
File Gateway for Hybrid Cloud
Storage Architectures

Overview and Best Practices for the File Gateway Configuration

of the AWS Storage Gateway Service

March 2019

Notices
Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents AWS’s current product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS’s products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. AWS’s responsibilities and liabilities to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents
Introduction 1

File Gateway Architecture 1

File to Object Mapping 2

Read/Write Operations and Local Cache 4

Choosing the Right Cache Resources 6

Security and Access Controls Within a Local Area Network 6

Monitoring Cache and Traffic 7

File Gateway Bucket Inventory 7

Amazon S3 and the File Gateway 10

File Gateway Use Cases 12

Cloud Tiering 13

Hybrid Cloud Backup 13

Conclusion 15

Contributors 15

Further Reading 15

Document Revisions 15

Abstract
Organizations are looking for ways to reduce their physical data center footprints,
particularly for storage arrays used as secondary file backup or on-demand workloads.
However, providing data services that bridge private data centers and the cloud comes
with a unique set of challenges. Traditional data center storage services rely on low-
latency network attached storage (NAS) and storage area network (SAN) protocols to
access storage locally. Cloud-native applications are generally optimized for API access
to data in scalable and durable cloud object storage, such as Amazon Simple Storage
Service (Amazon S3). This paper outlines the basic architecture and best practices for
building hybrid cloud storage environments using the AWS Storage Gateway in a file
gateway configuration to address key use cases, such as cloud tiering, hybrid cloud
backup, distribution, and cloud processing of data generated by on-premises
applications.

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 1

Introduction
Organizations are looking for ways to reduce their physical data center infrastructure. A
great way to start is by moving secondary or tertiary workloads, such as long-term file
retention and backup and recovery operations, to the cloud. In addition, organizations
want to take advantage of the elasticity of cloud architectures and features to access
and use their data in new on-demand ways that a traditional data center infrastructure
can’t support.

AWS Storage Gateway has multiple gateway types, including a file gateway that
provides low-latency Network File System (NFS) and Server Message Block (SMB)
access to Amazon Simple Storage Service (Amazon S3) objects from on-premises
applications. At the same time, customers can access that data from any Amazon S3
API-enabled application. Configuring AWS Storage Gateway as a file gateway enables
hybrid cloud storage architectures in use cases such as archiving, on-demand bursting
of workloads, and backup to the AWS Cloud.

Individual files that are written to Amazon S3 using the file gateway are stored as
independent objects. This provides high durability, low-cost, flexible storage with
virtually infinite capacity. Files are stored as objects in Amazon S3 in their original
format without any proprietary modification. This means that data is readily available to
data analytics and machine learning applications and services that natively integrate
with Amazon S3 buckets, such as Amazon EMR, Amazon Athena, or Amazon
Transcribe. It also allows for storage management through native Amazon S3 features,
such as lifecycle policies, analytics, and cross-region replication (CRR).

A file gateway communicates efficiently between private data centers and AWS.
Traditional NAS protocols (SMB and NFS) are translated to object storage API calls.
This makes file gateway an ideal component for organizations looking for tiered storage
of file or backup data with low-latency local access and durable storage in the cloud.

File Gateway Architecture
A file gateway provides a simple solution for presenting one or more Amazon S3
buckets and their objects as a mountable NFS or SMB file share to one or more clients
on-premises.

The file gateway is deployed as a virtual machine in VMware ESXi or Microsoft Hyper-V
environments on-premises, or in an Amazon Elastic Compute Cloud (Amazon EC2)
instance in AWS. File gateway can also be deployed in data center and remote office
locations on a Storage Gateway hardware appliance. When deployed, file gateway
provides a seamless connection between on-premises NFS (v3.0 or v4.1) or SMB (v1 or

v2) clients—typically applications—and Amazon S3 buckets hosted in a given AWS
Region. The file gateway employs a local read/write cache to provide a low-latency

https://aws.amazon.com/storagegateway/hardware-appliance/

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 2

access to data for file share clients in the same local area network (LAN) as the file
gateway.

A bucket share consists of a file share hosted from a file gateway across a single
Amazon S3 bucket. The file gateway virtual machine appliance currently supports up to
10 bucket shares.

Figure 1: Basic file gateway architecture

Here are the components of the file gateway architecture shown in Figure 1:

1. Clients, access objects as files using an NFS or SMB file share exported through
an AWS Storage Gateway in the file gateway configuration

2. Expandable read/write cache for the file gateway

3. File gateway virtual appliance

4. Amazon S3, which provides persistent object storage for all files that are written
using the file gateway

File to Object Mapping

After deploying, activating, and configuring the file gateway, one or more bucket shares
can be presented to clients that support NFS v3 or v4.1 protocols, or mapped to a share
via SMB v1 or v2 protocols on the local LAN. Each share (or mount point) on the
gateway is paired to a single bucket, and the contents of the bucket are available as
files and folders in the share.

Writing an individual file to a share on the file gateway creates an identically named
object in the associated bucket. All newly created objects are written to Amazon S3
Standard, Amazon S3 Standard – Infrequent Access (S3 Standard – IA), or Amazon S3

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 3

One Zone – Infrequent Access (S3 One Zone – IA) storage classes, depending on the
configuration of the share.

The Amazon S3 key name of a newly created object is identical to the full path of the file
that is written to the mount point in AWS Storage Gateway.

Figure 2: Files stored over NFS on the file gateway mapping to Amazon S3 objects

One difference between storing data in Amazon S3 versus a traditional file system is the
way in which granular permissions and metadata are implemented and stored. Access
to files stored directly in Amazon S3 is secured by policies stored in Amazon S3 and
AWS Identity and Access Management (IAM). All other attributes, such as storage class
and creation date, are stored in a given object’s metadata. When a file is accessed over
NFS or SMB, the file permissions, folder permissions, and attributes are stored in the
file system.

To reliably persist file permissions and attributes, the file gateway stores this information
as part of Amazon S3 object metadata. If the permissions are changed on a file over
NFS or SMB, the gateway modifies the metadata of the associated objects that are
stored in Amazon S3 to reflect the changes. Custom default UNIX permissions are
defined for all existing S3 objects within a bucket when a share is created from the AWS
Management Console or using the file gateway API. This feature lets you create NFS or
SMB enabled shares from buckets with existing content without having to manually
assign permissions after you create the share.

The following is an example of a file that is stored in a share bucket and is listed from a
Linux-based client that is mounting the share bucket over NFS. The example shows that
the file “file1.txt” has a modification date and standard UNIX file permissions.

[e2-user@host]$ ls -l /media/filegateway1/

total 1

-rw-rw-r-- 1 ec2-user ec2-user 36 Mar 15 22:49 file1.txt

[e2-user@host]$

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 4

The following example shows the output from the head-object on Amazon S3. It shows
the same file from the perspective of the object that is stored in Amazon S3. Note that
the permissions and time stamp in the previous example are stored durably as
metadata for the object.

[e2-user@host]$ aws s3api head-object --bucket filegateway1 --key

file1.txt

{

 "AcceptRanges": "bytes",

 "ContentType": "application/octet-stream",

 "LastModified": "Wed, 15 Mar 2017 22:49:02 GMT",

 "ContentLength": 36,

 "VersionId": "93XCzHcBUHBSg2yP.8yKMHzxUumhovEC",

 "ETag": "\"0a7fb5dbb1ae1f6a13c6b4e4dcf54977-1\"",

 "ServerSideEncryption": "AES256",

 "Metadata": {

 "file-group": "500",

 "user-agent-id": "sgw-7619FB1F",

 "file-owner": "500",

 "aws-sgw":

"57c3c3e92a7781f868cb10020b33aa6b2859d58c868190661bcceae87f7b96f1",

 "file-mtime": "1489618141421",

 "file-ctime": "1489618141421",

 "user-agent": "aws-storage-gateway",

 "file-permissions": "0664"

 }

}

[e2-user@host]$

Read/Write Operations and Local Cache

As part of a file gateway deployment, dedicated local storage is allocated to provide a
read/write cache for all hosted share buckets. The read/write cache greatly improves
response times for on-premises file (NFS/SMB) operations. The local cache holds both
recently written and recently read content and does not proactively evict data while the
cache disk has free space. However, when the cache is full, AWS Storage Gateway
evicts data based on a least recently used (LRU) algorithm. Recently accessed data is
available for reads, and write operations are not impeded.

Read Operations (Read-Through Cache)

When an NFS client performs a read request, the file gateway first checks the local
cache for the requested data. If the data is not in the cache, the gateway retrieves the

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 5

data from Amazon S3 using Range GET requests to minimize data transferred over the

Internet while repopulating the read cache on behalf of the client.

1. The NFS/SMB client performs a read request on part of a given file.

2. The file gateway first checks to see if required bytes are cached locally.

3. In the event the bytes are not in the local cache, the file gateway performs a byte
range GET on the associated S3 object.

Figure 3: File gateway read operations

Write Operations (Write-Back Cache)

When a file is written to the file gateway over NFS/SMB, the gateway first commits the
write to the local cache. At this point, the write success is acknowledged to the local
NFS/SMB client, taking full advantage of the low latency of the local area network. After
the write cache is populated, the file is transferred to the associated Amazon S3 bucket
asynchronously to increase local performance of Internet transfers.

When an existing file is modified, the file gateway transfers only the newly written bytes
to the associated Amazon S3 bucket. This uses Amazon S3 API calls to construct a
new object from a previous version in combination with the newly uploaded bytes. This
reduces the amount of data required to be transferred when clients modify existing files
within the file gateway.

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 6

1. File share client performs many parallel writes to a given file.

2. File gateway appliance acknowledges writes synchronously, aggregates writes
locally.

3. File gateway appliance uses S3 multi-part upload to send new writes (bytes) to
S3.

4. New object is constructed in S3 from a combination of new uploads and byte
ranges from the previous version of an object.

Figure 4: File gateway write operations

Choosing the Right Cache Resources

When configuring a file gateway VM on a host machine, you can allocate disks for the
local cache. Selecting a cache size that can sufficiently hold the active working set (e.g.
a Database backup file) provides optimal performance for file share clients. Additionally,
splitting the cache across multiple disks maximizes throughput by parallelizing access to
storage, resulting in faster reads and writes. When available for your on-premises
gateway, we also recommend using SSD or ephemeral disks, which can provide write
and read (cache hits) throughputs of up to 500MB/s.

Security and Access Controls Within a Local Area Network

When you create a mount point (share) on a deployed gateway, you select a single
Amazon S3 bucket to be the persistent object storage for files and associated metadata.
Default UNIX permissions are defined as part of the configuration of the mount point.
These permissions are applied to all existing objects in the Amazon S3 bucket. This
process ensures that clients that access the mount point adhere to file and directory-
level security for existing content.

In addition, an entire mount point and its associated Amazon S3 content can be
protected on the LAN by limiting mount access to individual hosts or a range of hosts.

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 7

For NFS file shares, this limitation is defined by using a Classless Inter-Domain Routing
(CIDR) block or individual IP addresses. For SMB file shares, you can control access
using Active Directory (AD) domains, or authenticated guest access. You can further
limit access to selected AD users and groups, allowing only specified users (or users in
the specified groups) to map the file share as a drive on their Microsoft Windows
machines.

Monitoring Cache and Traffic

As workloads or architectures evolve, the cache and Internet requirements that are
associated with a given file gateway deployment can change over time. To give visibility
into resource use, the file gateway provides statistical information in the form of Amazon
CloudWatch metrics. The metrics cover cache consumption, cache hits/misses, data
transfer, and read/write metrics. For more information, see Monitoring Your File Share.

File Gateway Bucket Inventory

To reduce both latency and the number of Amazon S3 operations when performing list
operations, the file gateway stores a local bucket inventory that contains a record of all
recently listed objects. The bucket inventory is populated on-demand as the file share
clients list parts of the file share for the first time. The file gateway updates inventory
records only when the gateway itself modifies, deletes, or creates new objects on behalf
of the clients. The file gateway cannot detect changes to objects in an NFS or SMB file
share’s bucket by a secondary gateway that is associated with the same Amazon S3
bucket or by any other Amazon S3 API call outside of the file gateway.

When Amazon S3 objects have to be modified outside of the file share and recognized
by the file gateway (such as changes made by Amazon EMR or other AWS services),
the bucket inventory must be refreshed using either the RefreshCache API call or
RefreshCache AWS Command Line Interface (CLI) command. RefreshCache can be

manually invoked, automated using a CloudWatch Event, or triggered through the use
of the NotifyWhenUploaded API call once the files have been written to the file share
using a secondary gateway. A CloudWatch notification named Storage Gateway

Upload Notification Event is triggered once the files written by the secondary

gateway have been uploaded to S3. The target of this event could be a Lambda
function invoking RefreshCache to inform the primary gateway of this change.

RefreshCache re-inventories the existing records in a file gateway’s bucket inventory.

This communicates changes of known objects to the file share clients that access a
given share.

https://docs.aws.amazon.com/storagegateway/latest/userguide/monitoring-file-gateway.html
https://docs.aws.amazon.com/storagegateway/latest/APIReference/API_NotifyWhenUploaded.html

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 8

1. Object created by secondary gateway or external source.

2. RefreshCache API called on file gateway appliance share.

3. Foreign object is reflected in file gateway bucket inventory and accessible by
clients.

Figure 5: RefreshCache API called to re-inventory Amazon S3 bucket

Bucket Shares with Multiple Contributors

When deploying more complex architectures, such as when more than one file gateway
share is associated with a single Amazon S3 bucket, or in scenarios where a single
bucket is modified by one or more file gateways in conjunction with other Amazon S3-
enabled applications, note that file gateway does not support object locking or file
coherency across file gateways.

Since file gateways cannot detect other file gateways, be cautious when designing and
deploying solutions that use more than one file gateway share with the same Amazon
S3 bucket. File gateways associated with the same Amazon S3 bucket detect new
changes to the content in the bucket only in the following circumstances:

1. A file gateway recognizes changes it makes to the associated Amazon S3 bucket
and can notify other gateways and applications by invoking the
NotifyWhenUploaded API after it is done writing files to the share.

2. A file gateway recognizes changes made to objects by other file gateways when
the affected objects are located in folders (or prefixes) that have not been
queried by that particular file gateway.

3. A file gateway recognizes changes in an associated Amazon S3 bucket (bucket
share) made by other contributors after the RefreshCache API is executed.

We recommend that you use the read-only mount option on a file gateway share when
you deploy multiple gateways that have a common Amazon S3 bucket. Designing
architectures with only one writer and many readers is the simplest way to avoid write
conflicts. If multiple writers are required, the clients accessing each gateway must be

https://docs.aws.amazon.com/storagegateway/latest/APIReference/API_NotifyWhenUploaded.html
https://docs.aws.amazon.com/storagegateway/latest/APIReference/API_RefreshCache.html

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 9

tightly controlled to ensure that they don’t write to the same objects in the shared
Amazon S3 bucket.

When multiple file gateways are accessing the same objects in the same Amazon S3
bucket, make sure to call the RefreshCache API on file gateway shares that have to
recognize changes made by other file gateways. To further optimize this operation and
reduce the time it takes to run, you can invoke the RefreshCache API on specific folders
(recursively or not) in your share.

1. Client creates a new file and file gateway #1 uploads object to S3.

2. Customer invokes NotifyWhenUploaded API on file share of file gateway #1.

3. CloudWatch Event (generated upon completion of Step 1) initiates the
RefreshCache API call to initiate a re-inventory on file gateway #2.

4. File gateway #2 presents newly created objects to clients.

Figure 6: RefreshCache API makes objects created by file gateway #1 visible to file gateway #2

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 10

Amazon S3 and the File Gateway

The file gateway uses Amazon S3 buckets to provide storage for each mount point
(share) that is created on an individual gateway. When you use Amazon S3 buckets,
mount points provide limitless capacity, 99.999999999% durability on objects stored,
and a consumption-based pricing model.

Costs for data stored in Amazon S3 via AWS Storage Gateway are based on the region
where the gateway is located and the storage class. A given mount point writes data
directly to Amazon S3 Standard, Amazon S3 Standard – IA, or Amazon S3 One Zone –
IA storage, depending on the initial configuration selected when creating the mount
point. All of these storage classes provide equal durability. However, Amazon S3
Standard – IA and Amazon S3 One Zone – IA have a different pricing model and lower
availability (i.e., 99.9% compared with 99.99%), which makes them good solutions for
less frequently accessed objects. The pricing for Amazon S3 Standard – IA and
Amazon S3 One Zone – IA is ideal for objects that exist for more than 30 days and are
larger than 128 KB per object.

For details about price differences for Amazon S3 storage classes, see the Amazon S3
Pricing page.

Using Amazon S3 Object Lifecycle Management for Cost Optimization

Amazon S3 offers many storage classes. Today, AWS Storage Gateway file gateway
supports S3 Standard, S3 Standard – Infrequent Access, and S3 One Zone – IA
natively. Amazon S3 lifecycle policies automate the management of data across storage
tiers. It’s also possible to expire objects based on the object’s age.

To transition data between storage classes, lifecycle policies are applied to an entire
Amazon S3 bucket, which reflects a single mount point on a storage gateway. Lifecycle
policies can also be applied to a specific prefix that reflects a folder within a hosted
mount point on a file gateway. The lifecycle policy transition condition is based on the
creation date or, optionally, on the object tag key value pair. For more information about
tagging, see Object Tagging in the Amazon S3 Developer Guide.

As an example, a lifecycle policy in its simplest implementation moves all objects in a
given Amazon S3 bucket from Amazon S3 Standard to Amazon S3 Standard – IA, and
finally to Amazon S3 Glacier as the data ages. This means that files created by the file
gateway are stored as objects in Amazon S3 buckets and can then be automatically
transitioned to more economical storage classes as the content ages.

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 11

Figure 7: Example of file gateway storing files as objects in Amazon S3 Standard and
transitioning to Amazon S3 Standard – IA and Amazon S3 Glacier

If you use file gateway to store data in S3 Standard-IA or S3 One Zone-IA or access
data from any of the infrequent storage classes, see Using Storage Classes in the AWS
Storage Gateway User Guide to learn how the gateway mediates between NFS/SMB
(file based) uploads to update or access the object.

Transitioning Objects to Amazon S3 Glacier

Files migrated using lifecycle policies are immediately available for NFS file read/write
operations. Objects transitioned to Amazon S3 Glacier are visible when NFS files are
listed on the file gateway. However, they are not readable unless restored to an S3
storage class using an API or the Amazon S3 console.

If you try to read files that are stored as objects in Amazon S3 Glacier, you encounter a
read I/O error on the client that tries the read operation. For this reason, we recommend
using lifecycle to transition files to Amazon S3 Glacier objects only for file content that
does not require immediate access from an NFS/SMB client in an AWS Storage
Gateway environment.

Amazon S3 Object Replication Across AWS Regions

Amazon S3 cross-region replication (CRR) can be combined with a file gateway
architecture to store objects in two Amazon S3 buckets across two separate AWS
Regions. CRR is used for a variety of use cases, such as protection against human
error, protection against malicious destruction, or to minimize latency to clients in a
remote AWS Region. Adding CRR to the file gateway architecture is just one example
of how native Amazon S3 tools and features can be used in conjunction with the file
gateway.

https://docs.aws.amazon.com/storagegateway/latest/userguide/storage-classes.html

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 12

Figure 8: File gateway in a private data center with CRR to duplicate objects across AWS
Regions

Using Amazon S3 Object Versioning

You can use file gateway with Amazon S3 Object Versioning to store multiple versions
of files as they are modified. If you require access to a previous version of the object
using the gateway, it first must be restored to the previous version in S3. You must also
use the RefreshCache operation for the gateway to be notified of this restore. See
Object Versioning Might Affect What You See in Your File System in the AWS Storage
Gateway User Guide to learn more about using Amazon S3 versioned buckets for your
file share.

Using the File Gateway for Write Once Read Many (WORM) Data

You can also use file gateway to store and access data in environments with regulatory
requirements that require use of WORM storage. In this case, select a bucket with S3
Object Lock enabled as the storage for the file share. If there are file modifications or
renames through the file share clients, the file gateway creates a new version of the
object without affecting prior versions so the original locked version remains unchanged.
See also Using the file gateway with Amazon S3 Object Lock in the AWS Storage
Gateway User Guide.

File Gateway Use Cases
The following scenarios demonstrate how a file gateway can be used in both cloud
tiering and backup architectures.

https://docs.aws.amazon.com/storagegateway/latest/userguide/file-share-issues.html#swg-object-versioning
https://docs.aws.amazon.com/storagegateway/latest/userguide/managing-gateway-file.html#s3-object-lock

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 13

Cloud Tiering

In on-premises environments where storage resources are reaching capacity, migrating
colder data to the file gateway can extend the life span of existing storage on-premises
and reduce the need to use capital expenditures on additional storage hardware and
data center resources. When adding the file gateway to an existing storage
environment, on-premises applications can take advantage of Amazon S3 storage
durability, consumption-based pricing, and virtual infinite scale, while ensuring low-
latency access to recently accessed data over NFS or SMB.

Data can be tiered using either native host OS tools or third-party tools that integrate
with standard file protocols such as NFS or SMB.

Figure 9: File gateway in a private data center providing Amazon S3 Standard or Amazon S3
Standard – IA as a complement to existing storage deployments

Hybrid Cloud Backup

The file gateway provides a low-latency NFS/SMB interface that creates Amazon S3
objects of up to 5 TiB in size, stored in a supported AWS Region. This makes it an ideal
hybrid target for backup solutions that can use NFS or SMB. By using a mixture of
Amazon S3 storage classes, data is stored on low-cost, highly durable cloud storage
and automatically tiered to progressively lower-cost storage as the likelihood of
restoration diminishes. Figure 10 shows an example architecture that assumes backups
must retained for one year. After 30 days, the likelihood of restoration becomes
infrequent, and after 60 days it becomes extremely rare.

In this solution, you use Amazon S3 Standard as the initial location for backups for the
first 30 days. The backup software or scripts write backups to the file share, preferably
in the form of multi-megabyte or larger size files. Larger files offer better cost

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 14

optimization in the end-to-end solution, including colder storage costs, and lifecycle
transition costs because fewer transitions are required.

After another 30 days, the backups are transitioned to Amazon S3 Glacier. Here, they
are held until a full year has passed since they were first created, at which point they
are deleted.

1. Client writes backups to file gateway over NFS or SMB.

2. File gateway cache, sized greater than expected backup.

3. Initial backups stored in S3 Standard.

4. Backups are transitioned to S3 Standard-IA after 30 days.

5. Backups are transitioned to S3 Glacier after 60 days.

Figure 10: Example of file gateway storing files as objects in Amazon S3 Standard and
transitioning to Amazon S3 Standard - IA and Amazon S3 Glacier

When sizing the file gateway cache in this type of solution, understand the backup
process itself. One approach is to size the cache to be large enough to contain a
complete full backup, which allows restores from that backup to come directly from the
cache—much more quickly than over a wide-area network (WAN) link.

If the backup solution uses software that consolidates backup files by reading existing
backups before writing ongoing backups, factor this configuration into the sizing of
cache also. This is because reading from the local cache during these types of
operations reduces cost and increases overall performance of ongoing backup
operations.

For both cases specified above, you can use AWS DataSync to transfer data to the
cloud from an on-premises data store. From there, the access to the data can be
retained using a file gateway.

https://aws.amazon.com/datasync

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 15

Conclusion
The file gateway configuration of AWS Storage Gateway provides a simple way to
bridge data between private data centers and Amazon S3 storage. The file gateway can
enable hybrid architectures for cloud migration, cloud tiering, and hybrid cloud backup.

The file gateway’s ability to provide a translation layer between the standard file storage
protocols and Amazon S3 APIs without obfuscation makes it ideal for architectures in
which data must remain in its native format and be available both on-premises and in
the AWS Cloud.

For more information about the AWS Storage Gateway service, see AWS Storage
Gateway.

Contributors
The following individuals and organizations contributed to this document:

• Peter Levett, Solutions Architect, AWS

• David Green, Solutions Architect, AWS

• Smitha Sriram, Senior Product Manager, AWS

• Chris Rogers, Business Development Manager, AWS

Further Reading
For additional information, see the following:

• AWS Storage Services Overview Whitepaper

• AWS Whitepapers Web page

• AWS Storage Gateway Documentation

• AWS Documentation Web page

Document Revisions

Date Description

March 2019 Updated for S3 One Zone-IA storage class.

https://aws.amazon.com/storagegateway
https://aws.amazon.com/storagegateway
https://d1.awsstatic.com/whitepapers/AWS%20Storage%20Services%20Whitepaper-v9.pdf
https://aws.amazon.com/whitepapers/
https://aws.amazon.com/documentation/storage-gateway/
https://aws.amazon.com/documentation/

Amazon Web Services File Gateway for Hybrid Cloud Storage Architectures

 Page 16

Date Description

April 2017 Initial document creation

	Introduction
	File Gateway Architecture
	File to Object Mapping
	Read/Write Operations and Local Cache
	Read Operations (Read-Through Cache)
	Write Operations (Write-Back Cache)

	Choosing the Right Cache Resources
	Security and Access Controls Within a Local Area Network
	Monitoring Cache and Traffic
	File Gateway Bucket Inventory
	Bucket Shares with Multiple Contributors

	Amazon S3 and the File Gateway
	Using Amazon S3 Object Lifecycle Management for Cost Optimization
	Transitioning Objects to Amazon S3 Glacier
	Amazon S3 Object Replication Across AWS Regions
	Using Amazon S3 Object Versioning
	Using the File Gateway for Write Once Read Many (WORM) Data

	File Gateway Use Cases
	Cloud Tiering
	Hybrid Cloud Backup

	Conclusion
	Contributors
	Further Reading
	Document Revisions

