescription value that is generated by EMRFS and passed to the
provider. While decrypting an Amazon S3 object, the encryption materials description is passed to the
EncryptionMaterialsProvider class, so that it can, again, selectively return the matching key to decrypt
the object.

The following EncryptionMaterialsProvider reference implementation is provided below. Another
custom provider, EMRFSRSAEncryptionMaterialsProvider, is available from GitHub.

import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.EncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.KMSEncryptionMaterials;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.conf.Configuration;

import java.util.Map;

/**
 * Provides KMSEncryptionMaterials according to Configuration
 */
public class MyEncryptionMaterialsProviders implements
 EncryptionMaterialsProvider, Configurable{
 private Configuration conf;
 private String kmsKeyId;
 private EncryptionMaterials encryptionMaterials;

 private void init() {
 this.kmsKeyId = conf.get("my.kms.key.id");
 this.encryptionMaterials = new KMSEncryptionMaterials(kmsKeyId);

166

https://github.com/awslabs/emr-sample-apps/tree/master/emrfs-plugins/EMRFSRSAEncryptionMaterialsProvider

Amazon EMR Amazon EMR Release Guide
Specifying Amazon S3 Encryption with
EMRFS Using a Cluster Configuration

 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 init();
 }

 @Override
 public Configuration getConf() {
 return this.conf;
 }

 @Override
 public void refresh() {

 }

 @Override
 public EncryptionMaterials getEncryptionMaterials(Map<String, String>
 materialsDescription) {
 return this.encryptionMaterials;
 }

 @Override
 public EncryptionMaterials getEncryptionMaterials() {
 return this.encryptionMaterials;
 }
}

emrfs-site.xml Properties for Amazon S3 Client-side Encryption

Property Default
value

Description

fs.s3.cse.enabled false When set to true, objects stored
in Amazon S3 are encrypted using
client-side encryption.

fs.s3.cse.encryptionMaterialsProvider.uriN/A The Amazon S3 URI
where the JAR with the
EncryptionMaterialsProvider is
located. When you provide this
URI, Amazon EMR automatically
downloads the JAR to all nodes in
the cluster.

fs.s3.cse.encryptionMaterialsProvider N/A The EncryptionMaterialsProvider
class path used with client-side
encryption.

Note
For AWS KMS, use
com.amazon.ws.emr.hadoop.fs.cse.KMSEncryptionMaterialsProvider.

fs.s3.cse.materialsDescription.enabledfalse Enabling populates the
materialsDescription of encrypted
objects with the Amazon S3 URI
for the object and the JobFlowId.

167

Amazon EMR Amazon EMR Release Guide
Transparent Encryption in HDFS on Amazon EMR

Property Default
value

Description

fs.s3.cse.kms.keyId N/A The value of the KeyId field for the
AWS KMS encryption key that you
are using with EMRFS encryption.

Note
This property also
accepts the ARN and key
alias associated with the
key.

fs.s3.cse.cryptoStorageMode ObjectMetadataThe Amazon S3 storage mode.
By default, the description of
the encryption information is
stored in the object metadata.
You can also store the description
in an instruction file. Valid
values are ObjectMetadata
and InstructionFile. For more
information, see Client-Side Data
Encryption with the AWS SDK for
Java and Amazon S3.

Transparent Encryption in HDFS on Amazon EMR
Note
This feature is only available in Amazon EMR version 4.1.0 and later.

Transparent encryption is implemented through the use of HDFS encryption zones, which are HDFS
paths that you define. Each encryption zone has its own key, which is stored in the key server specified
by the hdfs-site configuration.

Amazon EMR uses the Hadoop KMS by default; however, you can use another KMS that implements
the KeyProvider API operation. Each file in an HDFS encryption zone has its own unique data
encryption key, which is encrypted by the encryption zone key. HDFS data is encrypted end-to-end
(at-rest and in-transit) when data is written to an encryption zone because encryption and decryption
activities only occur in the client.

Note
You cannot move files between encryptions zones or from an encryption zone to unencrypted
paths.

The NameNode and HDFS client interact with the Hadoop KMS (or an alternate KMS you configured)
through the KeyProvider API operation. The KMS is responsible for storing encryption keys in the
backing keystore. Also, Amazon EMR includes the JCE unlimited strength policy, so you can create
keys at a desired length.

For more information, see Transparent Encryption in HDFS in the Hadoop documentation.

Note
In Amazon EMR, KMS over HTTPS is not enabled by default with Hadoop KMS. For more
information about how to enable KMS over HTTPS, see the Hadoop KMS documentation.

168

https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-kms/index.html

Amazon EMR Amazon EMR Release Guide
Configuring HDFS Transparent

Encryption in Amazon EMR

Configuring HDFS Transparent Encryption in
Amazon EMR
You can configure transparent encryption by creating keys and adding encryption zones. You can do
this in several ways:

• Using the Amazon EMR configuration API operation when you create a cluster

• Using a Hadoop JAR step with command-runner.jar

• Logging in to the master node of the Hadoop cluster and using the hadoop key and hdfs crypto
command line clients

• Using the REST APIs for Hadoop KMS and HDFS

For more information about the REST APIs, see the respective documentation for Hadoop KMS and
HDFS.

To create encryption zones and their keys at cluster creation using the CLI

The hdfs-encryption-zones classification in the configuration API operation allows you to specify a key
name and an encryption zone when you create a cluster. Amazon EMR creates this key in Hadoop
KMS on your cluster and configure the encryption zone.

• Create a cluster with the following command:

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge
 --instance-count 2 \
--applications Name=App1 Name=App2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "hdfs-encryption-zones",
 "Properties": {
 "/myHDFSPath1": "path1_key",
 "/myHDFSPath2": "path2_key"
 }
 }
]

To create encryption zones and their keys manually on the master node

1. Launch your cluster using an Amazon EMR release greater than 4.1.0.

2. Connect to the master node of the cluster using SSH.

3. Create a key within Hadoop KMS:

$ hadoop key create path2_key
path2_key has been successfully created with options Options{cipher='AES/
CTR/NoPadding', bitLength=256, description='null', attributes=null}.

169

Amazon EMR Amazon EMR Release Guide
Considerations for HDFS Transparent Encryption

KMSClientProvider[http://ip-x-x-x-x.ec2.internal:16000/kms/v1/] has been
 updated.

Important
Hadoop KMS requires your key names to be lowercase. If you use a key that has
uppercase characters, then your cluster will fail during launch.

4. Create the encryption zone path in HDFS:

$ hadoop fs -mkdir /myHDFSPath2

5. Make the HDFS path an encryption zone using the key that you created:

$ hdfs crypto -createZone -keyName path2_key -path /myHDFSPath2
Added encryption zone /myHDFSPath2

To create encryption zones and their keys manually using the AWS CLI

• Add steps to create the KMS keys and encryption zones manually with the following command:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps
 Type=CUSTOM_JAR,Name="Create First Hadoop KMS Key",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hadoop key
 create path1_key\""] \
Type=CUSTOM_JAR,Name="Create First Hadoop HDFS Path",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hadoop fs -
mkdir /myHDFSPath1\""] \
Type=CUSTOM_JAR,Name="Create First Encryption Zone",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hdfs crypto -
createZone -keyName path1_key -path /myHDFSPath1\""] \
Type=CUSTOM_JAR,Name="Create Second Hadoop KMS Key",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hadoop key
 create path2_key\""] \
Type=CUSTOM_JAR,Name="Create Second Hadoop HDFS Path",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hadoop fs -
mkdir /myHDFSPath2\""] \
Type=CUSTOM_JAR,Name="Create Second Encryption Zone",Jar="command-
runner.jar",ActionOnFailure=CONTINUE,Args=[/bin/bash,-c,"\"hdfs crypto -
createZone -keyName path2_key -path /myHDFSPath2\""]

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

Considerations for HDFS Transparent Encryption
A best practice is to create an encryption zone for each application where they may write files. Also,
you can encrypt all of HDFS by using the hdfs-encryption-zones classification in the configuration API
and specify the root path (/) as the encryption zone.

Hadoop Key Management Server
Hadoop KMS is a key management server that provides the ability to implement cryptographic services
for Hadoop clusters, and can serve as the key vendor for Transparent Encryption in HDFS on Amazon
EMR (p. 168). Hadoop KMS in Amazon EMR is installed and enabled by default when you select

170

http://hadoop.apache.org/docs/current/hadoop-kms/index.html

Amazon EMR Amazon EMR Release Guide
Hadoop Key Management Server

the Hadoop application while launching an EMR cluster. The Hadoop KMS does not store the keys
itself except in the case of temporary caching. Hadoop KMS acts as a proxy between the key provider
and the client trustee to a backing keystore—it is not a keystore. The default keystore that is created
for Hadoop KMS is the Java Cryptography Extension KeyStore (JCEKS). The JCE unlimited strength
policy is also included, so you can create keys with the desired length. Hadoop KMS also supports a
range of ACLs that control access to keys and key operations independently of other client applications
such as HDFS. The default key length in Amazon EMR is 256 bit.

To configure Hadoop KMS, use the hadoop-kms-site classification to change settings. To configure
ACLs, you use the classification kms-acls.

For more information, see the Hadoop KMS documentation. Hadoop KMS is used in Hadoop HDFS
transparent encryption. To learn more about HDFS transparent encryption, see the HDFS Transparent
Encryption topic in the Apache Hadoop documentation.

Note
In Amazon EMR, KMS over HTTPS is not enabled by default with Hadoop KMS. To learn how
to enable KMS over HTTPS, see the Hadoop KMS documentation.

Important
Hadoop KMS requires your key names to be lowercase. If you use a key that has uppercase
characters, then your cluster will fail during launch.

Configuring Hadoop KMS in Amazon EMR
Important
The Hadoop KMS port is changed in Amazon EMR release 4.6 or later. kms-http-port is
now 9700 and kms-admin-port is 9701.

You can configure Hadoop KMS at cluster creation time using the configuration API for Amazon EMR
releases. The following are the configuration object classifications available for Hadoop KMS:

Hadoop KMS Configuration Classifications

Classification Filename

hadoop-kms-site kms-site.xml

hadoop-kms-acls kms-acls.xml

hadoop-kms-env kms-env.sh

hadoop-kms-log4j kms-log4j.properties

To set Hadoop KMS ACLs using the CLI

• Create a cluster with Hadoop KMS with ACLs using the following command:

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge
 --instance-count 2 \
--applications Name=App1 Name=App2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {

171

http://hadoop.apache.org/docs/current/hadoop-kms/index.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://hadoop.apache.org/docs/current/hadoop-kms/index.html

Amazon EMR Amazon EMR Release Guide
Hadoop Key Management Server

 "Classification": "hadoop-kms-acls",
 "Properties": {
 "hadoop.kms.blacklist.CREATE": "hdfs,foo,myBannedUser",
 "hadoop.kms.acl.ROLLOVER": "myAllowedUser"
 }
 }
]

To disable Hadoop KMS cache using the CLI

• Create a cluster with Hadoop KMS hadoop.kms.cache.enable set to false, using the
following command:

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge
 --instance-count 2 \
--applications Name=App1 Name=App2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "hadoop-kms-site",
 "Properties": {
 "hadoop.kms.cache.enable": "false"
 }
 }
]

To set environment variables in the kms-env.sh script using the CLI

• Change settings in kms-env.sh via the hadoop-kms-env configuration. Create a cluster with
Hadoop KMS using the following command:

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge
 --instance-count 2 \
--applications Name=App1 Name=App2 --configurations https://
s3.amazonaws.com/mybucket/myfolder/myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

myConfig.json:

[
 {
 "Classification": "hadoop-kms-env",
 "Properties": {
 },
 "Configurations": [
 {

172

Amazon EMR Amazon EMR Release Guide
Hadoop Key Management Server

 "Classification": "export",
 "Properties": {
 "JAVA_LIBRARY_PATH": "/path/to/files",
 "KMS_SSL_KEYSTORE_FILE": "/non/Default/Path/.keystore",
 "KMS_SSL_KEYSTORE_PASS": "myPass"
 },
 "Configurations": [
]
 }
]
 }
]

For information about configuring Hadoop KMS, see the Hadoop KMS documentation.

173

http://hadoop.apache.org/docs/current/hadoop-kms/index.html

Amazon EMR Amazon EMR Release Guide
EMR File System (EMRFS) (Optional)

Connectors and Utilities

Amazon EMR provides several connectors and utilities to access other AWS services as data sources.
You can usually access data in these services within a program. For example, you can specify an
Amazon Kinesis stream in a Hive query, Pig script, or MapReduce application and then operate on that
data.

Topics

• EMR File System (EMRFS) (Optional) (p. 174)

• Export, Import, Query, and Join Tables in DynamoDB Using Amazon EMR (p. 190)

• Amazon Kinesis (p. 205)

• S3DistCp (p. 206)

EMR File System (EMRFS) (Optional)
The EMR File System (EMRFS) and the Hadoop Distributed File System (HDFS) are both installed
as components in the release. EMRFS is an implementation of HDFS which allows clusters to store
data on Amazon S3. You can enable Amazon S3 server-side and client-side encryption as well
as consistent view for EMRFS using the AWS Management Console, AWS CLI, or you can use a
bootstrap action (with CLI or SDK) to configure additional settings for EMRFS.

Enabling Amazon S3 server-side encryption allows you to encrypt objects written to Amazon S3
by EMRFS. EMRFS support for Amazon S3 client-side encryption allows your cluster to work with
S3 objects that were previously encrypted using an Amazon S3 encryption client. Consistent view
provides consistency checking for list and read-after-write (for new put requests) for objects in Amazon
S3. Enabling consistent view requires you to store EMRFS metadata in Amazon DynamoDB. If the
metadata is not present, it is created for you.

Topics

• Consistent View (p. 174)

• Creating an AWSCredentialsProvider for EMRFS (p. 189)

• EMRFS Endpoint Resolution (p. 190)

Consistent View
EMRFS consistent view monitors Amazon S3 list consistency for objects written by or synced with
EMRFS, delete consistency for objects deleted by EMRFS, and read-after-write consistency for new
objects written by EMRFS.

174

Amazon EMR Amazon EMR Release Guide
Consistent View

Amazon S3 is designed for eventual consistency. For instance, buckets in all regions provide read-
after-write consistency for put requests of new objects and eventual consistency for overwrite of put
and delete requests. Therefore, if you are listing objects in an Amazon S3 bucket quickly after putting
new objects, Amazon S3 does not provide a guarantee to return a consistent listing and it may be
incomplete. This is more common in quick sequential MapReduce jobs which use Amazon S3 as a
data store.

EMRFS includes a command line utility on the master node, emrfs, which allows administrator to
perform operations on metadata such as import, delete, and sync. For more information about the
EMRFS CLI, see the section called “EMRFS CLI Reference” (p. 183).

For a given path, EMRFS returns the set of objects listed in the EMRFS metadata and those returned
directly by Amazon S3. Because Amazon S3 is still the “source of truth” for the objects in a path,
EMRFS ensures that everything in a specified Amazon S3 path is being processed regardless of
whether it is tracked in the metadata. However, EMRFS consistent view only ensures that the objects
in the folders which you are tracking are being checked for consistency. The following topics give
further details about how to enable and use consistent view.

Note
If you directly delete objects from Amazon S3 that are being tracked in the EMRFS metadata,
EMRFS sees an entry for that object in the metadata but not the object in a Amazon S3 list
or get request. Therefore, EMRFS treats the object as inconsistent and throws an exception
after it has exhausted retries. You should use EMRFS to delete objects in Amazon S3 that
are being tracked in the consistent view, purge the entries in the metadata for objects directly
deleted in Amazon S3, or sync the consistent view with Amazon S3 immediately after you
delete objects directly from Amazon S3.

To read an article about EMRFS consistency, see the Ensuring Consistency When Using Amazon S3
and Amazon Elastic MapReduce for ETL Workflows post on the AWS Big Data blog.

Topics

• How to Enable Consistent View (p. 175)

• Objects Tracked By EMRFS (p. 176)

• Retry Logic (p. 177)

• EMRFS Metadata (p. 177)

• Configuring Consistency Notifications for CloudWatch and Amazon SQS (p. 179)

• Configuring Consistent View (p. 180)

• EMRFS CLI Reference (p. 183)

How to Enable Consistent View

You can enable Amazon S3 server-side encryption or consistent view for EMRFS using the AWS
Management Console, AWS CLI, or the emrfs-site configuration classification..

To configure consistent view using the console

1. Choose Create Cluster.

2. Navigate to the File System Configuration section.

3. To enable Consistent view, choose Enabled.

4. For EMRFS Metadata store, type the name of your metadata store. The default value is
EmrFSMetadata. If the EmrFSMetadata table does not exist, it is created for you in DynamoDB.

Note
Amazon EMR does not automatically remove the EMRFS metadata from DynamoDB
when the cluster is terminated.

175

https://blogs.aws.amazon.com/bigdata/post/Tx1WL4KR7SE37YY/Ensuring-Consistency-When-Using-Amazon-S3-and-Amazon-Elastic-MapReduce-for-ETL-W
https://blogs.aws.amazon.com/bigdata/post/Tx1WL4KR7SE37YY/Ensuring-Consistency-When-Using-Amazon-S3-and-Amazon-Elastic-MapReduce-for-ETL-W

Amazon EMR Amazon EMR Release Guide
Consistent View

5. For Number of retries, type an integer value. This value represents the number of times EMRFS
retries calling Amazon S3 if an inconsistency is detected. The default value is 5.

6. For Retry period (in seconds), type an integer value. This value represents the amount of time
that lapses before EMRFS retries calling Amazon S3. The default value is 10.

Note
Subsequent retries use an exponential backoff.

To launch a cluster with consistent view enabled using the AWS CLI

Note
You will need to install the current version of AWS CLI. To download the latest release, see
https://aws.amazon.com//cli/.

Type the following command to launch an Amazon EMR cluster with consistent view enabled.

aws emr create-cluster --instance-type m1.large --instance-count 3 --emrfs
 Consistent=true \
--release-label emr-5.2.1 --ec2-attributes KeyName=myKey

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

To check if consistent view is enabled using the AWS Management Console

To check whether consistent view is enabled in the console, navigate to the Cluster List and select
your cluster name to view Cluster Details. The "EMRFS consistent view" field has a value of Enabled
or Disabled.

To check if consistent view is enabled by examining the emrfs-site.xml file

You can check if consistency is enabled by inspecting the emrfs-site.xml configuration file on the
master node of the cluster. If the Boolean value for fs.s3.consistent is set to true then consistent
view is enabled for file system operations involving Amazon S3.

Objects Tracked By EMRFS
EMRFS creates a consistent view of objects in Amazon S3 by adding information about those objects
to the EMRFS metadata. EMRFS adds these listings to its metadata when:

• An object written by EMRFS during the course of an Amazon EMR job.

• An object is synced with or imported to EMRFS metadata by using the EMRFS CLI.

Objects read by EMRFS are not automatically added to the metadata. When a object is deleted by
EMRFS, a listing still remains in the metadata with a deleted state until that listing is purged using the
EMRFS CLI. To learn more about the CLI, see the section called “EMRFS CLI Reference” (p. 183).
For more information about purging listings in the EMRFS metadata, see the section called “EMRFS
Metadata” (p. 177).

For every Amazon S3 operation, EMRFS checks the metadata for information about the set of objects
in consistent view. If EMRFS finds that Amazon S3 is inconsistent during one of these operations, it will
retry the operation according to parameters defined in emrfs-site.xml. After retries are exhausted,
it will either throw a ConsistencyException or log the exception and continue the workflow. For
more information about this retry logic, see the section called “Retry Logic” (p.). You can find
ConsistencyExceptions in your logs, for example:

• listStatus: No s3 object for metadata item /S3_bucket/dir/object

176

https://aws.amazon.com/cli/

Amazon EMR Amazon EMR Release Guide
Consistent View

• getFileStatus: Key dir/file is present in metadata but not s3

If you delete an object that is being tracked in the EMRFS consistent view directly from Amazon S3,
EMRFS will treat that object as inconsistent because it will still be listed in the metadata as present in
Amazon S3. If your metadata becomes out of sync with the objects it is tracking in Amazon S3, you
can use the sync subcommand on the EMRFS CLI to reset the listings in the metadata to reflect what
is currently in Amazon S3. To find if there is a discrepancy between the metadata and Amazon S3,
you can use the diff subcommand on the EMRFS CLI to compare them. Finally, EMRFS only has
a consistent view of the objects referenced in the metadata; there can be other objects in the same
Amazon S3 path that are not being tracked. When EMRFS lists the objects in an Amazon S3 path, it
will return the superset of the objects being tracked in the metadata and those in that Amazon S3 path.

Retry Logic
EMRFS will try to verify list consistency for objects tracked in its metadata for a specific number
of retries. The default is 5. In the case where the number of retries is exceeded the originating
job returns a failure unless fs.s3.consistent.throwExceptionOnInconsistency is set to
false, where it will only log the objects tracked as inconsistent. EMRFS uses an exponential backoff
retry policy by default but you can also set it to a fixed policy. Users may also want to retry for a
certain period of time before proceeding with the rest of their job without throwing an exception.
They can achieve this by setting fs.s3.consistent.throwExceptionOnInconsistency
to false, fs.s3.consistent.retryPolicyType to fixed, and
fs.s3.consistent.retryPeriodSeconds for the desired value. The following example will create
a cluster with consistency enabled, which will log inconsistencies and set a fixed retry interval of 10
seconds:

Setting retry period to a fixed amount

aws emr create-cluster --release-label emr-5.2.1 \
--instance-type m3.xlarge --instance-count 1 \
--emrfs
 Consistent=true,Args=[fs.s3.consistent.throwExceptionOnInconsistency=false,
 fs.s3.consistent.retryPolicyType=fixed,fs.s3.consistent.retryPeriodSeconds=10]
 --ec2-attributes KeyName=myKey

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

For more information, see the section called “Configuring Consistent View” (p.).

EMRFS Metadata
Note
In order to use consistent view, your data is tracked in a DynamoDB database. Therefore, you
will incur the cost of using that database while it exists.

Amazon EMR tracks consistency using a DynamoDB table to store object state. EMRFS consistent
view creates and uses EMRFS metadata stored in a DynamoDB table to maintain a consistent view of
Amazon S3 and this consistent view can be shared by multiple clusters. EMRFS creates and uses this
metadata to track objects in Amazon S3 folders which have been synced with or created by EMRFS.
The metadata is used to track all operations (read, write, update, and copy), and no actual content is
stored in it. This metadata is used to validate whether the objects or metadata received from Amazon
S3 matches what is expected. This confirmation gives EMRFS the ability to check list consistency
and read-after-write consistency for new objects EMRFS writes to Amazon S3 or objects synced with
EMRFS.

How to add entries to metadata

177

Amazon EMR Amazon EMR Release Guide
Consistent View

You can use the sync or import subcommands to add entries to metadata. sync will simply reflect
the state of the Amazon S3 objects in a path while import is used strictly to add new entries to the
metadata. For more information, see the section called “EMRFS CLI Reference” (p. 183).

How to check differences between metadata and objects in Amazon S3

To check for differences between the metadata and Amazon S3, use the diff subcommand of the
EMRFS CLI. For more information, see the section called “EMRFS CLI Reference” (p. 183).

How to know if metadata operations are being throttled

EMRFS sets default throughput capacity limits on the metadata for its read and write operations at
400 and 100 units, respectively. Large numbers of objects or buckets may cause operations to exceed
this capacity, at which point they will be throttled by DynamoDB. For example, an application may
cause EMRFS to throw a ProvisionedThroughputExceededException if you are performing an
operation that exceeds these capacity limits. Upon throttling the EMRFS CLI tool will attempt to retry
writing to the DynamoDB table using exponential backoff until the operation finishes or when it reaches
the maximum retry value for writing objects from EMR to Amazon S3.

You can also view Amazon CloudWatch metrics for your EMRFS metadata in the DynamoDB console
where you can see the number of throttled read and/or write requests. If you do have a non-zero value
for throttled requests, your application may potentially benefit from increasing allocated throughput
capacity for read or write operations. You may also realize a performance benefit if you see that your
operations are approaching the maximum allocated throughput capacity in reads or writes for an
extended period of time.

Throughput characteristics for notable EMRFS operations

The default for read and write operations is 400 and 100 throughput capacity units, respectively. The
following performance characteristics will give you an idea of what throughput is required for certain
operations. These tests were performed using a single-node m3.large cluster. All operations were
single threaded. Performance will differ greatly based on particular application characteristics and it
may take experimentation to optimize file system operations.

Operation Average read-per-
second

Average write-per-second

create (object) 26.79 6.70

delete (object) 10.79 10.79

delete (directory containing 1000
objects)

21.79 338.40

getFileStatus (object) 34.70 0

getFileStatus (directory) 19.96 0

listStatus (directory containing 1
object)

43.31 0

listStatus (directory containing 10
objects)

44.34 0

listStatus (directory containing
100 objects)

84.44 0

listStatus (directory containing
1,000 objects)

308.81 0

listStatus (directory containing
10,000 objects)

416.05 0

178

http://docs.aws.amazon.com/general/latest/gr/api-retries.html

Amazon EMR Amazon EMR Release Guide
Consistent View

Operation Average read-per-
second

Average write-per-second

listStatus (directory containing
100,000 objects)

823.56 0

listStatus (directory containing 1M
objects)

882.36 0

mkdir (continuous for 120
seconds)

24.18 4.03

mkdir 12.59 0

rename (object) 19.53 4.88

rename (directory containing 1000
objects)

23.22 339.34

To submit a step that purges old data from your metadata store

Users may wish to remove particular entries in the DynamoDB-based metadata. This can help reduce
storage costs associated with the table. Users have the ability to manually or programmatically purge
particular entries by using the EMRFS CLI delete subcommand. However, if you delete entries from
the metadata, EMRFS no longer makes any checks for consistency.

Programmatically purging after the completion of a job can be done by submitting a final step to your
cluster which executes a command on the EMRFS CLI. For instance, type the following command to
submit a step to your cluster to delete all entries older than two days.

aws emr add-steps --cluster-id j-2AL4XXXXXX5T9 --steps
 Name="emrfsCLI",Jar="command-runner.jar",Args=["emrfs","delete","--
time","2","time-unit","days"]
{
 "StepIds": [
 "s-B12345678902"
]
}

Use the StepId value returned to check the logs for the result of the operation.

Configuring Consistency Notifications for CloudWatch and
Amazon SQS

You can enable CloudWatch metrics and Amazon SQS messages in EMRFS for Amazon S3 eventual
consistency issues.

CloudWatch

When CloudWatch metrics are enabled, a metric named Inconsistency is pushed each time a
FileSystem API call fails due to Amazon S3 eventual consistency.

To view CloudWatch metrics for Amazon S3 eventual consistency issues

To view the Inconsistency metric in the CloudWatch console, select the EMRFS metrics and
then select a JobFlowId/Metric Name pair. For example: j-162XXXXXXM2CU ListStatus,
j-162XXXXXXM2CU GetFileStatus, and so on.

179

Amazon EMR Amazon EMR Release Guide
Consistent View

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the Dashboard, in the Metrics section, choose EMRFS.

3. In the Job Flow Metrics pane, select one or more JobFlowId/Metric Name pairs. A graphical
representation of the metrics appears in the window below.

Amazon SQS

When Amazon SQS notifications are enabled, an Amazon SQS queue with the name EMRFS-
Inconsistency-<jobFlowId> is created when EMRFS is initialized. Amazon SQS messages are
pushed into the queue when a FileSystem API call fails due to Amazon S3 eventual consistency.
The message contains information such as JobFlowId, API, a list of inconsistent paths, a stack trace,
and so on. Messages can be read using the Amazon SQS console or using the EMRFS read-sqs
command.

To manage Amazon SQS messages for Amazon S3 eventual consistency issues

Amazon SQS messages for Amazon S3 eventual consistency issues can be read using the EMRFS
CLI. To read messages from an EMRFS Amazon SQS queue, type the read-sqs command and
specify an output location on the master node's local file system for the resulting output file.

You can also delete an EMRFS Amazon SQS queue using the delete-sqs command.

1. To read messages from an Amazon SQS queue, type the following command. Replace
queuename with the name of the Amazon SQS queue that you configured and replace /path/
filename with the path to the output file:

emrfs read-sqs -queue-name queuename -output-file /path/filename

For example, to read and output Amazon SQS messages from the default queue, type:

emrfs read-sqs -queue-name EMRFS-Inconsistency-j-162XXXXXXM2CU -output-
file /path/filename

Note
You can also use the -q and -o shortcuts instead of -queue-name and -output-file
respectively.

2. To delete an Amazon SQS queue, type the following command:

emrfs delete-sqs -queue-name queuename

For example, to delete the default queue, type:

emrfs delete-sqs -queue-name EMRFS-Inconsistency-j-162XXXXXXM2CU

Note
You can also use the -q shortcut instead of -queue-name.

Configuring Consistent View
You can configure additional settings for consistent view by providing them for the /home/hadoop/
conf/emrfs-site.xml file by either using AWS CLI or a bootstrap action. For example, you can
choose a different default DynamoDB throughput by supplying the following arguments to the CLI --
emrfs option or bootstrap action:

180

https://console.aws.amazon.com/cloudwatch/

Amazon EMR Amazon EMR Release Guide
Consistent View

Changing default metadata read and write values at cluster launch

aws emr create-cluster --release-label emr-5.2.1 --instance-type m3.xlarge \
--emrfs Consistent=true,Args=[fs.s3.consistent.metadata.read.capacity=600,\
fs.s3.consistent.metadata.write.capacity=300] --ec2-attributes KeyName=myKey

Alternatively, use the following configuration file and save it locally or in Amazon S3:

[
 {
 "Classification": "emrfs-site",
 "Properties": {
 "fs.s3.consistent.metadata.read.capacity": "600",
 "fs.s3.consistent.metadata.write.capacity": "300"
 }
 }
]

Use the configuration you created with the following syntax:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Hive \
--instance-type m3.xlarge --instance-count 2 --configurations file://./
myConfig.json

Note
For Windows, replace the above Linux line continuation character (\) with the caret (^).

The following options can be set using configurations or AWS CLI --emrfs arguments. For
information about those arguments, see the AWS Command Line Interface Reference.

emrfs-site.xml properties for consistent view

Property Default value Description

fs.s3.consistent false When set to true, this
property configures EMRFS
to use DynamoDB to provide
consistency.

fs.s3.consistent.retryPolicyType exponential This property identifies the
policy to use when retrying for
consistency issues. Options
include: exponential, fixed, or
none.

fs.s3.consistent.retryPeriodSeconds 10 This property sets the length of
time to wait between consistency
retry attempts.

fs.s3.consistent.retryCount 5 This property sets the maximum
number of retries when
inconsistency is detected.

fs.s3.consistent.throwExceptionOnInconsistencytrue This property determines whether
to throw or log a consistency
exception. When set to true,
a ConsistencyException is
thrown.

181

http://docs.aws.amazon.com/cli/latest/reference/

Amazon EMR Amazon EMR Release Guide
Consistent View

Property Default value Description

fs.s3.consistent.metadata.autoCreate true When set to true, this property
enables automatic creation of
metadata tables.

fs.s3.consistent.metadata.tableName EmrFSMetadataThis property specifies the
name of the metadata table in
DynamoDB.

fs.s3.consistent.metadata.read.capacity400 This property specifies the
DynamoDB read capacity to
provision when the metadata table
is created.

fs.s3.consistent.metadata.write.capacity100 This property specifies the
DynamoDB write capacity to
provision when the metadata table
is created.

fs.s3.consistent.fastList true When set to true, this property
uses multiple threads to list a
directory (when necessary).
Consistency must be enabled in
order to use this property.

fs.s3.consistent.fastList.prefetchMetadatafalse When set to true, this property
enables metadata prefetching for
directories containing more than
20,000 items.

fs.s3.consistent.notification.CloudWatchfalse When set to true, CloudWatch
metrics are enabled for FileSystem
API calls that fail due to Amazon
S3 eventual consistency issues.

fs.s3.consistent.notification.SQS false When set to true, eventual
consistency notifications are
pushed to an Amazon SQS queue.

fs.s3.consistent.notification.SQS.queueNameEMRFS-
Inconsistency-
<jobFlowId>

Changing this property allows you
to specify your own SQS queue
name for messages regarding
Amazon S3 eventual consistency
issues.

fs.s3.consistent.notification.SQS.customMsgnone This property allows you to specify
custom information included in
SQS messages regarding Amazon
S3 eventual consistency issues.
If a value is not specified for this
property, the corresponding field in
the message is empty.

fs.s3.consistent.dynamodb.endpoint none This property allows you to specify
a custom DynamoDB endpoint for
your consistent view metadata.

182

Amazon EMR Amazon EMR Release Guide
Consistent View

EMRFS CLI Reference

The EMRFS CLI is installed by default on all cluster master nodes created using AMI 3.2.1 or greater.
You use the EMRFS CLI to manage the metadata, which tracks when objects have a consistent view.

Note
The emrfs command is only supported with VT100 terminal emulation. However, it may work
with other terminal emulator modes.

The emrfs top-level command supports the following structure.

emrfs [[describe-metadata | set-metadata-capacity | delete-metadata | create-
metadata | \
list-metadata-stores | diff | delete | sync | import]] [[options]]
 [[arguments]]

emrfs command

The emrfs command accepts the following [[options]] (with or without arguments).

Option Description Required

-a AWS_ACCESS_KEY_ID
| --access-key
AWS_ACCESS_KEY_ID

The AWS access key you use to write objects to
Amazon S3 and to create or access a metadata store
in DynamoDB. By default, AWS_ACCESS_KEY_ID is
set to the access key used to create the cluster.

No

-s AWS_SECRET_ACCESS_KEY
| --secret-key
AWS_SECRET_ACCESS_KEY

The AWS secret key associated with the access
key you use to write objects to Amazon S3 and to
create or access a metadata store in DynamoDB.
By default, AWS_SECRET_ACCESS_KEY is set to the
secret key associated with the access key used to
create the cluster.

No

-v | --verbose Makes output verbose. No

-h | --help Displays the help message for the emrfs command
with a usage statement.

No

describe-metadata sub-command

The describe-metadata sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

describe-metadata example

The following example describes the default metadata table.

$ emrfs describe-metadata
EmrFSMetadata
 read-capacity: 400

183

Amazon EMR Amazon EMR Release Guide
Consistent View

 write-capacity: 100
 status: ACTIVE
 approximate-item-count (6 hour delay): 12

set-metadata-capacity sub-command

The set-metadata-capacity sub-command accepts the following [[options]] (with or without
arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

-r READ_CAPACITY | --read-
capacity READ_CAPACITY

The requested read throughput capacity for the
metadata table. If the READ_CAPACITY argument is
not supplied, the default value is 400.

No

-w WRITE_CAPACITY
| --write-capacity
WRITE_CAPACITY

The requested write throughput capacity for the
metadata table. If the WRITE_CAPACITY argument is
not supplied, the default value is 100.

No

set-metadata-capacity example

The following example sets the read throughput capacity to 600 and the write capacity to 150 for a
metadata table named EmrMetadataAlt.

$ emrfs set-metadata-capacity --metadata-name EmrMetadataAlt --read-capacity
 600 --write-capacity 150
 read-capacity: 400
 write-capacity: 100
 status: UPDATING
 approximate-item-count (6 hour delay): 0

delete-metadata sub-command

The delete-metadata sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

delete-metadata example

The following example deletes the default metadata table.

$ emrfs delete-metadata

create-metadata sub-command

The create-metadata sub-command accepts the following [[options]] (with or without arguments).

184

Amazon EMR Amazon EMR Release Guide
Consistent View

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

-r READ_CAPACITY | --read-
capacity READ_CAPACITY

The requested read throughput capacity for the
metadata table. If the READ_CAPACITY argument is
not supplied, the default value is 400.

No

-w WRITE_CAPACITY
| --write-capacity
WRITE_CAPACITY

The requested write throughput capacity for the
metadata table. If the WRITE_CAPACITY argument is
not supplied, the default value is 100.

No

create-metadata example

The following example creates a metadata table named EmrFSMetadataAlt.

$ emrfs create-metadata -m EmrFSMetadataAlt
Creating metadata: EmrFSMetadataAlt
EmrFSMetadataAlt
 read-capacity: 400
 write-capacity: 100
 status: ACTIVE
 approximate-item-count (6 hour delay): 0

list-metadata-stores sub-command

The list-metadata-stores sub-command has no [[options]].

list-metadata-stores example

The following example lists your metadata tables.

$ emrfs list--metadata-stores
 EmrFSMetadata

diff sub-command

The diff sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

[s3://s3Path] The path to the Amazon S3 bucket you are tracking
for consistent view that you wish to compare to the
metadata table. Buckets sync recursively.

Yes

diff example

The following example compares the default metadata table to an Amazon S3 bucket.

$ emrfs diff s3://elasticmapreduce/samples/cloudfront
BOTH | MANIFEST ONLY | S3 ONLY

185

Amazon EMR Amazon EMR Release Guide
Consistent View

DIR elasticmapreduce/samples/cloudfront
DIR elasticmapreduce/samples/cloudfront/code/
DIR elasticmapreduce/samples/cloudfront/input/
DIR elasticmapreduce/samples/cloudfront/logprocessor.jar
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-14.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-15.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-16.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-17.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-18.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-19.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/
XABCD12345678.2009-05-05-20.WxYz1234
DIR elasticmapreduce/samples/cloudfront/code/cloudfront-loganalyzer.tgz

delete sub-command

The delete sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

[s3://s3Path] The path to the Amazon S3 bucket you are tracking
for consistent view. Buckets sync recursively.

Yes

-t TIME | --time TIME The expiration time (interpreted using the time unit
argument). All metadata entries older than the TIME
argument are deleted for the specified bucket.

-u UNIT | --time-unit UNIT The measure used to interpret the time argument
(nanoseconds, microseconds, milliseconds, seconds,
minutes, hours, or days). If no argument is specified,
the default value is days.

--read-consumption
READ_CONSUMPTION

The requested amount of available read
throughput used for the delete operation. If the
READ_CONSUMPTION argument is not specified, the
default value is 400.

No

--write-consumption
WRITE_CONSUMPTION

The requested amount of available write
throughput used for the delete operation. If the
WRITE_CONSUMPTION argument is not specified, the
default value is 100.

No

delete example

The following example removes all objects in an Amazon S3 bucket from the tracking metadata for
consistent view.

$ emrfs delete s3://elasticmapreduce/samples/cloudfront

186

Amazon EMR Amazon EMR Release Guide
Consistent View

entries deleted: 11

import sub-command

The import sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

[s3://s3Path] The path to the Amazon S3 bucket you are tracking
for consistent view. Buckets sync recursively.

Yes

--read-consumption
READ_CONSUMPTION

The requested amount of available read
throughput used for the delete operation. If the
READ_CONSUMPTION argument is not specified, the
default value is 400.

No

--write-consumption
WRITE_CONSUMPTION

The requested amount of available write
throughput used for the delete operation. If the
WRITE_CONSUMPTION argument is not specified, the
default value is 100.

No

import example

The following example imports all objects in an Amazon S3 bucket with the tracking metadata for
consistent view. All unknown keys are ignored.

$ emrfs import s3://elasticmapreduce/samples/cloudfront

sync sub-command

The sync sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-m METADATA_NAME
| --metadata-name
METADATA_NAME

METADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

No

[s3://s3Path] The path to the Amazon S3 bucket you are tracking
for consistent view. Buckets sync recursively.

Yes

--read-consumption
READ_CONSUMPTION

The requested amount of available read
throughput used for the delete operation. If the
READ_CONSUMPTION argument is not specified, the
default value is 400.

No

--write-consumption
WRITE_CONSUMPTION

The requested amount of available write
throughput used for the delete operation. If the
WRITE_CONSUMPTION argument is not specified, the
default value is 100.

No

sync example

187

Amazon EMR Amazon EMR Release Guide
Consistent View

The following example imports all objects in an Amazon S3 bucket with the tracking metadata for
consistent view. All unknown keys are deleted.

$ emrfs sync s3://elasticmapreduce/samples/cloudfront
Synching samples/cloudfront 0 added | 0
 updated | 0 removed | 0 unchanged
Synching samples/cloudfront/code/ 1 added | 0
 updated | 0 removed | 0 unchanged
Synching samples/cloudfront/ 2 added | 0
 updated | 0 removed | 0 unchanged
Synching samples/cloudfront/input/ 9 added | 0
 updated | 0 removed | 0 unchanged
Done synching s3://elasticmapreduce/samples/cloudfront 9 added | 0
 updated | 1 removed | 0 unchanged
creating 3 folder key(s)
folders written: 3

read-sqs sub-command

The read-sqs sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-q QUEUE_NAME | --queue-
name QUEUE_NAME

QUEUE_NAME is the name of the Amazon SQS queue
configured in emrfs-site.xml. The default value is
EMRFS-Inconsistency-<jobFlowId>.

Yes

-o OUTPUT_FILE | --output-
file OUTPUT_FILE

OUTPUT_FILE is the path to the output file on the
master node's local file system. Messages read from
the queue are written to this file.

Yes

delete-sqs sub-command

The delete-sqs sub-command accepts the following [[options]] (with or without arguments).

Option Description Required

-q QUEUE_NAME | --queue-
name QUEUE_NAME

QUEUE_NAME is the name of the Amazon SQS queue
configured in emrfs-site.xml. The default value is
EMRFS-Inconsistency-<jobFlowId>.

Yes

Submitting EMRFS CLI Commands as Steps

To add an Amazon S3 bucket to the tracking metadata for consistent view (AWS SDK for Python)

The following example shows how to use the emrfs utility on the master node by leveraging the AWS
CLI or API and the script-runner.jar to run the emrfs command as a step. The example uses the
AWS SDK for Python (Boto) to add a step to a cluster which adds objects in an Amazon S3 bucket to
the default EMRFS metadata table.

from boto.emr import EmrConnection,connect_to_region,JarStep

emr=EmrConnection()
connect_to_region("us-east-1")

188

Amazon EMR Amazon EMR Release Guide
Creating an AWSCredentialsProvider for EMRFS

myStep = JarStep(name='Boto EMRFS Sync',
 jar='s3://elasticmapreduce/libs/script-runner/script-
runner.jar',
 action_on_failure="CONTINUE",
 step_args=['/home/hadoop/bin/emrfs',
 'sync',
 's3://elasticmapreduce/samples/cloudfront'])

stepId = emr.add_jobflow_steps("j-2AL4XXXXXX5T9",
 steps=[myStep]).stepids[0].value

You can use the stepId value returned to check the logs for the result of the operation.

Creating an AWSCredentialsProvider for EMRFS
You can create a custom credentials provider which implements both the AWSCredentialsProvider and
the Hadoop Configurable classes for use with EMRFS when it makes calls to Amazon S3. Creating
a custom credentials provider in this way is useful when an Amazon EMR user may need to provide
different credentials depending on which Amazon S3 bucket is being accessed.

You must specify the full class name of the provider by setting
fs.s3.customAWSCredentialsProvider in the emrfs-site configuration classification. You
set this property at cluster creation time using the AWS CLI. For example, the following code sets
fs.s3.customAWSCredentialsProvider to MyAWSCredentialsProvider.

Use the following configuration file and save it locally or in Amazon S3:

[
 {
 "Classification": "emrfs-site",
 "Properties": {
 "fs.s3.customAWSCredentialsProvider":"MyAWSCredentialsProvider"
 }
 }
]

Use the configuration you created with the following syntax:

aws emr create-cluster --release-label emr-5.2.1 --applications Name=Hive \
--instance-type m3.xlarge --instance-count 2 --configurations file://./
myConfig.json

An example implementation follows:

public class MyAWSCredentialsProvider implements AWSCredentialsProvider,
 Configurable {

 private Configuration conf;
 private String accessKey;
 private String secretKey;

189

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/conf/Configurable.html

Amazon EMR Amazon EMR Release Guide
EMRFS Endpoint Resolution

 private void init() {
 accessKey = conf.get("my.accessKey");
 secretKey = conf.get("my.secretKey");
 }

 @Override
 public AWSCredentials getCredentials() {
 return new BasicAWSCredentials(accessKey, secretKey);
 }

 @Override
 public void refresh() {

 }

 @Override
 public void setConf(Configuration configuration) {
 this.conf = configuration;
 init();
 }

 @Override
 public Configuration getConf() {
 return this.conf;
 }
 }

An alternative implementation allows you to provide the bucket URI when creating an object. That
follows this signature:

class MyCustomCredentialProvider implements AWSCredentialsProvider ,
 Configurable {
 public MyCustomCredentialProvider (Uri uri , Configuration configuration)
 {
 }
}

EMRFS Endpoint Resolution
EMRFS now resolves to the regional endpoints in which a cluster is running when it makes calls
to Amazon S3. Cross-region calls between clusters and buckets not co-located in the same region
may fail. This may affect scripts and other artifacts that use older non-regionalized URIs. For more
information about region-specific Amazon S3 endpoints, see AWS Regions and Endpoints in the
Amazon Web Services General Reference.

Export, Import, Query, and Join Tables in
DynamoDB Using Amazon EMR

Note
The Amazon EMR-DynamoDB Connector is now open-sourced on GitHub. For more
information, see https://github.com/awslabs/emr-dynamodb-connector.

DynamoDB is a fully managed NoSQL database service that provides fast and predictable
performance with seamless scalability. Developers can create a database table and grow its request

190

http://docs.aws.amazon.com/general/latest/gr/rande.html
https://github.com/awslabs/emr-dynamodb-connector

Amazon EMR Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

traffic or storage without limit. DynamoDB automatically spreads the data and traffic for the table over a
sufficient number of servers to handle the request capacity specified by the customer and the amount
of data stored, while maintaining consistent, fast performance. Using Amazon EMR and Hive you can
quickly and efficiently process large amounts of data, such as data stored in DynamoDB. For more
information about DynamoDB go to the DynamoDB Developer Guide.

Apache Hive is a software layer that you can use to query map reduce clusters using a simplified, SQL-
like query language called HiveQL. It runs on top of the Hadoop architecture. For more information
about Hive and HiveQL, go to the HiveQL Language Manual. For more information about Hive and
Amazon EMR, see Apache Hive (p. 87)

You can use Amazon EMR with a customized version of Hive that includes connectivity to DynamoDB
to perform operations on data stored in DynamoDB:

• Loading DynamoDB data into the Hadoop Distributed File System (HDFS) and using it as input into
an Amazon EMR cluster.

• Querying live DynamoDB data using SQL-like statements (HiveQL).

• Joining data stored in DynamoDB and exporting it or querying against the joined data.

• Exporting data stored in DynamoDB to Amazon S3.

• Importing data stored in Amazon S3 to DynamoDB.

To perform each of the following tasks, you'll launch an Amazon EMR cluster, specify the location of
the data in DynamoDB, and issue Hive commands to manipulate the data in DynamoDB.

There are several ways to launch an Amazon EMR cluster: you can use the Amazon EMR console,
the command line interface (CLI), or you can program your cluster using an AWS SDK or the Amazon
EMR API. You can also choose whether to run a Hive cluster interactively or from a script. In this
section, we will show you how to launch an interactive Hive cluster from the Amazon EMR console and
the CLI.

Using Hive interactively is a great way to test query performance and tune your application. After you
have established a set of Hive commands that will run on a regular basis, consider creating a Hive
script that Amazon EMR can run for you.

Warning
Amazon EMR read or write operations on an DynamoDB table count against your established
provisioned throughput, potentially increasing the frequency of provisioned throughput
exceptions. For large requests, Amazon EMR implements retries with exponential backoff to
manage the request load on the DynamoDB table. Running Amazon EMR jobs concurrently
with other traffic may cause you to exceed the allocated provisioned throughput level. You can
monitor this by checking the ThrottleRequests metric in Amazon CloudWatch. If the request
load is too high, you can relaunch the cluster and set the Read Percent Setting (p. 203) or
Write Percent Setting (p. 203) to a lower value to throttle the Amazon EMR operations. For
information about DynamoDB throughput settings, see Provisioned Throughput.

Topics

• Set Up a Hive Table to Run Hive Commands (p. 191)

• Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB (p. 196)

• Optimizing Performance for Amazon EMR Operations in DynamoDB (p. 202)

Set Up a Hive Table to Run Hive Commands
Apache Hive is a data warehouse application you can use to query data contained in Amazon EMR
clusters using a SQL-like language. For more information about Hive, go to http://hive.apache.org/.

191

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#ProvisionedThroughput
http://hive.apache.org/

Amazon EMR Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

The following procedure assumes you have already created a cluster and specified an Amazon EC2
key pair. To learn how to get started creating clusters, see Step 3: Launch an Amazon EMR Cluster in
the Amazon EMR Management Guide.

To run Hive commands interactively

1. Connect to the master node. For more information, see Connect to the Master Node Using SSH in
the Amazon EMR Management Guide.

2. At the command prompt for the current master node, type hive.

You should see a hive prompt: hive>

3. Enter a Hive command that maps a table in the Hive application to the data in DynamoDB. This
table acts as a reference to the data stored in Amazon DynamoDB; the data is not stored locally
in Hive and any queries using this table run against the live data in DynamoDB, consuming the
table’s read or write capacity every time a command is run. If you expect to run multiple Hive
commands against the same dataset, consider exporting it first.

The following shows the syntax for mapping a Hive table to a DynamoDB table.

CREATE EXTERNAL TABLE hive_tablename
 (hive_column1_name column1_datatype, hive_column2_name column2_datatype...)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodb_tablename",
"dynamodb.column.mapping" =
 "hive_column1_name:dynamodb_attribute1_name,hive_column2_name:dynamodb_attribute2_name...");

When you create a table in Hive from DynamoDB, you must create it as an external table using
the keyword EXTERNAL. The difference between external and internal tables is that the data in
internal tables is deleted when an internal table is dropped. This is not the desired behavior when
connected to Amazon DynamoDB, and thus only external tables are supported.

For example, the following Hive command creates a table named hivetable1 in Hive that
references the DynamoDB table named dynamodbtable1. The DynamoDB table dynamodbtable1
has a hash-and-range primary key schema. The hash key element is name (string type), the range
key element is year (numeric type), and each item has an attribute value for holidays (string set
type).

CREATE EXTERNAL TABLE hivetable1 (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

Line 1 uses the HiveQL CREATE EXTERNAL TABLE statement. For hivetable1, you need to
establish a column for each attribute name-value pair in the DynamoDB table, and provide the
data type. These values are not case-sensitive, and you can give the columns any name (except
reserved words).

Line 2 uses the STORED BY statement. The value of STORED BY is the name of the
class that handles the connection between Hive and DynamoDB. It should be set to
'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'.

192

http://docs.aws.amazon.com//emr/latest/ManagementGuide/gsg-launch-cluster.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Amazon EMR Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

Line 3 uses the TBLPROPERTIES statement to associate "hivetable1" with the correct table and
schema in DynamoDB. Provide TBLPROPERTIES with values for the dynamodb.table.name
parameter and dynamodb.column.mapping parameter. These values are case-sensitive.

Note
All DynamoDB attribute names for the table must have corresponding columns in the Hive
table; otherwise, the Hive table won't contain the name-value pair from DynamoDB. If you
do not map the DynamoDB primary key attributes, Hive generates an error. If you do not
map a non-primary key attribute, no error is generated, but you won't see the data in the
Hive table. If the data types do not match, the value is null.

Then you can start running Hive operations on hivetable1. Queries run against hivetable1 are internally
run against the DynamoDB table dynamodbtable1 of your DynamoDB account, consuming read or
write units with each execution.

When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned
a sufficient amount of read capacity units.

For example, suppose that you have provisioned 100 units of read capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more Amazon EMR nodes will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned read capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be
0% complete for several hours. For more detailed status on your job's progress, go to the Amazon
EMR console; you will be able to view the individual mapper task status, and statistics for data reads.
You can also log on to Hadoop interface on the master node and see the Hadoop statistics. This will
show you the individual map task status and some data read statistics. For more information, see the
following topics:

• Web Interfaces Hosted on the Master Node

• View the Hadoop Web Interfaces

For more information about sample HiveQL statements to perform tasks such as exporting or importing
data from DynamoDB and joining tables, see Hive Command Examples for Exporting, Importing, and
Querying Data in DynamoDB (p. 196).

To cancel a Hive request

When you execute a Hive query, the initial response from the server includes the command to cancel
the request. To cancel the request at any time in the process, use the Kill Command from the server
response.

1. Enter Ctrl+C to exit the command line client.

2. At the shell prompt, enter the Kill Command from the initial server response to your request.

Alternatively, you can run the following command from the command line of the master node to kill
the Hadoop job, where job-id is the identifier of the Hadoop job and can be retrieved from the
Hadoop user interface. For more information about the Hadoop user interface, see How to Use the
Hadoop User Interface in the Amazon EMR Developer Guide.

193

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html

Amazon EMR Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

hadoop job -kill job-id

Data Types for Hive and DynamoDB

The following table shows the available Hive data types and how they map to the corresponding
DynamoDB data types.

Hive type DynamoDB type

string string (S)

bigint or double number (N)

binary binary (B)

array number set (NS), string set (SS), or binary set (BS)

The bigint type in Hive is the same as the Java long type, and the Hive double type is the same as the
Java double type in terms of precision. This means that if you have numeric data stored in DynamoDB
that has precision higher than is available in the Hive datatypes, using Hive to export, import, or
reference the DynamoDB data could lead to a loss in precision or a failure of the Hive query.

Exports of the binary type from DynamoDB to Amazon Simple Storage Service (Amazon S3) or HDFS
are stored as a Base64-encoded string. If you are importing data from Amazon S3 or HDFS into the
DynamoDB binary type, it should be encoded as a Base64 string.

Hive Options

You can set the following Hive options to manage the transfer of data out of Amazon DynamoDB.
These options only persist for the current Hive session. If you close the Hive command prompt and
reopen it later on the cluster, these settings will have returned to the default values.

Hive Options Description

dynamodb.throughput.read.percent Set the rate of read operations to keep your DynamoDB
provisioned throughput rate in the allocated range
for your table. The value is between 0.1 and 1.5,
inclusively.

The value of 0.5 is the default read rate, which means
that Hive will attempt to consume half of the read
provisioned throughout resources in the table. Increasing
this value above 0.5 increases the read request rate.
Decreasing it below 0.5 decreases the read request rate.
This read rate is approximate. The actual read rate will
depend on factors such as whether there is a uniform
distribution of keys in DynamoDB.

If you find your provisioned throughput is frequently
exceeded by the Hive operation, or if live read traffic is
being throttled too much, then reduce this value below
0.5. If you have enough capacity and want a faster
Hive operation, set this value above 0.5. You can also

194

Amazon EMR Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

Hive Options Description

oversubscribe by setting it up to 1.5 if you believe there
are unused input/output operations available.

dynamodb.throughput.write.percentSet the rate of write operations to keep your DynamoDB
provisioned throughput rate in the allocated range
for your table. The value is between 0.1 and 1.5,
inclusively.

The value of 0.5 is the default write rate, which means
that Hive will attempt to consume half of the write
provisioned throughout resources in the table. Increasing
this value above 0.5 increases the write request rate.
Decreasing it below 0.5 decreases the write request rate.
This write rate is approximate. The actual write rate will
depend on factors such as whether there is a uniform
distribution of keys in DynamoDB

If you find your provisioned throughput is frequently
exceeded by the Hive operation, or if live write traffic is
being throttled too much, then reduce this value below
0.5. If you have enough capacity and want a faster
Hive operation, set this value above 0.5. You can also
oversubscribe by setting it up to 1.5 if you believe there
are unused input/output operations available or this is the
initial data upload to the table and there is no live traffic
yet.

dynamodb.endpoint Specify the endpoint in case you have tables in different
regions. For more information about the available
DynamoDB endpoints, see Regions and Endpoints.

dynamodb.max.map.tasks Specify the maximum number of map tasks when reading
data from DynamoDB. This value must be equal to or
greater than 1.

dynamodb.retry.duration Specify the number of minutes to use as the timeout
duration for retrying Hive commands. This value must be
an integer equal to or greater than 0. The default timeout
duration is two minutes.

These options are set using the SET command as shown in the following example.

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

195

http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

Hive Command Examples for Exporting, Importing,
and Querying Data in DynamoDB
The following examples use Hive commands to perform operations such as exporting data to Amazon
S3 or HDFS, importing data to DynamoDB, joining tables, querying tables, and more.

Operations on a Hive table reference data stored in DynamoDB. Hive commands are subject to the
DynamoDB table's provisioned throughput settings, and the data retrieved includes the data written to
the DynamoDB table at the time the Hive operation request is processed by DynamoDB. If the data
retrieval process takes a long time, some data returned by the Hive command may have been updated
in DynamoDB since the Hive command began.

Hive commands DROP TABLE and CREATE TABLE only act on the local tables in Hive and do not
create or drop tables in DynamoDB. If your Hive query references a table in DynamoDB, that table
must already exist before you run the query. For more information about creating and deleting tables in
DynamoDB, see Working with Tables in DynamoDB in the Amazon DynamoDB Developer Guide.

Note
When you map a Hive table to a location in Amazon S3, do not map it to the root path of the
bucket, s3://mybucket, as this may cause errors when Hive writes the data to Amazon S3.
Instead map the table to a subpath of the bucket, s3://mybucket/mypath.

Exporting Data from DynamoDB

You can use Hive to export data from DynamoDB.

To export a DynamoDB table to an Amazon S3 bucket

• Create a Hive table that references data stored in DynamoDB. Then you can call the INSERT
OVERWRITE command to write the data to an external directory. In the following example, s3://
bucketname/path/subpath/ is a valid path in Amazon S3. Adjust the columns and datatypes
in the CREATE command to match the values in your DynamoDB. You can use this to create an
archive of your DynamoDB data in Amazon S3.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE DIRECTORY 's3://bucketname/path/subpath/' SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using formatting

• Create an external table that references a location in Amazon S3. This is shown below as
s3_export. During the CREATE call, specify row formatting for the table. Then, when you use
INSERT OVERWRITE to export data from DynamoDB to s3_export, the data is written out in the
specified format. In the following example, the data is written out as comma-separated values
(CSV).

196

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide//WorkingWithTables.html

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col
 array<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket without specifying a column
mapping

• Create a Hive table that references data stored in DynamoDB. This is similar to the preceding
example, except that you are not specifying a column mapping. The table must have exactly one
column of type map<string, string>. If you then create an EXTERNAL table in Amazon S3
you can call the INSERT OVERWRITE command to write the data from DynamoDB to Amazon S3.
You can use this to create an archive of your DynamoDB data in Amazon S3. Because there is
no column mapping, you cannot query tables that are exported this way. Exporting data without
specifying a column mapping is available in Hive 0.8.1.5 or later, which is supported on Amazon
EMR AMI 2.2.x and later.

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3TableName SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using data compression

• Hive provides several compression codecs you can set during your Hive session. Doing so causes
the exported data to be compressed in the specified format. The following example compresses
the exported files using the Lempel-Ziv-Oberhumer (LZO) algorithm.

SET hive.exec.compress.output=true;
SET io.seqfile.compression.type=BLOCK;
SET mapred.output.compression.codec =
 com.hadoop.compression.lzo.LzopCodec;

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)

197

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE lzo_compression_table (line STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE lzo_compression_table SELECT *
FROM hiveTableName;

The available compression codecs are:

• org.apache.hadoop.io.compress.GzipCodec

• org.apache.hadoop.io.compress.DefaultCodec

• com.hadoop.compression.lzo.LzoCodec

• com.hadoop.compression.lzo.LzopCodec

• org.apache.hadoop.io.compress.BZip2Codec

• org.apache.hadoop.io.compress.SnappyCodec

To export a DynamoDB table to HDFS

• Use the following Hive command, where hdfs:///directoryName is a valid HDFS path
and hiveTableName is a table in Hive that references DynamoDB. This export operation is
faster than exporting a DynamoDB table to Amazon S3 because Hive 0.7.1.1 uses HDFS as an
intermediate step when exporting data to Amazon S3. The following example also shows how to
set dynamodb.throughput.read.percent to 1.0 in order to increase the read request rate.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE DIRECTORY 'hdfs:///directoryName' SELECT *
 FROM hiveTableName;

You can also export data to HDFS using formatting and compression as shown above for the
export to Amazon S3. To do so, simply replace the Amazon S3 directory in the examples above
with an HDFS directory.

To read non-printable UTF-8 character data in Hive

• You can read and write non-printable UTF-8 character data with Hive by using the STORED
AS SEQUENCEFILE clause when you create the table. A SequenceFile is Hadoop binary file
format; you need to use Hadoop to read this file. The following example shows how to export data
from DynamoDB into Amazon S3. You can use this functionality to handle non-printable UTF-8
encoded characters.

198

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col
 array<string>)
STORED AS SEQUENCEFILE
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

Importing Data to DynamoDB

When you write data to DynamoDB using Hive you should ensure that the number of write capacity
units is greater than the number of mappers in the cluster. For example, clusters that run on m1.xlarge
EC2 instances produce 8 mappers per instance. In the case of a cluster that has 10 instances, that
would mean a total of 80 mappers. If your write capacity units are not greater than the number of
mappers in the cluster, the Hive write operation may consume all of the write throughput, or attempt
to consume more throughput than is provisioned. For more information about the number of mappers
produced by each EC2 instance type, go to Configure Hadoop (p. 34). There, you will find a "Task
Configuration" section for each of the supported configurations.

The number of mappers in Hadoop are controlled by the input splits. If there are too few splits, your
write command might not be able to consume all the write throughput available.

If an item with the same key exists in the target DynamoDB table, it will be overwritten. If no item with
the key exists in the target DynamoDB table, the item is inserted.

To import a table from Amazon S3 to DynamoDB

• You can use Amazon EMR (Amazon EMR) and Hive to write data from Amazon S3 to DynamoDB.

CREATE EXTERNAL TABLE s3_import(a_col string, b_col bigint, c_col
 array<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE hiveTableName SELECT * FROM s3_import;

199

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

To import a table from an Amazon S3 bucket to DynamoDB without specifying a column
mapping

• Create an EXTERNAL table that references data stored in Amazon S3 that was previously exported
from DynamoDB. Before importing, ensure that the table exists in DynamoDB and that it has the
same key schema as the previously exported DynamoDB table. In addition, the table must have
exactly one column of type map<string, string>. If you then create a Hive table that is linked
to DynamoDB, you can call the INSERT OVERWRITE command to write the data from Amazon S3
to DynamoDB. Because there is no column mapping, you cannot query tables that are imported
this way. Importing data without specifying a column mapping is available in Hive 0.8.1.5 or later,
which is supported on Amazon EMR AMI 2.2.3 and later.

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

INSERT OVERWRITE TABLE hiveTableName SELECT *
FROM s3TableName;

To import a table from HDFS to DynamoDB

• You can use Amazon EMR and Hive to write data from HDFS to DynamoDB.

CREATE EXTERNAL TABLE hdfs_import(a_col string, b_col bigint, c_col
 array<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 'hdfs:///directoryName';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3
 array<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE hiveTableName SELECT * FROM hdfs_import;

Querying Data in DynamoDB

The following examples show the various ways you can use Amazon EMR to query data stored in
DynamoDB.

To find the largest value for a mapped column (max)

• Use Hive commands like the following. In the first command, the CREATE statement creates a
Hive table that references data stored in DynamoDB. The SELECT statement then uses that table
to query data stored in DynamoDB. The following example finds the largest order placed by a
given customer.

200

Amazon EMR Amazon EMR Release Guide
Hive Command Examples for Exporting,

Importing, and Querying Data

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" =
 "customerId:CustomerId,total_cost:Cost,items_purchased:Items");

SELECT max(total_cost) from hive_purchases where customerId = 717;

To aggregate data using the GROUP BY clause

• You can use the GROUP BY clause to collect data across multiple records. This is often used with
an aggregate function such as sum, count, min, or max. The following example returns a list of the
largest orders from customers who have placed more than three orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" =
 "customerId:CustomerId,total_cost:Cost,items_purchased:Items");

SELECT customerId, max(total_cost) from hive_purchases GROUP BY customerId
 HAVING count(*) > 3;

To join two DynamoDB tables

• The following example maps two Hive tables to data stored in DynamoDB. It then calls a join
across those two tables. The join is computed on the cluster and returned. The join does not take
place in DynamoDB. This example returns a list of customers and their purchases for customers
that have placed more than two orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" =
 "customerId:CustomerId,total_cost:Cost,items_purchased:Items");

CREATE EXTERNAL TABLE hive_customers(customerId bigint, customerName
 string, customerAddress array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Customers",
"dynamodb.column.mapping" =
 "customerId:CustomerId,customerName:Name,customerAddress:Address");

Select c.customerId, c.customerName, count(*) as count from hive_customers
 c
JOIN hive_purchases p ON c.customerId=p.customerId

201

Amazon EMR Amazon EMR Release Guide
Optimizing Performance

GROUP BY c.customerId, c.customerName HAVING count > 2;

To join two tables from different sources

• In the following example, Customer_S3 is a Hive table that loads a CSV file stored in Amazon S3
and hive_purchases is a table that references data in DynamoDB. The following example joins
together customer data stored as a CSV file in Amazon S3 with order data stored in DynamoDB to
return a set of data that represents orders placed by customers who have "Miller" in their name.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" =
 "customerId:CustomerId,total_cost:Cost,items_purchased:Items");

CREATE EXTERNAL TABLE Customer_S3(customerId bigint, customerName string,
 customerAddress array<String>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

Select c.customerId, c.customerName, c.customerAddress from
Customer_S3 c
JOIN hive_purchases p
ON c.customerid=p.customerid
where c.customerName like '%Miller%';

Note
In the preceding examples, the CREATE TABLE statements were included in each example
for clarity and completeness. When running multiple queries or export operations against
a given Hive table, you only need to create the table one time, at the beginning of the Hive
session.

Optimizing Performance for Amazon EMR
Operations in DynamoDB
Amazon EMR operations on a DynamoDB table count as read operations, and are subject to the
table's provisioned throughput settings. Amazon EMR implements its own logic to try to balance the
load on your DynamoDB table to minimize the possibility of exceeding your provisioned throughput.
At the end of each Hive query, Amazon EMR returns information about the cluster used to process
the query, including how many times your provisioned throughput was exceeded. You can use this
information, as well as CloudWatch metrics about your DynamoDB throughput, to better manage the
load on your DynamoDB table in subsequent requests.

The following factors influence Hive query performance when working with DynamoDB tables.

Provisioned Read Capacity Units

When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned
a sufficient amount of read capacity units.

202

Amazon EMR Amazon EMR Release Guide
Optimizing Performance

For example, suppose that you have provisioned 100 units of Read Capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more nodes to the Amazon EMR cluster will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned Read Capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be 0%
complete for several hours. For more detailed status on your job's progress, go to the Amazon EMR
console; you will be able to view the individual mapper task status, and statistics for data reads.

You can also log on to Hadoop interface on the master node and see the Hadoop statistics. This will
show you the individual map task status and some data read statistics. For more information, see the
following topics:

• Web Interfaces Hosted on the Master Node

•

Read Percent Setting

By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default read
rate using the dynamodb.throughput.read.percent parameter when you set up the Hive table.
For more information about setting the read percent parameter, see Hive Options (p. 194).

Write Percent Setting

By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default
write rate using the dynamodb.throughput.write.percent parameter when you set up the Hive
table. For more information about setting the write percent parameter, see Hive Options (p. 194).

Retry Duration Setting

By default, Amazon EMR re-runs a Hive query if it has not returned a result within two minutes,
the default retry interval. You can adjust this interval by setting the dynamodb.retry.duration
parameter when you run a Hive query. For more information about setting the write percent parameter,
seeHive Options (p. 194).

Number of Map Tasks

The mapper daemons that Hadoop launches to process your requests to export and query data stored
in DynamoDB are capped at a maximum read rate of 1 MiB per second to limit the read capacity
used. If you have additional provisioned throughput available on DynamoDB, you can improve the
performance of Hive export and query operations by increasing the number of mapper daemons. To
do this, you can either increase the number of EC2 instances in your cluster or increase the number of
mapper daemons running on each EC2 instance.

You can increase the number of EC2 instances in a cluster by stopping the current cluster and re-
launching it with a larger number of EC2 instances. You specify the number of EC2 instances in the

203

http://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-web-interfaces.html

Amazon EMR Amazon EMR Release Guide
Optimizing Performance

Configure EC2 Instances dialog box if you're launching the cluster from the Amazon EMR console, or
with the --num-instances option if you're launching the cluster from the CLI.

The number of map tasks run on an instance depends on the EC2 instance type. For more information
about the supported EC2 instance types and the number of mappers each one provides, go to
Configure Hadoop (p. 34). There, you will find a "Task Configuration" section for each of the supported
configurations.

{
 "configurations": [
 {
 "classification": "mapred-site",
 "properties": {
 "mapred.tasktracker.map.tasks.maximum": "10"
 }
 }
]
}

Parallel Data Requests
Multiple data requests, either from more than one user or more than one application to a single table
may drain read provisioned throughput and slow performance.

Process Duration
Data consistency in DynamoDB depends on the order of read and write operations on each node.
While a Hive query is in progress, another application might load new data into the DynamoDB table
or modify or delete existing data. In this case, the results of the Hive query might not reflect changes
made to the data while the query was running.

Avoid Exceeding Throughput
When running Hive queries against DynamoDB, take care not to exceed your provisioned throughput,
because this will deplete capacity needed for your application's calls to DynamoDB::Get. To ensure
that this is not occurring, you should regularly monitor the read volume and throttling on application
calls to DynamoDB::Get by checking logs and monitoring metrics in Amazon CloudWatch.

Request Time
Scheduling Hive queries that access a DynamoDB table when there is lower demand on the
DynamoDB table improves performance. For example, if most of your application's users live in San
Francisco, you might choose to export daily data at 4 a.m. PST, when the majority of users are asleep,
and not updating records in your DynamoDB database.

Time-Based Tables
If the data is organized as a series of time-based DynamoDB tables, such as one table per day, you
can export the data when the table becomes no longer active. You can use this technique to back up
data to Amazon S3 on an ongoing fashion.

Archived Data
If you plan to run many Hive queries against the data stored in DynamoDB and your application can
tolerate archived data, you may want to export the data to HDFS or Amazon S3 and run the Hive
queries against a copy of the data instead of DynamoDB. This conserves your read operations and
provisioned throughput.

204

Amazon EMR Amazon EMR Release Guide
Amazon Kinesis

Amazon Kinesis
Amazon EMR clusters can read and process Amazon Kinesis streams directly, using familiar tools in
the Hadoop ecosystem such as Hive, Pig, MapReduce, the Hadoop Streaming API, and Cascading.
You can also join real-time data from Amazon Kinesis with existing data on Amazon S3, Amazon
DynamoDB, and HDFS in a running cluster. You can directly load the data from Amazon EMR to
Amazon S3 or DynamoDB for post-processing activities. For information about Amazon Kinesis service
highlights and pricing, see Amazon Kinesis.

What Can I Do With Amazon EMR and Amazon
Kinesis Integration?
Integration between Amazon EMR and Amazon Kinesis makes certain scenarios much easier; for
example:

• Streaming log analysis–You can analyze streaming web logs to generate a list of top 10 error types
every few minutes by region, browser, and access domain.

• Customer engagement–You can write queries that join clickstream data from Amazon Kinesis
with advertising campaign information stored in a DynamoDB table to identify the most effective
categories of ads that are displayed on particular websites.

• Ad-hoc interactive queries–You can periodically load data from Amazon Kinesis streams into
HDFS and make it available as a local Impala table for fast, interactive, analytic queries.

Checkpointed Analysis of Amazon Kinesis Streams
Users can run periodic, batched analysis of Amazon Kinesis streams in what are called iterations.
Because Amazon Kinesis stream data records are retrieved by using a sequence number, iteration
boundaries are defined by starting and ending sequence numbers that Amazon EMR stores in a
DynamoDB table. For example, when iteration0 ends, it stores the ending sequence number in
DynamoDB so that when the iteration1 job begins, it can retrieve subsequent data from the stream.
This mapping of iterations in stream data is called checkpointing. For more information, see Kinesis
Connector.

If an iteration was checkpointed and the job failed processing an iteration, Amazon EMR attempts to
reprocess the records in that iteration, provided that the data records have not reached the 24-hour
limit for Amazon Kinesis streams.

Checkpointing is a feature that allows you to:

• Start data processing after a sequence number processed by a previous query that ran on same
stream and logical name

• Re-process the same batch of data from Amazon Kinesis that was processed by an earlier query

To enable checkpointing, set the kinesis.checkpoint.enabled parameter to true in your scripts.
Also, configure the following parameters:

Configuration Setting Description

kinesis.checkpoint.metastore.table.name DynamoDB table name where checkpoint information
will be stored

kinesis.checkpoint.metastore.hash.key.name Hash key name for the DynamoDB table

kinesis.checkpoint.metastore.hash.range.nameRange key name for the DynamoDB table

205

https://aws.amazon.com//kinesis/
https://aws.amazon.com//elasticmapreduce/faqs/#kinesis-connector
https://aws.amazon.com//elasticmapreduce/faqs/#kinesis-connector

Amazon EMR Amazon EMR Release Guide
Performance Considerations

Configuration Setting Description

kinesis.checkpoint.logical.name A logical name for current processing

kinesis.checkpoint.iteration.no Iteration number for processing associated with the
logical name

kinesis.rerun.iteration.without.wait Boolean value that indicates if a failed iteration can be
rerun without waiting for timeout; the default is false

Provisioned IOPS Recommendations for Amazon DynamoDB
Tables

The Amazon EMR connector for Amazon Kinesis uses the DynamoDB database as its backing for
checkpointing metadata. You must create a table in DynamoDB before consuming data in an Amazon
Kinesis stream with an Amazon EMR cluster in checkpointed intervals. The table must be in the same
region as your Amazon EMR cluster. The following are general recommendations for the number of
IOPS you should provision for your DynamoDB tables; let j be the maximum number of Hadoop jobs
(with different logical name+iteration number combination) that can run concurrently and s be the
maximum number of shards that any job will process:

For Read Capacity Units: j*s/5

For Write Capacity Units: j*s

Performance Considerations
Amazon Kinesis shard throughput is directly proportional to the instance size of nodes in Amazon EMR
clusters and record size in the stream. We recommend that you use m1.xlarge or larger instances on
master and core nodes for production workloads.

Schedule Amazon Kinesis Analysis with Amazon
EMR
When you are analyzing data on an active Amazon Kinesis stream, limited by timeouts and a maximum
duration for any iteration, it is important that you run the analysis frequently to gather periodic details
from the stream. There are multiple ways to execute such scripts and queries at periodic intervals; we
recommend using AWS Data Pipeline for recurrent tasks like these. For more information, see AWS
Data Pipeline PigActivity and AWS Data Pipeline HiveActivity in the AWS Data Pipeline Developer
Guide.

S3DistCp
Topics

• S3DistCp Options (p. 207)

• Adding S3DistCp as a Step in a Cluster (p. 211)

Note
The name of the command for S3DistCp in Amazon EMR 4.x or later is s3-dist-cp.

Apache DistCp is an open-source tool you can use to copy large amounts of data. DistCp uses
MapReduce to copy in a distributed manner—sharing the copy, error handling, recovery, and reporting

206

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-pigactivity.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-pigactivity.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-hiveactivity.html

Amazon EMR Amazon EMR Release Guide
S3DistCp Options

tasks across several servers. For more information about the Apache DistCp open source project, go
to http://hadoop.apache.org/docs/stable/hadoop-distcp/DistCp.html.

S3DistCp is an extension of DistCp that is optimized to work with AWS, particularly Amazon S3. You
use S3DistCp by adding it as a step in a cluster or at the command line. Using S3DistCp, you can
efficiently copy large amounts of data from Amazon S3 into HDFS where it can be processed by
subsequent steps in your Amazon EMR cluster. You can also use S3DistCp to copy data between
Amazon S3 buckets or from HDFS to Amazon S3. S3DistCp is more scalable and efficient for parallel
copying large numbers of objects across buckets and across AWS accounts.

During a copy operation, S3DistCp stages a temporary copy of the output in HDFS on the cluster.
There must be sufficient free space in HDFS to stage the data, otherwise the copy operation fails.
In addition, if S3DistCp fails, it does not clean the temporary HDFS directory, therefore you must
manually purge the temporary files. For example, if you copy 500 GB of data from HDFS to S3,
S3DistCp copies the entire 500 GB into a temporary directory in HDFS, then uploads the data to
Amazon S3 from the temporary directory. When the copy is complete, S3DistCp removes the files from
the temporary directory. If you only have 250 GB of space remaining in HDFS prior to the copy, the
copy operation fails.

If S3DistCp is unable to copy some or all of the specified files, the cluster step fails and returns a non-
zero error code. If this occurs, S3DistCp does not clean up partially copied files.

Important
S3DistCp does not support Amazon S3 bucket names that contain the underscore character.

S3DistCp Options
When you call S3DistCp, you can specify options that change how it copies and compresses data.
These are described in the following table. The options are added to the step using the arguments list.
Examples of the S3DistCp arguments are shown in the following table.

Option Description Required

--src=LOCATION Location of the data to copy. This can be either an
HDFS or Amazon S3 location.

Example: --src=s3://myawsbucket/logs/
j-3GYXXXXXX9IOJ/node

Important
S3DistCp does not support Amazon S3
bucket names that contain the underscore
character.

Yes

--dest=LOCATION Destination for the data. This can be either an HDFS
or Amazon S3 location.

Example: --dest=hdfs:///output

Important
S3DistCp does not support Amazon S3
bucket names that contain the underscore
character.

Yes

--srcPattern=PATTERN A regular expression that filters the copy operation
to a subset of the data at --src. If neither --
srcPattern nor --groupBy is specified, all data at
--src is copied to --dest.

If the regular expression argument contains special
characters, such as an asterisk (*), either the regular

No

207

http://hadoop.apache.org/docs/stable/hadoop-distcp/DistCp.html
http://en.wikipedia.org/wiki/Regular_expression

Amazon EMR Amazon EMR Release Guide
S3DistCp Options

Option Description Required

expression or the entire --args string must be
enclosed in single quotes (').

Example: --srcPattern=.*daemons.*-
hadoop-.*

--groupBy=PATTERN A regular expression that causes S3DistCp to
concatenate files that match the expression. For
example, you could use this option to combine all of
the log files written in one hour into a single file. The
concatenated filename is the value matched by the
regular expression for the grouping.

Parentheses indicate how files should be grouped,
with all of the items that match the parenthetical
statement being combined into a single output
file. If the regular expression does not include a
parenthetical statement, the cluster fails on the
S3DistCp step and return an error.

If the regular expression argument contains special
characters, such as an asterisk (*), either the regular
expression or the entire --args string must be
enclosed in single quotes (').

When --groupBy is specified, only files that match
the specified pattern are copied. You do not need to
specify --groupBy and --srcPattern at the same
time.

Example: --groupBy=.*subnetid.*([0-9]+-
[0-9]+-[0-9]+-[0-9]+).*

No

--targetSize=SIZE The size, in mebibytes (MiB), of the files to create
based on the --groupBy option. This value must be
an integer. When --targetSize is set, S3DistCp
attempts to match this size; the actual size of the
copied files may be larger or smaller than this value.
Jobs are aggregated based on the size of the data
file, thus it is possible that the target file size will
match the source data file size.

If the files concatenated by --groupBy are larger
than the value of --targetSize, they are broken
up into part files, and named sequentially with a
numeric value appended to the end. For example, a
file concatenated into myfile.gz would be broken
into parts as: myfile0.gz, myfile1.gz, etc.

Example: --targetSize=2

No

208

http://en.wikipedia.org/wiki/Regular_expression

Amazon EMR Amazon EMR Release Guide
S3DistCp Options

Option Description Required

--appendToLastFile Specifies the behavior of S3DistCp when copying
to files from Amazon S3 to HDFS which are already
present. It appends new file data to existing files. If
you use --appendToLastFile with --groupBy,
new data is appended to files which match the same
groups. This option also respects the --targetSize
behavior when used with --groupBy.

No

--outputCodec=CODEC Specifies the compression codec to use for the
copied files. This can take the values: gzip, gz,
lzo, snappy, or none. You can use this option,
for example, to convert input files compressed with
Gzip into output files with LZO compression, or to
uncompress the files as part of the copy operation.
If you choose an output codec, the filename will be
appended with the appropriate extension (e.g. for gz
and gzip, the extension is .gz) If you do not specify
a value for --outputCodec, the files are copied
over with no change in their compression.

Example: --outputCodec=lzo

No

--s3ServerSideEncryption Ensures that the target data is transferred using
SSL and automatically encrypted in Amazon S3
using an AWS service-side key. When retrieving
data using S3DistCp, the objects are automatically
unencrypted. If you attempt to copy an unencrypted
object to an encryption-required Amazon S3 bucket,
the operation fails. For more information, see Using
Data Encryption.

Example: --s3ServerSideEncryption

No

--deleteOnSuccess If the copy operation is successful, this option causes
S3DistCp to delete the copied files from the source
location. This is useful if you are copying output files,
such as log files, from one location to another as a
scheduled task, and you don't want to copy the same
files twice.

Example: --deleteOnSuccess

No

--disableMultipartUpload Disables the use of multipart upload.

Example: --disableMultipartUpload

No

--
multipartUploadChunkSize=SIZE

The size, in MiB, of the multipart upload part size.
By default, it uses multipart upload when writing to
Amazon S3. The default chunk size is 16 MiB.

Example: --multipartUploadChunkSize=32

No

--numberFiles Prepends output files with sequential numbers. The
count starts at 0 unless a different value is specified
by --startingIndex.

Example: --numberFiles

No

209

http://docs.aws.amazon.com/AmazonS3/latest/dev//UsingEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev//UsingEncryption.html

Amazon EMR Amazon EMR Release Guide
S3DistCp Options

Option Description Required

--startingIndex=INDEX Used with --numberFiles to specify the first
number in the sequence.

Example: --startingIndex=1

No

--outputManifest=FILENAME Creates a text file, compressed with Gzip, that
contains a list of all the files copied by S3DistCp.

Example: --outputManifest=manifest-1.gz

No

--previousManifest=PATH Reads a manifest file that was created
during a previous call to S3DistCp using
the --outputManifest flag. When the --
previousManifest flag is set, S3DistCp excludes
the files listed in the manifest from the copy
operation. If --outputManifest is specified along
with --previousManifest, files listed in the
previous manifest also appear in the new manifest
file, although the files are not copied.

Example: --previousManifest=/usr/bin/
manifest-1.gz

No

--requirePreviousManifest Requires a previous manifest created during a
previous call to S3DistCp. If this is set to false, no
error is generated when a previous manifest is not
specified. The default is true.

No

--copyFromManifest Reverses the behavior of --previousManifest
to cause S3DistCp to use the specified manifest file
as a list of files to copy, instead of a list of files to
exclude from copying.

Example: --copyFromManifest --
previousManifest=/usr/bin/manifest-1.gz

No

--s3Endpoint=ENDPOINT Specifies the Amazon S3 endpoint to use when
uploading a file. This option sets the endpoint for
both the source and destination. If not set, the default
endpoint is s3.amazonaws.com. For a list of the
Amazon S3 endpoints, see Regions and Endpoints.

Example: --s3Endpoint=s3-eu-
west-1.amazonaws.com

No

--storageClass=CLASS The storage class to use when the destination is
Amazon S3. Valid values are STANDARD and
REDUCED_REDUNDANCY. If this option is not
specified, S3DistCp tries to preserve the storage
class.

Example: --storageClass=STANDARD

No

210

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon EMR Amazon EMR Release Guide
Adding S3DistCp as a Step in a Cluster

Option Description Required

--srcPrefixesFile=PATH a text file in Amazon S3 (s3://), HDFS (hdfs:///) or
local file system (file:/) that contains a list of src
prefixes, one prefix per line.

If srcPrefixesFile is provided, S3DistCp will
not list the src path. Instead, it generates a source
list as the combined result of listing all prefixes
specified in this file. The relative path as compared
to src path, instead of these prefixes, will be used
to generate the destination paths. If srcPattern
is also specified, it will be applied to the combined
list results of the source prefixes to further filter the
input. If copyFromManifest is used, objects in the
manifest will be copied and srcPrefixesFile will
be ignored.

Example: --srcPrefixesFile=PATH

No

In addition to the options above, S3DistCp implements the Tool interface which means that it supports
the generic options.

Adding S3DistCp as a Step in a Cluster
You can call S3DistCp by adding it as a step in your cluster. Steps can be added to a cluster at launch
or to a running cluster using the console, CLI, or API. The following examples demonstrate adding
an S3DistCp step to a running cluster. For more information on adding steps to a cluster, see Submit
Work to a Cluster .

To add an S3DistCp step to a running cluster using the AWS CLI

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

• To add a step to a cluster that calls S3DistCp, pass the parameters that specify how S3DistCp
should perform the copy operation as arguments.

The following example copies daemon logs from Amazon S3 to hdfs:///output. In the
following command:

• --cluster-id specifies the cluster

• Jar is the location of the S3DistCp JAR file

• Args is a comma-separated list of the option name-value pairs to pass in to S3DistCp. For a
complete list of the available options, see S3DistCp Options (p. 207).

To add an S3DistCp copy step to a running cluster, put the following in a JSON file saved
in Amazon S3 or your local file system as myStep.json for this example. Replace
j-3GYXXXXXX9IOK with your cluster ID and replace mybucket with your Amazon S3 bucket
name.

[
 {
 "Name":"S3DistCp step",

211

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/util/Tool.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com//emr/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Amazon EMR Amazon EMR Release Guide
Adding S3DistCp as a Step in a Cluster

 "Args":["s3-dist-cp","--s3Endpoint=s3.amazonaws.com","--src=s3://
mybucket/logs/j-3GYXXXXXX9IOJ/node/","--dest=hdfs:///output","--
srcPattern=.*[a-zA-Z,]+"],
 "ActionOnFailure":"CONTINUE",
 "Type":"CUSTOM_JAR",
 "Jar":"command-runner.jar"
 }
]

aws emr add-steps --cluster-id j-3GYXXXXXX9IOK --steps file://./
myStep.json

Example Copy log files from Amazon S3 to HDFS

This example also illustrates how to copy log files stored in an Amazon S3 bucket into HDFS by adding
a step to a running cluster. In this example the --srcPattern option is used to limit the data copied to
the daemon logs.

To copy log files from Amazon S3 to HDFS using the --srcPattern option, put the following in a
JSON file saved in Amazon S3 or your local file system as myStep.json for this example. Replace
j-3GYXXXXXX9IOK with your cluster ID and replace mybucket with your Amazon S3 bucket name.

[
 {
 "Name":"S3DistCp step",
 "Args":["s3-dist-cp","--s3Endpoint=s3.amazonaws.com","--
src=s3://mybucket/logs/j-3GYXXXXXX9IOJ/node/","--dest=hdfs:///output","--
srcPattern=.*daemons.*-hadoop-.*"],
 "ActionOnFailure":"CONTINUE",
 "Type":"CUSTOM_JAR",
 "Jar":"command-runner.jar"
 }
]

212

Amazon EMR Amazon EMR Release Guide

Command Runner

Many scripts or programs are placed on the shell login path environment so you do not need to specify
the full path when executing them when using command-runner.jar. You also do not have to know
the full path to command-runner.jar. command-runner.jar is located on the AMI so there is no
need to know a full URI as was the case with script-runner.jar.

The following is a list of scripts that can be executed with command-runner.jar:

hadoop-streaming
Submit a Hadoop streaming program. In the console and some SDKs, this is a streaming step.

hive-script
Run a Hive script. In the console and SDKs, this is a Hive step.

pig-script
Run a Pig script. In the console and SDKs, this is a Pig step.

spark-submit
Run a Spark application. In the console, this is a Spark step.

s3-dist-cp
Distributed copy large amounts of data from Amazon S3 into HDFS.

hadoop-lzo
Run the Hadoop LZO indexer on a directory.

The following is an example usage of command-runner.jar using the AWS CLI:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps Name="Command
 Runner",Jar="command-runner.jar",Args=["spark-submit","Args..."]

213

Amazon EMR Amazon EMR Release Guide

Links to All Release Guides

This documentation is for versions 4.x and 5.x of Amazon EMR. For information about Amazon EMR
AMI versions 2.x and 3.x, see the Amazon EMR Developer Guide (PDF).

The following are links to all versions of Amazon EMR Release Guide:

• Release 5.2.1 (this guide)

• Release 5.2.0

• Release 5.1.0

• Release 5.0.3

• Release 5.0.0

• Release 4.8.2

• Release 4.8.0

• Release 4.7.2

• Release 4.7.1

• Release 4.7

• Release 4.6

• Release 4.5

• Release 4.4

• Release 4.3

• Release 4.2

• Release 4.1

• Release 4.0

214

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-5.2.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-5.1.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-5.0.3/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-5.0.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.8.2/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.8.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.7.2/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.7.1/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.7.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.6.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.5.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.4.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.3.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.2.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.1.0/index.html
http://docs.aws.amazon.com//emr/latest/ReleaseGuide/emr-4.0.0/index.html

Amazon EMR Amazon EMR Release Guide

Document History

The following table describes the important changes to the documentation after the last release of
Amazon EMR.

API version: 2009-03-31

Latest documentation update: January 3, 2017

Change Description Release Date

Amazon EMR
Release 5.2.1

This guide supports the Amazon EMR 5.2.1 release. January 3, 2017

215

	Amazon EMR
	Table of Contents
	
	About Amazon EMR Releases
	Applications
	Components
	Learn More

	What's New?
	Release 5.2.1
	Previous Releases
	Release 5.2.0
	Release 5.1.0
	Release 5.0.3
	Release 5.0.0
	Release 4.7.2
	Release 4.7.1
	Release 4.7.0
	Release 4.6.0
	Release 4.5.0
	Release 4.4.0
	Patches Applied

	Release 4.3.0
	Patches Applied

	Release 4.2.0

	Configuring Applications
	Configuring Applications to Use Java 8
	Service ports
	Application users

	Apache Hadoop
	Create or Run a Hadoop Application
	Build Binaries Using Amazon EMR
	Run a Script in a Cluster
	Submitting a Custom JAR Step Using the AWS CLI

	Process Data with Streaming
	Using the Hadoop Streaming Utility
	Submit a Streaming Step
	Submit a Streaming Step Using the Console
	AWS CLI

	Process Data with a Custom JAR
	Submit a Custom JAR Step
	Submit a Custom JAR Step Using the Console
	Launching a cluster and submitting a custom JAR step using the AWS CLI
	Third-party dependencies

	Configure Hadoop
	Hadoop Daemon Settings
	HDFS Configuration
	Task Configuration
	Task JVM Memory Settings

	Ganglia
	Add Ganglia to a Cluster
	View Ganglia Metrics
	Hadoop and Spark Metrics in Ganglia

	Apache HBase
	Creating a Cluster with HBase Using the Console
	Creating a Cluster with HBase Using AWS CLI
	Amazon S3 Storage Mode for HBase
	Enabling Amazon S3 Storage Mode for HBase
	Operational Considerations
	HBase Properties for Amazon S3 Storage Mode Performance Tuning
	Shutting Down and Restoring a Cluster Without Data Loss

	Using the HBase Shell
	Create a Table
	Put a Value
	Get a Value

	Access HBase Tables with Hive
	Using HBase Snapshots
	Configure HBase
	Changes to Memory Allocation in YARN
	HBase Port Numbers
	HBase Site Settings to Optimize
	zookeeper.session.timeout
	hbase.regionserver.handler.count
	hbase.hregion.max.filesize
	hbase.hregion.memstore.flush.size

	View the HBase User Interface
	View HBase Log Files
	Monitor HBase with Ganglia
	Migrating from Previous HBase Versions

	Apache HCatalog
	Creating a Cluster with HCatalog
	Using HCatalog

	Apache Hive
	Differences for Hive on Amazon EMR Versions and Default Apache Hive
	Differences between Apache Hive on Amazon EMR and Apache Hive
	Hive Live Long and Process (LLAP) not Supported

	Differences in Hive Between Amazon EMR Release 4.x and 5.x
	Operational Differences and Considerations
	Performance differences and considerations

	Additional Features of Hive on Amazon EMR
	Amazon EMR Hive Queries to Accommodate Partial DynamoDB Schemas
	Copy Data Between DynamoDB Tables in Different AWS Regions
	Set DynamoDB Throughput Values Per Table

	Create a Hive Metastore Outside the Cluster
	Use the Hive JDBC Driver

	Hue
	Create a Cluster with Hue Installed
	Launch the Hue Web Interface
	Use Hue with a Remote Database in Amazon RDS
	Troubleshooting

	Advanced Configurations for Hue
	Configure Hue for LDAP Users

	Metastore Manager Restrictions

	Apache Mahout
	Apache Oozie
	Apache Phoenix
	Creating a Cluster with Phoenix
	Configuring Phoenix
	Phoenix Clients

	Apache Pig
	Submit Pig Work
	Submit Pig Work Using the Amazon EMR Console
	Submit Pig Work Using the AWS CLI

	Call User Defined Functions from Pig
	Call JAR files from Pig
	Call Python/Jython Scripts from Pig

	Presto
	Adding Database Connectors

	Apache Spark
	Create a Cluster With Spark
	Configure Spark
	Spark Defaults Set By Amazon EMR
	Enabling Dynamic Allocation of Executors
	Spark ThriftServer Environment Variable
	Changing Spark Default Settings

	Access the Spark Shell
	Write a Spark Application
	Scala
	Java
	Python

	Adding a Spark Step
	Overriding Spark Default Configuration Settings

	Accessing the Spark Web UIs

	Apache Flink
	Creating a Cluster with Flink
	Configuring Flink
	Parallelism Options
	Configurable Files

	Working with Flink Jobs in Amazon EMR
	Start a Flink Long-Running YARN Job as a Step
	Submit Work to an Existing, Long-Running Flink YARN Job
	Submit a Transient Flink Job

	Using the Scala Shell
	Finding the Flink Web Interface

	Apache Sqoop
	Apache Tez
	Creating a Cluster with Tez
	Configuring Tez
	Using Tez
	Tez Web UI
	Timeline Server

	Apache Zeppelin
	Apache ZooKeeper
	Data Encryption
	Understanding Encryption Options with Amazon EMR
	At-rest Encryption for Amazon S3 with EMRFS
	Amazon S3 Server-Side Encryption
	Amazon S3 Client-Side Encryption

	At-rest Encryption for Local Disks
	In-Transit Data Encryption

	Enabling Data Encryption with Amazon EMR
	Providing Keys for At-Rest Data Encryption with Amazon EMR
	Using AWS KMS Customer Master Keys (CMKs) for Encryption
	Add the EMR Instance Role to an AWS KMS CMK

	Creating a Custom Key Provider
	Example: Using a Custom Key Provider for Amazon S3 Encryption with EMRFS

	Providing Certificates for In-Transit Data Encryption with Amazon EMR Encryption
	Using PEM Certificates
	Using a Custom Certificate Provider

	Specifying Amazon EMR Encryption Options Using a Security Configuration
	Creating a Security Configuration
	Creating a Security Configuration Using the Console
	Creating a Security Configuration Using the AWS CLI
	Example In-Transit Data Encryption Options
	Example At-rest Data Encryption Options
	AWS CLI Security Configuration JSON Reference

	Using a Security Configuration To Specify Cluster Encryption Settings
	Specifying a Security Configuration Using the Console
	Specifying a Security Configuration Using the CLI

	Specifying Amazon S3 Encryption with EMRFS Using a Cluster Configuration
	Specifying Amazon S3 Server-Side Encryption
	Creating a Cluster with Amazon S3 SSE-S3 Enabled
	Creating a Cluster with Amazon S3 SSE-KMS Enabled
	emrfs-site.xml Properties for SSE-S3 and SSE-KMS

	Specifying Amazon S3 Client-Side Encryption
	Enabling Amazon S3 Client-Side Encryption in the Console
	Selecting a Master Key Stored in AWS KMS Using an SDK or CLI
	Configuring Amazon S3 Client-side Encryption Using a Custom Provider
	Reference Implementation of Amazon S3 EncryptionMaterialsProvider

	emrfs-site.xml Properties for Amazon S3 Client-side Encryption

	Transparent Encryption in HDFS on Amazon EMR
	Configuring HDFS Transparent Encryption in Amazon EMR
	Considerations for HDFS Transparent Encryption
	Hadoop Key Management Server
	Configuring Hadoop KMS in Amazon EMR

	Connectors and Utilities
	EMR File System (EMRFS) (Optional)
	Consistent View
	How to Enable Consistent View
	Objects Tracked By EMRFS
	Retry Logic
	EMRFS Metadata
	Configuring Consistency Notifications for CloudWatch and Amazon SQS
	Configuring Consistent View
	EMRFS CLI Reference
	Submitting EMRFS CLI Commands as Steps

	Creating an AWSCredentialsProvider for EMRFS
	EMRFS Endpoint Resolution

	Export, Import, Query, and Join Tables in DynamoDB Using Amazon EMR
	Set Up a Hive Table to Run Hive Commands
	Data Types for Hive and DynamoDB
	Hive Options

	Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB
	Exporting Data from DynamoDB
	Importing Data to DynamoDB
	Querying Data in DynamoDB

	Optimizing Performance for Amazon EMR Operations in DynamoDB
	Provisioned Read Capacity Units
	Read Percent Setting
	Write Percent Setting
	Retry Duration Setting
	Number of Map Tasks
	Parallel Data Requests
	Process Duration
	Avoid Exceeding Throughput
	Request Time
	Time-Based Tables
	Archived Data

	Amazon Kinesis
	What Can I Do With Amazon EMR and Amazon Kinesis Integration?
	Checkpointed Analysis of Amazon Kinesis Streams
	Provisioned IOPS Recommendations for Amazon DynamoDB Tables

	Performance Considerations
	Schedule Amazon Kinesis Analysis with Amazon EMR

	S3DistCp
	S3DistCp Options
	Adding S3DistCp as a Step in a Cluster

	Command Runner
	Links to All Release Guides
	Document History

