

© 2007 Accusoft Corporation 1 | P a g e

Using Barcodes in Documents – Best Practices

Barcode Basics

A basic understanding of barcode recognition algorithms can help you to make implementation
choices that optimize your success. Basic one-dimensional (1D) barcodes, such as Code 3 of 9,
Code 128, and other codes that consist of bars of varying widths, are detected using quite
different methods than the more complicated, two-dimensional (2D) barcodes such as PDF417,
DataMatrix, and QR code. There are two basic steps for either: finding any barcode(s) on the
page image, often called “location,” and then determining what information each barcode
contains, or “decoding.”

To locate 1D barcodes on a page, the software essentially scans the entire width, over the full
height, of the document image, searching for black/white patterns of pixels that are typical of
barcodes. In the example below, the more consecutive horizontal scans that turn up with a
specific repeated pattern, the more likely you are to have located vertical bars that could
represent a barcode. These areas containing bars in the image, called regions of interest, are
marked for later decoding.

The 1D decoding process consists of counting and comparing groups of image pixels in each
region of interest to determine the relative width and location of the bars, and the white spaces
between them. Predefined patterns at the start and end of each barcode generally identify its
type.

Accusoft’s Barcode Xpress can distinguish about 30 different 1D barcode types. The pattern
between the start and end identifiers can then be interpreted, based on that code type’s
specifications, to decode each numeral or character that the barcode contains, along with any
special “check” characters that some barcodes use to confirm that the decoded results are valid.

Locating and decoding 2D barcodes is significantly more complex. Here, the location process
entails finding “markers” that uniquely identify the barcode type. The PDF417 start and end
patterns include several vertical bars that appear much like those in a typical 1D barcode.
DataMatrix codes are located by their distinct pattern of solid lines on the left and bottom
edges, along with alternating filled and empty boxes (called modules) along the top and right
edges. These identifying features are shown in red in the illustration to the right. The inside
portion of the barcode also consists of black or white modules. A QR code uses different
identifying marks. It includes distinct square “targets” in three of the four corners. The “missing”

© 2007 Accusoft Corporation 2 | P a g e

fourth target also indicates the correct orientation for the QR code. These features of the 2D
barcodes also outline the complete region of interest that surrounds the content encoded within.

Once the distinguishing features of a 2D barcode are found, the presence of black or white
pixels in each module can be used to decode the contents of the barcode according to its
specified design. The 2D barcodes can be created with varying amounts of redundant data,
allowing the barcodes to be accurately decoded even when up to 30% of the modules are
damaged or missing. The higher the redundancy, which results in a physically larger barcode,
the more tolerant of this “noise” the decoded barcode will be.

How Size Affects Accuracy

Now that we have an idea how barcodes are seen by the software, we can begin to understand
how size will affect our recognition accuracy. The software will scan across (or down) a
2D barcode such as the small piece of a DataMatrix code shown here:

If the scan pixels were to align perfectly with the image it wouldn’t take very many of them
to accurately identify the contents of each module, which is within a 2 x 2 pixel box in this
example.

But let’s take a look at what happens when an actual image is read by a scanner, FAX
machine, or multifunction printer (MFP). The DataMatrix code shown here is approximately
three-quarters of an inch square. It contains the message: “www.pegasusimaging.com Pegasus
Imaging Corporation” representing 50 characters, plus error detection and correction characters
that were automatically added by the Barcode Xpress Professional + 2D Write Edition. This
image was printed on a typical laser printer at 600 dpi with enhancement, then placed on a
flatbed scanner and scanned at 200 dpi to a black-and-white TIFF file. Zooming in on a portion
the resulting image, with grid lines inserted to show the pixel locations, we can see edges of the
individual modules quite well.

© 2007 Accusoft Corporation 3 | P a g e

Each module is about 5 x 5 pixels but there is, of course, no guarantee that the pixels will
always align with the grid. At 200 dpi, Barcode Xpress is able to decode this barcode with 100%
confidence. This is because there is enough accuracy in a majority of the pixels in each of the
modules to reliably determine whether each module is actually filled or unfilled.

If we were to scan the exact same barcode at only 100 dpi, however, you can see that there is
not enough reliable data to properly determine the state of each module. Instead of 5 x 5 pixels
per module, now we only have an average of 2.5 x 2.5 pixels to consider.

When pixels are added or dropped at the edge of each module, a necessary result of the fact
that the scanner is not lock-synchronized to the modules, many of them can no longer be
discerned. Even though there are error-correction characters included in the barcode, most
likely not enough of those can be identified to help us, either. As a result, the barcode can no
longer be decoded.

Even with the limited amount of information available, it’s actually still possible to make
modifications to this image after scanning to recover the data contained in this barcode. By
applying a ScanFix operation called SmoothZoom, the barcode becomes readable again.

SmoothZoom doubles the resolution of the barcode, but does so intelligently. For example,
rather than taking one black pixel and simply making it into four black pixels, each new pixel is
filled in based on the pixels surrounding it.

The smoothed image, although it looks little like the one that was scanned at 200 dpi, becomes
readable again. While this operation has improved this relatively clean image enough to be

© 2007 Accusoft Corporation 4 | P a g e

decoded, it would have been preferable to scan the image at 200 dpi, so that there would be
enough clean pixels available to handle other problems that might occur along the way.

Choosing Your Barcode Size

The key factor in barcode decoding is the number of pixels per line (1D) or per module (2D) that
are available to be evaluated in the final image. Any barcode can be printed in almost any
size. A very large barcode could be easily decoded even if it was scanned at a very low
resolution. The trick is to choose a barcode that doesn’t take up the whole page, yet still does
not need to be scanned at a high resolution that will rapidly consume storage space. Each time
you double the scanning resolution, the resulting file typically quadruples in size. Unnecessary
overkill can thus result in a great waste of image storage and transmission resources.

To allow for adequate averaging, at least three pixels are needed for each minimum-width bar
(and each minimum gap) in a scanned 1D barcode. Barcode Xpress imposes limits when
writing barcodes, to prevent generation of barcodes that are unlikely to be readable under even
the best conditions. You can gain a rough idea of the minimum required width in inches for a
typical 1D barcode from the following table. Note that these sizes actually vary for every
individual 1D barcode type, with the following widths being rough averages.

The sample 50-character DataMatrix barcode we looked at above is about ¾ inch square, and
contains 26 modules across by 26 modules down. That is 32.5 modules per inch, or about 6
pixels per module at 200 dpi. Since finding modules within a field is a more difficult than locating
vertical bars, a minimum of 4 or 5 pixels per module is the recommended size for high-accuracy
2D barcodes. Using this guideline, calculations can be performed for a barcode containing any
number of modules. Some sample minimum DataMatrix barcodes sizes for 5 pixels per
module, and PDF417 barcode sizes for 4 pixels per module, are shown below.

Note that the use of the word columns in PDF417 is different than it is for DataMatrix. A
PDF417 column is actually a group of 17 horizontal modules, each containing the specified
number of rows of modules. The height of each individual module in a properly constructed
PDF417 barcode should be 3 to 5 times its width. PDF417 is also not usually a square 2D
barcode, so that the width shown is based on default settings for the number of columns
required. The PDF417 sizes include the default error characters (two full columns) and the
width of the start and end bars.

Characters
in typical
1D code

Scan
resolution

(dpi)

Minimum
Width

(inches)

5 100

2.5
.5 200 1.25

300 .83
10 100

4.0

 200 2.0
300 1.3

15 100

6.0
 200 3.0

300 2.0

© 2007 Accusoft Corporation 5 | P a g e

DataMatrix

matrix size

(rows x cols)

Scan

resolution

(dpi)

Minimum

Height and

Width (inches)

16 x 16

(about 16

characters)

100

 200

300

.80

 .40

.27

16 x 48

(about 70

characters)

100

 200

300

0.8h x 2.4w

0.4h x 1.2w

.27h x .72w

32 x 32

(about 90

characters)

100

 200

300

1.6

 .80

.53

64 x 64

(about 400

characters)

100

 200

 300

3.2

 1.6

1.1

Some quick calculations will also reveal that either a QR code or DataMatrix barcode typically
requires only about one fourth of the total area as a PDF417 barcode containing the same
amount of data. DataMatrix bar codes can also be created in a rectangular format (see 16 x 48
size above) which can be more convenient for positioning on a form, as well as the more
common square form.

Just the FAX, Ma’am

While the above guidelines will help you to optimize your success with scanners and MFPs,
FAXes can be quite a different animal. The standard mode for FAX transmission, which was
designed to transmit page-sized images as quickly as possible over once expensive telephone
lines, scans documents at 203 dpi horizontally, but only 98 dpi vertically. This means that, while
the resulting image may contain adequate resolution horizontally, the vertical resolution may be
only half as good. As illustrated above, a resolution of around 100 dpi is barely adequate for

PDF417

matrix size

(rows x cols)

Scan

resolution

(dpi)

Minimum

Width

(inches)

5 x 3

(7 to 10

characters)

100

200

300

4.8

2.4

1.6

10 x 5

(about 50

characters)

100

200

300

6.2

3.1

2.1

14 x 8

(about 150

characters)

100

200

300

8.2

4.1

2.7

20 x 11

(about 300

characters)

100

200

300

10.3

5.2

3.5

© 2007 Accusoft Corporation 6 | P a g e

many barcodes. This loss in vertical resolution does not occur when the sender chooses fine
resolution, which specifies 203 x 196 dpi vertical resolution, or superfine resolution, for which
the vertical dimension is actually scanned at double the horizontal resolution (typically 391 x
203 dpi).

Note that the appearance of a standard mode FAX when it is displayed usually will not reveal
the lost resolution. It won’t appear “squashed” because the vertical pixels are normally doubled
by any FAX viewing product, or the ImagXpress® component. But detail within your barcode
may still be lost. Since this loss is in the vertical direction only, you may wish to use only 1D
barcodes in FAXed documents. The loss of vertical resolution will have little effect on the
vertical bars unless the document is significantly skewed. PDF417 barcodes can also be
created with higher module dimensions, which will reduce their sensitivity to low vertical
resolution.

You can also resample the image using ImagXpress to double the vertical resolution while
keeping the horizontal resolution the same. This will restore the number of vertical pixels
available, but does not replace any information that was dropped by scanning the image at
half the resolution. In conclusion, if you require advanced features of 2D barcodes such as
DataMatrix or QR code, be certain that your testing includes FAXes that have been sent in both
the fine and standard resolution modes.

Where on the Page?

If you are designing the form, you may have a choice as to how you can place a barcode
on the page. Since sheet-fed scanners are most likely to pull the pages through from the short
end, you should orient any 1D barcodes horizontally. That way, if there is a small amount of
slippage, instead of the bars being moved together or apart, or repeated, they will be stretched
or compressed, which may not affect readability. In the sample shown below, a section of the
same 3 of 9 barcode was placed on a page in both horizontal and vertical orientations, with
slippage created during scanning. The horizontal barcode (vertical bars) was readable with
100% confidence, while the vertical barcode caused recognition errors because a few of the
bars were actually scanned twice when the document slipped. This is also an excellent
argument for using a barcode type that includes at least one checksum character, such as Code
93 or Code 128. Then you are much more likely to know that the barcode has been damaged.

As far as location on the page is concerned, there are a few things to consider. First, you don’t
want to position the barcode where it is likely to be damaged with a staple or punch hole. You
also need to be certain to establish a quiet zone, a clear area without any text or other marks,
around every barcode. This ensures that the recognition software can tell where the edges of
the barcode are. The required quiet zone varies by barcode, but more is generally safer.
Providing ¼ inch on all sides would be ideal, but at least 1/8 inch of empty space is essential for
most barcodes.

© 2007 Accusoft Corporation 7 | P a g e

With Barcode Xpress you can specify the maximum number of barcodes to be located on an
image. If you reach that maximum before searching the entire page, for example, you can stop
searching the page. Since barcode scanning proceeds from the top of the page to the bottom,
you can potentially speed up the location phase by placing all barcodes toward the top edge
of the page.

Using Cleanup to Improve Recognition Accuracy

Sophisticated image cleanup software, called ScanFix®, is included with Barcode Xpress. The
ScanFix toolkit includes a large number of functions that can be used to reduce the effects of
damage that often occur to document images en route, through operations such as copying,
FAXing, etc. For example, a small portion of a document containing many “specks” is shown
here:

It contains numerous small dots, typically caused by dust on the scanning platform or
noise during transmission. They can cause significant errors during both OCR and barcode
recognition functions. ScanFix includes a despeckle function that can effectively remove these
unwanted specks from most documents.

A different problem can occur when a scanner, copier, or FAX machine scans a barcode whose
lines are not dark enough, as it converts it to black and white. This “binarizing” function is often
done during scanning, as it greatly reduces the size of the resulting files. The resulting barcodes
will then have white specks on the, as shown here:

Although the despeckle function does not directly remove white specks, the image can be
negated (reversing the black and white pixels), then despeckled, and negated again to return
the original image without specks. This barcode went from unreadable to 100% confidence
after that simple series of cleanup steps.

The SmoothZoom function described earlier is also often very helpful in converting an
unreadable barcode into one that is reliable. Because both ScanFix and Barcode Xpress are
so fast, it is often practical to perform a variety of cleanup sequences, checking for the
presence of barcodes and their reported confidence after each attempt. This may be especially
helpful when documents arrive from a wide variety of sources, with various types of
damage along the way.

Another ScanFix function that can be very useful is dilation. Let’s say that you know that you
are expecting horizontal barcodes with vertical bars that might have irregular white scratches

© 2007 Accusoft Corporation 8 | P a g e

across them. The dilate function simply finds all black pixels in the images and converts the
adjoining white pixels to black pixels also. The direction of the adjoining pixels, and the number
of pixels to extend the dilation, are fully selectable. Thus, by dilating 2 pixels up or down, a
white scratch could be completely removed from a barcode with vertical bars, with little or no
damage to the bars themselves. Similarly, if you had (or expected) black lines across your
barcodes, you could erode the image in the vertical direction, reducing the height of any stray
black lines. This will have very little effect on the longer black lines that form the barcode.
Note, however, that this method will usually not help with 2D barcodes that are sensitive to
pixels changes in both vertical and horizontal directions. Also, dilation is much more likely to be
successful if the barcodes have been accurately deskewed. Otherwise, the white spaces
between the bars may be reduced, adversely affecting decoding.

The deskew function can be very helpful, as when it is used with dilation above. However, it
cannot always be assumed that deskew will improve recognition. The sample Code 39 barcode
to the right was scanned with a 15 degree skew angle. Although there is a stair-step effect
along the diagonal lines, the width of the bars and spaces appears quite uniform across the
image. Even with this relatively high skew angle, it was recognized with 100% confidence. But
notice what happens when we deskew this image. Because each pixel had to be forced into
a new orientation, the previously stair-stepped bars now appear to be much more jagged, and
the spaces between them are much more variable. This image is still decoded, but the
confidence level has dropped to 97%. Clearly, deskew can sometimes cause more problems
than it solves. When the entire page on which a barcode appears is deskewed, there is also no
guarantee that the barcode itself will end up deskewed, unless it was perfectly positioned when
scanned on the page.

Damage to 2D barcodes can be even more severe, since we now rely on both horizontal and
vertical fidelity. The DataMatrix code here is recognized at 100% confidence, even with about 4
degrees of skew. After deskewing, you can see that there has been significant damage to
many of the modules, and the resulting image has become completely undecodable. In this
particular example, the image could be repaired by a SmoothZoom operation and was still
decoded at 100% confidence. But there is no guarantee that this will always be the case.

© 2007 Accusoft Corporation 9 | P a g e

These examples lead to two suggestions for applying image cleanup for barcodes. First, allow
the decoding software to do its best at finding the information in a skewed barcode, whether
1D or 2D. Second, if you are unable to predict the kinds of damage that may occur in your
workflow, it’s ideal if you can selectively apply several different cleanup sequences—retaining
the original image each time so that you can go back to it—while checking the confidence level
of the recognized barcodes after each cleanup option is tried.

When applying cleanup operations, it can pay to find opportunities to “learn” from the document.
For example, if a page deskew shows that it was rotated more than 2 degrees, you may want to
automatically perform a SmoothZoom function after deskew, whereas you might otherwise
prefer to undo the deskew operation before barcode recognition, and perform it again afterward
for visual improvement. Certainly, a check of the image resolution could be used to direct you
through two or more different image processing paths. Or if a despeckle operation reveals that
hundreds of specks were found, you might send that image through a wider variety of cleanup
options than a known clean document. The presence of one particular barcode or its content
may be also used to trigger different kinds of follow up processing. The possibilities are endless,
limited only by the return on investment resulting from fewer errors and a reduction in costly
manual intervention.

Where Should I Binarize?

Except in the case of FAX, you may have a choice over whether you scan your documents in
color or grayscale, or obtain them in black and white only. The reason that the binarization
process results in such a significant reduction in file size is precisely because a lot of
information is discarded along the way. Once the file is scanned or saved without this data, it
can never be recovered. So if your overall business process and your available storage
facilities allow it, you will have a lot more options to try during binarization if you can retain a
copy of the documents in color or grayscale. This may allow you to try various cleanup
sequences, as outlined above, during the barcode recognition stage.

The file sizes required to keep documents in grayscale are significant. For example, the first
page of this document alone, scanned at 300 dpi in 8 bit-per-pixel grayscale, consumes
about 3.1 megabytes of storage in TIFF format with LZW compression. When the same
page is binarized and stored with Group 4 compression, the size is about 62 kilobytes. This is a
reduction of about 50-to-1, a very significant factor even with today’s inexpensive storage
options. As a result, unless the business process allows for grayscale images to be used and
then discarded early on, it probably is cost prohibitive.

Optimizing Recognition Speed

There are two separate opportunities for speed optimization. One method involves applying the
multi-threading capabilities of Barcode Xpress and other controls. The other primarily consists
of reducing the number of activities performed based upon the predictability of your arriving
images.
The rapid spread of multi-core processors has greatly increased interest in multi-threading as
an optimization strategy. The optimal application of multi-threading will require experimentation
with your particular workflow, based on which operations depend upon others, and must

© 2007 Accusoft Corporation 10 | P a g e

therefore be serialized, and which can be performed in parallel. You may, for example, be able
to process two or more separate batches of images simultaneously.

The 1D, 2D, patch codes, and 4-state postal groups are each processed differently and
separately. To avoid having to process every page with all four types of recognition, it is helpful
to know which types of barcodes are expected. Within the standard 1D barcodes types,
however, there is no significant speed improvement gained by limiting recognition to the
expected barcode types, except that you can avoid the work of discarding any results of
barcode types that may turn up that are not of interest to your application.

Many parameters of Barcode Xpress can be tuned to speed up overall recognition. Which of
these may be applied will depend on whether or not your application can predict the types of
images that it will receive to process. For example, if you know that all of your 1D barcodes will
be horizontal on the page, you can set Barcode Xpress not to scan vertically or at 45 degree
angles for barcodes. In one sample image containing seven horizontal barcodes, for example,
this reduced total processing time from about 35 milliseconds to 14 msec…a 60% time
savings. These speed changes can be very significant if you are processing many images. You
could also use horizontal-only scanning to ignore a vertical barcode on the same page, if
desired.

If the maximum number of 1D barcodes searched on that same page is set to 1 instead of
100, the first barcode is recognized in under 3 msec. A sample page image with only one
barcode near the bottom of the page shaved recognition time from about 35 msec to 9 msec,
just by changing the maximum number of barcodes searched from 2 to 1. Further, moving the
one barcode from the bottom of the page to the top of the page reduced the recognition time
from 9 msec to about 4 msec. This also brings an important fact to light—searching a page
image for a barcode when none is present always means searching the entire page. That 35
msec time is indicative of the time that will be consumed for every non-barcoded page that is
searched for a barcode. If you know, for example, that only page one of each multi-page
document can possibly include a barcode, you can eliminate time wasted searching every page
of every document.

If you know the approximate location where a barcode can be expected on a page image, you
can also greatly increase processing speed by cropping and examining only that particular
region of interest. For example, if you know that a barcode is always printed in the top, right
1 inch by 3 inch corner of a specific document, you can search only in that area. If you’re
concerned that the document may be inverted, you should also search the same area in the
bottom, left corner.

Another tunable parameter for 1D barcodes is scan distance. There is a tradeoff between the
separation of the lines scanned across the image, and the speed and accuracy of recognition. If
every pixel is scanned, not only does performance suffer, but there can also be “false
positives” as even letters of text could have enough similarity to barcodes to be tagged as such.
The default scan distance of 5 pixels is usually nearly optimal for most image densities. But
increasing that scan distance to 10 pixels reduced the processing time to decode the seven
barcodes in the sample image above with horizontal only scanning from 14 milliseconds to
about 9 milliseconds – a 40% reduction – with no loss in accuracy. The barcodes in this

© 2007 Accusoft Corporation 11 | P a g e

example averaged 70 to 80 pixels high on an 8 ½ x 11 inch page that was scanned at 200
dpi.

Recommendations

1. Pixels per element – For best readability of 1D barcodes, create at least three pixels
for the minimum bar width. For 2D barcodes, you should create at least 4 or 5 pixels
for each module.

2. Variable length data – Do not allow barcodes to be automatically generated with
unlimited length data. You will not be able to guarantee the overall barcode size
required for accurate recognition if more and more elements are squeezed into a fixed
area. If you require variable length data, be certain to set a limit to the maximum size of
each field, and test the resulting barcodes under the expected worst case conditions
for damaged and fully stuffed images.

3. Avoid skewed input – In most cases, higher skew angles reduce barcode recognition
accuracy. Whenever possible, take steps to reduce skew. This may involve routine
maintenance, using better sheet-fed scanners, deskewing barcodes as separate regions
of interest on a form, or simply placing a box on your forms to help operators to align
manual barcode stickers. But, once you are stuck with skewed images, remember that
electronic deskew will not always improve recognition accuracy.

4. Optimize cleanup – Experiment to determine the optimal cleanup features for the types
of damage your documents usually experience. This could be SmoothZoom, dilation,
deskewing the barcode’s region of interest, or an algorithm that tries each and
compares decode confidence.

5. Optimize performance – If you are processing a very large number of barcodes, you
may be able to significantly increase performance by limiting scanning to either
horizontal or vertical (if only one orientation is expected), limiting the number of expected
barcodes per image, utilizing the multi-threading capabilities of Barcode Xpress,
searching only those pages or areas on each page where barcodes are expected, and
other methods.

6. Know thy image – The more you can predict about the images containing barcodes,
the better you can optimize their recognition. If you know the number, type, resolution,
rotation, and placement of barcodes, you can speed recognition. This may also suggest
locking down your business processes to reduce overall variation. Using cues about the
image can allow you to optimize cleanup and improve recognition speed and accuracy.

7. Test, test, test – Try to simulate the expected business processes that document
images will experience on their way to your system. If documents will be FAXed twice,
FAX some samples three times and then validate. If they will be printed, copied, and
scanned, at least repeat all of the expected steps on the worst acceptable hardware in
your system.

© 2007 Accusoft Corporation 12 | P a g e

About Accusoft

Accusoft provides a full spectrum of document, content and imaging solutions. With its broad
range of solutions, Accusoft is committed to deliver best-in-class, enterprise grade and fully-
supported applications and a globally recognized suite of software development kits
(SDKs). Accusoft products work reliably behind the scenes for capturing, processing, storing
and viewing images, documents and more. Add barcode, compression, DICOM, image
processing, OCR/ICR, forms processing, PDF, scanning, video, and image viewing to your
applications. Products are delivered as applications and toolkits for multiple 32-bit/64-bit
platforms and development environments, including iOS, Android, .NET, Silverlight, ASP.NET,
ActiveX, Java, Linux, Solaris, Mac OSX, and IBM AIX. For more information, please
visit www.accusoft.com.

