
Reducing the Model Checking Cost of Product
Lines Using Static Analysis Techniques?

Hamideh Sabouri1 and Ramtin Khosravi1,2

1 School of Electrical and Computer Engineering University of Tehran
Karegar Ave., Tehran, Iran

2 School of Computer Science, Institute for Research in Fundamental
Sciences (IPM), Tehran, Iran

Abstract. Software product line engineering is a paradigm to develop
software applications using platforms and mass customization. Compo-
nent based approaches play an important role in development of product
lines: Components represent features, and different component combina-
tions lead to different products. The number of combinations is expo-
nential in the number of features, which makes the cost of product line
model checking high. In this paper, we propose two techniques to reduce
the number of component combinations that have to be verified. The
first technique is using the static slicing approach to eliminate the fea-
tures that do not affect the property. The second technique is analyzing
the property and extracting sufficient conditions of property satisfac-
tion/violation, to identify products that satisfy or violate the property
without model checking. We apply these techniques on a vending ma-
chine case study to show the applicability and effectiveness of our ap-
proach. The results show that the number of generated states and time
of model checking is reduced significantly using the proposed reduction
techniques.

1 Introduction

Software product line engineering is a paradigm to develop software applications
using platforms and mass customization. To this end, the commonalities and
differences of the applications should be modeled explicitly [1]. Feature models
are widely used to model the variability of software product lines. A feature
model is a tree of features, containing mandatory and optional features as well as
a number of constraints among them. A product is then defined by a combination
of features, and product family is the set containing all of the valid feature
combinations [2]. A configuration vector can be used to keep track of inclusion
or exclusion of features.

The Vending Machine Example: Feature Model. Throughout this pa-
per, we use a product family of vending machines as a running example. A
vending machine may serve coffee and/or tea. It also may add milk to the coffee.
Figure 1 shows the feature model of the family of vending machines.
? This research was in part supported by a grant form IPM. (No. CS1390-4-02).



2 Hamideh Sabouri and Ramtin Khosravi

Fig. 1. The feature model of the vending machine example

Software product line engineering enables proactive reuse by developing a
family of related products. One of the main approaches to develop software
product lines is the compositional approach, in which features are implemented
as distinct code units [3]. These code units are reused when the corresponding
units are composed to generate each product. Component technology [4] is suit-
able in this approach as reusability is an important characteristic of software
components. In component-based development of product lines, each feature
is implemented using a component. Some of the features can be implemented
within the components in a fine-grained manner as well, using annotative tech-
niques [5]. Consequently, the behavior of a component may change according
to inclusion or exclusion of the features. Software product line engineering is
used in the development of embedded and critical systems [6]. Therefore formal
modeling and verification of software product lines is essential.

Model checking [7] is a promising technique for developing more reliable
systems. Recently, several approaches have been developed for formal modeling
of product lines [8–13]. These approaches capture the behavior of the entire
product family in a single model by including the variability information in it. In
other words, it is specified in the model how the behavior changes when a feature
is included or excluded. Model checking of product lines is discussed in [10, 12,
13]. In these approaches, the model checker investigates all of the possible feature
combinations when verifying the model of a product family against a property,
and the result of model checking is the set of products that satisfy the given
property. The focus of these works is on adapting model checking algorithms to
verify product families, and they do not address the state space explosion issue.
However, the main problem of model checking is its high computational and
memory costs which may lead to state space explosion. This problem limits the
applicability of model checking technique to verify product lines, as in product
families the number of products can be exponential in the number of features. In
[14, 15], two incremental approaches are proposed for product line verification. In
[14], only sequential composition of features is discussed which is a considerable
limitation as the approach is not applicable to concurrent systems. The focus of
[15] is on reducing the effort of applying deductive verification techniques (not
model checking) on product lines. The main idea of our approach is to use static
slicing and static analysis techniques to tackle the state space explosion problem
in model checking of component-based software product lines.

We use Rebeca to model product families in a component-based manner, as
a basis to explain our approach. However, the approach is not limited to Re-



Reducing the Model Checking Cost of Product Lines 3

beca models, and it is applicable to any modeling language with slicing analysis
support. In our approach, each feature is modeled using one component that
captures its corresponding behavior, or using an alternative behavior within a
component that changes the behavior of the component based on the presence
or absence of the feature accordingly. Each product contains the components
associated to the features that are included in the product, and the behav-
ior of each of its components is determined according to the features that are
included/excluded in that product. The model checker considers all of the possi-
ble combinations of components and alternative behaviors, to verify the product
family. The focus of this paper is on reducing the number of combinations that
should be investigated in model checking. We propose two techniques for this
purpose.

The first technique uses the static slicing approach. Static slicing [16] is an
analysis technique that extracts the statements from a program that are rele-
vant to a particular computation. This technique has been used as a reduction
technique in model checking of Promela [17], CSP [18], Petri-nets [19], and Re-
beca [20, 21] models. In [22], an evaluation of applying static slicing for model
reduction is presented. The result shows significant reductions that are orthog-
onal to a number of other reduction techniques, and applying slicing is always
recommended because of its automation and low computational costs. One of
the main approaches for slicing is using reachability analysis on program de-
pendence graph. The nodes of a program dependence graph are the statements
of the program, and its edges represent data and control dependencies among
the statements. In this paper, we adapt the program dependence graph and the
reachability algorithm, to use static slicing to identify the features that do not
affect the correctness of the property. By discarding these features, the model
checker investigates fewer feature combinations when model checking the prod-
uct family.

In the second technique, we analyze the property statically to extract suffi-
cient conditions of its satisfaction or violation. These conditions are used along
with reachability conditions for variables to conclude satisfaction or violation of
the given property for certain products, without verification. The model checker
does not verify these products, therefore the number of feature combinations that
should be verified is reduced. It should be noted that the proposed techniques
(slicing, extracting conditions from property, and investigating reachability of
variables) can be applied automatically.

This paper is structured as follows. Section 2 explains how product fami-
lies are modeled and model checked. In Section 3 we describe the slicing tech-
nique that is used to identify the features that do not affect a property. Section
4 describes our approach for extracting sufficient conditions of property satis-
faction/violation, and identifying products that satisfy or violate the property,
without model checking. In Section 5 we present the results of using the two
proposed techniques for reducing the feature combinations of a vending machine
case study. Finally, we conclude our work in Section 6.



4 Hamideh Sabouri and Ramtin Khosravi

2 Modeling and Model Checking Product Families

This section introduces the Rebeca modeling language [23], and explains how
a product family can be modeled and model checked using Rebeca. We select
Rebeca as a basis to describe our approach, because it is suitable for modeling
concurrent systems, it is supported by the Modere model checking tool [24], it
supports components [25], and the slicing technique is adapted to be applicable
on Rebeca models [20, 21]. However, our proposed approach is not limited to
Rebeca models, and can be applied to other modeling languages with similar
facilities as well.

2.1 Rebeca

Rebeca is an actor-based language for modeling concurrent and distributed sys-
tems as a set of reactive objects which communicate via asynchronous message
passing. A Rebeca model consists of a set of reactive classes. Each reactive class
contains a set of state variables and a set of message servers. Message servers ex-
ecute atomically, and process the receiving messages. The initial message server
is used for initialization of state variables. A Rebeca model has a main part,
where a fixed number of objects are instantiated from the reactive classes and
execute concurrently. We refer to these objects as rebecs. The rebecs have no
shared variable, and each rebec has a single thread of execution that is trig-
gered by reading messages from an unbounded message queue. When a message
is taken from the queue, its corresponding message server is invoked. In [25],
components are added to the Rebeca language to encapsulate tightly coupled
reactive objects. In other words, a component is a set of one or more reactive
objects.

2.2 Product Family Model

To model product families, we should model optional components (which may
be included in some of the products, and excluded in other products), and alter-
native behaviors of components. Different combinations of optional components
and alternative behaviors lead to different products. To this end, we use a spe-
cial tag @AC before a statement to specify the application condition of the
statement. An application condition is a propositional logic formula in terms of
features. This tag indicates that the statement will be executed only in those
products that AC holds. When a feature F corresponds to a component, we
use @F tag before all the message server calls to that component. Subsequently,
message servers of a component are invoked only if its associated feature is in-
cluded in a product. If the feature is excluded in a product, no message is sent
to its corresponding component, and the component will be excluded. Moreover,
these tags can be used to indicate the change of the behavior within components
according to presence and absence of features.

The Vending Machine Example: Rebeca Model. Figure 2 shows the
Rebeca code for the product family of vending machines. In this model, there is a



Reducing the Model Checking Cost of Product Lines 5

controller component that manages coffee and tea requests and sends messages
to the coffee maker and tea maker components accordingly. The nextRequest
message server (line 12”) is responsible for handling the requests. When there
is request for coffee (req = 1), the serveCoffee message is put in the queue of
coffeeMaker, if the machine is capable of serving coffee (line 15”). If the machine
does not have the coffee option, the coffee request is ignored and the machine
processes the next request (line 17”). The tea request (req = 2) is handled in a
similar way. Consequently, if the coffee or tea feature is excluded in a product, no
message is sent to the corresponding component, and the component will be also
excluded. In the coffee maker component, the behavior changes according to the
existence of the milk feature. If the milk feature is included in a product, milk is
added to coffee (line 15). One of the linear temporal logic (LTL) [26] properties
that can be considered for this model is P : ¤(¬(addingCoffee ∧ addingTea)),
where ¤ stands for globally. This property describes that the machine should
not add both coffee and tea to a drink at the same time.

1 reactiveclass CoffeeMaker { 1’ reactiveclass TeaMaker { 1” reactiveclass Controller{
2 knownrebecs { 2’ knownrebecs { 2” knownrebecs {
3 Controller ctrl; 3’ Controller ctrl; 3” CoffeeMaker cm;
4 } 4’ } 4” TeaMaker tm;

5” }
5 statevars { 5’ statevars {
6 boolean addingCoffee; 6’ boolean addingTea; 6” statevars {
7 boolean addingMilk; 7’ } 7” int req;
8 } 8” }

8’ msgsrv initial() {
9 msgsrv initial() { 9’ addingTea = false; 9” msgsrv initial() {
10 addingCoffee = false; 10’ } 10” self.nextRequest();
11 addingMilk = false; 11” }
12 } 11’ msgsrv serveTea() {

12’ addingTea = true; 12” msgsrv nextRequest() {
13 msgsrv serveCoffee() { 13’ self.serveComplete(); 13” req = ?(1,2);
14 addingCoffee = true; 14’ } 14” if(req == 1)
15 @Milk addingMilk = true; 15” @Coffee
16 self.serveComplete(); 15’ msgsrv serveComplete() { cm.serveCoffee();
17 } 16’ addingTea = false; 16” if(req == 1)

17’ ctrl.nextRequest(); 17” @!Coffee
18 msgsrv serveComplete() { 18’ } self.nextRequest();
19 addingCoffee = false; 19’ } 18” if(req == 2)
20 addingMilk = false; 19” @Tea
21 ctrl.nextRequest(); tm.serveTea();
22 } 20” if(req == 2)
23 } 21” @!Tea

self.nextRequest();
22” }
23” }

Fig. 2. The Rebeca code of the product family of vending machines



6 Hamideh Sabouri and Ramtin Khosravi

2.3 Model Checking the Product Family

For a product line with n features (where each feature corresponds to a com-
ponent or an alternative behavior of a component), potentially there exist 2n

products in its corresponding product family. To model check the product fam-
ily, a configuration vector C ∈ 〈I, E, ?〉n (I: Included, E: Excluded, ?: not de-
cided) is used to keep track of inclusion and exclusion decisions that are made for
each feature [10]. The validity of configuration vector with respect to the feature
model can be checked during model checking by transforming the feature model
to a propositional logic formula [27] and using a SAT-solver (like [28]) to inves-
tigate its satisfiability. The result of model checking a product family against a
property is the set of products (represented through configuration vectors) that
satisfy the given property.

The Vending Machine Example: Model Checking. We assume the
first, second, and third elements of configuration vector correspond to Coffee,
Tea, and Milk features, respectively. The result of model checking the product
family of vending machines against the property P is:

R = {〈E, I,E〉, 〈I, E,E〉, 〈I, I, E〉, 〈I, E, I〉, 〈I, I, I〉}
Note that the configurations 〈E, E,E〉, 〈E, E, I〉, and 〈E, I, I〉 do not appear

in R as they do not represent valid products, according to the feature model.

3 Slicing the Model of a Product Family

The main purpose of slicing is to extract the statements of a program that are
relevant to a particular computation. A backward program slice consists of the
statements that potentially affect the values computed by some statement of
interest (referred to as a slicing criterion). A common approach for program
slicing is applying a graph reachability algorithm on the program dependence
graph. In this section, we first describe the program dependence graph of Rebeca
models that capture the behavior of a product family, and then present the slicing
algorithm that computes the slice of the product family model, followed by a
short discussion on model checking the computed slice.

3.1 Program Dependence Graph

A program dependence graph models the data and control dependencies that
exist among the statements of a program. In such a graph, the nodes represent
the statements of a program, and the edges are dependencies among them. A data
dependence edge exists between two statements if one statement assigns a value
to a variable and the other statement may read the value of that variable before it
is changed by another statement. A control dependence edge exists between two
statements if one statement determines whether the other statement is executed.

A special dependence graph named Rebeca Dependence Graph (RDG), is
introduced for Rebeca in [20]. In this graph, there is a class node for each



Reducing the Model Checking Cost of Product Lines 7

reactive class, and member dependence edges connect the class nodes to their
message servers. Each message server is modeled by an entry node, a set of
nodes representing its statements, and data dependence and control dependence
edges modeling dependencies within the body of the message server. Sending a
message is represented through an activation node. In addition, an activation
edge is used to connect the activation node to the entry node of the corresponding
message server. Finally, intra-rebec dependence edge represents the dependency
between a statement that writes on a state variable in a message server, and a
statement which reads the value of that variable in another message server. To
adapt the dependence graph for product families, we add a tag to the nodes to
specify their application conditions.

Fig. 3. The RDG of the vending machine example

The Vending Machine Example: RDG. Figure 3 shows the RDG of the
vending machine. In this graph the nodes 15, 15”, 17”, 19”, and 21”, are tagged
with a feature as their corresponding statements in the Rebeca model are tagged
with these features.

3.2 Slicing Algorithm

After constructing the program dependence graph, the slice with respect to a
property can be computed using a graph reachability algorithm. The slicing
criterion consists of the statements that assign values to the variables that appear
in the given property. Figure 4 shows the static slicing algorithm that is adapted
to extract the features affecting the property as well. To this end, the algorithm
traverses the graph backwards (starting from the slicing criterion nodes), and
adds the traversed nodes to the slice, and their corresponding features to the
relevant features set. In this algorithm, we assume that Features(v) gives the set
of features that appear in the application condition of node v. The features in
the set F are the components and the alternative behaviors that their presence



8 Hamideh Sabouri and Ramtin Khosravi

Input: The set of slicing criterions (C) and RDG (Rebeca Dependence Graph)
Output: Slice S, Relevant features set F

S={}; /*initialize the slice*/
F={}; /*initialize the relevant features set*/
for each(ci∈C){ /*for each slicing criterion*/

W={ci}; /*add the slicing criterion node to the work list*/
S=S∪{ci}; /*add the slicing criterion node to the slice*/
while(W 6=∅){ /*while the work list is not empty*/

W=W\{w}; /*remove one element (w) from the work list*/
for each(v⇀w){ /*for each node v on which w depends*/

if(v 6∈S){ /*if the node is not included in the slice*/
W=W∪{v}; /*add it to the work list and the slice*/
S=S∪{v};
F=F∪Features(v); /*add the corresponding features to the relevant feature set*/

}
}

}
}

Fig. 4. Static slicing algorithm adapted to extract relevant features

or absence affects the correctness of the property. Therefore, the model checker
should investigate their different combinations.

The Vending Machine Example: Slicing. The slicing criterion nodes for
the property P : ¤(¬(addingCoffee ∧ addingTea)), are indicated by gray nodes
in Figure 3. The slice computed by the slicing algorithm contains all of the nodes
except 11, 15, 20, and the feature set is F = {Coffee,Tea}.

3.3 Model Checking the Slice

The features that do not exist in the set F represent the components and alter-
native behaviors that do not affect the property. Therefore, the combinations of
these features can be ignored when model checking the slice of a product family.
Having a feature model with n features, there will be at most 2n feature combi-
nations (products), in the product family. By excluding m features that do not
affect the property, the number of products to verify is reduced to 2(n−m). The
configuration vector is C ∈ 〈I, E, ?〉(n−m), as practically, the value of an element
that its associated feature is removed always remains as “?”.

The result of model checking the slice of product family against a property is
the set R containing the configurations that satisfy the given property. However,
these configurations are based on the combinations of n − m features and do
not describe identifiable products. As the other m features do not affect the
property, we can combine the configurations in R with inclusion and exclusion
of each of these features, taking constraints of the feature model into account,
to achieve the final result. If we have r configurations such as C ∈ 〈I, E〉(n−m)

in R, The ultimate result R′ would contain (r × 2m) − u configurations in the
form C ∈ 〈I, E〉n, where u is the number of feature combinations that are not
valid according the feature model.



Reducing the Model Checking Cost of Product Lines 9

The Vending Machine Example: Model Checking the Slice. The Milk
feature does not affect the property P , and does not appear in the slice. This
reduces the number of products in the product family from 23 to 22. The result
of model checking the slice against P is:

R = {〈E, I〉, 〈I, E〉, 〈I, I〉}
In the next step, the milk feature should be combined with each of the above

configurations. So it should be included and be excluded in these configurations
(that leads to two new configurations per each configuration). The final result is
R′ that consists of (3× 21)− 1 configurations (〈E, I, I〉 is invalid):

R′ = {〈E, I, E〉, 〈I, E, E〉, 〈I, E, I〉, 〈I, I, E〉, 〈I, I, I〉}

4 Static Analysis of Property Satisfaction/Violation in
Products

In this section, we describe how satisfaction/violation of a property can be in-
ferred for some of the products without model checking. For this purpose, we
extract sufficient conditions for property satisfaction/violation in terms of initial
values of atomic propositions and the possibility of their change in the model. We
assume that a property is described using boolean variables where each variable
corresponds to an atomic proposition. Therefore, we can evaluate sufficient con-
ditions using the initial values of the variables and the possibility of their change
in different products. The latter is achieved by analyzing the reachability of
statements to obtain a condition in terms of presence and absence of features,
which describes in which products the value of a variable may change. Using the
result of evaluating sufficient conditions, we determine a subset of products that
satisfy/violate the property without model checking. In other words, we indicate
in which components and in which of their alternative behaviors the value of a
variable does not change, and consequently the property is satisfied/violated.

It should be mentioned that this analysis only makes sense for models of
product families that capture the behavior of all products. In traditional model
checking, the value of a variable changes when the model is executed, and almost
always it is not possible to infer satisfaction/violation of a property without
model checking.

4.1 Condition Extraction from the Property

In this work, we consider properties expressed in linear temporal logic (LTL) [26].
An LTL formula over the set of AP of atomic propositions is formed according
the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¤ϕ | ♦ϕ | ϕ1Uϕ2



10 Hamideh Sabouri and Ramtin Khosravi

In the above grammar, p ∈ AP , and ¤,♦, and U stand for globally, finally,
and until operators respectively.

A transition system TS is a tuple (S,Act ,→, I,AP , L) where S is a set of
states, Act is a set of actions, →⊆ S × Act × S is a transition relation, I ⊆ S
is a set of initial states, AP is a set of atomic propositions, and L : S → 2AP is
a labeling function. For simplicity, in this paper we assume a single initial state
s0 for a transition system. A state s is reachable from the initial state, s0 →∗ s,
if there exists a set of actions αi ∈ Act such that s0

α1→ s1
α2→ ...

αn→ s.
Figure 5 shows the proposed rules for extracting sufficient conditions of prop-

erty satisfaction/violation. These conditions are statically inferable from the ini-
tial values of atomic propositions, and also the atomic propositions that do not
vary in TS. The notation VTS (ϕ) means that the LTL formula ϕ does not vary
in TS, because some of the atomic propositions in ϕ do not change in TS.

Rules 1-8 are trivial. We can infer TS ² ¤ϕ from TS ² ϕ (Rule 9) if ϕ
does not vary in TS (VTS (ϕ)). From TS 2 ϕ we can conclude that TS 2 ¤ϕ,
as ϕ should hold in all states and otherwise ¤ϕ is violated (Rule 10). Similar
justifications can be made for the other rules.

Using these rules, we extract sufficient conditions for property satisfaction
or violation. These conditions are propositional logic formulas in terms of initial
values of atomic propositions (p ∈ L(s0)) and their variability (VTS (p)).

The Vending Machine Example: Extracting Satisfaction/Violation
Conditions. For the property P : ¤(¬(addingCoffee ∧ addingTea)) we can ex-
tract sufficient conditions for satisfaction/violation by applying the rules in Fig-
ure 5 in the following order (it is assumed that p is (addingCoffee = true), and
q is (addingTea = true)):

TS ² (¤(¬(p ∧ q))) if (TS ² (¬(p ∧ q))) ∧ VTS (¬(p ∧ q)) Rule(9)
TS ² (¬(p ∧ q)) if TS 2 (p ∧ q) Rule(3)
TS 2 (p ∧ q) if (TS 2 p) ∨ (TS 2 q) Rule(8)
TS 2 p if p /∈ L(s0) Rule(2)
TS 2 q if q /∈ L(s0) Rule(2)

VTS (¬(p ∧ q)) if VTS (p ∧ q) Rule(18)

VTS (p ∧ q) if VTS (p) ∧ VTS (q) Rule(22)

VTS (p ∧ q) if (TS 2 p) ∧ VTS (p) Rule(23)

VTS (p ∧ q) if (TS 2 q) ∧ VTS (q) Rule(24)

This way, the three extracted sufficient conditions of property satisfaction
would be:

TS ² P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (VTS (p) ∧ VTS (q))

TS ² P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (p /∈ L(s0) ∧ VTS (p))

TS ² P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (q /∈ L(s0) ∧ VTS (q))



Reducing the Model Checking Cost of Product Lines 11

TS ² p if p ∈ L(s0) Rule(1)

TS 2 p if p /∈ L(s0) Rule(2)

TS ² ¬ϕ if TS 2 ϕ Rule(3)

TS 2 ¬ϕ if TS ² ϕ Rule(4)

TS ² (ϕ1 ∨ ϕ2) if (TS ² ϕ1) ∨ (TS ² ϕ2) Rule(5)

TS 2 (ϕ1 ∨ ϕ2) if (TS 2 ϕ1) ∧ (TS 2 ϕ2) Rule(6)

TS ² (ϕ1 ∧ ϕ2) if (TS ² ϕ1) ∧ (TS ² ϕ2) Rule(7)

TS 2 (ϕ1 ∧ ϕ2) if (TS 2 ϕ1) ∨ (TS 2 ϕ2) Rule(8)

TS ² ¤ϕ if (TS ² ϕ) ∧ VTS (ϕ) Rule(9)

TS 2 ¤ϕ if TS 2 ϕ Rule(10)

TS ² ♦ϕ if TS ² ϕ Rule(11)

TS 2 ♦ϕ if (TS 2 ϕ) ∧ VTS (ϕ) Rule(12)

TS ² (ϕ1Uϕ2) if TS ² ϕ2 Rule(13)

TS 2 (ϕ1Uϕ2) if (TS 2 ϕ1) ∧ (TS 2 ϕ2) Rule(14)

TS 2 (ϕ1Uϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(15)

VTS (p) if @s | (s0 →∗ s) ∧ [(p ∈ L(s0)) ∧ (p /∈ L(s))] Rule(16)

VTS (p) if @s | (s0 →∗ s) ∧ [(p /∈ L(s0)) ∧ (p ∈ L(s))] Rule(17)

VTS (¬ϕ) if VTS (ϕ) Rule(18)

VTS (ϕ1 ∨ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(19)

VTS (ϕ1 ∨ ϕ2) if (TS ² ϕ1) ∧ VTS (ϕ1) Rule(20)

VTS (ϕ1 ∨ ϕ2) if (TS ² ϕ2) ∧ VTS (ϕ2) Rule(21)

VTS (ϕ1 ∧ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(22)

VTS (ϕ1 ∧ ϕ2) if (TS 2 ϕ1) ∧ VTS (ϕ1) Rule(23)

VTS (ϕ1 ∧ ϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(24)

VTS (¤ϕ) if VTS (ϕ) Rule(25)

VTS (♦ϕ) if VTS (ϕ) Rule(26)

VTS (ϕ1Uϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(27)

VTS (ϕ1Uϕ2) if (TS ² ϕ2) ∧ VTS (ϕ2) Rule(28)

VTS (ϕ1Uϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(29)

Fig. 5. Rules for extracting sufficient conditions of property satisfaction/violation,
based on initial values of atomic propositions, and the atomic propositions that do
not vary in TS



12 Hamideh Sabouri and Ramtin Khosravi

A sufficient condition of property violation for P can be extracted in a similar
way:

TS 2 P if p ∈ L(s0) ∧ q ∈ L(s0)

4.2 Evaluation of the Extracted Conditions

The initial values of atomic propositions (p ∈ L(s0) or p /∈ L(s0)) are computed
based on initialization statements. For simplicity, we assume that the property
is described using boolean variables only. It should be mentioned that we can
always rewrite a property such as ¤(x = y + z) in the form ¤(v = true), where
v is boolean variable representing x = y + z. This assumption implies that each
atomic proposition is a boolean variable in the Rebeca model, and the value
that is assigned to the variable in the initialize message server, determines if
p ∈ L(s0) or p /∈ L(s0).

The next step is to investigate if the value of the atomic proposition p may
vary (VTS (p)). The value of variable v (where v corresponds to p) changes in
a product if the product has a reachable statement s that assigns a value to
v. According to our model for product families, a tagged statement is executed
when its application condition holds in a product. Other statements are exe-
cuted normally. We assume that F(s) gives the application condition that is
associated to a tagged statement s, and for other ones returns true. A statement
s is reachable in a product if its associated application condition holds in the
product, as well as at least one of the application conditions assigned to those
statements on which s is control/activation dependent (possibly indirectly). We
compute the reachability condition of the statement s recursively as:

RC (s) =
∨

r⇀c,as

(F(s) ∧ RC (r))

In the above computation, r ⇀c,a s is the set of statements on which s is con-
trol or activation dependent. To avoid recursion, we mark each statement r when
its condition is extracted, and in r ⇀c,a s we only consider the unmarked state-
ments. Note that when a behavioral model is inconsistent (e.g. RC (s) contains
the conjunction of a feature and its negation), the statement s is not reachable
in any of the products.

We assume Def (v) is the set of statements that assign value to the variable
v, except the initialization statement which is the one assigning value to v in
the initial message server of the Rebeca model. The value of v may change
in a product, if at least one of the statements s ∈Def (v) are reachable in that
product. The atomic proposition p which corresponds to v may vary in transition
system TS if:

VTS (p) =
∨

s∈Def (v)

RC (s)

Consequently:



Reducing the Model Checking Cost of Product Lines 13

VTS (p) = ¬(
∨

s∈Def (v)

RC (s))

The possibility of variation for p is thus described using application condi-
tions, where each application condition is a propositional logic formula in terms
of features itself. Substituting the initial values of atomic propositions and their
possibility of variation (VTS (p)) in sufficient conditions of property satisfac-
tion/violation, leads to a number of propositional logic formulas. These formu-
las describe products that we can conclude satisfaction/violation of the given
property in them statically. A product satisfies or violates a property if at least
one of the sufficient conditions of property satisfaction or violation holds for it,
because of the components and alternative behaviors that it includes. The model
checker only verifies the products that their satisfaction or violation cannot be
concluded from sufficient conditions.

The Vending Machine Example: Evaluation of the Extracted Con-
ditions. We assume that atomic propositions p and q correspond to addingCoffee
and addingTea variables, respectively. According to the initializations in the Re-
beca model, we can conclude that p /∈ L(s0) and q /∈ L(s0). The statements
10 and 14 assign value to addingCoffee which means that Def (addingCoffee) =
{s14, s19}. Therefore:

VTS (p) = ¬(RC (s14) ∨ RC (s19)) = ¬Coffee

Because:

RC (s14) = RC (s13) = RC (s15”) = Coffee ∧ RC (s14”) = Coffee ∧ RC (s12”) =
Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s10”)︸ ︷︷ ︸∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s9”)︸ ︷︷ ︸∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ true ∨ RC (s21)] = Coffee

and:

RC (s19) = RC (s18) = RC (s16) = RC (s13) = Coffee

Similarly, we can compute VTS (q) = ¬Tea. By substitution of VTS (p) and
VTS (q) with ¬Coffee and ¬Tea respectively, the following conditions are achieved
which describe the products for which satisfaction/violation of P is inferable
without model checking:

TS ² P if (¬Coffee ∧ ¬Tea)
TS ² P if ¬Coffee
TS ² P if ¬Tea



14 Hamideh Sabouri and Ramtin Khosravi

According to the above conditions, the products that do not have the Coffee
feature, and the products that do not have the Tea feature, satisfy P , and there
is no need to verify them. This way, the number of the products that should be
model check is reduced to 22− 3, as we can tell that the products 〈I, E〉, 〈E, I〉,
and 〈E,E〉 satisfy P (although 〈E, E〉 is not a valid product).

Fig. 6. The feature model of the vending machine case study

5 Results

We applied our proposed approach to a vending machine case study that is much
more complex than the running example 3. The machine includes a controller
that handles the requests. Figure 6 shows the feature model of the vending ma-
chine. The coffee maker, tea maker, and soda server components are responsible
for serving the associated drinks. There is also a milk adder component which
adds milk to coffee. There are two coffee container components and two tea con-
tainer components, containing black coffee, coffee with cream, black tea, and
green tea, respectively. The coffee maker and the tea maker components use the
proper container to serve the requested drink. They add water through the water
component. The water component can be filled using two different mechanisms
which are handled by the filler 1 and filler 2 components. Finally, there are two
different payment methods for a vending machine: paying by coin, or paying by
card. We defined the following six LTL properties to be verified.

– P1 = ¤[¬(ServingCoffee ∧ ServingTea ∧ ServingSoda)]
– P2 = ¤(¬empty)
– P3 = ¤(¬overFlow)
– P4 = ¤[¬(addingBlackCoffee ∧ addingCreamCoffee)]
– P5 = ¤[¬(addingBlackTea ∧ addingGreenTea)]
– P6 = ¤♦(ServingSoda)

The first property describes that the vending machine should not be serving
three drinks at the same time. The second and third properties check that the
3 The source code is available at http://ece.ut.ac.ir/rkhosravi/sourcecode



Reducing the Model Checking Cost of Product Lines 15

water container should not get empty, or overflow. The forth property describes
that the machine should not add black coffee together with coffee and cream to
a drink. This fact should be also checked for the tea drink (the fifth property).
The last property states that the machine should serve soda infinitely often.

Table 1. Number of states and time of verification (in seconds) before applying the
techniques (first column), after applying the slicing technique (second column), and
after identifying products that satisfy/violate the property without model checking
(third column), for the vending machine case study

Complete Model Static Slicing Slicing and Static Analysis

states time(sec) states time(sec) states time(sec)

P1 - - 49,307,358 24,574 25,590,940 13,849

P2 - - 39,169,329 17,156 39,126,321 17,138

P3 - - 39,182,632 18,019 19,571,384 9,119

P4 - - 43,484,712 19,623 16,037,384 7,517

P5 - - 47,317,992 24,084 14,696,264 6,951

P6 - - 114,547,805 142,081 63,357,123 75,356

Table 1 shows the number of states and the time of verification (in seconds)
for model checking the product family of vending machine case study. The time
of applying slicing technique and computing sufficient conditions are negligible
comparing to model checking time and are ignored. The complete model can
not be model checked against the properties because of state space explosion
(first column). After applying the slicing technique and eliminating irrelevant
features, the sliced model can be checked against the properties (second column).
However, the number of states and time of verification can be reduced even
more by extracting sufficient conditions of property satisfaction/violation, and
identifying products that satisfy/violate the property without model checking.

6 Conclusion

In this paper we presented two techniques to reduce the number of products of a
product line that are model checked against a property. This way, the number of
generated states and the required time for verifying product families are reduced.
The first technique was to apply static slicing to eliminate the features that do
not affect the property. The second technique was to analyze the property and
reachability of its variables in different products statically to identify products
that satisfy/violate the property without model checking. The results of using
these techniques in model checking the vending machine case study show the
effectiveness of our approach as the number of generated states and time of
verification reduced significantly after applying these techniques. The slicing and
static analysis technique are completely automatic, and their cost is negligible
comparing to the verification cost which makes using our approach for model
checking product families practical.



16 Hamideh Sabouri and Ramtin Khosravi

References

1. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2005)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

3. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proceedings of the 30th international conference on Software engineering. ICSE
’08, ACM (2008) 311–320

4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

5. Kästner, C., Apel, S.: Integrating compositional and annotative approaches for
product line engineering. In: Proceedings of the GPCE Workshop on Modular-
ization, Composition and Generative Techniques for Product Line Engineering
(McGPLE), University of Passau (October 2008)

6. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42
(April 2009) 42–52

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
8. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and

product line theories. In: Proceedings of the 16th European Symposium on Pro-
gramming. ESOP’07, Springer-Verlag (2007) 64–79

9. Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software product lines using
color-blind transition systems. Int. J. Softw. Tools Technol. Transf. 9(5) (2007)
471–487

10. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Proceedings of the 10th international conference on Formal
Methods for Open Object-Based Distributed Systems. FMOODS ’08, Springer-
Verlag (2008) 113–131

11. Muschevici, R., Clarke, D., Proenca, J.: Feature Petri nets. In: Second Proceedings
of the 14th international conference on Software product lines. (2010) 99–106

12. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering. ICSE ’10, ACM (2010) 335–344

13. Sabouri, H., Khosravi, R.: An effective approach for verifying product lines in
presence of variability models. In: Second Proceedings of the 14th international
conference on Software product lines. (2010) 113–120

14. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Automated Software Engg. 18 (March 2011)
39–76

15. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Proceedings of the 2010 international conference on For-
mal verification of object-oriented software. FoVeOOS’10, Springer-Verlag (2011)
61–75

16. Weiser, M.: Program slicing. In: Proceedings of the 5th international conference
on Software engineering. (1981) 439–449

17. Millett, L., Teitelbaum, T.: Issues in slicing Promela and its applications to model
checking, protocol understanding, and simulation. Software Tools for Technology
Transfer (2000) 343–349



Reducing the Model Checking Cost of Product Lines 17

18. Bruckner, I., Wehrheim, H.: Slicing an integrated formal method for verification.
In: Proceedings of Seventh International Conference on Formal Engineering Meth-
ods. ICFEM’05 (2005) 360–374

19. Rakow, A.: Slicing Petri nets with an application to workflow verification. In:
Proceedings of the 34th Conference on Current Trends in Theory and Practice of
Computer Science. SOFSEM 2008 (2008) 436–477

20. Sabouri, H., Sirjani, M.: Actor-based slicing techniques for efficient reduction of
Rebeca models. Sci. Comput. Program. 75(10) (October 2010) 811–827

21. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. In: Electron. Notes
Theor. Comput. Sci. Volume 260. (January 2010) 209–224

22. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Wallentine, T.: Evaluating
the effectiveness of slicing for model reduction of concurrent object-oriented pro-
grams. In: Proceedings of International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. TACAS06, Springer (2006) 73–89

23. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4) (December 2004)
385–410

24. Jaghoori, M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. ACM Symposium on Applied Computing - Software Verification Track
(2006) 1810–1815

25. Sirjani, M., de Boer, F., Movaghar, A.: Modular verification of a component-based
actor language. Journal of Universal Computer Science 11(10) (2005) 1695–1717

26. Emerson, E.A.: Temporal and modal logic. Handbook of theoretical computer
science (1990) 995–1072

27. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Proceed-
ings of the 9th international conference on Software product lines. SPLC’05 (2005)
7–20

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. DAC ’01, ACM (2001) 530–535


