

Amazon Aurora Migration
Handbook

May 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Database Migration Considerations 1

Features and Compatibility 1

Performance 2

Cost 2

Availability and Durability 2

Planning and Testing a Database Migration 2

Homogeneous Migrations 3

Summary of Available Migration Methods 3

Migrating from Amazon RDS for MySQL 6

Migrating from MySQL-Compatible Databases 10

Heterogeneous Migrations 14

Schema Migration 14

Data Migration 15

Example Migration Scenarios 15

Self-Managed Homogeneous Migrations 16

Heterogeneous Migrations 40

Troubleshooting 40

Troubleshooting Self-Managed Migrations 40

Troubleshooting Binary Log Replication 51

Conclusion 66

Contributors 67

Further Reading 67

Abstract

This paper outlines the best practices for planning, executing, and

troubleshooting database migrations from MySQL-compatible and non-

MySQL-compatible database products to Amazon Aurora. It also teaches

Amazon Aurora database administrators how to diagnose and troubleshoot

common migration and replication errors.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 1

Introduction
Migrations are among the most time-consuming tasks handled by database

administrators. Although the task has become easier with the advent of

managed migration services such as AWS Database Migration Service (AWS

DMS), large-scale database migrations still require adequate planning and

execution to meet strict compatibility and performance requirements.

This paper examines the following major contributors to the success of every

database migration project:

 Factors that justify the migration to Amazon Aurora, such as

compatibility, performance, cost, and high availability and durability

 Best practices for choosing the optimal migration method

 Best practices for planning and executing a migration

 Migration troubleshooting hints

Database Migration Considerations
This section discusses important considerations that apply to most database

migration projects. For an extended discussion of related topics, see the

Amazon Web Services (AWS) whitepaper Migrating Your Databases to Amazon

Aurora.1

Features and Compatibility

Amazon Aurora is a relational database service that is wire-compatible with

MySQL 5.6. This means that most of the drivers, connectors, and tools that you

currently use with MySQL can be used with Amazon Aurora with little or no

change.

Certain MySQL features, such as the MyISAM storage engine for non-temporary

tables, are not available with Amazon Aurora. Although most applications are

not affected by such limitations, you should consult the Amazon Aurora feature

overview to identify and address any compatibility concerns before migrating.

For more details, see Aurora on Amazon RDS in the Amazon Relational

Database Service (Amazon RDS) User Guide.2

https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 2

Performance

Performance is often the key motivation behind database migrations. However,

deploying your database on Amazon Aurora can be beneficial even if your

applications don’t have performance issues. For example, Amazon Aurora

scalability features can greatly reduce the amount of engineering effort that is

required to prepare your database platform for future traffic growth.

You should include benchmarks and performance evaluations in every

migration project.

Cost

Amazon Aurora provides consistent high performance together with the

security, availability, and reliability of a commercial database at one-tenth the

cost.

Amazon Aurora can even be more cost-efficient than open source databases

because its high scalability helps you reduce the number of database instances

that are required to handle the same workload.

For more details, see the Amazon RDS for Aurora Pricing page.3

Availability and Durability

High availability and disaster recovery are important considerations for

databases. Your application may already have very strict recovery time objective

(RTO) and recovery point objective (RPO) requirements. Amazon Aurora can

help you meet or exceed your availability goals.

For more information about durability and availability features in Amazon

Aurora, see Aurora on Amazon RDS in the Amazon RDS User Guide.4

Planning and Testing a Database Migration

After you determine that Amazon Aurora is the right fit for your application, the

next step is to decide on a migration approach and create a database migration

plan. Here are the suggested high-level steps:

http://aws.amazon.com/rds/aurora/pricing/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html#Aurora.Overview.Reliability

Amazon Web Services – Amazon Aurora Migration Handbook

Page 3

1. Review the available migration techniques described in this document,

and choose one that satisfies your requirements.

2. Prepare a migration plan in the form of a step-by-step checklist. A

checklist ensures that all migration steps are executed in the correct

order and that the migration process flow can be controlled (e.g.,

suspended or resumed) without the risk of important steps being missed.

3. Prepare a “shadow” checklist with rollback procedures. Ideally, you

should be able to roll the migration back to a known, consistent state

from any point in the migration checklist.

4. Use the checklist to perform a test migration, and take note of the time

required to complete each step. If any missing steps are identified, add

them to the checklist. If any issues are identified during the test

migration, address them and rerun the test migration.

5. Test all rollback procedures. If any rollback procedure has not been

tested successfully, assume that it will not work.

6. After you complete the test migration and become fully comfortable with

the migration plan, execute the migration.

Homogeneous Migrations
Amazon Aurora was designed as a drop-in replacement for MySQL 5.6. It offers

a wide range of options for homogeneous migrations (e.g., migrations from

MySQL and MySQL-compatible databases).

Summary of Available Migration Methods

This section lists common migration sources and the migration methods

available to them, in order of preference. Detailed descriptions, step-by-step

instructions, and tips for advanced migration scenarios are available in

subsequent sections.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 4

Figure 1: Common migration sources and migration methods for Amazon Aurora

Amazon RDS Snapshot Migration

Compatible sources:

 Amazon RDS for MySQL 5.6

 Amazon RDS for MySQL 5.1 and 5.5 (after upgrading to RDS for MySQL

5.6)

Feature highlights:

 Managed point-and-click service available through the AWS

Management Console

 Best migration speed and ease of use of all migration methods

 Can be used with binary log replication for near-zero migration

downtime

For details, see Migrating Data from a MySQL DB Instance to an Amazon

Aurora DB Cluster in the Amazon RDS User Guide.5

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.RDSMySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.RDSMySQL.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 5

Percona XtraBackup

Compatible sources:

 On-premises or self-managed MySQL 5.5 and 5.6

Feature highlights:

 Managed backup ingestion from Percona XtraBackup files stored in an

Amazon Simple Storage Service (Amazon S3) bucket

 High performance

 Can be used with binary log replication for near-zero migration

downtime

For details, see Migrating Data from MySQL by Using an Amazon S3 Bucket in

the Amazon RDS User Guide.6

Self-Managed Export/Import

Compatible sources:

 MySQL and MySQL-compatible databases such as MySQL, MariaDB, or

Percona Server, including managed servers such as Amazon RDS for

MySQL or MariaDB

 Non-MySQL-compatible databases

Highlights for MySQL-compatible sources:

 Schemas can be migrated as-is without conversion

 Data migration can be performed manually using existing, well-

documented command-line utilities

 Can be used with binary log replication for near-zero migration

downtime

 Migration performance depends on tooling choices and operator

experience

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3

Amazon Web Services – Amazon Aurora Migration Handbook

Page 6

Highlights for non-MySQL-compatible sources:

 Requires manual schema conversion from source database format into

MySQL-compatible format.

 Data migration can be performed manually using a universal data format

such as comma-separated values (CSV).

 Change data capture (CDC) replication might be possible with third-

party tools for near-zero migration downtime.

AWS Database Migration Service

Compatible sources:

 MySQL-compatible and non-MySQL-compatible databases

Feature highlights:

 Supports heterogeneous and homogenous migrations.

 Managed point-and-click data migration service available through the

AWS Management Console.

 Schemas must be migrated separately.

 Supports CDC replication for near-zero migration downtime.

For details, see What Is AWS Database Migration Service? in the AWS DMS

User Guide.7

Migrating from Amazon RDS for MySQL

If you are migrating from an RDS MySQL 5.6 database (DB) instance, the

recommended approach is to use the snapshot migration feature.

Snapshot migration is a fully managed, point-and-click feature that is available

through the AWS Management Console. You can use it to migrate an RDS

MySQL 5.6 DB instance snapshot into a new Aurora DB cluster. It is the fastest

and easiest to use of all the migration methods described in this document.

http://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 7

For more information about the snapshot migration feature, see Migrating Data

to an Amazon Aurora DB Cluster in the Amazon RDS User Guide.8

This section provides ideas for projects that use the snapshot migration feature.

The list-style layout in our example instructions can help you prepare your own

migration checklist.

The naming conventions used in this section are as follows:

 Source RDS DB instance refers to the RDS MySQL 5.6 DB instance

that you are migrating from.

 Target Aurora DB cluster refers to the Aurora DB cluster that you

are migrating to.

Migrating with Downtime

When migration downtime is acceptable, you can use the following high-level

procedure to migrate an RDS MySQL 5.6 DB instance to Amazon Aurora:

1. Stop all write activity against the source RDS DB instance. Database

downtime begins here.

2. Take a snapshot of the source RDS DB instance.

3. Wait until the snapshot shows as “Available” in the AWS Management

Console.

4. Use the AWS Management Console to migrate the snapshot to a new

Aurora DB cluster. For instructions, see Migrating Data to an Amazon

Aurora DB Cluster in the Amazon RDS User Guide.

5. Wait until the snapshot migration finishes and the target Aurora DB

cluster enters the “Available” state. The time to migrate a snapshot

primarily depends on the size of the database. You can determine it

ahead of the production migration by running a test migration.

6. Configure applications to connect to the newly created target Aurora DB

cluster instead of the source RDS DB instance.

7. Resume write activity against the target Aurora DB cluster. Database

downtime ends here.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora

Amazon Web Services – Amazon Aurora Migration Handbook

Page 8

Migrating with Near-Zero Downtime

If prolonged migration downtime is not acceptable, you can perform a near-zero

downtime migration through a combination of snapshot migration and binary

log replication.

Perform the high-level procedure as follows:

1. On the source RDS DB instance, ensure that automated backups are

enabled.

2. Create a Read Replica of the source RDS DB instance.

3. After you create the Read Replica, manually stop replication and obtain

binary log coordinates.

4. Take a snapshot of the Read Replica.

5. Use the AWS Management Console to migrate the Read Replica snapshot

to a new Aurora DB cluster.

6. Wait until snapshot migration finishes and the target Aurora DB cluster

enters the “Available” state.

7. On the target Aurora DB cluster, configure binary log replication from

the source RDS DB instance using the binary log coordinates that you

obtained in step 3.

8. Wait for the replication to catch up, that is, for the replication lag to

reach zero.

9. Begin cut-over by stopping all write activity against the source RDS DB

instance. Application downtime begins here.

10. Verify that there is no outstanding replication lag, and then configure

applications to connect to the newly created target Aurora DB cluster

instead of the source RDS DB instance.

11. Complete cut-over by resuming write activity. Application downtime

ends here.

12. Terminate replication between the source RDS DB instance and the

target Aurora DB cluster.

For a detailed description of this procedure, see Replication Between Aurora

and MySQL or Between Aurora and Another Aurora DB Cluster in the Amazon

RDS User Guide.9

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.Replication.MySQLReplication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.Replication.MySQLReplication.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 9

If you don’t want to set up replication manually, you can also create an Aurora

Read Replica from a source RDS MySQL 5.6 DB instance by using the RDS

Management Console.

The RDS automation does the following:

1. Creates a snapshot of the source RDS DB instance.

2. Migrates the snapshot to a new Aurora DB cluster.

3. Establishes binary log replication between the source RDS DB instance

and the target Aurora DB cluster.

After replication is established, you can complete the cut-over steps as described

previously.

Migrating from Amazon RDS for MySQL Engine Versions Other
Than 5.6

Direct snapshot migration is only supported for RDS MySQL 5.6 DB instance

snapshots. You can migrate RDS MySQL DB instances that are running other

engine versions by using the following procedures.

RDS for MySQL 5.1 and 5.5

Follow these steps to migrate RDS MySQL 5.1 or 5.5 DB instances to Amazon

Aurora:

1. Upgrade the RDS MySQL 5.1 or 5.5 DB instance to MySQL 5.6.

o You can upgrade RDS MySQL 5.5 DB instances directly to MySQL

5.6.

o You must upgrade RDS MySQL 5.1 DB instances to MySQL 5.5 first,

and then to MySQL 5.6.

2. After you upgrade the instance to MySQL 5.6, test your applications

against the upgraded database, and address any compatibility or

performance concerns.

3. After your application passes the compatibility and performance tests

against MySQL 5.6, migrate the RDS MySQL 5.6 DB instance to Amazon

Aurora. Depending on your requirements, choose the Migrating with

Downtime or Migrating with Near-Zero Downtime procedures described

earlier.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 10

For more information about upgrading RDS MySQL engine versions, see

Upgrading the MySQL DB Engine in the Amazon RDS User Guide.10

RDS for MySQL 5.7

For migrations from RDS MySQL 5.7 DB instances, the snapshot migration

approach is not supported because the database engine version can’t be

downgraded to MySQL 5.6.

In this case, we recommend a manual dump-and-import procedure for

migrating MySQL-compatible databases, described later in this whitepaper.

Such a procedure may be slower than snapshot migration, but you can still

perform it with near-zero downtime using binary log replication.

Migrating from MySQL-Compatible Databases

Moving to Amazon Aurora is still a relatively simple process if you are migrating

from an RDS MariaDB instance, an RDS MySQL 5.7 DB instance, or a self-

managed MySQL-compatible database such as MySQL, MariaDB, or Percona

Server running on Amazon Elastic Compute Cloud (Amazon EC2) or on-

premises.

There are many techniques you can use to migrate your MySQL-compatible

database workload to Amazon Aurora. This section describes various migration

options to help you choose the most optimal solution for your use case.

Percona XtraBackup

Amazon Aurora supports migration from Percona XtraBackup files that are

stored in an Amazon S3 bucket. Migrating from binary backup files can be

significantly faster than migrating from logical schema and data dumps using

tools like mysqldump. Logical imports work by executing SQL commands to

re-create the schema and data from your source database, which involves

considerable processing overhead. By comparison, you can use a more efficient

binary ingestion method to ingest Percona XtraBackup files.

This migration method is compatible with source servers using MySQL versions

5.5 and 5.6. Migrating from Percona XtraBackup files involves three steps:

1. Use the innobackupex tool to create a backup of the source database.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 11

2. Upload backup files to an Amazon S3 bucket.

3. Restore backup files through the AWS Management Console.

For details and step-by-step instructions, see Migrating Data from MySQL by

Using an Amazon S3 Bucket in the Amazon RDS User Guide.

Self-Managed Export/Import

You can use a variety of export/import tools to migrate your data and schema to

Amazon Aurora. The tools can be described as “MySQL native” because they are

either part of a MySQL project or were designed specifically for MySQL-

compatible databases.

Examples of native migration tools include the following:

 MySQL utilities such as mysqldump, mysqlimport, and mysql command-

line client.11 12 13

 Third-party utilities such as mydumper and myloader. For details, see

this mydumper project page.14

 Built-in MySQL commands such as SELECT INTO OUTFILE and LOAD

DATA INFILE.

Native tools are a great option for power users or database administrators who

want to maintain full control over the migration process. Self-managed

migrations involve more steps and are typically slower than RDS snapshot or

Percona XtraBackup migrations, but they offer the best compatibility and

flexibility.

For an in-depth discussion of the best practices for self-managed migrations,

see the AWS whitepaper Best Practices for Migrating MySQL Databases to

Amazon Aurora.15

You can execute a self-managed migration with downtime (without replication)

or with near-zero downtime (with binary log replication).

Self-Managed Migration with Downtime

The high-level procedure for migrating to Amazon Aurora from a MySQL-

compatible database is as follows:

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.6/en/mysqlimport.html
https://dev.mysql.com/doc/refman/5.6/en/mysql.html
https://github.com/maxbube/mydumper
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 12

1. Stop all write activity against the source database. Application downtime

begins here.

2. Perform a schema and data dump from the source database.

3. Import the dump into the target Aurora DB cluster.

4. Configure applications to connect to the newly created target Aurora DB

cluster instead of the source database.

5. Resume write activity. Application downtime ends here.

For an in-depth discussion of performance best practices for self-managed

migrations, see the AWS whitepaper Best Practices for Migrating MySQL

Databases to Amazon Aurora.

Self-Managed Migration with Near-Zero Downtime

The following is the high-level procedure for near-zero downtime migration into

Amazon Aurora from a MySQL-compatible database:

1. On the source database, enable binary logging and ensure that binary log

files are retained for at least the amount of time that is required to

complete the remaining migration steps.

2. Perform a schema and data export from the source database. Make sure

that the export metadata contains binary log coordinates that are

required to establish replication at a later time.

3. Import the dump into the target Aurora DB cluster.

4. On the target Aurora DB cluster, configure binary log replication from

the source database using the binary log coordinates that you obtained in

step 2.

5. Wait for the replication to catch up, that is, for the replication lag to

reach zero.

6. Stop all write activity against the source database instance. Application

downtime begins here.

7. Double-check that there is no outstanding replication lag. Then configure

applications to connect to the newly created target Aurora DB cluster

instead of the source database.

8. Resume write activity. Application downtime ends here.

https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 13

9. Terminate replication between the source database and the target Aurora

DB cluster.

For an in-depth discussion of performance best practices of self-managed

migrations, see the AWS whitepaper Best Practices for Migrating MySQL

Databases to Amazon Aurora.

AWS Database Migration Service

AWS DMS is a managed database migration service that is available through the

AWS Management Console. It can perform a range of tasks, from simple

migrations with downtime to near-zero downtime migrations using CDC

replication.

AWS DMS may be the preferred option if your source database can’t be

migrated using methods described previously, such as the RDS MySQL 5.6 DB

snapshot migration, Percona XtraBackup migration, or native export/import

tools.

AWS DMS might also be advantageous if your migration project requires

advanced data transformations such as the following:

 Remapping schema or table names

 Advanced data filtering

 Migrating and replicating multiple database servers into a single Aurora

DB cluster

Compared to the migration methods described previously, AWS DMS carries

certain limitations:

 It does not migrate secondary schema objects such as indexes, foreign

key definitions, triggers, or stored procedures. Such objects must be

migrated or created manually prior to data migration.

 The CDC replication uses plain SQL statements to apply data changes in

the target database. Therefore, it might be slower and more resource-

intensive than the native binary log replication in MySQL.

https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 14

For step-by-step instructions on how to migrate your database using AWS DMS,

see the AWS whitepaper Migrating Your Databases to Amazon Aurora.

Heterogeneous Migrations
If you are migrating a non-MySQL-compatible database to Amazon Aurora,

several options can help you complete the project quickly and easily.

A heterogeneous migration project can be split into two phases:

1. Schema migration to review and convert the source schema objects

(e.g., tables, procedures, and triggers) into a MySQL-compatible

representation.

2. Data migration to populate the newly created schema with data

contained in the source database. Optionally, you can use a CDC

replication for near-zero downtime migration.

Schema Migration

You must convert database objects such as tables, views, functions, and stored

procedures to a MySQL 5.6-compatible format before you can use them with

Amazon Aurora.

This section describes two main options for converting schema objects.

Whichever migration method you choose, always make sure that the converted

objects are not only compatible with Aurora but also follow MySQL’s best

practices for schema design.

AWS Schema Conversion Tool

The AWS Schema Conversion Tool (AWS SCT) can greatly reduce the

engineering effort associated with migrations from Oracle, Microsoft SQL

Server, and PostgreSQL. AWS SCT can automatically convert the source

database schema and a majority of the custom code, including views, stored

procedures, and functions, to a format compatible with Amazon Aurora. Any

code that can’t be automatically converted is clearly marked so that it can be

processed manually.

For more information, see the AWS Schema Conversion Tool User Guide.16

https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 15

For step-by-step instructions on how to convert a non-MySQL-compatible

schema using the AWS Schema Conversion Tool, see the AWS whitepaper

Migrating Your Databases to Amazon Aurora.

Manual Schema Migration

If your source database is not Oracle, SQL Server, or PostgreSQL, you can either

manually rewrite your database object definitions or use available third-party

tools to migrate schema to a format compatible with Amazon Aurora.

Many applications use data access layers that abstract schema design from

business application code. In such cases, you can consider redesigning your

schema objects specifically for Amazon Aurora and adapting the data access

layer to the new schema. This might require a greater upfront engineering

effort, but it allows the new schema to incorporate all the best practices for

performance and scalability.

Data Migration

After the database objects are successfully converted and migrated to Amazon

Aurora, it’s time to migrate the data itself.

The task of moving data from a non-MySQL-compatible database to Amazon

Aurora is best done using AWS DMS. AWS DMS supports initial data migration

as well as CDC replication. After the migration task starts, AWS DMS manages

all the complexities of the process, including data type transformations,

compression, and parallel data transfer. The CDC functionality automatically

replicates any changes that are made to the source database during the

migration process.

For more information, see the AWS Database Migration Service User Guide.

For step-by-step instructions on how to migrate data from a non-MySQL-

compatible database into an Amazon Aurora cluster using AWS DMS, see the

AWS whitepaper Migrating Your Databases to Amazon Aurora.

Example Migration Scenarios
There are several approaches for performing both self-managed homogeneous

migration and heterogeneous migrations.

https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
http://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 16

Self-Managed Homogeneous Migrations

This section provides examples of migration scenarios from self-managed

MySQL-compatible databases to Amazon Aurora.

For an in-depth discussion of homogeneous migration best practices, see the

AWS whitepaper Best Practices for Migrating MySQL Databases to Amazon

Aurora.

Note that if you are migrating from an Amazon RDS MySQL DB instance, you

can use the RDS snapshot migration feature instead of doing a self-managed

migration. See the Migrating from Amazon RDS for MySQL section for more

details.

Migrating Using Percona XtraBackup

One option for migrating data from MySQL to Amazon Aurora is to use the

Percona XtraBackup utility.

Approach

This scenario uses the Percona XtraBackup utility to take a binary backup of the

source MySQL database. The backup files are then uploaded to an Amazon S3

bucket and restored into a new Amazon Aurora DB cluster.

When to Use

You can adopt this approach for small- to large-scale migrations when the

following conditions are met:

 The source database is a MySQL 5.5 or 5.6 database.

 You have administrative, system-level access to the source database.

 You are migrating database servers in a 1-to-1 fashion: one source

MySQL server becomes one new Aurora DB cluster.

When to Consider Other Options

This approach is not currently supported in the following scenarios:

 Migrating into existing Aurora DB clusters.

https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 17

 Migrating multiple source MySQL servers into a single Aurora DB

cluster.

Examples

For a step-by-step example, see Migrating Data from MySQL by Using an

Amazon S3 Bucket in the Amazon RDS User Guide.

One-Step Migration Using mysqldump

Another migration option uses the mysqldump utility to migrate data from

MySQL to Amazon Aurora.

Approach

This scenario uses the mysqldump utility to export schema and data

definitions from the source server and import them into the target Aurora DB

cluster in a single step without creating any intermediate dump files.

When to Use

You can adopt this approach for many small-scale migrations when the

following conditions are met:

 The data set is very small (up to 1-2 GB).

 The network connection between source and target databases is fast and

stable.

 Migration performance is not critically important, and the cost of re-

trying the migration is very low.

 There is no need to do any intermediate schema or data transformations.

When to Consider Other Options

This approach might not be an optimal choice if any of the following conditions

are true:

 You are migrating from an RDS MySQL DB instance or a self-managed

MySQL 5.5 or 5.6 database. In that case, you might get better results with

snapshot migration or Percona XtraBackup, respectively. For more

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3

Amazon Web Services – Amazon Aurora Migration Handbook

Page 18

details, see the Migrating from Amazon RDS for MySQL and Percona

XtraBackup sections.

 It is impossible to establish a network connection from a single client

instance to source and target databases due to network architecture or

security considerations.

 The network connection between source and target databases is unstable

or very slow.

 The data set is larger than 10 GB.

 Migration performance is critically important.

 An intermediate dump file is required in order to perform schema or data

manipulations before you can import the schema/data.

Notes

For the sake of simplicity, this scenario assumes the following:

1. Migration commands are executed from a client instance running a

Linux operating system.

2. The source server is a self-managed MySQL database (e.g., running on

Amazon EC2 or on-premises) that is configured to allow connections

from the client instance.

3. The target Aurora DB cluster already exists and is configured to allow

connections from the client instance. If you don’t yet have an Aurora DB

cluster, review the step-by-step cluster launch instructions in the

Amazon RDS User Guide.17

4. Export from the source database is performed using a privileged, “super-

user” MySQL account. For simplicity, this scenario assumes that the user

holds all permissions available in MySQL.

5. Import into Amazon Aurora is performed using the Aurora master user

account, that is, the account whose name and password were specified

during the cluster launch process.

Examples

The following command, when filled with the source and target server and user

information, migrates data and all objects in the named schema(s) between the

source and target servers.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 19

mysqldump --host=<source_server_address> \

--user=<source_user> \

--password=<source_user_password> \

--databases <schema(s)> \

--single-transaction \

--compress | mysql --host=<target_cluster_endpoint> \

--user=<target_user> \

--password=<target_user_password>

Descriptions of the options and option values for the mysqldump command

are as follows:

 <source_server_address>: DNS name or IP address of the source server.

 <source_user>: MySQL user account name on the source server.

 <source_user_password>: MySQL user account password on the source

server.

 <schema(s)>: One or more schema names.

 <target_cluster_endpoint>: Cluster DNS endpoint of the target Aurora

cluster.

 <target_user>: Aurora master user name.

 <target_user_password>: Aurora master user password.

 --single-transaction: Enforces a consistent dump from the source

database. Can be skipped if the source database is not receiving any write

traffic.

 --compress: Enables network data compression.

See the mysqldump documentation for more details.

Example:

mysqldump --host=source-mysql.example.com \

--user=mysql_admin_user \

--password=mysql_user_password \

--databases schema1 \

--single-transaction \

--compress | mysql --host=aurora.cluster-xxx.xx.amazonaws.com \

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 20

--user=aurora_master_user \

--password=aurora_user_password

Note that this migration approach requires application downtime while the

dump and import are in progress. You can avoid application downtime by

extending the scenario with MySQL binary log replication. See the Self-

Managed Migration with Near-Zero Downtime section for more details.

Migration Using mysqldump with Error Troubleshooting

This scenario is a simple two-step migration with an intermediate dump file. It

also demonstrates the discovery, troubleshooting, and resolution of an example

import error.

Approach

The scenario uses a mysqldump utility to dump schema and data definitions

from the source server into a compressed SQL-format dump file. The dump file

is then transferred to an Amazon EC2 instance located in the same AWS Region

and Availability Zone as the target Aurora DB cluster. After the dump file is

transferred, it is imported into Amazon Aurora.

When to Use

You can adopt this approach for many small-scale migrations when the

following conditions are met:

 The data set is small (up to a few gigabytes).

 Migration performance is not critically important.

 You want to decouple the dump and import migration stages for better

performance and greater control over the migration process.

 An intermediate dump file is required in order to perform schema or data

manipulations before the dump can be imported.

When to Consider Other Options

This approach is not an optimal choice if any of the following conditions are

true:

 You are migrating from an RDS MySQL DB instance or a self-managed

MySQL 5.5 or 5.6 database. In that case, you might get better results with

Amazon Web Services – Amazon Aurora Migration Handbook

Page 21

snapshot migration or Percona XtraBackup, respectively. See the

Migrating from Amazon RDS for MySQL and Percona XtraBackup

sections for more details.

 The data set is a few gigabytes or larger.

 Migration performance is critically important.

Notes

In order to simplify the demonstration, this scenario assumes the following:

1. Migration commands are executed from client instances running a Linux

operating system:

o Client instance A located in the source server’s network

o Client instance B located in the same Amazon Virtual Private

Cloud (VPC), Availability Zone, and Subnet as the target Aurora DB

cluster

2. The source server is a self-managed MySQL database (e.g., running on

Amazon EC2 or on-premises) that is configured to allow connections

from client instance A.

3. The target Aurora DB cluster already exists and is configured to allow

connections from client instance B. If you don’t yet have an Aurora DB

cluster, review the step-by-step cluster launch instructions in the

Amazon RDS User Guide.

4. Communication is allowed between client instance A and client instance

B.

5. Export from the source database is performed using a privileged, “super-

user” MySQL account. For simplicity, the scenario assumes that the user

holds all permissions available in MySQL.

6. Import into Amazon Aurora is performed using the master user account,

that is, the account whose name and password were specified during the

cluster launch process.

Note that this migration approach requires application downtime while the

dump and import are in progress. You can avoid application downtime by

extending the scenario with MySQL binary log replication. For more details, see

the Self-Managed Migration with Near-Zero Downtime section.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 22

Examples

The following command is executed on client instance A and dumps data and all

objects in the named schema(s) into an SQL-format dump file.

mysqldump --host=<source_server_address> \

--user=<source_user> \

--password=<source_user_password> \

--databases <schema(s)> \

--single-transaction > myschema_dump.sql

Descriptions of the options and option values for the mysqldump command

are as follows:

 <source_server_address>: DNS name or IP address of the source server.

 <source_user>: MySQL user account name on the source server.

 <source_user_password>: MySQL user account password on the source

server.

 <schema(s)>: One or more schema names.

 <target_cluster_endpoint>: Cluster DNS endpoint of the target Aurora

cluster.

 <target_user>: Aurora master user name.

 <target_user_password>: Aurora master user password.

 --single-transaction: Enforces a consistent dump from the source

database. Can be skipped if the source database is not receiving any write

traffic.

See mysqldump in the MySQL 5.6 Reference Manual for more details.

Here is an example for schema myschema dumped from MySQL server running

on IP “11.22.33.44”.

admin@clientA:~$ mysqldump --host=11.22.33.44 --user=root \

--password=pAssw0rd --databases myschema \

--single-transaction > myschema_dump.sql

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 23

Check the size of the resulting SQL dump file.

admin@clientA:~$ ls -sh myschema_dump.sql

717M myschema_dump.sql

The file is over 700 MB, so it’s worth compressing before you transfer it to client

B (this example uses the gzip compression tool).

admin@clientA:~$ gzip myschema_dump.sql

admin@clientB:~$ ls -sh myschema_dump.sql.gz

42M myschema_dump.sql.gz

Note that you can also create a compressed SQL file in a single step by passing

mysqldump output through the compression tool.

admin@clientA:~$ mysqldump --host=11.22.33.44 \

--user=root --password=pAssw0rd --databases myschema \

--single-transaction |gzip > myschema_dump.sql.gz

The file is now transferred to client instance B located close to the target Aurora

DB cluster. You can use any available file transfer method (e.g., FTP or Amazon

S3). This example uses Secure Copy (SCP) with SSH private key authentication.

admin@clientA:~$ scp -i ssh-key.pem myschema_dump.sql.gz \

<clientB_ssh_user>@<clientB_address>:/home/ec2-user/

After connecting to client instance B, the file is uncompressed and imported

into an Aurora DB cluster. For convenience, you can use a pv command-line

utility that provides a progress indicator throughout the import.

admin@clientB:~$ gunzip myschema_dump.sql.gz

admin@clientB:~$ pv myschema_dump.sql | mysql \

--host=<cluster_endpoint> \

--user=master --password=pAssw0rd

Amazon Web Services – Amazon Aurora Migration Handbook

Page 24

125MiB 0:00:53 [2.34MiB/s] [===========>] 17%

ETA 0:04:10

Unfortunately, just as the import is about to finish, an error message appears.

716MiB 0:05:06 [2.34MiB/s]

[==>] 100%

ERROR 1227 (42000) at line 884: Access denied; you need (at

least one of) the SUPER privilege(s) for this operation

The message indicates that a statement stored in the dump file has failed

because of insufficient privileges. Namely, the statement requires a SUPER

privilege. This assertion is correct: Amazon Aurora is a managed database

service and does not provide the SUPER privilege.

The message doesn’t show the text of the statement that failed. Fortunately, the

message contains a line number (ERROR … at line 884), which is the

location in the dump file that you should examine.

The following example shows lines 884 through 886 from the dump file.

admin@clientB:~$ sed -n 884,886p myschema_dump.sql

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 DEFINER=`someuser`@`%` SQL SECURITY DEFINER */

/*!50001 VIEW `v1` AS select `myschema`.`t1`.`id` AS

`id`,`myschema`.`t1`.`s1` AS `s1` from `t1` */;

The problematic statement is CREATE VIEW. Upon closer investigation, you can

identify the root cause of the issue as follows:

 The CREATE VIEW statement uses a DEFINER clause. This clause carries

information about the MySQL user account that originally created the

view on the source MySQL database.

 The user account that is specified in the DEFINER clause (someuser@%) is

different from the user account that was used to perform the import

(master).

Amazon Web Services – Amazon Aurora Migration Handbook

Page 25

 In MySQL, only users with the SUPER privilege are allowed to specify

names other than their own in DEFINER clauses. If a user does not have

the SUPER privilege, only that user’s name can be used in DEFINER

clauses, or the user can skip the DEFINER clause altogether.

 The same limitation applies to other stored objects such as functions,

triggers, and procedures. For more information, see CREATE VIEW

Syntax in the MySQL 5.6 Reference Manual.18

There are two ways to resolve the issue, depending on whether you are keeping

the original DEFINER clauses.

If you are keeping the original DEFINER clauses for imported database objects:

1. Remove all CREATE statements with DEFINER clauses from the dump file

and rerun the import.

2. Make sure that all accounts that are referenced in the DEFINER clauses

already exist in the target database. Create any accounts that are missing.

3. For each account that is mentioned as DEFINER for any database object:

o Log in to the target database using the user account in question.

o For all objects that define this user as the DEFINER, re-create the

objects by running CREATE statements manually.

If you are not keeping the original DEFINER clauses:

For each CREATE statement found in the dump file:

1. If the statement uses a DEFINER clause, remove the clause, but leave the

remaining portion of the CREATE statement unmodified.

2. Rerun the import.

This demonstration assumed that it is acceptable to remove original object

definers. However, you don’t want to browse and modify the dump file manually

http://dev.mysql.com/doc/refman/5.6/en/create-view.html
http://dev.mysql.com/doc/refman/5.6/en/create-view.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 26

because it is fairly large and could contain dozens of CREATE statements with

DEFINER clauses. Instead of manipulating the dump file using a text editor, you

can use a Perl script to conveniently remove all DEFINER clauses at once.

admin@clientB:~$ perl -pe 's/\sDEFINER=`[^`]+`@`[^`]+`//' \

< myschema_dump.sql > myschema_dump_nodefiners.sql

Perform one additional check to confirm that the DEFINER clause is gone.

admin@clientB:~$ sed -n 884,886p myschema_dump_nodefiners.sql

/*!50001 CREATE ALGORITHM=UNDEFINED */

/*!50013 SQL SECURITY DEFINER */

/*!50001 VIEW `v1` AS select `myschema`.`t1`.`id` AS

`id`,`myschema`.`t1`.`s1` AS `s1` from `t1` */;

Now you can import the modified file. Note that you don’t have to remove any

database objects that were already imported from the original dump file. The

dump file contains DROP statements that remove any existing objects prior to re-

creating them.

admin@clientB:~$ pv myschema_dump.sql | mysql --

host=<cluster_endpoint> \

--user=master --password=pAssw0rd

716MiB 0:05:07 [2.33MiB/s]

[==>] 100%

Success! The file was imported without further issues.

Flat-File Migration Using Files in CSV Format

This scenario demonstrates a schema and data migration using flat-file dumps,

that is, dumps that do not encapsulate data in SQL statements. Many database

administrators prefer to use flat files over SQL-format files for the following

reasons:

Amazon Web Services – Amazon Aurora Migration Handbook

Page 27

 Lack of SQL encapsulation results in smaller dump files and reduces

processing overhead during import.

 Flat-file dumps are easier to process using OS-level tools; they are also

easier to manage (e.g., split or combine).

 Flat-file formats are compatible with a wide range of database engines,

both SQL and NoSQL.

Approach

The scenario uses a hybrid migration approach:

 Use the mysqldump utility to create a schema-only dump in SQL

format. The dump describes the structure of schema objects (e.g., tables,

views, and functions) but does not contain data.

 Use SELECT INTO OUTFILE SQL commands to create data-only dumps

in CSV format. The dumps are created in a one-file-per-table fashion and

contain table data only (no schema definitions).

The import phase can be executed in two ways:

 Traditional approach. Transfer all dump files to an Amazon EC2

instance located in the same AWS Region and Availability Zone as the

target Aurora DB cluster. After transferring the dump files, you can

import them into Amazon Aurora using the mysql command line client

and LOAD DATA LOCAL INFILE SQL commands for SQL-format

schema dumps and the flat-file data dumps, respectively.

This is the approach that is demonstrated later in this section.

 Alternative approach. Transfer the SQL-format schema dumps to an

Amazon EC2 client instance, and import them using the mysql

command-line client. You can transfer the flat-file data dumps to an

Amazon S3 bucket and then import them into Amazon Aurora using

LOAD DATA FROM S3 SQL commands.

For more information, including an example of loading data from Amazon S3,

see Loading Data into a DB Cluster from Text Files in an Amazon S3 Bucket in

the Amazon RDS User Guide.19

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.LoadFromS3.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 28

When to Use

You can adopt this approach for most migration projects where performance

and flexibility are important:

 You can dump small data sets and import them one table at a time. You

can also run multiple SELECT INTO OUTFILE and LOAD DATA INFILE

operations in parallel for best performance.

 Data that is stored in flat-file dumps is not encapsulated in database-

specific SQL statements. Therefore, it can be handled and processed

easily by the systems participating in the data exchange.

When to Consider Other Options

You might choose not to use this approach if any of the following conditions are

true:

 You are migrating from an RDS MySQL DB instance or a self-managed

MySQL 5.5 or 5.6 database. In that case, you might get better results with

snapshot migration or Percona XtraBackup, respectively. See the

Migrating from Amazon RDS for MySQL and Percona XtraBackup

sections for more details.

 The data set is very small and does not require a high-performance

migration approach.

 You want the migration process to be as simple as possible and you don’t

require any of the performance and flexibility benefits listed earlier.

Notes

To simplify the demonstration, this scenario assumes the following:

1. Migration commands are executed from client instances running a Linux

operating system:

o Client instance A is located in the source server’s network

o Client instance B is located in the same Amazon VPC, Availability

Zone, and Subnet as the target Aurora DB cluster

Amazon Web Services – Amazon Aurora Migration Handbook

Page 29

2. The source server is a self-managed MySQL database (e.g., running on

Amazon EC2 or on-premises) configured to allow connections from client

instance A.

3. The target Aurora DB cluster already exists and is configured to allow

connections from client instance B. If you don’t have an Aurora DB

cluster yet, review the step-by-step cluster launch instructions in the

Amazon RDS User Guide.

4. Communication is allowed between both client instances.

5. Export from the source database is performed using a privileged, “super

user” MySQL account. For simplicity, this scenario assumes that the user

holds all permissions available in MySQL.

6. Import into Amazon Aurora is performed using the master user account,

that is, the account whose name and password were specified during the

cluster launch process.

Note that this migration approach requires application downtime while the

dump and import are in progress. You can avoid application downtime by

extending the scenario with MySQL binary log replication. See the Self-

Managed Migration with Near-Zero Downtime section for more details.

Examples

In this scenario, you migrate a MySQL schema named myschema. The first step

of the migration is to create a schema-only dump of all objects.

mysqldump --host=<source_server_address> \

--user=<source_user> \

--password=<source_user_password> \

--databases <schema(s)> \

--single-transaction \

--no-data > myschema_dump.sql

Descriptions of the options and option values for the mysqldump command

are as follows:

 <source_server_address>: DNS name or IP address of the source server.

 <source_user>: MySQL user account name on the source server.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 30

 <source_user_password>: MySQL user account password on the source

server.

 <schema(s)>: One or more schema names.

 <target_cluster_endpoint>: Cluster DNS endpoint of the target Aurora

cluster.

 <target_user>: Aurora master user name.

 <target_user_password>: Aurora master user password.

 --single-transaction: Enforces a consistent dump from the source

database. Can be skipped if the source database is not receiving any write

traffic.

 --no-data: Creates a schema-only dump without row data.

For more details, see mysqldump in the MySQL 5.6 Reference Manual.

Example:

admin@clientA:~$ mysqldump --host=11.22.33.44 --user=root \

--password=pAssw0rd --databases myschema \

--single-transaction --no-data > myschema_dump_schema_only.sql

After you complete the schema-only dump, you can obtain data dumps for each

table. After logging in to the source MySQL server, use the SELECT INTO

OUTFILE statement to dump each table’s data into a separate CSV file.

admin@clientA:~$ mysql --host=11.22.33.44 --user=root --

password=pAssw0rd

mysql> show tables from myschema;

+--------------------+

| Tables_in_myschema |

+--------------------+

| t1 |

| t2 |

| t3 |

| t4 |

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 31

+--------------------+

4 rows in set (0.00 sec)

mysql> SELECT * INTO OUTFILE

 '/home/admin/dump/myschema_dump_t1.csv'

 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 FROM myschema.t1;

Query OK, 4194304 rows affected (2.35 sec)

(repeat for all remaining tables)

For more information about SELECT INTO statement syntax, see SELECT ...

INTO Syntax in the MySQL 5.6 Reference Manual.20

After you complete all dump operations, the /home/admin/dump directory

contains five files: one schema-only dump and four data dumps, one per table.

admin@clientA:~/dump$ ls -sh1

total 685M

4.0K myschema_dump_schema_only.sql

172M myschema_dump_t1.csv

172M myschema_dump_t2.csv

172M myschema_dump_t3.csv

172M myschema_dump_t4.csv

Next, you compress and transfer the files to client instance B located in the

same AWS Region and Availability Zone as the target Aurora DB cluster. You

can use any file transfer method available to you (e.g., FTP or Amazon S3). This

example uses SCP with SSH private key authentication.

admin@clientA:~/dump$ gzip myschema_dump_*.csv

admin@clientA:~/dump$ scp -i ssh-key.pem myschema_dump_* \

<clientB_ssh_user>@<clientB_address>:/home/ec2-user/

After transferring all the files, you can decompress them and import the schema

and data. Import the schema dump first because all relevant tables must exist

before any data can be inserted into them.

http://dev.mysql.com/doc/refman/5.6/en/select-into.html
http://dev.mysql.com/doc/refman/5.6/en/select-into.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 32

admin@clientB:~/dump$ gunzip myschema_dump_*.csv.gz

admin@clientB:~$ mysql --host=<cluster_endpoint> --user=master \

--password=pAssw0rd < myschema_dump_schema_only.sql

With the schema objects created, the next step is to connect to the Aurora DB

cluster endpoint and import the data files.

Note the following:

 The mysql client invocation includes a --local-infile parameter,

which is required to enable support for LOAD DATA LOCAL INFILE

commands.

 Before importing data from dump files, use a SET command to disable

foreign key constraint checks for the duration of the database session.

Disabling foreign key checks not only improves import performance, but

it also lets you import data files in arbitrary order.

admin@clientB:~$ mysql --local-infile --host=<cluster_endpoint>

\

--user=master --password=pAssw0rd

mysql> SET foreign_key_checks = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> LOAD DATA LOCAL INFILE '/home/ec2-

user/myschema_dump_t1.csv'

 -> INTO TABLE myschema.t1

 -> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

 -> LINES TERMINATED BY '\n';

Query OK, 4194304 rows affected (1 min 2.66 sec)

Records: 4194304 Deleted: 0 Skipped: 0 Warnings: 0

(repeat for all remaining CSV files)

mysql> SET foreign_key_checks = 1;

Query OK, 0 rows affected (0.00 sec)

That’s it—you have imported the schema and data dumps into the Aurora DB

cluster.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 33

Useful Tips

 This example involved a single-threaded data dump and a single-

threaded data import, but you can easily parallelize the operations for

greater migration performance. Just run multiple SELECT INTO

OUTFILE or LOAD DATA LOCAL INFILE commands in parallel, one

command per table. There is a limit to how many parallel operations you

can run before the performance stabilizes. A good rule of thumb is to use

one thread per server CPU core (for dumps) and one thread per two CPU

cores (for imports).

 Note that each LOAD DATA LOCAL INFILE operation uses a single

database transaction to process the entire input file. For very large files,

this might degrade the performance and stability of the import process. It

is good practice to split very large dump files into smaller chunks (e.g., 1

GB) and import them sequentially. Chunked imports have another useful

side effect, namely, they can be easily suspended and resumed.

 You might not need to use SELECT INTO OUTFILE commands to

produce flat-file dumps if your export tool offers similar functionality.

For more information, see Dumping Data in Delimited-Text Format

with mysqldump in the MySQL 5.6 Reference Manual.

 You might not need to use LOAD DATA LOCAL INFILE commands to

import flat-file dumps into Amazon Aurora if your import tool offers

similar functionality. For more information, see mysqlimport — A Data

Import Program in the MySQL 5.6 Reference Manual.

You can find more tips and best practices for self-managed migrations in the

AWS whitepaper Best Practices for Migrating MySQL Databases to Amazon

Aurora.

Multi-Threaded Migration Using mydumper and myloader

Mydumper and myloader are popular open source MySQL export/import

tools designed to address performance issues associated with the legacy

mysqldump program. They operate on SQL-format dumps and offer advanced

features such as the following:

 Dumping and loading data using multiple parallel threads

 Creating dump files in a file-per-table fashion

 Creating chunked dumps in a multiple-files-per-table fashion

https://dev.mysql.com/doc/refman/5.6/en/mysqldump-delimited-text.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump-delimited-text.html
https://dev.mysql.com/doc/refman/5.6/en/mysqlimport.html
https://dev.mysql.com/doc/refman/5.6/en/mysqlimport.html
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 34

 Dumping data and metadata into separate files for easier parsing and

management

 Configurable transaction size during import

 Ability to schedule dumps in regular intervals

For more details, see the MySQL Data Dumper project page.

Approach

The scenario uses the mydumper and myloader tools to perform a multi-

threaded schema and data migration without the need to manually invoke any

SQL commands or design custom migration scripts.

The migration is performed in two steps:

1. Use the mydumper tool to create a schema and data dump using

multiple parallel threads.

2. Use the myloader tool to process the dump files and import them into

an Aurora DB cluster, also in multi-threaded fashion.

Note that mydumper and myloader might not be readily available in the

package repository of your Linux/Unix distribution. For your convenience, the

scenario also shows how to build the tools from source code.

When to Use

You can adopt this approach in most migration projects:

 The utilities are easy to use and enable database users to perform multi-

threaded dumps and imports without the need to develop custom

migration scripts.

 Both tools are highly flexible and have reasonable configuration defaults.

You can adjust the default configuration to satisfy the requirements of

both small- and large-scale migrations.

https://launchpad.net/mydumper/

Amazon Web Services – Amazon Aurora Migration Handbook

Page 35

When to Consider Other Options

You might decide not to use this approach if any of the following conditions are

true:

 You are migrating from an RDS MySQL DB instance or a self-managed

MySQL 5.5 or 5.6 database. In that case, you might get better results with

snapshot migration or Percona XtraBackup, respectively. See the

Migrating from Amazon RDS for MySQL and Percona XtraBackup

sections for more details.

 You can’t use third-party software because of operating system

limitations.

 Your data transformation processes require intermediate dump files in a

flat-file format and not an SQL format.

Notes

To simplify the demonstration, this scenario assumes the following:

1. You execute the migration commands from client instances running a

Linux operating system:

a. Client instance A is located in the source server’s network

b. Client instance B is located in the same Amazon VPC, Availability

Zone, and Subnet as the target Aurora cluster

2. The source server is a self-managed MySQL database (e.g., running on

Amazon EC2 or on-premises) configured to allow connections from client

instance A.

3. The target Aurora DB cluster already exists and is configured to allow

connections from client instance B. If you don’t have an Aurora DB

cluster yet, review the step-by-step cluster launch instructions in the

Amazon RDS User Guide.

4. Communication is allowed between both client instances.

5. You perform the export from the source database using a privileged,

“super user” MySQL account. For simplicity, the example assumes that

the user holds all permissions available in MySQL.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 36

6. You perform the import into Amazon Aurora using the master user

account, that is, the account whose name and password were specified

during the cluster launch process.

7. The Amazon Linux 2016.03.3 operating system is used to demonstrate

the configuration and compilation steps for mydumper and myloader.

Note that this migration approach requires application downtime while the

dump and import are in progress. You can avoid application downtime by

extending the scenario with MySQL binary log replication. See the Self-

Managed Migration with Near-Zero Downtime section for more details.

Examples (Preparing Tools)

The first step is to obtain and build the mydumper and myloader tools. See

the MySQL Data Dumper project page for up-to-date download links and to

ensure that tools are prepared on both client instances.

The utilities depend on several packages that you should install first.

[ec2-user@clientA ~]$ sudo yum install glib2-devel mysql56 \

mysql56-devel zlib-devel pcre-devel openssl-devel g++ gcc-c++

cmake

The next steps involve creating a directory to hold the program sources, and

then fetching and unpacking the source archive.

[ec2-user@clientA ~]$ mkdir mydumper

[ec2-user@clientA ~]$ cd mydumper/

[ec2-user@clientA mydumper]$ wget

https://launchpad.net/mydumper/0.9/0.9.1/+download/mydumper-

0.9.1.tar.gz

2016-06-29 21:39:03 (153 KB/s) - ‘mydumper-0.9.1.tar.gz’ saved

[44463/44463]

[ec2-user@clientA mydumper]$ tar zxf mydumper-0.9.1.tar.gz

https://launchpad.net/mydumper/

Amazon Web Services – Amazon Aurora Migration Handbook

Page 37

[ec2-user@clientA mydumper]$ cd mydumper-0.9.1

Next, you build the binary executables.

[ec2-user@clientA mydumper-0.9.1]$ cmake .

(…)

 [ec2-user@clientA mydumper-0.9.1]$ make

Scanning dependencies of target mydumper

[25%] Building C object CMakeFiles/mydumper.dir/mydumper.c.o

[50%] Building C object

CMakeFiles/mydumper.dir/server_detect.c.o

[75%] Building C object

CMakeFiles/mydumper.dir/g_unix_signal.c.o

Linking C executable mydumper

[75%] Built target mydumper

Scanning dependencies of target myloader

[100%] Building C object CMakeFiles/myloader.dir/myloader.c.o

Linking C executable myloader

[100%] Built target myloader

Optionally, you can move the binaries to a location defined in the operating

system $PATH so that they can be executed more conveniently.

[ec2-user@clientA mydumper-0.9.1]$ sudo mv mydumper

/usr/local/bin/mydumper

[ec2-user@clientA mydumper-0.9.1]$ sudo mv myloader

/usr/local/bin/myloader

As a final step, confirm that both utilities are available in the system.

[ec2-user@clientA ~]$ mydumper -V

mydumper 0.9.1, built against MySQL 5.6.31

[ec2-user@clientA ~]$ myloader -V

myloader 0.9.1, built against MySQL 5.6.31

Amazon Web Services – Amazon Aurora Migration Handbook

Page 38

Examples (Migration)

After completing the preparation steps, you can perform the migration.

The mydumper command uses the following basic syntax.

mydumper -h <source_server_address> -u <source_user> \

-p <source_user_password> -B <source_schema> \

-t <thread_count> -o <output_directory>

Descriptions of the parameter values are as follows:

 <source_server_address>: DNS name or IP address of the source server

 <source_user>: MySQL user account name on the source server

 <source_user_password>: MySQL user account password on the source

server

 <source_schema>: Name of the schema to dump

 <thread_count>: Number of parallel threads used to dump the data

 <output_directory>: Name of the directory where dump files should be

placed

Note that mydumper is a highly customizable data dumping tool. For a

complete list of supported parameters and their default values, use the built-in

help.

mydumper --help

The example dump is executed as follows.

[ec2-user@clientA ~]$ mydumper -h 11.22.33.44 -u root \

-p pAssw0rd -B myschema -t 4 -o myschema_dump/

The operation results in the following files being created in the dump directory.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 39

[ec2-user@clientA ~]$ ls -sh1 myschema_dump/

total 733M

4.0K metadata

4.0K myschema-schema-create.sql

4.0K myschema.t1-schema.sql

184M myschema.t1.sql

4.0K myschema.t2-schema.sql

184M myschema.t2.sql

4.0K myschema.t3-schema.sql

184M myschema.t3.sql

4.0K myschema.t4-schema.sql

184M myschema.t4.sql

The directory contains a collection of metadata files in addition to schema and

data dumps. You don’t have to manipulate these files directly. It’s enough that

the directory structure is understood by the myloader tool.

Compress the entire directory and transfer it to client instance B.

[ec2-user@clientA ~]$ tar czf myschema_dump.tar.gz myschema_dump

[ec2-user@clientA ~]$ scp -i ssh-key.pem myschema_dump.tar.gz \

<clientB_ssh_user>@<clientB_address>:/home/ec2-user/

When the transfer is complete, connect to client instance B and double-check

that the myloader utility is available.

[ec2-user@clientB ~]$ myloader -V

myloader 0.9.1, built against MySQL 5.6.31

Now you can unpack the dump and import it. The syntax used for the

myloader command is very similar to what you already used for mydumper.

The only difference is the --d (source directory) parameter replacing the --o

(target directory) parameter.

[ec2-user@clientB ~]$ tar zxf myschema_dump.tar.gz

[ec2-user@clientB ~]$ myloader -h <cluster_dns_endpoint> \

Amazon Web Services – Amazon Aurora Migration Handbook

Page 40

-u master -p pAssw0rd -B myschema -t 4 -d myschema_dump/

Useful Tips

 The concurrency level (thread count) does not have to be the same for

export and import operations. A good rule of thumb is to use one thread

per server CPU core (for dumps) and one thread per two CPU cores (for

imports).

 The schema and data dumps produced by mydumper use an SQL

format and are compatible with MySQL 5.6. Although you will typically

use the pair of mydumper and myloader tools together for best

results, technically you can import the dump files from myloader by

using any other MySQL-compatible client tool.

You can find more tips and best practices for self-managed migrations in the

AWS whitepaper Best Practices for Migrating MySQL Databases to Amazon

Aurora.

Heterogeneous Migrations

For detailed, step-by-step instructions on how to migrate schema and data from

a non-MySQL-compatible database into an Aurora DB cluster using AWS SCT

and AWS DMS, see the AWS whitepaper Migrating Your Databases to Amazon

Aurora.

Troubleshooting
The following sections provide examples of common issues and error messages

to help you troubleshoot self-managed migrations and binary log replication.

Troubleshooting Self-Managed Migrations

This section describes common issues you might encounter during self-

managed dump/import operations. Note that although the error messages and

troubleshooting suggestions are discussed in the context of Amazon Aurora,

they remain valid for any MySQL-compatible database.

https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf

Amazon Web Services – Amazon Aurora Migration Handbook

Page 41

For a complete reference of MySQL server and client-side error messages, see

the following pages in the MySQL 5.6 Reference Manual:

 Server Error Codes and Messages21

 Client Error Codes and Messages22

Error 2005: Unknown MySQL server host

The following is an example of this error message.

Got error: 2005: Unknown MySQL server host 'aurora.xyz.us-west-

2.rds.amazonaws.com' (0) when trying to connect

Description

This error message appears when the MySQL client program can’t find the

specified MySQL server name. Most common causes include DNS resolution

issues and typographical errors in the DNS name.

Troubleshooting

 Check the DNS name for typographical errors. For best results, try

copying the DNS name from the AWS Management Console instead of

entering it manually.

 Check whether the DNS name correctly resolves to an IP address using

operating system tools such as host, dig, and nslookup. For accuracy,

test DNS resolution from the same client instance that experiences

database connectivity issues.

 If DNS resolution fails from one client host, repeat the test from other

clients. Ideally, try to use clients that are located in the same network and

also clients located in other networks. You can also use online DNS

resolution services for verification. This can help you rule out client-

specific and network provider–specific DNS resolution issues.

 If DNS resolution fails from all clients regardless of their network

location, and you are certain that the DNS name doesn’t contain

typographical errors, there might be issues with the DNS endpoint itself.

http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-client.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 42

If it’s an AWS-managed endpoint such as an Aurora DB cluster endpoint,

you can contact AWS Support for further assistance.

 If DNS resolution consistently fails on some clients, but not all, the issue

is likely not specific to the particular DNS endpoint but instead to the

client’s operating system or network DNS configuration.

Error 2003: Can’t connect to MySQL server

The following is an example of this error message.

Got error: 2003: Can't connect to MySQL server on

'aurora.xyz.us-west-2.rds.amazonaws.com' (110) when trying to

connect

Description

This error message appears when the server DNS name or IP address is correct

but the server can’t be contacted. Common causes include the following:

 Network communication between the client instance and the server

endpoint is not possible because of the configuration of security groups,

network access control lists (ACLs), routing tables, or any self-managed

network or firewalling solutions.

 Connection attempt to the Aurora DB instance is made from outside the

instance’s VPC, but the instance does not have the Publicly Accessible

option enabled. For details, see Working with an Amazon RDS DB

Instance in a VPC in the Amazon RDS User Guide.23

 The server is using a custom port number such as 3307 instead of 3306,

but the MySQL client program was not instructed to use the custom port

(e.g., the --port parameter for the mysqldump command).

Troubleshooting

For Amazon Aurora:

 Verify that the instance is in the “Available” state.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 43

 Verify that the network and security configuration of the Aurora DB

instance allows for connections from the client host. For details, see

Working with an Amazon RDS DB Instance in a VPC in the Amazon RDS

User Guide.

 Verify that the client program uses the correct database port number.

 Use a network route-tracking tool such as traceroute to verify if and

where the network traffic is dropped. Note that Amazon Aurora does not

respond to ICMP echo requests. You must use a route-tracing tool that

supports TCP probes, such as traceroute for Linux and tracetcp for

Windows.

For self-managed servers:

 Verify that the server daemon is running and in a state that allows client

connections (e.g., not in recovery or shutdown mode).

 Verify that the server and its underlying network components are

configured to accept traffic from the client host. For example, some

database servers might be configured to accept traffic only from

localhost, or traffic might be dropped on your local firewall.

Error 1045: Access denied for user when trying to connect

The following are examples of this error message.

Got error: 1045: Access denied for user 'user'@'host' (using

password: YES) when trying to connect

Got error: 1045: Access denied for user 'user'@'host' (using

password: NO) when trying to connect

Description

This error appears when you try to connect using an incorrect password or no

password.

Troubleshooting

If the error message includes “using password: NO”, it indicates that the

client program is not sending the password to the server. Check the client

program syntax and make sure that the password is included in the parameter

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 44

list. For example, the following mysql command syntax is incorrect because

there must not be a space between “--p" and the password.

mysql -h 127.0.0.1 -u master -p pAssw0rd

If the error message includes “using password: YES”, check the supplied

password. If you are confident that the password you supplied is correct, you

can first test the connection from another MySQL client tool to rule out client-

specific issues. If the password doesn’t work with any client, you can choose to

reset the user password:

 To reset the master user password in Amazon Aurora, use the “Modify”

action in RDS Management Console or the modify-db-cluster method in

the AWS Command Line Interface (CLI).24

 To reset the master user password in a self-managed MySQL server,

follow the instructions in the MySQL 5.6 Reference Manual.25

 To reset a non-master user password in Amazon Aurora or a self-

managed MySQL server, log in to the database as the master user and use

the SET PASSWORD SQL statement.26

Error 1045: Access denied for user

The following is an example of this error message.

ERROR 1045 (28000) at line 85: Access denied for user

'user'@'host' (using password: YES)

Description

This error appears when the database user doesn’t have sufficient privileges to

execute a given SQL statement. The error message reports a line number in the

SQL script (or dump file) where the error occurred.

Troubleshooting

 Find the command in the SQL script or dump file at the given line

number.

http://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/resetting-permissions.html
http://dev.mysql.com/doc/refman/5.6/en/set-password.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 45

 Check that the database user has permissions to execute all SQL

operations referenced on that line.

For a sample migration scenario that involves the troubleshooting and

resolution of an “access denied” error, see the Migration Using mysqldump

with Error Troubleshooting section.

Error 1227: Access denied; you need (at least one of) the SUPER
privilege(s)

The following is an example of this error message.

ERROR 1227 (42000) at line 1: Access denied; you need (at least

one of) the SUPER privilege(s) for this operation

Description

This error appears when a user tries to execute an operation that is protected by

the SUPER privilege, but the user doesn’t have that privilege. The error message

reports a line number in the SQL script (or dump file) where the error occurred.

Troubleshooting

To identify the SQL statement that failed, find the contents of the given line in

the SQL script or dump file.

If the SQL statement fails against a self-managed MySQL server, consult a

database administrator who is responsible for the server’s security management

and configuration. The database administrator can resolve the issue by granting

the SUPER privilege or by executing the privileged actions on behalf of the

unprivileged user.

Note that Amazon Aurora does not provide the SUPER privilege. If a SQL

command fails against Amazon Aurora due to the lack of SUPER privilege:

 Identify the problematic SQL statement as described earlier.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 46

 Determine whether the statement can be safely skipped or modified so

that it no longer requires super-user privileges.

For a sample migration scenario that involves the troubleshooting and

resolution of an “access denied” error, see the Migration Using mysqldump

with Error Troubleshooting section.

Error 1064: You have an error in your SQL syntax

The following is an example of this error message.

ERROR 1064 (42000) at line 662: You have an error in your SQL

syntax; check the manual that corresponds to your MySQL server

version for the right syntax to use near 'inset into

myschema.test values (1)' at line 1

Description

This error appears when an SQL operation can’t be processed by the server due

to incorrect or unrecognized syntax. The error message reports a line number in

the SQL script (or dump file) where the error occurred, as well as the failing

statement or part thereof.

The following conditions can cause the error:

 The statement was obtained from a different MySQL server version and

the target server doesn’t understand the statement syntax.

 The statement text is corrupted or contains typographical errors (e.g.,

missing characters in SQL keywords, missing spaces, or delimiters).

Troubleshooting

To identify the SQL statement that failed, find the contents of the given line in

the SQL script or dump file, and verify that the statement is syntactically

correct. If you are using a graphical SQL client, it might already contain syntax-

checking features, or you can use an online SQL syntax checker.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 47

If the statement was produced by a MySQL-compatible server (e.g., as part of a

dump file) and appears to be syntactically correct, try to execute it against two

servers:

 The Aurora DB cluster you are migrating to.

 Another server running the same database version as the source server

that produced the statement in the first place.

If the statement succeeds on the source-compatible server but not on the

target Aurora DB cluster, it might have configuration or version

compatibility issues.

If a MySQL 5.6-compatible statement consistently returns syntax errors when

executed against Amazon Aurora, contact AWS Premium Support for

guidance.27

Error 1049 or 1146: Unknown database or Table doesn’t exist

The following are examples of this error message.

ERROR 1049 (42000) at line 1: Unknown database 'myscscd'

ERROR 1146 (42S02) at line 1: Table 'myschema.test' doesn't

exist

Description

This error can appear in the following two situations:

 When you try to access a table that doesn’t exist.

 When you try to access a table in a schema that doesn’t exist.

https://aws.amazon.com/premiumsupport/

Amazon Web Services – Amazon Aurora Migration Handbook

Page 48

The following conditions can cause the error:

 The table and/or schema do not exist, that is, they were not created

before you tried to access them.

 The table or schema name is incorrect.

The error message reports a line number in the SQL script (or dump file) where

the error occurred, and also the table or schema name that can’t be found. Note

that although an “Unknown database” message indicates a missing schema, a

“Table doesn’t exist” message indicates that either the table or its schema

is missing.

Troubleshooting

 Check that the table or schema that is referenced in the error message

exists on the server.

 Check that the source and target servers use the same configuration

parameters for table name case sensitivity. For details, see the MySQL

5.6 Reference Manual.28

Error 2020: Got packet bigger than ‘max_allowed_packet’ bytes
when dumping table

The following is an example of this error message.

Error 2020: Got packet bigger than 'max_allowed_packet' bytes

when dumping table `bigtable`

Description

This error can appear when you are dumping a table that contains individual

column values that are larger than the value that is configured for the

max_allowed_packet parameter. The parameter applies to both the server and

client configurations.

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names

Amazon Web Services – Amazon Aurora Migration Handbook

Page 49

For example, if your server and MySQL client program have the

max_allowed_packet parameter value set to 4194304 bytes (4 MB), and you

try to dump data from a table that contains column values larger than 4 MB, the

dump might fail with this error.

Troubleshooting

 Determine the maximum length of column values that are expected to be

present in your database.

 Set the max_allowed_packet parameter on server and client side to a

value larger than the longest column value found in the database.

You can use the DB Parameter Groups to modify server-side configuration

parameters on Amazon Aurora. For details, see Working with DB Parameter

Groups in the Amazon RDS User Guide.29

To change client-side configuration parameters, refer to the documentation of

your MySQL client program. For example, the mysqldump program offers a -

-max-allowed-packet parameter for this purpose.

Error 2006: MySQL server has gone away

The following is an example of this error message.

ERROR 2006 (HY000) at line 38: MySQL server has gone away

Description

This error appears when the connection to the server is lost unexpectedly. The

range of possible causes is very wide. In fact, the MySQL Reference Manual

contains an entire page dedicated to this particular error.

Troubleshooting

 See the MySQL 5.6 Reference Manual for details and troubleshooting tips.30

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://dev.mysql.com/doc/refman/5.6/en/gone-away.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 50

No space left on device, table is full, incorrect key file for table

The following is an example of this error message.

Error 28: no space left on device

Error 1114: The table is full

Error 126: Incorrect key file for table

Error 1034: Incorrect key file for table

Description

This error can appear when the server runs out of temporary storage space.

The following conditions can cause the error:

 A Data Definition Language (DDL) statement such as ALTER TABLE is

executed against a very large table.

 A SELECT or INSERT INTO … SELECT statement requires a large

temporary table for internal processing.

Each Amazon Aurora DB instance uses an Amazon EC2 instance-store volume

to hold non-permanent data such as logs and temporary tables that the database

engine creates during query processing. The size of the temporary storage

volume depends on the Aurora DB instance class.

If an Aurora DB instance class doesn’t provide enough space to accommodate a

given SQL operation, the operation might fail with one of these error messages.

For more information about the size of instance-store volumes that are available

to each instance class, see Instance Store Volumes in the Amazon EC2 User

Guide.31

You can use the “Free Local Storage” Amazon CloudWatch metric to monitor

the amount of local temporary storage that is available to each of your Amazon

Aurora instances. For details, see Monitoring an Amazon Aurora DB Cluster in

the Amazon RDS User Guide.32

Troubleshooting

Try the following if the error occurs during an ALTER TABLE operation:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 51

 Determine the size of the table that is being altered. Depending on the

nature of the change, the database might need an amount of temporary

storage equal to or bigger than the size of the table.

 If possible, scale to a larger instance class that offers a bigger temporary

storage volume.

 If you are altering multiple tables, try performing one alter at a time.

 When the table is too large to be altered regardless of the instance size,

consider alternative approaches that don’t require temporary tables, such

as the pt-online-schema-change tool from Percona Toolkit. Make

sure that you evaluate and test the tool thoroughly before using it in your

production environment.

If the error occurs during a different type of SQL operation (e.g., a long-running

SELECT), try splitting the operation into smaller chunks. This not only improves

the stability of this particular statement, but it also increases its scalability as

your data set grows.

Troubleshooting Binary Log Replication

This section applies to migrations from MySQL-compatible servers only.

Binary log (“binlog”) replication is a MySQL technology that enables changes

introduced on a MySQL-compatible database server (“master”) to be applied to

one or more MySQL-compatible servers (“slaves”). As a MySQL 5.6-compatible

database, Amazon Aurora can participate in replication setups with other

MySQL 5.6-compatible databases.

Binary log replication is a popular technique for reducing migration downtime

because it enables the source server to continue accepting traffic during the

migration process. Downtime is only required for the final cut-over, that is, the

moment when database traffic is shifted from the source to the target server.

See the following sections for details on how binary log replication helps reduce

migration downtime:

Amazon Web Services – Amazon Aurora Migration Handbook

Page 52

 Migrating with Downtime

 Migrating with Near-Zero Downtime

When you are migrating into Amazon Aurora, an Aurora DB cluster serves as

the replication target (“slave”), receiving and applying changes from another

MySQL-compatible server. This section is intended to help you address the

most common questions and issues related to operating a binary log replication

slave.

Binary Log Terms and Concepts

This section discusses binary log replication from external MySQL-compatible

servers. Note that binary logs are not used for replication between database

instances within an Aurora cluster.

The binary log is an ordered and sequential record of changes (or “events”) that

occur on a replication master. With transactional MySQL storage engines, such

as InnoDB, the binary log records are written at commit time so that they refer

only to changes that were successfully applied to the database. After the binary

log is written, it becomes available to replication slaves. For details, see The

Binary Log in the MySQL 5.6 Reference Manual.33

A replication slave uses two types of internal threads to obtain and apply change

vectors. The slave I/O thread is responsible for connecting to the replication

master, downloading binary log files, and storing them on the replication slave.

A binary log that is downloaded from the replication master and stored on the

replication slave is called a relay log. The binary log content is downloaded as-

is (the slave does not modify log records before storing them locally). So the

“binary log” and “relay log” naming convention refers to the location of the log

files rather than their content.

The slave SQL thread reads records from the relay log and applies them to

the database. The log records can be in the form of literal SQL statements (e.g.,

UPDATE table SET …) or non-SQL change vectors (e.g., “find row X in table T,

change values to Y”).

Each binary log record is marked with a timestamp of when the change was

executed on the master. Replication lag is the difference between the current

http://dev.mysql.com/doc/refman/5.6/en/binary-log.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 53

time on the slave and the timestamp of the replication event that is currently

being applied on the slave. You can monitor the replication lag using the

AuroraBinlogReplicaLag CloudWatch metric.34

Binary log replication is not idempotent, which means that a change record

can be applied only once with the same result. Change records cannot be

applied multiple times without potentially causing data consistency issues.

If the slave I/O thread is unable to download binary log data from the master, or

if the SQL thread encounters a binary log record that can’t be successfully

applied, the thread might stop with an error. The database administrator can

diagnose and resolve the error and restart the replication. If the replication

error can’t be corrected, the replication slave must be re-created from scratch.

In Amazon Aurora, you can also manually start or stop binary log replication.

For details, see mysql.rds_stop_replication in the Amazon RDS User Guide.35

For a complete discussion of binary log replication, see Replication in the

MySQL 5.6 Reference Manual.36

Obtaining Binary Log Replication Status

You can connect to the Aurora cluster and use the SHOW SLAVE STATUS SQL

command to obtain replication status. If the result is empty, the Aurora DB

cluster is not configured to replicate from a binary log master.

Some of the most important fields from the output of the SHOW SLAVE STATUS

command are shown and discussed in this section. For full documentation, see

SHOW SLAVE STATUS Syntax in the MySQL 5.6 Reference Manual.37

mysql> SHOW SLAVE STATUS\G

...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

 Relay_Master_Log_File: master-bin.000002

 Exec_Master_Log_Pos: 1307

...

 Seconds_Behind_Master: 0

...

 Last_IO_Errno: 0

 Last_IO_Error:

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
http://dev.mysql.com/doc/refman/5.6/en/replication.html
https://dev.mysql.com/doc/refman/5.6/en/show-slave-status.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 54

 Last_SQL_Errno: 0

 Last_SQL_Error:

...

 Slave_IO_State: Waiting for master to send event

 Slave_SQL_Running_State: Slave has read all relay log;

waiting for the slave I/O thread to update it

Descriptions of the fields are as follows:

 Slave_IO_Running: Reports “Yes” if the slave I/O thread is running. A

value of “Connecting” indicates that the I/O thread is trying to connect to

the master. A value of “No” indicates that the thread is stopped or down

due to an error.

 Slave_SQL_Running: Reports “Yes” if the slave SQL thread is running. A

value of “No” indicates that the thread is stopped or down due to an

error.

 Relay_Master_Log_File: The name of the master binary log file that

contains the most recently executed event.

 Exec_Master_Log_Pos: The position (byte offset) in

Relay_Master_Log_File to which the slave SQL thread has read and

executed. If this value changes in subsequent SHOW SLAVE STATUS

outputs, replication is progressing normally.

 Seconds_Behind_Master: The replication lag in seconds. A value of

“NULL” indicates that the slave SQL thread is not running, or that the

slave SQL thread has already applied all relay logs and the slave I/O

thread is not running.

 Last_*_Error: Contains the error codes and messages, if any, for the I/O

and SQL replication threads. These values are the primary source of

information when you diagnose replication issues.

 Slave_IO_State, Slave_SQL_Running_State: Verbose description of the

current I/O and SQL thread state. See the MySQL 5.6 Reference Manual

for the discussion of possible I/O thread states and SQL thread states.38

39

https://dev.mysql.com/doc/refman/5.6/en/slave-io-thread-states.html
https://dev.mysql.com/doc/refman/5.6/en/slave-sql-thread-states.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 55

Common Replication Issues

This section assumes a scenario in which an Amazon Aurora DB cluster serves

as a replication slave of a MySQL-compatible replication master.

Replication Is Slow

On a typical database server, many client sessions execute and introduce

changes in parallel. After the change vectors are written to the binary log and

are transferred to the replication slave, a MySQL-5.6 compatible replication

slave would typically use only a single SQL thread to apply the changes, one

change at a time.

If the replication master experiences a heavy load, the single slave SQL thread

might not be able to apply changes quickly enough. As a result, the slave might

develop replication lag. For the purposes of database migration, replication lag

is an issue if it grows continuously or if it falls too slowly. For example, if the

initial replication lag is 48 hours and it falls by 2 hours per day, it would take 24

days for the slave to fully catch up.

Consider the following techniques for improving replication performance:

 Disable all unnecessary features on the replication slave. Features such as

query logging or binary logging might introduce overhead that impacts

slave SQL thread processing.

 If the replication master uses a STATEMENT or MIXED binary log format,

try using a ROW format instead. This might improve replication

performance for some types of statements. For details, see Binary

Logging Formats in the MySQL Reference Manual.40

 If the replication workload consists of a large number of very small

transactions, you might configure the replication slave to use a more

relaxed innodb_flush_log_at_trx_commit setting for transaction log

flushing.41 Parameter values of “0” or “2” are not recommended in

production environments, but they can be introduced temporarily on the

slave to speed up replication.

 If the replication workload consists of changes to multiple schemas, you

might configure the slave for multi-threaded replication.42 This

configuration enables multiple slave SQL threads and allows for a better

http://dev.mysql.com/doc/refman/5.6/en/binary-log-formats.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log-formats.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_parallel_workers

Amazon Web Services – Amazon Aurora Migration Handbook

Page 56

use of the slave’s CPU and I/O resources. Note that the SQL threads don’t

use any conflict resolution mechanisms. This feature is not safe to use if

individual transactions make changes in more than one schema.

Replication Appears Stuck

Speaking broadly, binary log replication can be in one of the following three

states:

 Replication is stopped.

 Replication can’t move forward due to errors encountered by slave I/O or

SQL threads.

 Replication is moving forward at a certain speed, given the type of

workload and master/slave configuration.

In some cases, the relatively slow progress made by replication threads might

create an impression that replication is “stuck”. Fortunately, you can confirm

replication status using these steps:

1. Confirm that the slave I/O and SQL threads don’t report errors.

2. Obtain replication status multiple times and check the value of

Exec_Master_Log_Pos. If the value is increasing, replication is

progressing normally.

See the Obtaining Binary Log Replication Status section for more details.

Note that metrics such as the Exec_Master_Log_Pos and the replication lag

(Seconds_Behind_Master) are updated after executing a replication event. If

the replication event is very time-consuming (e.g., an UPDATE statement that

takes several minutes or hours), the metrics might not change until that event

finishes. When you obtain replication status with the SHOW SLAVE STATUS

command, allow sufficient time between command executions in case the slave

SQL thread is processing a time-consuming event.

Last but not least, you must have a way to confirm whether the slave SQL thread

is in the middle of a time-consuming event. The following example explains how

to do it.

Example

First, obtain the replication status (output reduced for brevity).

mysql> show slave status\G

Amazon Web Services – Amazon Aurora Migration Handbook

Page 57

*************************** 1. row ***************************

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

...

 Relay_Master_Log_File: mysql-bin-changelog.062779

 Exec_Master_Log_Pos: 120

 Seconds_Behind_Master: 31

...

 Slave_SQL_Running_State: updating

The output shows the following:

 Per Slave_*_Running and Last_*_Error, slave threads are both running

and are not reporting any errors.

 The slave is currently processing the binary log file 062779 at position

120.

 The slave SQL thread status is “updating”, which suggests it’s currently

executing an UPDATE statement. You might observe a different thread

state, such as “inserting” or “Reading event from the relay

log”, depending on the type and logging format of the replication event

that is currently being executed.

 Replication lag is 31 seconds.

Obtain the status again.

mysql> show slave status\G

*************************** 1. row ***************************

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

 Last_IO_Errno: 0

 Last_IO_Error:

Amazon Web Services – Amazon Aurora Migration Handbook

Page 58

 Last_SQL_Errno: 0

 Last_SQL_Error:

...

 Relay_Master_Log_File: mysql-bin-changelog.062779

 Exec_Master_Log_Pos: 120

 Seconds_Behind_Master: 34

...

 Slave_SQL_Running_State: updating

This output shows the following:

 Replication threads still do not report errors.

 Master log file number and position remain unchanged.

 Slave SQL thread status still reports “updating”.

 Replication lag is growing (was 31 seconds; now is 34 seconds).

At this point, you might very well assume that the replication thread is “stuck”

because it’s not reporting progress as far as the status variables are concerned.

Continue the investigation by obtaining the list of server processes, among

which is the slave SQL thread.

mysql> show processlist;

+-----+-------------+---------+------+----------------------------------+------------------------+

| Id | User | Command | Time | State | Info |

+-----+-------------+---------+------+----------------------------------+------------------------+

...

| 232 | system user | Connect | 4425 | Waiting for master to send event | NULL |

| 233 | system user | Connect | 239 | updating | update t1 set s1 = 'a' |

...

This output shows the following:

 Thread ID 232 is the slave I/O thread responsible for downloading

binary logs from the master.

Amazon Web Services – Amazon Aurora Migration Handbook

Page 59

 Thread ID 233 (highlighted in yellow) is the slave SQL thread with a

current state of “updating”.

 The SQL thread is currently executing an SQL statement “update t1

set s1 = 'a'”. Depending on the type and logging format of the

replication event, you might not see a literal SQL statement here.

You have already gathered a lot of information, but you still don’t have proof

that the statement in question is not “stuck”. You can use the InnoDB Standard

Monitor (SHOW ENGINE INNODB STATUS command) to learn more about the

internal state of the statement.43 The command output contains the following

information under the TRANSACTIONS section.

mysql> show innodb engine status\G

...

---TRANSACTION 2146412, ACTIVE 41 sec updating or deleting

mysql tables in use 1, locked 1

28097 lock struct(s), heap size 5158440, 5057125 row lock(s), undo log entries 5038395

MySQL thread id 233, OS thread handle 0x2afef04d6700, query id 31495 updating

update t1 set s1 = 'a'

...

This output shows the following:

 You can tell that you’re looking at the correct thread/transaction because

it has the same MySQL thread ID as the one you observed earlier in the

process list (highlighted in yellow).

 The transaction has been active for 41 seconds. So far it acquired

approximately 5 million row locks and made approximately 5 million

changes (per “undo log entries”).

Invoke the command again and compare the outputs.

mysql> show innodb engine status\G

...

---TRANSACTION 2146412, ACTIVE 45 sec updating or deleting

mysql tables in use 1, locked 1

30102 lock struct(s), heap size 5158440, 5541045 row lock(s), undo log entries 5513375

MySQL thread id 233, OS thread handle 0x2afef04d6700, query id 31495 updating

update t1 set s1 = 'a'

http://dev.mysql.com/doc/refman/5.6/en/innodb-standard-monitor.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-standard-monitor.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 60

...3

The final observation is that the number of row locks and changes is growing,

roughly by half a million within four seconds. It ultimately proves that the slave

SQL thread is, in fact, not stuck, but is busy applying a large change.

I/O State: Waiting for the slave SQL thread to free enough relay log space

The following are the symptoms of this I/O thread state.

mysql> show slave status \G

*************************** 1. row ***************************

Slave_IO_State: Waiting for the slave SQL thread to free enough

relay log space

...

Description

When working as a replication slave, Amazon Aurora places a limit on how

much binary log data can be pre-fetched from the replication master. The limit

helps avoid unnecessary growth of the auto-scaled cluster storage volume in

case the master contains gigabytes or terabytes of binary log data. When the

combined size of the relay logs exceeds the limit, the slave I/O thread pauses

until some relay logs are processed and removed by the slave SQL thread.

Troubleshooting

This I/O thread state is normal. It does not slow replication down and does not

require intervention.

I/O Error: Error connecting to master

The following is an example of this error message.

mysql> SHOW SLAVE STATUS\G;

*************************** 1. row ***************************

 Slave_IO_State: Connecting to master

 Slave_IO_Running: Connecting

Amazon Web Services – Amazon Aurora Migration Handbook

Page 61

...

 Last_IO_Errno: 2003

 Last_IO_Error: error connecting to master

'USER@HOST:PORT' - retry-time: 60 retries: 86400

 Last_SQL_Errno: 0

Description

This issue might occur if the replication slave can’t connect to the replication

master. If the Last_IO_Errno and Last_IO_Error don’t report errors, but the

I/O thread continuously remains in “Connecting” state, check the slave’s error

log for replication-related records that contain the keyword ERROR.

Troubleshooting

 Verify that the network and security configuration of the replication

master allows for connections from the slave.

 Verify that the slave is trying to connect to the correct port number. The

default port number for MySQL is 3306, but your replication master

might be configured differently.

 You might test your settings by trying a manual MySQL connection

against the master, from a client instance in the same security/network

domain as the Aurora cluster. Replication uses the regular MySQL

connection protocol, so the host, port, user, and password that you

configured for replication should also work with any MySQL client.

SQL State: Invalidating query cache entries (table)

The following shows the symptoms of this SQL thread state.

mysql> show slave status \G

*************************** 1. row ***************************

Slave_SQL_Running_State: invalidating query cache entries

(table)

...

Amazon Web Services – Amazon Aurora Migration Handbook

Page 62

Description

The Query Cache is an in-memory buffer for storing result sets from SELECT

queries. When data changes are introduced through replication, the relevant

query cache entries must be invalidated. For more information, see The MySQL

Query Cache in the MySQL 5.6 Reference Manual.44

Troubleshooting

You can safely ignore this slave SQL thread state. In Amazon Aurora, the Query

Cache has been reworked for better performance and scalability. The Query

Cache invalidations are no longer expected to cause performance issues.

Note that due to Aurora internals, you might observe this thread state even if

the Query Cache is disabled on your Aurora DB instances. This is expected and

does not require an intervention.

SQL Error 1236: Could not find first log file name in binary log index file

The following are examples of this error message.

mysql> show slave status \G

*************************** 1. row ***************************

 Master_Log_File: mysql-bin.000289

...

 Slave_IO_Running: No

 Last_IO_Errno: 1236

 Last_IO_Error: Got fatal error 1236 from master when

reading data from binary log: 'Could not find first log file

name in binary log index file'

...

Description

This message indicates that the binary log file that the replication slave intends

to download is not available on the replication master. For example, the file

might have been deleted before the slave managed to download it.

Troubleshooting

http://dev.mysql.com/doc/refman/5.6/en/query-cache.html
http://dev.mysql.com/doc/refman/5.6/en/query-cache.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 63

Connect to the replication master and use the SHOW BINARY LOGS command to

confirm whether the desired binary log file is available.

If the log file you want does not appear in the output from SHOW BINARY LOGS,

determine the next closest available binary log by looking at the numeric suffix

in the file name. If the difference between the desired file’s suffix and next

closest file’s suffix is greater than 1, you can’t resume replication without risking

serious data consistency issues. You should re-create the replication slave from

scratch and make sure that the replication master is configured to retain binary

logs for as long as the slave requires it.

If the difference between the desired file’s suffix and next closest file’s suffix is

equal to 1, you might be able to resume replication by skipping to the next

binary log file. For details, see mysql.rds_next_master_log in the Amazon RDS

User Guide.45 There is still a risk of data consistency issues, so you should

monitor the slave carefully from that point on.

SQL Error 1236: Client requested master to start replication from
impossible position

The following are examples of this error message.

mysql> show slave status \G

*************************** 1. row ***************************

 Master_Log_File: mysql-bin.012345

...

 Slave_IO_Running: No

 Last_IO_Errno: 1236

 Last_IO_Error: Got fatal error 1236 from master when

reading data from binary log: 'Client requested master to start

replication from impossible position; the first event 'mysql-

bin-changelog.013406' at 1219393, the last event read from

'/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the

last byte read from '/rdsdbdata/log/binlog/mysql-bin-

changelog.012345' at 4.'

...

Description

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 64

This message indicates that the slave tries to replicate from an invalid position

within a binary log file. This issue can occur if the replication master crashes or

restarts without closing the binary log file cleanly.

Troubleshooting

You might be able to resume replication by skipping to the next binary log file.

For more information, see mysql.rds_next_master_log in the Amazon RDS

User Guide.

SQL Errors 1062: Duplicate entry

The following are examples of these error messages.

mysql> show slave status \G

*************************** 1. row ***************************

...

 Slave_SQL_Running: No

 Last_SQL_Errno: 1062

 Last_SQL_Error: Error 'Duplicate entry 'key_value' for key

'key_name'' on query. (...) Default database: ''. Query: 'INSERT

INTO table_name ...

...

Description

These messages indicate that the slave SQL thread tried to insert a row that

violates an existing PRIMARY or UNIQUE constraint on the table. A common

cause of this issue is that the replication slave receives conflicting changes from

multiple sources. For example, there might be users or applications that are

connecting to the replication slave and introducing changes that conflict with

replication events.

Troubleshooting

 Confirm that the row in question does indeed exist in the table. You can

use the table name, key name, and key value mentioned in the error

message to construct a SELECT query that checks for the existence of the

row.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 65

 Review your replication slave access rules and make sure that users and

applications are not allowed to introduce changes that interfere with

replication traffic. You can use General Logging or Advanced Auditing to

pinpoint the source of offending statements.46 47

 Resolve the data inconsistency (e.g., by removing the duplicate row), and

then resume replication.

 If you can’t resolve the data inconsistency, you can skip the error.48 Note

that this introduces data drift between master and slave, which might

result in issues such as queries returning incorrect results and more

frequent replication breakdowns.

 If you can’t resolve the data inconsistency and you don’t accept the risks

associated with skipping replication errors, you should re-create the slave

from scratch.

SQL Error 1032: Can’t find record

The following is an example of this error message.

mysql> show slave status \G

*************************** 1. row ***************************

...

 Slave_SQL_Running: No

 Last_SQL_Errno: 1032

 Last_SQL_Error: Could not execute Delete_rows event on table

test.t; Can't find record in 'table_name', Error_code: 1032;

handler error HA_ERR_KEY_NOT_FOUND; the event's master log

mysql-bin.012345, end_log_pos 34567

Description

These messages indicate that the slave SQL thread tried to modify or delete a

row that does not exist in the table. A common cause of this issue is that the

replication slave receives conflicting changes from multiple sources. For

example, there might be users or applications that are connecting to the

replication slave and are introducing changes that conflict with replication

events.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html#USER_LogAccess.MySQL.Generallog
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Auditing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 66

Troubleshooting

 Review your replication slave access rules, and make sure that users and

applications are not allowed to introduce changes that interfere with

replication traffic. You can use General Logging or Advanced Auditing to

pinpoint the source of offending statements.

 If you know the correct values that should be stored in the missing row,

you might resolve the data inconsistency by manually creating the row on

the replication slave. After you do that, resume replication.

 If you can’t resolve the data inconsistency, you can skip the error. Note

that this introduces data drift between master and slave, which might

result in issues such as queries returning incorrect results and more

frequent replication breakdowns.

 If you can’t resolve the data inconsistency and you don’t accept the risks

associated with skipping replication errors, you should re-create the slave

from scratch.

Conclusion

Multiple factors contribute to a successful database migration:

 The choice of the database product.

 A migration approach (e.g., methods, tools) that meets performance and

uptime requirements.

 Well-defined migration procedures that enable database administrators

to prepare, test, and complete all migration steps with confidence.

 The ability to identify, diagnose, and deal with issues with little or no

interruption to the migration process.

We hope that the guidance provided in this document will help you introduce

meaningful improvements in all of these areas, and that it will ultimately

contribute to creating a better overall experience for your database migrations

into Amazon Aurora.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html#USER_LogAccess.MySQL.Generallog
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Auditing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 67

Contributors

The following individual contributed to this document:

 Szymon Komendera, Database Engineer, Amazon Web Services

Further Reading

For additional information, see the following:

 Aurora on Amazon RDS User Guide49

 Migrating Your Databases to Amazon Aurora AWS whitepaper50

 Best Practices for Migrating MySQL Databases to Amazon Aurora AWS

whitepaper51

1

https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20database

s%20to%20Amazon%20Aurora.pdf

2

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.

html

3 http://aws.amazon.com/rds/aurora/pricing/

4

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.

html#Aurora.Overview.Reliability

5

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.

RDSMySQL.html

6

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.

MySQL.html#Aurora.Migrate.MySQL.S3

7 http://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Notes

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
http://aws.amazon.com/rds/aurora/pricing/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html#Aurora.Overview.Reliability
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html#Aurora.Overview.Reliability
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.RDSMySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.RDSMySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
http://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 68

8

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.

html#USER_ImportAurora

9

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overvie

w.Replication.MySQLReplication.html

10

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Upgrad

eDBInstance.MySQL.html

11 https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

12 http://dev.mysql.com/doc/refman/5.6/en/mysqlimport.html

13 https://dev.mysql.com/doc/refman/5.6/en/mysql.html

14 https://github.com/maxbube/mydumper

15 https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-

MySQL-Databases-to-Amazon-Aurora.pdf

16

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welc

ome.html

17

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateI

nstance.html

18 http://dev.mysql.com/doc/refman/5.6/en/create-view.html

19

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.LoadFr

omS3.html

20 http://dev.mysql.com/doc/refman/5.6/en/select-into.html

21 http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html

22 http://dev.mysql.com/doc/refman/5.6/en/error-messages-client.html

23

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.Wo

rkingWithRDSInstanceinaVPC.html

24 http://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-

cluster.html

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html#USER_ImportAurora
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.Replication.MySQLReplication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.Replication.MySQLReplication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.6/en/mysqlimport.html
https://dev.mysql.com/doc/refman/5.6/en/mysql.html
https://github.com/maxbube/mydumper
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://dev.mysql.com/doc/refman/5.6/en/create-view.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.LoadFromS3.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.LoadFromS3.html
http://dev.mysql.com/doc/refman/5.6/en/select-into.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-client.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html
http://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
http://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 69

25 http://dev.mysql.com/doc/refman/5.6/en/resetting-permissions.html

26 http://dev.mysql.com/doc/refman/5.6/en/set-password.html

27 https://aws.amazon.com/premiumsupport/

28 https://dev.mysql.com/doc/refman/5.6/en/server-system-

variables.html#sysvar_lower_case_table_names

29

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Workin

gWithParamGroups.html

30 http://dev.mysql.com/doc/refman/5.6/en/gone-away.html

31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.ht

ml#instance-store-volumes

32

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitor

ing.html

33 http://dev.mysql.com/doc/refman/5.6/en/binary-log.html

34

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitor

ing.html#Aurora.Monitoring.Metrics

35

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_sto

p_replication.html

36 http://dev.mysql.com/doc/refman/5.6/en/replication.html

37 https://dev.mysql.com/doc/refman/5.6/en/show-slave-status.html

38 https://dev.mysql.com/doc/refman/5.6/en/slave-io-thread-states.html

39 https://dev.mysql.com/doc/refman/5.6/en/slave-sql-thread-states.html

40 http://dev.mysql.com/doc/refman/5.6/en/binary-log-formats.html

41 http://dev.mysql.com/doc/refman/5.6/en/innodb-

parameters.html#sysvar_innodb_flush_log_at_trx_commit

42 https://dev.mysql.com/doc/refman/5.6/en/replication-options-

slave.html#sysvar_slave_parallel_workers

43 http://dev.mysql.com/doc/refman/5.6/en/innodb-standard-monitor.html

http://dev.mysql.com/doc/refman/5.6/en/resetting-permissions.html
http://dev.mysql.com/doc/refman/5.6/en/set-password.html
https://aws.amazon.com/premiumsupport/
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://dev.mysql.com/doc/refman/5.6/en/gone-away.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
http://dev.mysql.com/doc/refman/5.6/en/replication.html
https://dev.mysql.com/doc/refman/5.6/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.6/en/slave-io-thread-states.html
https://dev.mysql.com/doc/refman/5.6/en/slave-sql-thread-states.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log-formats.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_parallel_workers
http://dev.mysql.com/doc/refman/5.6/en/innodb-standard-monitor.html

Amazon Web Services – Amazon Aurora Migration Handbook

Page 70

44 http://dev.mysql.com/doc/refman/5.6/en/query-cache.html

45

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_nex

t_master_log.html

46

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAcce

ss.Concepts.MySQL.html#USER_LogAccess.MySQL.Generallog

47

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Auditin

g.html

48

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_ski

p_repl_error.html

49

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.

html

50

https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20database

s%20to%20Amazon%20Aurora.pdf

51 https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-

MySQL-Databases-to-Amazon-Aurora.pdf

http://dev.mysql.com/doc/refman/5.6/en/query-cache.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html#USER_LogAccess.MySQL.Generallog
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html#USER_LogAccess.MySQL.Generallog
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Auditing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Auditing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf
https://d0.awsstatic.com/whitepapers/RDS/Best-Practices-for-Migrating-MySQL-Databases-to-Amazon-Aurora.pdf

