
XML, XPath, XSLT implementations as SXML,
SXPath, and SXSLT

Oleg Kiselyov1 and Kirill Lisovsky2

1 FNMOC oleg@okmij.org
2 MISA University lisovsky@acm.org

Abstract. This paper describes S-expression-based implementations of
W3C XML Recommendations, the embedding of XML data and XML
query and manipulation tools into Scheme, and our extensive practical
experience in using these tools. The S-expression-based data format and
query and transformation tools are conformant with W3C Recommen-
dations: XML, XPath, XSLT, and XPointer. The core of our technique
is SXML: an abstract syntax tree of an XML document. SXML is also a
concrete representation of the XML Infoset in the form of S-expressions.
SXML fully supports XML Namespaces, processing instructions, parsed
and unparsed entities. An SSAX parser and pretty-printing tools convert
between SXML and the angular-bracket-format of XML documents.
All SXML query and manipulation tools are implemented in Scheme.
XPath expressions, XSLT patterns and XPointer notation are translated
into Scheme data structures and functions. SXML tree is a data struc-
ture, but it can be directly evaluated as if it were an expression. These
features make XML data and XML processing a part of Scheme and
eliminate a lexical barrier for XML processing. A combination of W3C
conformance with seamless integration into a programming language is
a distinctive feature of our tools.
We have used our approach in real-life commercial and government appli-
cations for over two years. We provide production examples of a weather
data dissemination system, XML transformation systems, and web ser-
vices.
Keywords: XML, SXML, SXPath, SXSLT, SXPointer, STX, Scheme.

1 Introduction

In this paper, we describe S-expression-based implementations of W3C XML
Recommendations: XML, XPath, and XSLT. We have written these tools out of
practical necessity, and we have used them in real-life projects for over two years.
Our work of developing weather data web services and supply-chain management
systems requires advanced manipulation of XML documents. For example, ele-
ment selection predicates may have to relate points and areas on the globe, to
query external data sources, and to evaluate complex business logic. Although
some of these algorithms could, in principle, be written in XSLT, the corre-
sponding code will be beyond comprehension. XSLT has never been intended to
be a general-purpose programming language [21]. On the other hand, we have
to preserve an investment into XSLT presentation stylesheets and XSLT skills.
Therefore, we needed tools that "natively understand the data structures inher-
ent in XML and enable optimized algorithms for processing it" [1]. At the same
time the tools must be conformant and compatible with the W3C Recommen-
dations. Ideally the tools should let us blend XPath and XSLT on one hand, and
the advanced XML processing on the other hand.



The goal of a seamless extension of the W3C XML processing model cannot
be easily achieved with Java: Java by nature is an imperative language, whereas
XSLT is not. We have reached our goal with Scheme. The choice of Scheme
arises from an observation that XML as a datatype follows the nested con-
tainment model. Hierarchies of containers that comprise text strings and other
containers can be naturally described by S-expressions. S-expressions are easy to
parse into an e�cient internal representation that is suitable for transformation,
manipulation, and evaluation. These properties make S-expressions suitable to
represent abstract syntax of XML. On the other hand, S-expressions turned out
to be convenient programming notation (much to the surprise of their inventor).
S-expressions that represent XML data, SXML, can therefore be evaluated as
if they were code. Thus a real, mature programming language for manipulating
XML data structures looks exactly like the data structures themselves.

Section 2 describes the XML data model and introduces abstract syntax of
XML. Section 3 discusses SXML query language SXPath which is also an imple-
mentation of XPath. Section 4 introduces (S)XML transformations. SXPointer
is introduced in [12]; space constraints prevent us from providing more detailed
discussion. All examples in Sections 2-4 are borrowed from real-life, production
use of SXML and SXML-based technologies. Section 5 considers one such exam-
ple in more detail. The �nal two sections brie�y mention other approaches to
XML transformations and conclude.

2 SXML

XML has brought S-expressions back to the fore, albeit in a veiled format and
burdened with heavy syntax. Stripping o� the syntax � that is, parsing an XML
document � yields its abstract syntax tree: a hierarchy of containers comprised of
text strings and other containers. Salient features of this hierarchy are described
by the XML Infoset [18]. A Document Object Model (DOM) tree, produced by
many XML parsers, is one concrete realization of the XML Infoset. The Infoset
can also be realized by S-expressions, which are eminently suitable for represen-
tation of nested containers. SXML Speci�cation [9] de�nes such a realization.
The fact that SXML represents "parsed" XML makes SXML concise and its
applications simple. On the other hand, the fact that SXML is concrete lets us
store and communicate SXML expressions, print them out and even write them
by hand.

We must stress that SXML represents XML in every detail, including names-
paces, external entities, processing instructions. SXML is an extensible format
and permits additions of items that, while preserving XML "semantics", can
speed up processing: backpointers to the parent or other ancestor elements,
hashes of element ids, etc. An XML document represents attributes, processing
instructions, namespace speci�cations and other meta-data di�erently from the
element markup. By contrast, SXML represents element content and meta-data
uniformly � as tagged lists. This uniform treatment of attributes and elements is
argued by James Clark [2] as a virtue. The uniformity of the SXML representa-
tion for elements, attributes, and processing instructions simpli�es queries and
transformations.

An XML document can be converted into SXML by any parser. In particu-
lar, an SSAX parser [8] includes a dedicated function SSAX:XML->SXML for this
purpose.

Figures 1 and 2 show a sample XML document and its representation in
SXML. The XML document is a 24-hour Terminal Aerodrome Forecast (TAF)



for a Paris/Orly airport. Such forecasts are issued by every airport and are
distributed by a network of weather services, e.g., Metcast [5]. Metcast is distin-
guished by being the �rst production service to disseminate synoptic observa-
tions, forecasts and advisories in XML. The particular markup format, OMF, is
described in [4]. The document in Fig. 1 is an actual reply of a Metcast server.

<!DOCTYPE Forecasts SYSTEM "OMF.dtd">
<Forecasts TStamp="1004046956">
<TAF TStamp='1004029200' LatLon='48.716, 2.383' BId='71490'

SName='LFPO, PARIS/ORLY'>
<VALID TRange='1004032800, 1004065200'>251700Z 251803</VALID>
<PERIOD TRange='1004032800, 1004065200'>

<PREVAILING>21007KT 9999 SCT025 BKN035</PREVAILING>
<VAR Title='BECMG 1820' TRange='1004032860, 1004040000'>

18005KT CAVOK</VAR>
<VAR Title='BECMG 0002' TRange='1004054400, 1004061600'>

6000 SCT035 SCT090 BKN250</VAR>
</PERIOD></TAF></Forecasts>

Fig. 1. A sample TAF report in XML

(*TOP* (Forecasts (@ (TStamp "1004046956"))
(TAF (@ (TStamp 1004029200) (LatLon "48.716, 2.383")

(BId "71490") (SName "LFPO, PARIS/ORLY"))
(VALID (@ (TRange "1004032800, 1004065200")) "251700Z 251803")
(PERIOD (@ (TRange "1004032800, 1004065200"))

(PREVAILING "21007KT 9999 SCT025 BKN035")
(VAR (@ (Title "BECMG 1820") (TRange "1004032860, 1004040000"))

"18005KT CAVOK")
(VAR (@ (Title "BECMG 0002") (TRange "1004054400, 1004061600"))

"6000 SCT035 SCT090 BKN250")))))

Fig. 2. The sample TAF report in SXML

Representation of XML Namespaces in SXML is demonstrated in Figure 3.
The XML snippet is actually taken from the XML Namespaces Recommenda-
tion. It is very close to shipping documents that we encountered in some of our
projects. SXML treats namespaces in a manner intended by the XML Names-
paces Recommendation. This subject is discussed in [9] in more detail.

3 Queries

XPath [20] is a basic query language of XML, which is used to access an abstract
XML data structure in XSLT, XPointer, and XLink W3C Recommendations.
Queries over SXML documents are likewise expressed in SXPath. Just as SXML
is closely related to XML, so is SXPath to XPath. XPath addresses an abstract
XPath data structure; SXPath queries SXML, which is a concrete representation
of the XPath data structure. Both the abbreviated and full-form XPath notations
�nd their counterpart in SXPath. Just as XML can be translated into SXML,



<RESERVATION
xmlns:HTML=
'http://www.w3.org/TR/REC-html40'>

<NAME HTML:CLASS="largeSansSerif">
Layman, A</NAME>

<SEAT CLASS='Y'
HTML:CLASS="largeMonotype">33B</SEAT>

<HTML:A HREF='/cgi-bin/ResStatus'>
Check Status</HTML:A>

<DEPARTURE>1997-05-24T07:55:00+1
</DEPARTURE></RESERVATION>

(*TOP* (*NAMESPACES*
(HTML "http://www.w3.org/TR/REC-html40"))

(RESERVATION
(NAME (@ (HTML:CLASS "largeSansSerif"))

"Layman, A")
(SEAT (@ (HTML:CLASS "largeMonotype")

(CLASS "Y"))
"33B")

(HTML:A (@ (HREF "/cgi-bin/ResStatus"))
"Check Status")

(DEPARTURE "1997-05-24T07:55:00+1")))

Fig. 3. A sample XML document with XML namespaces, and its SXML form

XPath expressions can similarly be translated into SXPath. This translation
makes SXPath a compliant implementation of the XPath Recommendation.

Similarly to XPath, SXPath has several levels: lower-level predicates, �lters,
selectors and combinators; and higher-level, abbreviated SXPath notation. The
latter has two formats: a list of location path steps ("native" SXPath), or a char-
acter string of a XPath expression ("textual" SXPath). The format of the latter
string is de�ned in the W3C XPath Recommendation [20]. Native SXPath ex-
pressions can be regarded a "parsed" form of XPath. Low-level SXPath functions
constitute a virtual machine into which both kinds of higher-level expressions
are compiled.

For example, given a TAF SXML expression in Fig. 2, we can determine the
validity time ranges of the forecasts by evaluating:

((sxpath '(// TAF VALID @ TRange *text*)) document)

using the native higher-level SXPath notation, or

((txpath "//TAF/VALID/@TRange/text()") document)

with the textual SXPath. The �rst argument of txpath is a fully XPath-
compliant location path. Both functions sxpath and txpath translate into a
low-level SXPath expression:

((node-join
(node-closure (node-typeof? 'TAF))
(select-kids (node-typeof? 'VALID))
(select-kids (node-typeof? '@))
(select-kids (node-typeof? 'TRange))
(select-kids (node-typeof? '*text*)))

document)

Such SXPath expressions are used in a Scheme servlet that translates OMF TAF
documents sent by a Metcast server into a simple web page for presentation on a
PalmPilot-like handheld equipped with a wireless receiver. The servlet is part of
an aviation weather query tool [7] for operational users and small plane pilots.

SXPath expressions can be more complex: for example, given a booking
record in Fig. 3 we can select the names of the passengers with con�rmed reser-
vations as follows:



((sxpath
`(// (RESERVATION (

,(lambda (res-node)
(run-check-status

; URL of the confirmation script
(car ((sxpath '(HTML:A @ HREF *text*)) res-node))
((select-kids (node-typeof? '(NAME SEAT DEPARTURE)))
res-node)))

)) NAME *text*)) document)

We have seen that full-form or abbreviated SXPath expressions are S-
expressions. The full-form SXPath is actually a library of primitive �lters, se-
lectors and combinators that can be combined in arbitrary ways � as well as
combined with standard Scheme and user-de�ned functions. Abbreviated SX-
Path expressions are S-expressions that may include procedures and lambda-
expressions, which thus extend the set of selectors and predicates de�ned in
XPath. For example, the reservation query above relies on a custom predicate
to retrieve a dynamic web page and check the status. The predicate invokes
high and low-level SXPath functions to access particular �elds of the reservation
record. The ability to use Scheme functions as SXPath predicates, and to use
SXPath selectors in Scheme functions makes SXPath a truly extensible language.
A user can compose SXML queries following the XPath Recommendation � and
at the same time rely on the full power of Scheme for custom selectors.

4 S-expressions and transformations

The W3C XML transformation language XSLT [21] de�nes XML transforma-
tions as converting a source (abstract XML syntax) tree into a result tree. The
conversion can be thought of as a recursive traversal/mapping process: we visit
tree nodes, locate the corresponding node mapping handler in the transforma-
tion environment and execute the handler. If we traverse the tree in pre-order
the handler is applied to the branch of the source tree. We can also employ a
post-order mode: once we enter a branch, we �rst traverse its children and apply
the handler to the transformed children. The handler can be located by the name
of an element node or by more complex criteria. If an XML tree is realized as an
SXML expression, the described process is literally implemented by a function
pre-post-order whose complete code is part of the SSAX project [15]. The func-
tion takes a source SXML tree and the transformation environment and yields
the result tree. The environment is a list of associations of node names with
the corresponding transformers. Special bindings *text* and *default* may
be used in order to de�ne catch-all transformation rules for elements and atomic
data. The transformation environment passed to pre-post-order is essentially
a transformation stylesheet. It is also an S-expression. Thus the document to
transform and its transformation are expressed uniformly in the same language.

We should note that a transformation of an SXML tree in post-order is
equivalent to its evaluation as if it were a piece of Scheme code. Pre-order trans-
formations are similar to macro-expansions of the tree � again, as if it were a
piece of Scheme code. The pre-order traversal is built into XSLT.

One example of SXML transformations is pretty-printing of SXML into
HTML, XML or LATEX. Incidentally, this facility lets us author a text in SXML
and then convert it into a web page or a printed document. When writing a
text in SXML we can use higher-order tags (similar to LATEXmacros) to make



the markup more logical. Compared to LATEXmacros, SXML markup is more ex-
pressive: for example, the process of expansion of one SXML tag can re-scan the
entire SXML document with a di�erent stylesheet. Such a re�exive behavior is a
necessity while generating hierarchical tables of contents or resolving cross- and
citation references. The SXML Speci�cation is an example of such a higher-order
markup. The speci�cation is written in SXML itself and relies on higher-order
tags to describe SXML grammar in a concise and abstract way. The present
paper is also written in SXML and then converted into PDF through LATEX.

Another example of SXSLT is an XML transformation system STX [11],
which, on the surface, is a processor for a frequently-used subset of XSLT and
therefore compatible with the W3C XSLT Recommendation [21]. Behind the
scene, STX translates both the source document and the stylesheet into SXML,
and then literally applies one to the other. Therefore, STX permits embedding of
Scheme functions into XSLT templates (scm:eval) to express complex business
logic. More importantly, STX allows an advanced user to write template rules
as regular �rst-class Scheme functions (scm:template) similarly to the SXML
transformers in the pre-post-order stylesheets described above.

STX was originally designed as one of the development tools for ECIS (Ex-
tranet Customer Information System) project in the IT department of the
Moscow branch of Cargill Enterprises Inc. Eventually it evolved into a general-
purpose XML transformation tool that provides the full power of Scheme pro-
gramming language for complex transformation and business logic implementa-
tion and at the same time allows to reuse existing XSLT skills and presentational
stylesheets.

5 Detailed Example: Concise XML Authoring
In this section, we elaborate a non-contrived and less-trivial example of
building XML documents from S-expressions. It is straightforward to convert
<tag>data</tag> into (tag "data") and vice versa. The SSAX parser and
the SXML manipulation tools can do that easily. However, exporting relational
sources into XML often runs into an impedance mismatch: XML by nature is a
hierarchical database. We will provide an example of generating XML from S-
expressions that involves denormalizations, table joins and third-order tags. The
S-expression format turns out to be not only more understandable and insightful,
but also four times shorter.

The example is based on a real-life project of preparing a submission of
a synoptic markup format OMF [4] for U.S. Department of Defense's XML
registry. The registry [3] accepts submissions of XML formats as collections of
DTD/Schema documents, textual descriptions, sample code, etc. Every submis-
sion package must include a Manifest.xml �le, which describes all containing
documents as well as every markup element and its attributes.

Figure 4 shows a representative example of the manifest �le. The snippets
are taken from the actual Manifest.xml [22] and edited for brevity. They are
still hardly readable. The OMF submission contained 109 resources; therefore,
preparing such a manifest manually was out of the question. We will see shortly
how that ugly document can be represented in a concise and pleasing form.

The manifest �le is essentially a collection of resource descriptions and of
statements of resource relationships. It seemed logical then to make such a struc-
ture explicit. Figure 5 shows SXML code that corresponds to the superset of the
XML snippets. The SXML code is translated into Manifest.xml by a function
pre-post-order described in Section 4. The SXML code and a transformation
stylesheet for pre-post-order make up the �le Manifest.scm [23].



Description of a sample XML document:

<AddTransaction><EffectiveDate>27 February 2001</EffectiveDate>
<Definition>OMF Example: METAR/SYNOP/SPECI</Definition>
<Namespace>MET</Namespace>
<InformationResourceName>OMF-sample.xml</InformationResourceName>
<InformationResourceVersion>OMF2.2</InformationResourceVersion>
<InformationResourceTypeXMLSample>
<InformationResourceLocation>OMF-sample.xml</InformationResourceLocation>
<Relationships><DescribedBy><Namespace>MET</Namespace>
<InformationResourceName>OMF-SYNOP.html</InformationResourceName>
<InformationResourceVersion>OMF2.2</InformationResourceVersion>
</DescribedBy></Relationships>
</InformationResourceTypeXMLSample></AddTransaction>

Description of one XML element (element BTSC) within the submitted collection:

<AddTransaction><EffectiveDate>12 April 2000</EffectiveDate>
<Definition>an observation report on temperature, salinity and
currents at one particular location on the ocean surface, or in
subsurface layers</Definition><Namespace>MET</Namespace>
<InformationResourceName>BTSC</InformationResourceName>
<InformationResourceVersion>OMF4.1</InformationResourceVersion>
<InformationResourceTypeXMLElement><DataTypeContainer><Contains><Namespace>MET</Namespace>
<Contains><Namespace>MET</Namespace>
<InformationResourceName>BTLEVELS</InformationResourceName>
<InformationResourceVersion>OMF4.1</InformationResourceVersion>
</Contains></DataTypeContainer>
<Relationships><IsQualifiedByAttribute><Namespace>MET</Namespace>
<InformationResourceName>TStamp</InformationResourceName>
<InformationResourceVersion>OMF4.1</InformationResourceVersion>
</IsQualifiedByAttribute>
<IsQualifiedByAttribute><Namespace>MET</Namespace>
<InformationResourceName>Depth</InformationResourceName>
<InformationResourceVersion>OMF4.1</InformationResourceVersion>
</IsQualifiedByAttribute>
<DescribedBy><Namespace>MET</Namespace>
<InformationResourceName>OMF-BATHY.html</InformationResourceName>
<InformationResourceVersion>OMF1.4</InformationResourceVersion>
</DescribedBy></Relationships>
</InformationResourceTypeXMLElement></AddTransaction>

Description of an attribute, TStamp, which annotates a BTSC element:

<AddTransaction><EffectiveDate>12 April 2000</EffectiveDate>
<Definition>Time Stamp</Definition><Namespace>MET</Namespace>
<InformationResourceName>TStamp</InformationResourceName>
<InformationResourceVersion>OMF4.1</InformationResourceVersion>
<InformationResourceTypeXMLAttribute><DataTypeInteger><IntegerLength>10</IntegerLength>
<IntegerUnitMeasure>second</IntegerUnitMeasure>
</DataTypeInteger>
<Relationships><DescribedBy><Namespace>MET</Namespace>
<InformationResourceName>OMF.html</InformationResourceName>
<InformationResourceVersion>OMF2.2</InformationResourceVersion>
</DescribedBy></Relationships>
</InformationResourceTypeXMLAttribute></AddTransaction>

Fig. 4. Manifest of an XML registry submission



(Resource "OMF.html"
"Weather Observation Definition Format (OMF) Document"
"10 March 2000" "2.2")

(DescribeDoc "OMF.html")

(Resource "OMF-SYNOP.html"
"Surface Weather Reports from land and sea stations"
"12 April 2000" "2.2")

(DescribeDoc "OMF-SYNOP.html")

(Resource "BTSC" "an observation report on temperature, salinity
and currents at one particular location on the ocean surface, or
in subsurface layers" "12 April 2000" "4.1")

(Resource "BTID" "identification and position data, which
constitute Section 1 of FM 62 - 64." "12 April 2000" "4.1")

(Resource "BTLEVELS" "a sequence of BTLEVEL elements for each
particular (sub)surface level described in a whole BTSC report"
"12 April 2000" "4.1")

(XMLElement "BTSC" (DTContainer "BTID" "BTCODE" "BTLEVELS")
"OMF-BATHY.html"
(Attlist "TStamp" "LatLon" "BId" "SName" "Title" "Depth"))

(XMLElement "BTID" (DTString 40) "OMF-BATHY.html"
(Attlist "DZ" "Rec" "WS" "Curr-s" "Curr-d" "AV-T" "AV-Sal"

"AV-Curr" "Sal"))

(Resource "TD" "The dew-point temperature" "12 April 2000" "4.1")
(Resource "TRange" "Time Interval" "12 April 2000" "4.1")
(Resource "TStamp" "Time Stamp" "12 April 2000" "4.1")

(XMLAttr "TD" (DTFloat 6 2 "deg C") #f "OMF-SYNOP.html")
(XMLAttr "TRange" (DTString 30) #f "OMF.html")
(XMLAttr "TStamp" (DTInt 10 "second") #f "OMF.html")

Fig. 5. The Manifest �le in SXML



Let us consider two S-expressions from Fig. 5 in more detail:

(Resource "OMF-SYNOP.html"
"Surface Weather Reports from land and sea stations"
"12 April 2000" "2.2")

(DescribeDoc "OMF-SYNOP.html")

If we take a naive view of SXML-to-XML transformations, we might think that
the corresponding Manifest.xml document [22] will include tags <Resource> and
<DescribeDoc>. In fact, the XML manifest document contains neither. The S-
expression Resource merely declares the resource and serves as a container of its
attributes: its name, documentation string, modi�cation date and version. Dur-
ing the SXML transformation, the S-expression translates to nothing: the follow-
ing is the handler for the Resource tag in the SXML transformation stylesheet.

(Resource . ,(lambda (tag name title date version)
'())) ; null expansion

Resources are described di�erently depending on their type. For example,
(DescribeDoc "OMF-SYNOP.html") tells that OMF-SYNOP.html is a textual
document. This S-expression will be transformed according to the following
stylesheet rule:

(DescribeDoc ; Describe a document resource
. ,(lambda (tag name)

(generate-XML
`(AddTransaction
(Resource-descr ,name)
(InformationResourceTypeDocument
(InformationResourceLocation ,name)
)))))

The rule expands DescribeDoc into a set of SXML elements required by the
registry (e.g., InformationResourceTypeDocument), which are distinguished
by their unwieldy names. The DescribeDoc handler invokes the transforma-
tion function recursively, to e�ect the second pass. The pass will transform
(Resource-descr "OMF-SYNOP.html") according to the rule:

; Locate a named resource and expand into its full description.
(Resource-descr
. ,(lambda (tag name)

(let-values* (((name title date version)
(lookup-res name)))

(generate-XML
(list
(list 'EffectiveDate date)
(list 'Definition title)
'(Namespace "MET")
(list 'InformationResourceName name)
(list 'InformationResourceVersion "OMF" version))))))

The other tags and text strings will be handled by the default rules of the
stylesheet:



(*default* . ,(lambda (tag . elems) (apply (entag tag) elems)))
(*text* . ,(lambda (trigger str)

(if (string? str) (string->goodXML str) str)))

The end result will be the di�cult-to-read XML fragment in Fig. 4.
The processing of (Resource-descr "OMF-SYNOP.html") invokes a func-

tion lookup-res, which queries the SXML Manifest for (Resource
"OMF-SYNOP.html" ...). The �elds of the found S-expression are used to
generate the proper resource description. In database terms, the expan-
sion of (DescribeDoc "OMF-SYNOP.html") is a join of two tables. The set
of (Resource ...) S-expressions in Manifest.scm represents one table. S-
expressions (DescribeDoc ...) make up the other table. The resource's name
(which is unique in a submission package) is the primary key in both tables. The
expansion of DescribeDoc involved two re-writing steps, therefore, DescribeDoc
is a third-order tag.

It seems that Manifest.scm describes the collection of OMF resources in a
more readable and understandable manner. It is instructive to compare the �le
sizes of Manifest.scm and Manifest.xml: Manifest.scm is 25831 bytes long, of
which 9220 bytes are the transformation stylesheet and the related code. The
size of the �le Manifest.xml is 90377 bytes.

The Manifest �les in S-expression and XML formats are part of the OMF
submission into the DoD XML Registry. They can be retrieved from the registry
[22], [23].

6 Related work

The fact that XML is S-expressions with signi�cantly more syntax was recog-
nized fast [16]. This realization was followed by actions to recover the original
beauty of S-expressions: [10], [6], [13]. Even some OpenSource projects chose to
use S-expressions in their pristine format [14].

There are many ways to author, convert, or query XML documents, relying
either on template expansions, or embeddings of XML/HTML into or around a
host language. Examples include XSLT/XPath, ColdFusion, Microsoft's Active
Server Pages (ASP), Java Server Pages (JSP), Hypertext Preprocessor (PHP).
They all however introduce a particular mini-language with a peculiar, non-
XML-like syntax and ad-hoc substitution semantics. The linguistic gap is wide.
Representing an XML/HTML document as code that upon execution will gener-
ate the document is also a popular approach. CGI.pm in Perl, LAML in Scheme
[13], htmllib in Tcl, or Element Construction Set in Java are only a few exam-
ples. Often such code even looks remotely like S-expressions, albeit greatly more
verbose and cumbersome, and di�cult to process re�exively.

7 Conclusions

Immense popularity of XML is the testimony to the �exibility of S-expressions.
A great variety of data structures can be represented by S-expressions; many
operations can be regarded as transformations of S-expressions. There is no rea-
son, however, to hide S-expressions behind layers of syntax. The most important
bene�ts of this approach are the use of a mature programming language for
creation and processing of semi-structured data and the disappearance of the
linguistic gap between XML data and processes to create and handle them.



It does not seem likely, however, that the world would abandon XML for
S-expressions overnight. Therefore, we have to embrace the existing formats
and tools and be able to extend them. Our tools meet this challenge. Inter-
nally we transform and evaluate S-expressions and yet we accept and gener-
ate valid XML with Namespaces, entities and other complexities. We can use
many of the frequently-used XSLT stylesheets as they are [11], and can ex-
tend them through embedded Scheme code and SXML-transformer-style tem-
plates. We can write W3C-compliant XPath expressions along with their S-
expression-formatted counterparts, which we can extend with powerful predi-
cates in Scheme. We have used in practice such a transition path from pure
XML to more S-expression-based formats and tools. Due to a unique combina-
tion of the expressive power of the Scheme language and compatibility with W3C
Recommendations, such an approach provides the most sophisticated XML pro-
cessing techniques along with a good protection of investments in XML/XSLT
solutions.

The SXML parsing, query and transformation tools are released into public
domain as part of the SSAX project [15].

References

1. Adam Bosworth: A Programming Paradox. XML Magazine, February 2002.
http://www.fawcette.com/xmlmag/2002_02/magazine/departments/endtag/

2. James Clark, The Design of RELAX NG. December 6, 2001.
http://www.thaiopensource.com/relaxng/design.html

3. DoD XML Registry http://diides.ncr.disa.mil/xmlreg/user/index.cfm
4. Oleg Kiselyov: Weather Observation De�nition Format. March 8, 2000.

http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/OMF.html
5. Oleg Kiselyov: Implementing Metcast in Scheme. Proceedings of the Workshop on

Scheme and Functional Programming 2000. Montreal, 17 September 2000.
6. Oleg Kiselyov. XML and Scheme. An introduction to SXML and SXPath; illustra-

tion of SXPath expressiveness and comparison with XPath. September 17, 2000.
http://pobox.com/~oleg/ftp/Scheme/SXML-short-paper.html

7. Oleg Kiselyov: Aviation total weather and SIGMET advisory queries. June 12,
2000.
http://zowie.metnet.navy.mil/cgi-bin/oleg/get-sigmet-light
http://zowie.metnet.navy.mil/~dhuff/pqa/FNMOC.html

8. Oleg Kiselyov. A better XML parser through functional programming. LNCS 2257,
pp. 209-224. Springer-Verlag, January 2002.

9. Oleg Kiselyov. SXML Speci�cation. Revision 2.1. March 1, 2002.
http://pobox.com/~oleg/ftp/Scheme/SXML.html

10. Shriram Krishnamurthi, Gray, K.E. and Graunke, P.T.: Transformation-by-
Example for XML. Practical Aspects of Declarative Languages, 2000.

11. Kirill Lisovsky. STX: Scheme-enabled Transformation of XML data.
http://pair.com/lisovsky/STX/

12. Kirill Lisovsky. SXPath and SXPointer. http://pair.com/lisovsky/sxml/sxpath/
13. Kurt Normark. Programming World Wide Web Pages in Scheme.

ACM SIGPLAN Notices, vol. 34, No. 12 - December 1999, pp. 37-46.
http://www.cs.auc.dk/~normark/laml/

14. Black Parrot: Re:Scheme as an XML Translation Language. October 12, 2001. A
comment in the thread "Ask Kent M. Pitman About Lisp, Scheme And More"
http://slashdot.org/comments.pl?sid=22519&cid=2422286

15. S-exp-based XML parsing/query/conversion. http://ssax.sourceforge.net/
16. Philip Wadler: The Next 700 Markup Languages. Invited Talk, Second Conference

on Domain Speci�c Languages (DSL'99), Austin, Texas, October 1999.



17. World Wide Web Consortium. Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation. October 6, 2000.
http://www.w3.org/TR/REC-xml

18. World Wide Web Consortium. XML Information Set. W3C Recommendation. 24
October 2001. http://www.w3.org/TR/xml-infoset

19. World Wide Web Consortium. Namespaces in XML. W3C Recommendation. Jan-
uary 14, 1999. http://www.w3.org/TR/REC-xml-names/

20. World Wide Web Consortium. XML Path Language (XPath). Version 1.0. W3C
Recommendation. November 16, 1999. http://www.w3.org/TR/xpath

21. World Wide Web Consortium. XSL Transformations (XSLT). Version 1.0. W3C
Recommendation November 16, 1999. http://www.w3.org/TR/xslt

22. http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/Manifest.xml
http://diides.ncr.disa.mil/xmlreg/package_docs/Public/
MET/OMF_package/997725059053/Manifest.xml

23. http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/Manifest.scm
http://diides.ncr.disa.mil/xmlreg/package_docs/Public/
MET/OMF_package/997725059053/Manifest.scm


