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Figure 1: A Poisson-disk distribution of 17,593 points generated in 80 ms.

Abstract

Sampling distributions with blue noise characteristics are
widely used in computer graphics. Although Poisson-disk
distributions are known to have excellent blue noise char-
acteristics, they are generally regarded as too computation-
ally expensive to generate in real time. We present a new
method for sampling by dart-throwing in O(N log N) time
and introduce a novel and efficient variation for generating
Poisson-disk distributions in O(N) time and space.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Antialiasing; I.4.1 [Image Pro-
cessing and Computer Vision]: Digitization and Image
Capture—Sampling

Keywords: sampling, blue noise, poisson disk

1 Introduction and Background

Almost all problems in computer graphics involve sampling.
It is well known that the properties of the sampling distri-
bution can greatly affect the quality of the final result. In

particular, blue-noise patterns perform especially well in this
setting because of the low-energy annulus around the DC
spike in their frequency spectrum. High quality sampling
patterns are especially important when sampling the image
plane in a raytracer, not only because they do a better job of
capturing the continuous function being sampled, but also
because in this setting the function being reconstructed is
displayed directly, so any sampling errors will be especially
apparent to a viewer.

Poisson-disk distributions have excellent blue noise spectra
and also mimic the distribution of photoreceptors in a pri-
mate eye [Yellot 1983]. These distributions have proven diffi-
cult to generate directly, so many alternate approaches have
been developed, few of which can guarantee the Poisson-
disk property. In this paper, we describe an O(N log N)
algorithm for directly generating maximal Poisson-disk dis-
tributions identical to those produced by a dart-throwing
technique. We then present a variation of this algorithm
that both yields better spectral distributions and runs in
linear time and space. This algorithm generates point sets
with excellent blue noise characteristics very quickly; it can
generate over 200,000 points per second on a modern CPU.

1.1 Previous Work

Sampling theory is a well researched area of research in com-
puter graphics, and it has even deeper roots in the signal pro-
cessing and information theory literature. Stochastic sam-
pling was first introduced to computer graphics by Dippé
and Wold [1985]. Cook analyzed the spectral properties of
various stochastic point processes [Cook 1986]. In that pa-
per, he extols the virtues of Poisson-disk distributions be-



cause of their blue noise properties and relationship to pho-
toreceptor distributions, but ultimately advocates the use
of jittered grids because the straightforward dart-throwing
algorithm for generating Poisson-disk distributions is pro-
hibitively expensive. Since then, many algorithms have been
proposed for generating point distributions; e.g. [Ulichney
1988; Shirley 1991; Hiller et al. 2001; Kollig and Keller 2002;
Kollig and Keller 2003].

Mitchell’s O(N2) “best-candidate” algorithm attempts to
mimic dart-throwing while providing a termination guaran-
tee [Mitchell 1991]. Whenever a new sample is to be drawn,
a number of candidate samples are randomly generated, and
the candidate that is farthest from the existing point set is
accepted. This algorithm cannot guarantee the Poisson-disk
property, but in practice it generates excellent point sets if
enough candidates are drawn. The primary drawback of this
technique is its long running time.

McCool and Fiume generated high-quality tile sets with a
toroidal distance function so that they could be repeatedly
tiled across the plane [McCool and Fiume 1992] and intro-
duced the use of Lloyd’s relaxation to improve the blue noise
properties of the set. Lloyd’s relaxation transforms a point
set by moving each point to the center of its associated
Voronoi region and is typically applied iteratively or used
to generate distributions directly [Hiller et al. 2001]. Once
the tiles have been generated, this method generates large
point sets very efficiently. However, the tiling process intro-
duces easily recognizable structures. This is acceptable for
most sampling applications as long as the tile size is large
enough, but is disastrous if the points are being used to dis-
tribute objects or as part of a texture basis function. Several
schemes have been proposed to solve this problem.

Multiple authors have proposed using Wang tiles to solve
this problem. Cohen et al. populated a set of Wang tiles
with small point distributions that were intended to tile the
plane [Cohen et al. 2003]. Lagae et al. showed that cor-
rectly applying this technique requires careful attention to
how points are placed at the boundary of a tile and presented
Poisson-disk tiles to address these issues [Lagae and Dutré
2005]. Most recently, Kopf et al. have extended these tech-
niques to allow generation of point sets with blue noise prop-
erties satisfying an arbitrary density function [Kopf et al.
2006]. Their technique produces high quality point sets very
efficiently once the tile set has been computed.

Ostromoukhov et al. described a fast technique for impor-
tance sampling a provided density function [Ostromoukhov
et al. 2004]. Their algorithm generates point sets with lo-
cal blue noise characteristics by using a clever modification
of Penrose tiles and exploiting the tilings’ aperiodic nature.
However, when used to generate many points from a con-
stant density function, the resulting point sets have larger
angular anisotropy than techniques based on randomness.

Jones presents an algorithm for generating 2D Poisson-disk
distributions in O(N log N) time [Jones 2006]. Like our tech-
nique, Jones’ method builds a point set incrementally by
storing neighboring regions of points in a balanced tree and
inserting points into these regions one by one. However,
neighbor regions are represented as Voronoi cells and Jones’
method requires an incremental Delaunay triangulation al-
gorithm with O(log N) performance when adding a point.
This makes the implementation more complicated than that
of our algorithm. Furthermore, in this paper we show a
variation of our algorithm that runs in linear time.

2 Dart-Throwing in O(N log N)

The dart-throwing method for computing Poisson-disk dis-
tributions iteratively refines an existing point set by gen-
erating a series of random candidate points in the sample
domain and keeping only the first such point that is farther
than the minimum distance 2r from all other points. Each
sample effectively invalidates a disk of radius 2r centered
around that point.

This algorithm is simple to implement and extends naturally
to any domain with a well-defined and computable distance
metric. However, the algorithm may not terminate, so in
practice the algorithm is stopped after some fixed number
of consecutive candidates have failed to be accepted.

One side effect of this approximation is that the generated
point set is usually not maximal (there may be regions where
a point could be placed without violating the distance crite-
rion), so some regions of the domain may be undersampled.
This problem is usually ignored, although Jones’ technique is
guaranteed to generate maximal distributions [Jones 2006].
Furthermore, since a large number of sample points is typ-
ically required, the algorithm is too slow to use directly.
Consequently, several schemes for precomputing small dis-
tributions and tiling them have been proposed [Hiller et al.
2001; Cohen et al. 2003; Lagae and Dutré 2005].

We call the subdomain within which it is legal to add a point
the available subdomain. Let D(x, r) be the disk of radius r
around a point x. For a domain X and existing point set P ,
the available subdomain is given by

AX = X −
⋃
p∈P

D(p, 2r).

The key to emulating dart-throwing efficiently is the obser-
vation that we do not need to sample the entire available
subdomain. Consider the annulus between radii 2r and 4r
around some point. Every point in this annulus must be un-
available in any maximal distribution and therefore within
a distance of 2r from some other point. This means that
there must be at least one point that lies inside the annu-
lus, and hence the union of all such annuli, intersected with
the available subdomain, must contain at least one point.
Therefore, it is possible to emulate dart-throwing by sam-
pling from only this region, which we call the available neigh-
borhood of a point set P . By carefully choosing the repre-
sentation for this region, dart-throwing can be implemented
in O(N log N) time.

2.1 Representing the Available Neighborhood

The problem of representing the available neighborhood can
be divided into two parts: developing a spatial structure
for the available region of the annulus, and partitioning the
available neighborhood so that these structures can be effi-
ciently updated upon the insertion of a new point. In ad-
dition, it must be possible to quickly generate a uniformly
distributed random point inside the region.

Our solution to the first part of this problem involves a new
data structure, the scalloped region. This data structure can
be used to efficiently represent arbitrary boolean operations
on 2D disks. We divide scalloped regions into a disjoint
union of scalloped sectors (Figure 2). A scalloped sector
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Figure 2: A scalloped sector is a sector bounded above and
below by circular arcs. In the above diagram, α ranges from
α1 to α2, and g(α) and h(α) are the distance functions from
the sector’s apex to the near and far arcs, respectively. A(α)
is the partial area of the sector up to α, represented by the
light gray area in the figure.

centered at the origin is defined as the sector lying between
angles α1 and α2 and bounded by near and far circular arcs.
For convenience, the circular arcs are required to be non-
intersecting, although they are allowed to meet at the edge
of the sector.

The circular arcs are each described by a center C, radius r,
and a sign k ∈ {−1, 1} which selects either the near or far
arc of the circle. The distance to this circular arc along a
ray at angle α is then given by

d cos(α− γ) + k
√

r2 − (d sin(α− γ))2,

where (d, γ) are the polar coordinates of C (taking the apex
of the sector to be the origin). If g(α) and h(α) represent
the distance functions to the inner and outer bounding arcs
respectively then the area of the sector up to an angle α is
given by

A(α) =

∫ α

α1

∫ h(θ)

g(θ)

r dr dθ,

and the area of the full sector is A(α2).

The probability of a random point in a scalloped region
falling within a particular sector is the area of the sector
divided by the area of the region. A uniform random point
within the region can be generated by randomly choosing
a sector using the sectors’ areas as a probability distribu-
tion and then generating a uniformly distributed point inside
the chosen sector. Generating the point inside the sector is
done by transforming a uniformly distributed random point
(ξ1, ξ2) in [0, 1]2 to a point (d, θ) in polar coordinates, where

d =
√

g(θ)2 + ξ1(h(θ)2 − g(θ)2)

θ = A−1(ξ2A(α2)).

Although we do not have a closed form equation for A−1, A
is the integral of a function that is both non-negative and
zero only at the angular endpoints, so A is monotonically
increasing and therefore invertible. In practice binary search
is sufficient to evaluate A−1 efficiently.

The result of a boolean union, intersection, or difference op-
eration between a single scalloped sector and a disk can al-
ways be subdivided into a small number1 of new scalloped
sectors. A scalloped region maintains a list of its constituent
scalloped sectors and operations are performed by replac-
ing each sector with the result of applying the operation
to each individual sector. A complete description of how
to locate the new scalloped sectors requires enumerating a
number of cases and is omitted here for brevity; the full de-
tails can be found in our extended technical report [Dunbar
and Humphreys 2006].

The available neighborhood is partitioned into scalloped sec-
tors of outer radius 4r around each point in order to restrict
the number of sectors that must be updated after point in-
sertion to a small constant. Efficient sampling, however,
requires that all of these neighborhoods be disjoint. In gen-
eral, if an ordering relation is defined for a set S of sets it is
possible to derive a new set S′ of disjoint sets where⋃

s′∈S′

s′ =
⋃
s∈S

s,

by subtracting from each set the union of all members of S
that are less than it in the relation.

We use the generation order of the points as an ordering re-
lation and then define the available neighborhood of a point
p ∈ P as

Np = D(p, 4r)−
⋃

p′∈P

{
D(p′, 4r), p′ < p
D(p′, 2r), p′ ≥ p

.

The available neighborhood is N =
⋃

p∈P
Np (Figure 3).

Each disjoint Np is computed using boolean disk subtraction.

2.2 Algorithm Details and Complexity Analysis

Our algorithm A1 for efficient dart-throwing begins with an
initial set consisting of a single point randomly chosen in
the domain. During sample generation, we maintain an as-
sociative map from candidate points (points with non-empty
available neighborhoods) to their associated neighborhoods.

A candidate point is then randomly chosen (using neigh-
borhood areas as a probability distribution) and a random
point within its neighborhood is added to the point set. The
available neighborhood for the new point is an annulus from
radii 2r to 4r, minus a disk of radius 4r around the nearby
points. The maximum distance required to search for neigh-
bors is 8r since the scalloped region and neighbor disk are
both bounded by 4r. All nearby neighborhoods are then up-
dated by subtracting a disk of radius 2r around the newly
inserted point. This process continues until no candidate
points remain.

The maximum number of scalloped sectors in an available
neighborhood is bounded by a constant. Furthermore, the

1Bounded by a constant that depends only on the particular
operation (e.g, seven for disk subtraction).
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Figure 3: A partial point set and its neighborhoods. The
dashed lines represent scalloped sector boundaries within a
region.

Poisson-disk distance condition bounds the number of neigh-
bors within a fixed radius. We can therefore use a uniform
grid to implement the neighbor search and update of the
available neighborhoods in O(1) time. Similarly, picking an
individual scalloped sector within an available neighborhood
and generating a point in that sector can be done in O(1)
time. By storing the available neighborhoods in a balanced
tree structure, we can choose an available neighborhood and
update the tree within O(log N) time, so the time complex-
ity of the entire algorithm is O(N log N) where N is the
number of generated points. The space complexity is O(N).

If we drop the requirement that the available neighborhoods
be sampled according to an area-weighted probability den-
sity function then this new algorithm A2 runs in linear time.
This is a significant theoretical speedup, but in practice the
cost of maintaining the sectors, intersecting them with disks,
and updating data structures dominates the running time.

3 Boundary Sampling

In this section, we show how the algorithms described in the
previous section can be modified to avoid the complexity of
sector operations, thereby generating Poisson-disk point sets
in linear time extremely quickly. In particular, we generalize
either A1 or A2 by making the outer radius of the annulus
defining the available neighborhoods a parameter r′, where
2r < r′ ≤ 4r. This modification does not change the struc-
ture or performance of either algorithm, and we will assume
that they are parameterized by r′ for the rest of the paper.

With this change, the available neighborhood is defined as

Np = D(p, r′)−
⋃

p′∈P

{
D(p′, r′), p′ < p
D(p′, 2r), p′ ≥ p

.

Notice that the overall density of the generated point set will
tend to be inversely proportional to r′; this can be exploited

for applications such as randomized object placement, in
which it is desirable to tune the density of the point set.

A special case arises if r′ is taken to be the minimum value
2r. In this case, a point’s available neighborhood collapses
to a collection of circular arcs centered at the point. We
call these arcs the available boundary. By directly imple-
menting boundary sampling, we no longer need to represent
the available neighborhood as scalloped regions; instead, the
available boundary is represented as a set of per-point angu-
lar ranges at which a point can be placed on the boundary.

Additionally, if we select the new candidate point at random
instead of according to the length of its available boundary
(similarly to how we obtained the linear algorithm A2), it
is no longer necessary to explicitly store the neighborhoods
for every point already in the set. Once a candidate has
been chosen, its available boundary can be quickly computed
by intersecting the boundary circles of the candidate with
its immediate neighbors. After the legal ranges have been
determined, we can repeatedly place new points at available
locations on its boundary until the available boundary is
empty. The addition of a new point only requires subtracting
a single angular range from the candidate’s boundary.

The resulting algorithm A3, which we call boundary sam-
pling, is simple to implement and runs in O(N) time and
space (pseudo code is given in our technical report [Dunbar
and Humphreys 2006] and an implementation is available
from our website). Our implementation is approximately
200 lines of C++ code and can generate over 200,000 points
per second on a 3 GHz Pentium 4. Figure 1 shows an exam-
ple point set generated using our algorithm.

4 Results

In this section, we show results from the boundary sampling
algorithm described in Section 3, and compare them to other
methods for computing Poisson-disk distributions.

The best tiling schemes can generate point sets very ef-
ficiently and with spectra comparable to dart-throwing
or Lloyd’s relaxation, although there will be energy and
anisotropy spikes associated with any tiling. Although we
do not currently have access to an implementation of a so-
phisticated tiling method, we expect that the runtime per-
formance of our algorithm is comparable to that of a tiling
scheme, but our results will be artifact-free and require no
precomputation.

We analyze the properties of two-dimensional noise distri-
butions in the style of McCool and Fiume, who compute
the radial power and anisotropy using the periodogram of a
point set [McCool and Fiume 1992]. The primary charac-
teristic of a blue noise distribution is a low energy annulus
around the central DC spike with energy returning to a rel-
atively constant value outside the annulus. The quality of a
distribution depends on the magnitude of the difference be-
tween the DC spike, the low energy annulus, and the average
energy in the high frequencies. Evaluating the distribution
in terms of radial power also requires analyzing the radial
anisotropy to ensure that the radial power spectrum is an
accurate representation of the pattern along all orientations.

Figure 4 shows the radial power spectra of boundary sam-
pling compared to both dart-throwing and linearized dart-
throwing. The graph shows that neither linearized sampling
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Figure 4: The blue noise properties of the distribution are
preserved even if only the boundary of the available neigh-
borhood is sampled. Sampling without regard to the prob-
ability density of available neighborhoods also preserves the
blue noise properties.

nor boundary sampling significantly change the blue noise
properties of the resulting distributions.

Figure 5 displays averaged periodograms for 100 point sets
having a radius of 0.02, resulting in approximately 2000
points each. The boundary sampling periodogram shows
that the higher point density results in a greater magnitude
difference between the low energy annulus and the peak tran-
sition energy. The periodograms also show that the method
of Ostromoukhov et al. is significantly less uniform than
that of our method. They address this issue by precom-
puting relaxation vectors, but these precomputed tables are
only sufficient to improve the blue noise properties of small
local regions of the generated distribution. As the number of
points grows, the lookup table is no longer able to compen-
sate for the inherent structure of the Penrose tiling. Because
we are interested in using these point sets for sampling the
image plane in high quality image synthesis, hundreds of mil-
lions of points will likely be required, and the lookup tables
would become quite large.

Timing results for several methods of computing Poisson-
disk distributions are shown in Table 1. For methods that
require specification of a radius, one is chosen so that the
number of generated points is approximately equal to the
given value of N , and the time is computed as N times the
average number of points per second. The times for Ostro-
moukhov’s method were generated with code provided by
the authors of that paper, although they state that the pro-
vided code is not fully optimized. The results show that
although the linear approximation of dart-throwing (A2) is
more efficient than true dart-throwing (A1) for large num-
bers of points, the computational overhead of sector subtrac-
tion still adds significant overhead compared to boundary
sampling (A3). For small numbers of points, A2 may per-
form more disk subtractions than A1, making it less efficient
than its O(N log N) counterpart.

5 Conclusion and Future Work

We have described a new technique for efficiently imple-
menting the dart-throwing algorithm for the generation of
Poisson-disk point sets, based on the manipulation of dis-
joint unions of scalloped sectors. This algorithm runs in

N 1000 10000 100000

Best Candidate 1.454 157.014 6.084h
Dart-throwing (A1) 0.573 5.905 141.901
O(N) Dart-throwing (A2) 0.667 6.442 61.186
Ostromoukhov et al. 0.015 0.095 1.546
Boundary Sampling (A3) 0.001 .058 0.496

Table 1: Timing results for generating point sets of varying
sizes. Times are in seconds except where otherwise noted.

O(N log N) time and motivates a new algorithm for gener-
ating 2D Poisson-disk point sets that runs in O(N) time and
space and produces excellent blue noise patterns. Here we
present three related avenues for future research.

5.1 Sampling on Arbitrary Manifolds

The boundary sampling method can be extended to sample
over any manifold with an associated distance metric. All
that is required is an efficient method for finding the local
neighbors of a point and for determining the intersection
of adjacent boundaries. As an example, consider generat-
ing a Poisson-disk-like point set on the surface of a sphere.
The natural distance function is the length along arcs of
great circles, and the boundary of a point is a small circle
(the circle resulting from the intersection of a plane with
the sphere). Available portions of this boundary can still
be represented as angular ranges and determined by small
circle intersection. Sampling can still be done in linear time
by dividing the domain into a grid; for optimal performance,
a grid should be used with roughly equi-areal cells.

5.2 Generating Infinite Point Sets

It is not always easy to predict the number of required points
for an application. In these cases, it is convenient to be able
to generate points near an arbitrary position in the plane.
This ability also permits a Poisson-disk texture basis func-
tions as in Lagae and Dutré’s method [2005], where val-
ues such as a unique nearest-point identifier or distance to
the closest point are returned for any 2D location. Existing
methods use precomputed tiles to solve this problem.

We have successfully applied scalloped sectors to the prob-
lem of sampling from infinite point sets. By judicious seed-
ing of a pseudorandom number generator, we are able to
generate points in arbitrary subsets of the plane while guar-
anteeing that the resulting point sets will not violate the
Poisson-disk property when placed next to neighboring point
sets generated by our technique. This seems like a promising
way to compute infinite point sets without tiling artifacts;
we have not yet implemented any applications that leverage
this capability.

5.3 Importance Sampling

Given an importance function over the domain, it is possi-
ble to derive a non-Euclidean distance metric for which our
approach would yield a point set whose density was locally
proportional to that function. These point sets should have
local blue noise properties as in Ostromoukhov et al. [2004]
and Kopf et al [2006].
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Figure 5: Averaged periodograms for several sampling methods. Boundary sampling generates the best blue noise spectrum
due to its extremely regular and dense sampling of the plane. Ostromoukhov et al.’s results are noisier because their technique
does not involve randomness, so averaging multiple runs does not provide smooth periodograms.

In general, this metric will not have a closed analytic form,
and therefore the boundary cannot be directly determined.
Nonetheless, it would be possible to solve for a piecewise
linear (or higher order, if necessary) approximation of the
distance metric in the vicinity of a point and use that to
represent the local boundary. By applying this technique
and the method in 5.1 we hope to be able to extend our
technique to support efficient importance sampling.

We intend to apply these results combined with those in the
previous section in order to be able to place objects with
varying radii across unbounded regions. We expect this to be
valuable for generating complex terrain and environments.
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