
Authoring dynamic websites with SXML

Peter Bex

February, 2007

1 Introduction

There are roughly two ways of dynamically generating websites. One way is the
PHP way (or Perl, Ruby, etc). This means you simply write some HTML code
and sprinkle code with side-effects in between. There are clear disadvantages to
this. For example, operating on fragments of code must be done on the string-
level, which is too low to do meaningful post-processing without writing ad-hoc
HTML parsers. This also has the disadvantage that malicious or obnoxious
HTML and scripts can be inserted relatively easy in the output by any potential
attackers of your site, unless you take great care to escape HTML characters.

The other way is to use XML. Then you need to learn a number of different
XML technologies like XSL, which includes XSLT and XPath or XQuery. On
top of that, you still need to use a scripting language to express your business
logic (XExpr, or any other scripting language like PHP). XML is also quite hard
to read for a human being because of its verbosity. Any Scheme hacker who has
done some moderate to heavy web programming will be annoyed by this state
of affairs. Why can’t we just use one tool to do it all? Well, we can!

By using SXML instead of these other technologies, you can use your ex-
isting knowledge of Scheme and a handful of procedures that can assist you in
transforming XML in a completely functional way. Another advantage is that
if you happen to have some existing XSL code, you do not have to discard it.
You can simply take that code and feed it XML output from your SXML code
without any problems.

There is quite a bit of information available at the SSAX project page, but
in my opinion it’s quite fragmented and too academic. That’s why I decided to
write this hands-on tutorial. This tutorial is aimed at people who have never
worked with SXML. It is assumed the reader is familiar with XHTML and
has a working knowledge of Scheme. No knowledge of the corresponding XML
technologies is assumed, but it may make it easier for you to understand. If you
do not know Scheme yet, you may want to check out http://www.schemers.org
to see what it’s all about.

1

http://ssax.sourceforge.net
http://www.schemers.org

2 What is SXML?

SXML is simply a way to write XML as s-expressions. The official specifica-
tion for SXML can be found at http://okmij.org/ftp/Scheme/SXML.html. A
simple XHTML page looks like this:

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<title>An example page</title>

</head>

<body>

<h1 id="greeting">Hi, there!</h1>

<p>This is just an >>example<< to show XHTML & SXML.</p>

</body>

</html>

We can translate this to SXML by hand1 and obtain the following:

(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head

(title "An example page"))

(body

(h1 (@ (id "greeting")) "Hi, there")

(p "This is just an >>example<< to show XHTML & SXML.")))

Each element’s tag pair is replaced by a set of parentheses. The tag’s name
is not repeated at the end, it is simply the first symbol in the list. The element’s
contents follow, which are either elements themselves or strings. There is no

special syntax required for XML attributes. In SXML they are simply repre-
sented as just another node, which has the special name of @. This can’t cause
a name clash with an actual “@” tag, because @ is not allowed as a tag name in
XML. This is a common pattern in SXML: Anytime a tag is used to indicate
a special status or something that is not possible in XML, a name is used that
does not constitute a valid XML identifier.

We can also see that there’s no need to “escape” otherwise meaningful char-
acters like & and > as & and > entities. All string content is automatically
escaped because it is considered to be pure content, and has no tags or entities
in it. This also means it is much easier to insert autogenerated content and
there is no danger that we might forget to escape user input when we display it
to other users (which could lead to all kinds of nasty cross-site scripting attacks
or other annoyances).

1If we had translated the XHTML to SXML with a parser like SSAX, we’d end up with a

slightly different structure, because it would interpret and encode the namespace information

differently. To keep things simple, we’ll just treat namespaces as simple attributes here.

2

http://okmij.org/ftp/Scheme/SXML.html

3 SXML for websites

Now we know how to translate any X(HT)ML document to SXML, let’s see how
we can write SXML that gets translated to XHTML. The following illustrates
the typical pattern we’ll see a lot when generating websites:

(define document

’(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head

(title "An example page"))

(body

(h1 (@ (id "greeting")) "Hi, there")

(p "This is just an >>example<< to show XHTML & SXML."))))

(SRV:send-reply (pre-post-order document universal-conversion-rules))

The call to SRV:send-reply has the side-effect of displaying the HTML to
the current output port so if you want it in a string you’ll have to explicitly
capture the current output port (eg, with with-output-to-string or some
other implementation-specific procedure).

The procedure pre-post-order is the core of SXSLT. Right now we’ve only
used it as a translator from generic SXML to something SRV:send-reply can
output. If you just try to run (SRV:send-reply document), you’ll see the
output is some kind of dumb concatenation of the flattened SXML tree. What
pre-post-order does here is transform the SXML tree to some semi-flattened
form of the SXML that can be concatenated so an XML string can be created
by SRV:send-reply. The universal-conversion-rules are rules that tell it
how it can do that. Don’t worry if you don’t understand this yet. We’ll look at
pre-post-order in much more detail in a few moments.

4 Semantic content

If you would only use the information above, you’d already have a very useful
tool at your disposal. You can view any XML tree as a simple Scheme list. This
means that any operation you can perform on lists, you can perform on SXML
as well. A simple but useful example is when we would like to describe our
pages in a more semantic way. For example, we would like to be able to write
the following:

(define semantic-page

’(page "Welcome to my homepage"

(navigation)

(greeting "Hi there")

(p "This is a nice example page")

(footer)))

3

We could use the same structure in every page. Actually, if every single page
has a navigation and footer, we could even leave those out. We can see how
this is a much more semantic way to describe our page. To actually transform
this to valid XHTML, we could use the following code (which could be common
code we include in all pages in our site):

(define (translator content)

(cond

((null? content) ’())

((list? (car content))

(cons (translator (car content))

(translator (cdr content)))) ;; Recurse down into lists

((eq? (car content) ’page)

‘(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head (title ,(cadr content)))

(body ,(translator (cddr content)))))

((eq? (car content) ’greeting)

‘(h1 (@ (id "greeting")) ,(cadr content)))

((eq? (car content) ’navigation)

(cons

‘(ul

(li (a (@ (href "home")) "homepage"))

(li (a (@ (href "about")) "about this site"))

(li (a (@ (href "contact")) "contact us")))

(translator (cdr content))))

((eq? (car content) ’footer)

’(p "Copyright (c) 2007"))

(else (cons (car content) (translator (cdr content))))))

(define document (translator semantic-page))

(SRV:send-reply (pre-post-order document universal-conversion-rules))

I’m sure you’ll agree this explicit rewriting of the SXML tree with custom
code is not exactly fun. We’d like to have some kind of generalised way to do
these rewrites, without having to explicitly write the behaviour every time. In
other words, we’d like to define our transformations in a sort of stylesheet DSL.
This is exactly what SXSLT is. We can write the above as follows:

(define my-rules

‘((page . ,(lambda (tag page-title . contents)

‘(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head (title ,page-title))

(body ,contents))))

(navigation . ,(lambda (tag)

4

‘(ul

(li (a (@ (href "home")) "homepage"))

(li (a (@ (href "about")) "about this site"))

(li (a (@ (href "contact")) "contact us")))))

(greeting . ,(lambda (tag str)

‘(h1 (@ (id "greeting")) ,str)))

(footer . ,(lambda (tag)

‘(p "Copyright (c) 2007")))

(*text* . ,(lambda (tag str) str))

(*default* . ,(lambda x x))))

(SRV:send-reply (pre-post-order

(pre-post-order semantic-page my-rules)

universal-conversion-rules))

Not only is the SXML shorter to write and less error-prone, but it is also
clearer what is happening. Every high-level “tag” we defined is listed on the
left, and the transformation code to run on that tag is shown on the right part.
If you would like to take a look at the generated SXML code, do the following:
(pre-post-order semantic-page my-rules)

4.1 Slowing down a bit

Let’s look at what happens here in more detail by investigating one rule up
close:

(greeting .

,(lambda (tag str)

‘(h1 (@ (id "greeting")) ,str)))

The pre-post-order procedure walks the SXML tree almost in the same
way our custom code did. The custom code simply looked at every element in
the tree to see if it matched one of the expected symbols. But pre-post-order
actually only looks at tags, ie the first symbol of a sublist. If the first rule
does not match, it looks at the next rule, much like our custom code. If it
finds a match for the tag, the tag name and all of its childnodes are passed to
the transformation procedure as arguments. If there are no matches at all, the
default rule is applied, which in this case leaves the content untouched. The
text rule is applied to all leafnodes (ie, non-list nodes, which can be strings
or symbols among other things). More about these special rules later.

In our case, the greeting element has only one element under it, the greet-
ing’s text. This is put inside a h1. If we would like the name of the page to be
printed smaller, we could simply modify this rule and every page would have its
name printed smaller. It would also allow us to attach an id or class to it so we
can target it with CSS for further styling.

If we look at the SXML code again for a second, we see that the greeting
element looks very much like a procedure call to the lambda defined above:

5

’(greeting "Hi there")

The only difference is that the lambda accepts one more argument: the tag’s
name. This can be useful if you use the same procedure for several rules (or for
a *default* rule).

5 Tree traversal methods

We have only seen part of pre-post-order’s power. The procedure is called
that way because there are two different “orders” in which one can traverse an
SXML-tree: Inside-out or outside-in. Let’s look at another example:

(define counter

‘(child-count (children)))

(define counting-rules

‘((child-count .

,(lambda (tag children)

‘(kids ,(length children) ,children)))

(children .

,(lambda (tag) ;; Just create 10 child tags

(list-tabulate 10 (lambda _ ’(child)))))

(*text* .

,(lambda (tag str) str))

(*default* .

,(lambda x x))))

(pre-post-order counter counting-rules)

This is a simple set of rules. The children rule generates 10 child elements.
The child-count rule simply counts its children and puts the number in front
of them. The question is now: Will it count 1 or 10? What it prints depends
on whether pre-post-order traverses the tree pre-order or post-order.

Go ahead and try it out. You’ll see that the default order (the order we’ve
seen up ’till now) is actually post-order, or inside-out. The children are gener-
ated first, and the resulting subtree is used in the call to the child-count rule.
The result is

(kids 10 ((child) (child) (child) (child) (child)

(child) (child) (child) (child) (child)))

If we don’t like this behaviour, we can change the child-count rule’s order:

(child-count *preorder* .

,(lambda (tag children)

‘(kids ,(length children) ,children)))

This will produce the following result:

6

(kids 1 (children))

Wait a minute! That’s not what we expected, is it? The (children) element
isn’t transformed anymore! That’s because *preorder* rules block the trans-
formation process. To obtain truly outside-in behaviour, we need to explicitly
call pre-post-order in the rule:

(child-count *preorder* .

,(lambda (tag children)

(pre-post-order

‘(kids ,(length children) ,children))

counting-rules))

This results in the correct response of

(kids 1 ((child) (child) (child) (child) (child)

(child) (child) (child) (child) (child)))

We could’ve just called pre-post-order on the children, but the shown pat-
tern is so common that there is a shortcut:

(child-count *macro* .

,(lambda (tag children)

‘(kids ,(length children) ,children)))

This does exactly the same as calling pre-post-order on a *preorder*

rule’s result. Be careful not to introduce endless loops this way! If the macro’s
rule returns an element that is transformed by another rule, it may be possible
that there will be no end to the transformations. It is tempting to make ev-
erything *macro* rules, because very often rules produce new content that also
contains tags that need to be rewritten. There are many examples where we
need *macro*, even if we don’t really care about the order of transformation.
Here is one:

(kids . ,(lambda (tag . contents) ‘(h2 ,@contents)))

The kids tag is of course not a valid HTML rule, so we probably want to
reduce it further. If we use the *preorder* rule, the kids node is obviously
not reduced to a h2. But if we use the original post-order rule (the one without
preorder or *macro*), the result doesn’t have pre-post-order applied to it
either. Calling pre-post-order on a post-order rule’s result is wasteful because
it will traverse the whole subtree again. However, if we use *macro*, it will tra-
verse the subtree only once. Unfortunately, we’ll have to traverse the children
rule first, and the resulting tag as well, so we can’t really evade traversing the
tree twice.

(child-count .

,(lambda (tag children)

(pre-post-order

‘(kids ,(length children) ,children))

counting-rules))

7

6 Unescaped content

On certain occasions, you want to enter the raw XML output directly as a string,
without having pre-post-order escape it for you. For example, we might want
to output a HTML document-type:

(define broken-page-rules

‘((page *macro* .

,(lambda (tag title . rest)

‘((doctype)

(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head

(link (@ (rel "stylesheet")

(type "text/css")

(href "layout.css")))

(title ,title))

(body ,@rest)))))

(doctype .

,(lambda (tag)

(string-append

"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\""

" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">")))

(*text* . ,(lambda (tag str) str))

(*default* . ,(lambda x x))))

(define content

’(page "test"

(h1 "blah")))

(SRV:send-reply (pre-post-order

(pre-post-order content broken-page-rules)

universal-conversion-rules))

If we try to build a page with these rules, we’ll see it goes wrong because
the doctype rule is escaped. We can bypass the escaping by extending the
universal-conversion-rules. These rules are just rules like we’ve made our-
selves. They consist of *default* and *text* rules that take care of the es-
caping and translation of lists to tags. We can do it like this:

(define page-rules

‘((page .

,(lambda (tag title . rest)

‘((doctype)

(html (@ (xmlns "http://www.w3.org/1999/xhtml")

(xml:lang "en") (lang "en"))

(head

8

(link (@ (rel "stylesheet")

(type "text/css")

(href "layout.css")))

(title ,title))

(body ,@rest)))))

(*text* . ,(lambda (tag str) str))

(*default* . ,(lambda x x))))

(define doctype-rules

‘((doctype .

,(lambda (tag)

(string-append

"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\""

" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">")))))

(define content

’(page "test"

(h1 "blah")))

(SRV:send-reply (pre-post-order

(pre-post-order content my-rules)

(append doctype-rules universal-conversion-rules)))

7 A few useful tools

In order to streamline this whole stuff a bit, it’s nice to build a few helper
procedures. I will now give you a few tools I’ve found useful when writing my
own pages.

7.1 Hassle-free output

;; Requires SRFI-1, for fold

(define (sxml-apply-rules content . rules)

(fold (lambda (rules content)

(pre-post-order content rules)) content rules))

(define (output-html content . rules)

(SRV:send-reply (apply sxml-apply-rules content rules)))

These two2 are very useful, since we often end up nesting a lot of calls to
pre-post-order, resulting in a big bunch of code just to send the output to
the user’s browser. That’s what sxml-apply-rules is for, now we can just call
(sxml-apply-rules document my-rules universal-conversion-rules). If

2Chicken users will find these in the spiffy-utils egg.

9

we don’t want the resulting SXML, we can call output-html instead of sxml-apply-rules
and it not only applies pre-post-order for each of the rules, but it also sends
the output directly to the browser.

7.2 Entities

I have not yet explained how to output HTML entities like >. If you simply
try to output an entity as a string, you’ll see that the universal-conversion-rules
will recode the & to &, which means that > will look like &gt; in
the final output. This is definitely not what we want. We’ll have to define a
rule that we can add to the universal-conversion-rules. We’ll take the rule
from the Chicken scheme system, which already provides one exactly for this
reason in its default universal-conversion-rules for its sxml-transforms

egg:

(define universal-conversion-rules

(append

universal-conversion-rules

‘((& . ,(lambda (tag . elts)

(map (lambda (elt)

(string-append "&" elt ";"))

elts))))))

Now we can just write a page like this:

;; 10 > 1 and 1 < 10

(define document

’((page "Entities example"

"10 > 1 and 1 " (& "lt") " 10")))

And now it doesn’t matter how many rulesets we apply to this, since only
the final universal-conversion-rules translates.

7.3 Adding classes

Very often, you need to conditionally add a class to an already existing piece of
content. It’s quite useful to be able to have a procedure that does this.

;; Uses sxml-match, SRFI-1 for lset-union

;; and SRFI-13 for string-tokenize and string-join

(define (add-classnames content . new-names)

;; If there are no new names, we can simply return the content.

(if (null? new-names)

content

;; Add the classnames in a clean way, by comparing them

;; against the existing tags and only adding them if they’re

;; not already there.

10

(let ((add (lambda (old-names)

(string-join

(lset-union string=?

new-names

(string-tokenize old-names))))))

;; Little hack to force the tag to get matched.

(sxml-match (cons ’tag (cdr content))

((tag (@ (class ,old-names) . ,rest) . ,body)

‘(,(car content) (@ (class ,(add old-names)) ,@rest) ,@body))

((tag (@ . ,rest) . ,body)

‘(,(car content) (@ (class ,(add "")) ,@rest) ,@body))

((tag . ,body)

‘(,(car content) (@ (class ,(add ""))) ,@body))))))

;; Example use:

(add-classnames ’(p (@ (class "even")) "blah") "selected")

=>

(p (@ (class "selected even")) "blah")

Here, I’ve used the sxml-match library by Jim Bender. This is a pattern
matching library which doesn’t match s-expressions literally, but “knows” about
SXML. This means, among other things, that it disregards attribute orderings.
That’s why it’s possible to match the class in any position even though it’s
listed as the first attribute in the pattern. This library is a valuable addition
to our toolkit. I’ve hacked around a bit to make it match any tag we feed it by
replacing the tag itself in the input to the matcher by a preselected tag called
simply tag. This is because the first element, like in a macro expression, can’t be
variable. I recommend reading the documentation on the SXML-match library
if you would like to know more. The library is part of a bigger web framework
called “WebIt!”, which also includes a Scheme DSL for generating CSS.

It is certainly possible to exclusively use sxml-match for generating your out-
put by macro translation instead of pre-post-order. The disadvantage of this
approach is that rulesets are not composable like they are with pre-post-order.
Otherwise, it seems to be pretty much equivalent in functionality. On the
other hand, if you don’t like the extra dependency, you could also leave out
sxml-match and write the add-classnames procedure manually, but it’s not
going to look pretty.

7.4 Getting child nodes and attributes

Often, you only want to look at the child nodes of an element. SXML can be
tricky because it treats attribute nodes as regular child nodes. This means you
sometimes want to skip those, if they’re there. On other occasions, you want
to be able to assume there are attributes to make your code simpler to follow.
These two procedures will help with this:

(define (child-nodes contents)

11

http://celtic.benderweb.net/sxml-match/manual/index.html
http://celtic.benderweb.net/webit

(sxml-match (cons ’tag (cdr contents))

((tag (@ . ,attribs) . ,rest) rest)

((tag . ,rest) rest)))

(define (attributes contents)

(sxml-match (cons ’tag (cdr contents))

((tag (@ . ,attribs) . ,rest) (cons ’@ attribs))

((tag . ,rest) ’(@))))

7.5 Pretty-printing

The SXML-transforms package also comes with a pp procedure for Scheme sys-
tems which don’t have one natively. This procedure pretty-prints a list structure
in a nicely indented way. This is great for debugging your SXML output.

8 Final example

To tie it all together, I’ll show a complete example. Suppose we’re running a
webshop and we would like to have our products listed in a table. This uses
definitions from earlier in the text. Those are not reproduced here for brevity.

;; Requires SRFI-1 for circular-list and a map that

;; stops after processing the shortest list.

;; Tables, lists etc can be striped visually by

;; adding even/odd class rules in CSS.

(define (stripe . contents)

‘(,(car contents) ,(attributes contents)

,@(map (lambda (contents odd?)

(if odd?

contents

(add-classnames contents "even")))

(child-nodes contents) (circular-list #t #f))))

(define table-rules

‘((table . ,stripe)

(*default* . ,(lambda x x))

(*text* . ,(lambda (tag string) string))))

;; These would normally come from a database or file, hence the id field.

(define products

’((1 "Structure and Interpretation of Computer Programs, 2nd edition"

"Harold Abelson & Gerald Jay Sussman"

"978-0262011532")

(2 "The Art of Computer Programming Volumes 1-3 Boxed Set"

12

"Donald Knuth"

"978-0201485417")

(3 "The Little Schemer, 4th Edition"

"Daniel P. Friedman and Matthias Felleisen"

"978-0262560993")

(4 "The Seasoned Schemer"

"Daniel P. Friedman and Matthias Felleisen"

"978-0262561006")

(5 "The Reasoned Schemer"

"Daniel P. Friedman, William E. Byrd and Oleg Kyselyov"

"978-0262562140")

(6 "The Scheme Programming Language, 3rd Edition"

"R. Kent Dybvig"

"978-0262541480")))

(define id first)

(define title second)

(define author third)

(define isbn fourth)

(define product-rules

‘((products *macro* .

,(lambda (tag)

‘(table

(tr (th "Title") (th "Author") (th "ISBN"))

,@(map (lambda (product)

‘(tr (td (details-link ,product ,(title product)))

(td (details-link ,product ,(author product)))

(td (details-link ,product ,(isbn product)))))

products))))

(details-link .

,(lambda (tag product . contents)

‘(a (@ (href ,(string-append "details.sxml?id="

(number->string (id product)))))

,@contents)))

(*text* . ,(lambda (tag str) str))

(*default* . ,(lambda x x))))

(define document

’(page "Product overview"

(h1 "Products")

(p "Please click on a product to see its details.")

(products)))

(output-html document

product-rules

13

table-rules

page-rules

(append doctype-rules universal-conversion-rules))

Our layout.css can look something like this:

.even {

background-color: #aaff00;

}

Now every even row in the table will have a lime background color. Of
course, you need to write a details.sxml for this page to work as it should.

9 More information

If you would like to know more about SXML, visit the SSAX project homepage
and Oleg Kiselyov’s SXML page. You can find not only the official specification
of SXML here, but also information about other SXML technologies (including
how to write XML-to-SXML parsers). Happy Scheming!

14

http://ssax.sourceforge.net
http://www.okmij.org/ftp/Scheme/xml.html

	Introduction
	What is SXML?
	SXML for websites
	Semantic content
	Slowing down a bit

	Tree traversal methods
	Unescaped content
	A few useful tools
	Hassle-free output
	Entities
	Adding classes
	Getting child nodes and attributes
	Pretty-printing

	Final example
	More information

