High-Performance Parallel Code in the AWS Cloud

Scott Zimmerman

April 2015

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments, conditions
or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities
and liabilities of AWS to its customers are controlled by AWS agreements, and
this document is not part of, nor does it modify, any agreement between AWS
and its customers.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except in compliance with the License. A copy of the License is located at
http://aws.amazon.com/apache2.0/ or in the "license" file accompanying this
file. This code is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Portions of the code were developed by Heaton Research and are licensed under
the Apache License, Version 2.0, available here:
https://www.apache.org/licenses/ LICENSE-2.0.html

Portions of the code were developed by Microsoft Corporation and are licensed
under Microsoft MSPL, available here: http://opensource.org/licenses/ms-pl

amazon
Page 2 of 42 webservices

http://aws.amazon.com/apache2.0/
https://www.apache.org/licenses/LICENSE-2.0.html
http://opensource.org/licenses/ms-pl

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Contents
Abstract 4
Introduction 4
Introduction to C++ AMP 6
Introduction to Amazon EC2 7
Install the AWS Toolkit for Visual Studio 7
Set up the Amazon EC2 Windows Server Instance with NVIDIA GPU 7
Create a Security Group with the AWS Toolkit 8
Launch G2 Instance in Amazon EC2 with the AWS Toolkit 11
Connect to the Instance to Install the NVIDIA Driver and Visual C++
Redistributable 14
Comparing the Performance of Various Matrix Multiplication Algorithms 20
Working with the Code 21
Deploying the Web Application with AWS Elastic Beanstalk 21
Using ebextensions with AWS Elastic Beanstalk 24
Model Code for Data Passed Between Controller and View 25
Accessing the Model in the View 25
Controller Code to Invoke Each Algorithm and Populate the Model 26
C# Basic Serial (CPU) 31
C# Optimized Serial (CPU) 32
C# Parallel with TPL (CPU) 33
C++ Basic Serial (CPU) 33
C++ Parallel with PPL (CPU) 36
C++ Parallel with AMP (GPU) 37
C++ Parallel with AMP Tiling (GPU) 39
Conclusion 40
Further Reading 41
Notes 41
amazon

Page 3 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 4 of 42

Abstract

This whitepaper is intended for Microsoft Windows developers who are
considering writing high-performance parallel code in Amazon Web Services
(AWS) using the Microsoft C++ Accelerated Massive Parallelism (C++ AMP)
library. This paper describes an ASP.NET Model-View-Controller (MVC) web
application written in C# that invokes C++ functions running on the graphics
processing unit (GPU) for matrix multiplication. Since matrix multiplication is of
order N-cubed, multiplying two 1024 x 1024 matrixes requires over one billion
multiplications, and is therefore an example of a compute-intensive operation
that would be a good candidate for GPU programming. This paper shows how to
use AWS Elastic Beanstalk and the AWS Toolkit for Visual Studio to launch a
Microsoft Windows Server instance with an NVIDIA GPU in the Amazon Elastic
Compute Cloud (Amazon EC2) on AWS.

Introduction

Certain types of parallel algorithms can run hundreds of times faster on a GPU
than similar serial algorithms on a CPU. This paper describes matrix
multiplication as one example of a parallel algorithm that is suitable for GPU
programming. Performance increases of this order are obviously very attractive
for certain workloads, but there are several technologies that must be understood
and integrated in order to achieve these gains.

First, you'll need a GPU programming language or library. The next section
briefly discusses the advantages of Microsoft C++ AMP, and this whitepaper
includes working code examples written in C++ AMP. Second, this paper will
describe how to use the AWS Toolkit for Visual Studio to launch Amazon EC2
instances with a GPU, connect to them remotely, and install the NVIDIA GPU
graphics driver. Third, although the focus here is on C++ programming, we’ll
need a simple user interface to display results, and it’s typically easier to do this
in C# than in C++. So this whitepaper shows a small program written in C# that
uses ASP.NET MVC to invoke a function written in C++ AMP. Fourth, bringing
ASP.NET MVC into the solution means you also need to add the Internet
Information Services (IIS) role to Windows Server and deploy the web
application. This will be accomplished from inside Visual Studio with the AWS
Elastic Beanstalk service. Of course it’s not necessary to develop a web front-end

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 5 of 42

or use C# to take advantage of C++ AMP, but that is a common use case, so this
whitepaper covers how to integrate those technologies with C++ and Windows
Server running on Amazon EC2.

Figure 1 shows how the ASP.NET MVC architecture spans the physical tiers in
this application, and the coding technologies that will be used on each tier. Note
that this simple application doesn’t include a data tier. Also, the application tier is
only a logical concept in this scenario. It is a way of looking at the C# and C++
algorithms as distinct from the web application, even though they run on the CPU
or GPU of the same web server virtual machine.

Presentation Tier Web Tier Application Tier Data Tier
View
Model
Controller
CH,
HT.ML’ e Razor View C#, C++, AMP
jquery

Engine |
y N g y €

Figure 1: The ASP.NET MVC Architecture and Languages Used

This application starts with a basic matrix multiplication function in C# to show
the simplest way to implement the solution. Then the program is optimized six
times, each time adding a technology and comparing performance. Subsequent
sections of this paper will describe how each variation is coded, and how to set up
the technologies.

Download the source code and Visual Studio solution.!

Here’s an overview of the seven matrix multiplication algorithms that will be
illustrated:

Algorithm Description

C# Basic Serial (CPU) Written in C# to serve as a performance baseline on which we
hope to improve by using C++.

C# Improved Serial (CPU) Optimizes the order of loop indexes to improve performance.

amazon
webservices

http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 6 of 42

Algorithm Description

C# Parallel with TPL (CPU) Uses the .NET Framework Task Parallel Library (TPL). When run
on a machine with multiple cores, this multithreaded algorithm
improves performance when compared with the serial C# version.

C++ Basic Serial (CPU) Converts the basic serial algorithm to C++ to demonstrate how to
invoke C++ code from ASP.NET MVC C# code running on IIS.

C++ Parallel with PPL (CPU) Rewrites the serial C++ function to make it parallel by using the
Microsoft Parallel Patterns Library (PPL).

C++ Parallel with AMP (GPU) Rewrites the parallel C++ function to run on the GPU using basic
techniques with C++ AMP.

C++ Parallel with AMP Tiling Rewrites the AMP C++ function to use AMP with tiling.
(GPU) Implementing tiling algorithms takes a bit more work than basic
AMP, but if done carefully, it can improve performance.

The performance comparisons illustrated in this application are not meant to be
scientific benchmarks, but they may provide useful insight into the potential
relative performance of the various techniques. The algorithms are not intended
to be optimal. If you really need to do fast matrix multiplications, you should look
into tested and optimized libraries such as Basic Linear Algebra Subprograms
(BLAS) or Linear Algebra Package (LAPACK).

Until now, programming the GPU has been tedious or non-portable, or limited to
the C language. Microsoft C++ AMP enables Visual C++ developers to optimize
compute-intensive programs in a highly productive way. AMP is an open
specification for an extension to standard C++ that greatly simplifies porting
parallel algorithms from the CPU to the GPU. AMP is also elegant and takes
advantage of modern C++ features such as lambdas. You'll see that after taking
the first step with AMP, parallel code still looks similar to the original serial code.

The popular OpenCL library is portable across multiple operating systems and
GPU hardware vendors. It’s been around longer than C++ AMP and is recognized
for providing very fast run-time performance. However, OpenCL is a C-language
library that misses out on modern C++ features.

AMP is portable across GPU hardware, but because it’s designed for DirectX, it
runs on Windows. In 2012, Intel released a free download called Shevlin Park as
a proof-of-concept that enables C++ AMP code to run on top of OpenCL, which
means your C++ AMP code can run on Linux and other operating systems.

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 7 of 42

In 2013, the HSA Foundation published an open-source C++ AMP compiler2 that
outputs OpenCL code. This also enables you to write C++ AMP code to run on
Linux and other operating systems.

Microsoft maintains a C++ AMP Algorithms Library modeled after the Standard
Template Library3 and a few dozen C++ AMP sample projects on the AMP blog.4

Amazon EC2 is a service that allows customers to run Windows Server and Linux
in the AWS cloud. Amazon EC2 provides over 30 types of compute instances,5
including memory-optimized, storage-optimized, and GPU-enabled instances.
The G2 double extra-large (g2 .2x1arge) instance type has eight virtual CPUs
and an NVIDIA GPU with 1,536 CUDA cores and 4 GB of video memory. CUDA is
a parallel computing platform and programming model invented by NVIDIA.6

Install the AWS Toolkit for Visual Studio

This paper assumes that you have Visual Studio Professional 2013 or Visual
Studio Community 2013 already installed on your computer. It is possible to
write the code with Visual Studio Express; however, that edition doesn’t support
plug-ins such as the AWS Toolkit for Visual Studio. The AWS Toolkit makes it
very convenient to perform several account management tasks without ever
leaving Visual Studio. You’ll use the AWS Toolkit extensively to launch and
administer an Amazon EC2 instance in AWS, although it’s also possible to do that
with the Amazon EC2 console in a web browser.

Please download and install the AWS Toolkit for Visual Studio? from the AWS
website. For this whitepaper, please ensure you have at least version 1.8.1.0 of the
AWS Toolkit for Visual Studio. After installing the toolkit, you should see an
option for the AWS Explorer appear in the Visual Studio View menu.

Set up the Amazon EC2 Windows Server
Instance with NVIDIA GPU

This paper assumes that you have an AWS account with permission to launch
Amazon EC2 instances. AWS provides a limited free tier8 for one year for new
customers to experiment with cloud computing. The free tier covers several

amazon
webservices

http://www.hsafoundation.com/bringing-camp-beyond-windows-via-clang-llvm/
https://ampalgorithms.codeplex.com/documentation
https://ampalgorithms.codeplex.com/documentation
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://aws.amazon.com/ec2/instance-types/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/free/

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 8 of 42

services, including Amazon EC2. However, it applies to the T2.micro instance
type, not the G2 instance type.

Important Please be aware that there is a cost to run the G2 instance type
used in this paper. This profile in the AWS Simple Monthly Calculator shows the
estimated cost to run one on-demand G2 instance with Windows Server non-stop
for a month. Note that significant cost savings can be achieved by using spot or
reserved instances rather than on-demand instances, and by stopping the
instance when it’s not in use.

The following sections explain how to use the AWS Toolkit for Visual Studio to
launch a G2 instance with Windows Server.

Microsoft Remote Desktop Connection (RDC) is useful for manually
administering Windows Server remotely, but the NVIDIA display driver that you
need for the GPU, and the Remote Desktop Protocol (RDP) used by RDC, are not
compatible. RealVNC offers a free version of their VNC Server software that
enables remote connections graphically, and it uses a different protocol that is
compatible with the NVIDIA driver. So before you install the NVIDIA driver, you
will need to install VNC Server on the instance. Then you can disconnect from
RDP, reconnect over VNC, and install the NVIDIA driver. Don’t worry about
installing that now; the detailed instructions are provided later.

RDP uses port 3389. VNC Server uses port 5000. And of course the web
application will use port 80. The default security group when launching a
Windows Server instance only opens port 3389. You could simply add rules to the
default group after you launch the instance, but instead, you’ll create your own
custom security group and give it a name. You’ll also use this custom security
group later when you deploy the web application with AWS Elastic Beanstalk.

To create a security group in the AWS Toolkit:

1. In Visual Studio, on the View menu, click AWS Explorer (or press
Ctrl+K, A).

2. Expand Amazon EC2, and double-click Security Groups. Your security
groups are displayed in the right pane. On the menu bar above that pane,

amazon
webservices

http://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-ED8A2F74-BAF7-432A-924F-F25A6DFE9DA0

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

click Create Security Group. Fill in the Name and Description, and
leave the No VPC option selected, as shown in Figure 2. Click OK.

Name: |MyGPU |

Description: [0, 3389, 5900 |

VPC: [No WPC -

| ok || cancel

Figure 2: Creating a Security Group

3. Step 2 creates an empty security group. Now let’s add the rules to it. In the
lower pane, click Add Permission to open the Add IP Permission
dialog box, as shown in Figure 3. Leave Protocol as TCP. For Port
Range, type 5900 for both the Start and End fields. Click OK.

Caution For RDP and VNG, it’s highly advisable to limit the Source CIDR
to your local IP address, with either /32 or an appropriate subnet of your
private network appended to the address. You may use the estimated IP
address shown in the Add IP Permission dialog box (Figure 3), or you can
type “what is my IP” into a search engine to see your public IP address. AWS
creates a default RDP rule with Source CIDR as 0.0.0.0/0 (which means the
whole Internet) to simplify the experience for new users who are launching an
instance. But opening VNC and RDP ports to the whole Internet means that
hackers can try to guess your administrator password to gain control of your
Server.

amazon
Page 9 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Add IP Permissicn = | B |-

Protocaol: TCP

Port Range: Start |5g[][] |End |5g|:t| |

® Source CIDR | 0.0.0.0/0 |

! AWS account and group
Account ID:

Security Group

Cur best estimate for the CIDR of your current
machine is 98,163.126.34, However, if your machine
is behind a proxy/firewall, this estimate may be
inaccurate and you may need to contact your
network administrator,

| ok || cancel |

Figure 3: Adding a Rule in the Security Group

4. Repeat step 3 to add port 3389 (for Protocol, you can select RDP).

5. Repeat step 3 once more to add port 80 (for Protocol, you can select
HTTP). With your security group selected in the top pane, your rules
should appear in the middle pane, similar to Figure 4.

Inbound Outbound

o Add Permission Delete . Refresh

Protocol Port UserGroup Source CIDR
HTTP (TCF) 80 0.0.0.0/0
RDP (TCP) 3389 0.0.0.0/0
TCP 5900 0.0.0.0/0

Figure 4: You should Have Three Rules in Your Security Group

Note This security group will serve you while you are installing software on the
Amazon EC2 instance. After you complete that task and create an Amazon
Machine Image (AMI), AWS Elastic Beanstalk will apply an automatic security
group with only ports 22 and 80 open. So if you need to manually administer
your Amazon EC2 instance after deploying with AWS Elastic Beanstalk, you must
add port 5900 to that security group.

amazon
Page 10 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Now that you have a custom security group, you're ready to launch a G2 instance:

1. In Visual Studio, on the View menu, click AWS Explorer (or press Ctrl+K,

A). AWS Explorer appears as in Figure 5, where it’s shown with the Amazon
EC2 service expanded.

w Start Page - Microsoft Visual Studie
FILE EDIT VIEW DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP

0-0|B-uEd|9-C-

p Attach.. ~ -

AWS Explorer Start Page +
Profile: |default | G D xB
Region: | == US East (Virginia) - @
== Amazon CloudFront PrOfeSS|Ona| 2013

£ Amazon DynamoDB
4 [[|p AmazonEC2

i1 AMIs
& Elastic IPs Start
ﬂ Instances)
® Key Pairs Mew Project...
(@ Security Groups Open Project...
& Volumes -
b . Amazon RDS Open from Source Control...

I Armazon 53
Armazon SimpleDB

b il Amazon SNS

I = Amazon SQS Recent
P e Amazon VPC
[AWS CloudFormation PetBoard
.r AWS Elastic Beanstalk AwsS3Samplel

[» ? AWS Identity and Access Management AwsSqsSamplel

Figure 5: AWS Explorer in AWS Toolkit

2. In AWS Explorer, expand Amazon EC2 as shown in Figure 5. Right-click
Instance, and then click New Instance.

3. Inthe Quick Launch wizard, click Advanced. AWS has created special
AMISs to optimize the deployment time for IIS and the .NET Framework
with AWS Elastic Beanstalk. The wizard lets you pick one of those AMIs as
your base image. After you get your instance prepared with the NVIDIA
drivers, you’ll save your own AMI.

4. Inthe Launch new Amazon EC2 Instance dialog box (see Figure 6),
type .net beanstalk in the search text box (the third Viewing field). Then
change the setting of the first field from Owned by me to Amazon
Images. Do it in that order; otherwise, it takes longer. Click the Name

Page 11 of 42 amazon

webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU

April 2015

column heading to sort the AMIs by name. Expand the Description
column so you can see the dates the images were created. Scroll down to
select the most recently created Windows Server 2012 R2 (not core) image.
At the time this screenshot was taken, the latest version of the Beanstalk
Container was v2.0.2.6. However, new images are released from time to
time to incorporate the latest Windows updates from Microsoft, so you’'lll
likely see a newer version. Now click Next.

e 1 =

AMI

Choose an Amazon Machine Image (AMI) to launch.

Viewing: |Amazon Images - | |Windows M | | net beanstalk

AMIID Name Root D1 Description A Platform -
] H:l ami-6a4a8202 NET Beanstalk Cfn Container v2.0.0.1 on Windows 2008 ebs .NET Beanstalk (new) HostManager v2.0.0.1 on Windows 2008 (2014-07-25) based on AMI ami-2 & Windows
10@ ami-904880f8 NET Beanstalk Cfn Container v2.0.0.1 on Windows 2012 ebs .NET Beanstalk (new) HostManager v2.0.0.1 on Windows 2012 (2014-07-25) based on AMI ami-5 & Windows
11 u_:l ami-ledcB476 NET Beanstalk Cfn Container v2.00.1 on Windows 2012R2 ebs .NET Beanstalk (new) HostManager v2,0.0.1 on Windows 2012R2 (2014-07-25) based on AMI ami # Windows
2 u_:l ami-824981e6 NET Beanstalk Cfn Container v2.0.0.1 on Windows 2012R2cor ebs .NET Beanstalk {(new) HostManager v2.0.0.1 on Windows 2012R2core (2014-07-25) based on AM] & Windows
3 u_:l ami-084ccdé0 NET Beanstalk Cfn Container v2.0.2.1 on Windows 2008 ebs .NET Beanstalk (new) HostManager v2.0.2.1 on Windows 2008 (2014-10-25) based on AMI ami-7' # Windows
14|i_:| ami-0048c968 MNET Beanstalk Cfn Container v2.0.2.1 on Windows 2012 ebs .NET Beanstalk {(new) HostManager v2.0.2.1 on Windows 2012 (2014-10-25) based on AMI ami-3 & Windows
1] H_:l ami-dB48c9b0 NET Beanstalk Cfn Container v2.0.2.1 on Windows 2012R2 ebs .NET Beanstalk (new) HostManager v2.0.2.1 on Windows 2012R2 (2014-10-25) based on AMI ami # Windows
16@ ami-8848c9e0 NET Beanstalk Cfn Container v2.0.2.1 on Windows 2012R2cor ebs NET Beanstalk (new) HostManager v2.0.2.1 on Windows 2012R2core (2014-10-25) based on AM] & Windows
iy ld_j ami-70ee7f18 MNET Beanstalk Cfn Container v2.0.2.6 on Windows 2008 ebs .NET Beanstalk (new) HostManager v2.0.2.6 on Windows 2008 (2014-11-18) based on AMI ami-7 # Windows
18 'i_j ami-30e87938 NET Beanstalk Cfn Container v2.0.2.6 on Windows 2012 ebs .NET Beanstalk (new) HostManager v2.0.2.6 on Windows 2012 (2014-11-18) based on AMI ami-3 # Windows
.u_:l ami-94e879fc MET Beanstalk Cfn Container v2.0.2.6 on Windows 2012R2 ebs .NET Beanstalk (new) HostManager v2.0.2.6 on Windows 2012R2 (2014-11-18) based on AMI ami & Windows
20@ ami-a2e978ca NET Beanstalk Cfn Container v2.0.2.6 on Windows 2012R2cor ebs .NET Beanstalk (new) HostManager v2.0.2.6 on Windows 2012R2core (2014-11-18) based on AM] & Windows
21 lifl ami-32dc075b NET Beanstalk HostManager v1.0.0.3 ebs .NET Beanstalk HostManager v1.0.0.3 (2012-04-19) & Windows
22 u_:l ami-6c9c3105 | NET Beanstalk HostManager v1.0.0.4 ebs .NET Beanstalk HostManager v1.0.04 2012-06-27 & Windows
23 u_:l ami-2343f44a NET Beanstalk HostManager v1.0.0.9 ebs .NET Beanstalk HostManager v1.0.0.9 2012-08-29 & Windows
24@ ami-5act7833 NET Beanstalk HostManager v1.0.1.1 ebs .NET Beanstalk HostManager v1.0.11 2012-10-15 & Windows +

4 b

[Cose | [Bak [MNea |

Figure 6: Choosing an AMI

5. Inthe AMI Options dialog box, in the Instance Type list, select GPU
Double Extra Large. Click Next.

6. Inthe Storage dialog box, click Next.

7. In the Tags dialog box, provide a name for the instance so it’s easy to

distinguish it.

8. Inthe Security dialog box (Figure 7), click Create New Key Pair, and
give it a name. Choose the security group you created earlier (this is very

important).

Page 12 of 42

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 13 of 42

Launch new Amazon EC2 Instance

Key Pair Security Group
@ Choose from your existing key pairs: @ Choose one or more of your existing security groups:
|G2 - | launch-wizard-1

(@) Create a new key pair:

) Proceed without a key pair

Security
Define the key pair and security group (firewall) options for the instance(s).

default

() Create a new security group:

| Close | [Back || mex || Lounch

0.

Figure 7: Choosing the Security Group You Created Earlier

Click Launch.

10. In the AWS Explorer left pane, under Amazon EC2, double-click

11.

Instances. That will display the panel of your instances, and you should
see that your new instance is launching. The status will show as “pending”
for a few minutes, and then it will change to “running.” You can continue to
the next step while the launch is pending.

You'll need an Elastic IP address for this instance so you can easily
reconnect to it if you stop and restart the instance. Right-click the instance
(even if the status is pending), and then click Associate Elastic IP. In the
Attach Elastic IP to Instance dialog box (Figure 8), click Create new
Elastic IP, and then click OK.

() Select an Elastic IP address to associate with this instance.

I
IP Address: |54.164.168.172

@ Create new Elastic IP.

o] o]

Figure 8: Creating a New Elastic IP

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 14 of 42

Note Remember, there’s an hourly cost for the instance while it’s running, so
it’s a good idea to stop (not terminate) the instance and restart it if you're not
able to finish all the steps in this whitepaper in one session.

In this section, you’ll download and install VNC Server on the instance using
Microsoft Internet Explorer. But before you can do that, you’ll need to turn off
the Internet download protection feature that is enabled by default in Internet
Explorer 11 on Windows Server 2012 R2.

While you're on the instance, you’ll also download and install the Visual C++
2013 redistributable package. Doing this manually is simpler than creating a
setup program with a merge module. The reason you’ll do this now is so you can
create a fully prepared AMI of the instance that you can use later to deploy your
web application with AWS Elastic Beanstalk.

For some of the steps in this section, you’ll use the AWS Toolkit on your local
workstation; for others, you’ll use the Amazon EC2 instance connected through
RDC or VNC. The transitions will be mentioned as needed.

After the status of your instance changes from “pending” to “running,” follow
these steps in the AWS Toolkit:

1. The AWS Toolkit has a convenient option to log in directly with the key pair
we created previously without requiring you to enter the administrator
password. This works until you change the password on the instance, which
you’ll need to do to connect with VNC. Right-click the instance in the AWS
Toolkit, and then click Open Remote Desktop. In the Open Remote
Desktop dialog box (Figure 9), leave the Use EC2 keypair to log on
option selected, and then click OK. The toolkit automatically decrypts the
AWS-generated password from the key pair, passes it to Microsoft RDC,
launches RDC, and then logs you into the Amazon EC2 instance.

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 15 of 42

Open Remote Desktop to i-fobf4d1i =l

@ Use EC2 keypair to log on

Enter credentials

I User name:

Password:

Save Credentials

Map local drives on remote desktop

| ok || caneel

Figure 9: Open Remote Desktop

For steps 2-7, you'll use RDC connected to the instance.

During steps 2-12, if you get a popup message indicating that Windows has
updates to install on the instance, you should go ahead and apply those so
they’ll be included in the AMI you’ll create in step 14. If Windows Update
requires a reboot, restart your machine and then resume these instructions
after reconnecting through RDC (or VNC Viewer).

2. You must first change the Windows administrator password on the
instance to a password you can remember. In Windows Server 2012 R2,
click the Windows icon (Start button) in the lower-left corner of your
screen to get to the Start menu. Click Administrative Tools. Double click
Computer Management. Expand Local Users and Groups. Click
once on Users. Right-click Administrator, and then click Set
Password. Click Proceed. Enter the new password, and then click OK.
Now the AWS-generated password is obsolete. Close Computer
Management.

3. To enable file downloads in Internet Explorer, click the Windows Start
button again. Click Server Manager. In the left pane, click Local
Server. You should see that Internet Explorer enhanced security
configuration is turned on by default. Click to turn it off for administrators,
and then click OK. Close Server Manager.

4. To run Visual C++ code, you'll need to install the Visual C++ 2013

redistributable from Microsoft. It includes the C++ runtime and the AMP
DLL file. Click the Windows Start button again. Click Internet Explorer.
Browse to the Microsoft download page for Visual C++ Redistributable

amazon
webservices

http://www.microsoft.com/en-us/download/details.aspx?id=40784

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 16 of 42

Packages for Visual Studio 2013.9 Click Download, and choose the file
veredist_x64.exe from the list of downloads. Run the program after
downloading it.

. Open Internet Explorer. Browse to the Real VNC website.’© Download VNC

Server for Windows. The free version is adequate for this whitepaper, but
you will need to register with RealVNC to get a license. Install VNC Server
(you don’t need to install the Printer Driver or VNC Viewer).

. On the Windows Start menu, click All Programs to display all installed

applications. Under VNC, click Enter VNC Server License Key. Go
through the VNC wizard to license your server software.

Now you can close RDC, but leave the instance running.

Now that you will no longer be using RDP with the instance, we
recommend that you delete the security group rule that permits RDP traffic
to the instance. You still need to leave port 5900 open for VNC.

. Install and launch the VNC Viewer program on your local workstation. It

prompts you for the VNC Server public IP address. To retrieve the IP
address, right-click your instance in AWS Explorer, and then click
Properties. In the Properties dialog box (Figure 10), right-click the
Elastic IP value, and then click Copy. Paste the address into the VNC
Server address box in VNC Viewer.

Properties * 1 X
i-fbbfdd16 Instance -
o= o |

AMIID ami-cd9cldac -

Block Devices fdev/sdal

Elastic IP 5416515113

Instance ID i-fobf4dli

Instance Profile

Kernel ID

Key Pair Name G2

Launch Time 12/20/2014 12:18 PM

Lifecycle

Mame g2

Owner 487344873893

Placement Group
Platform Windows

Figure 10: Getting the Elastic IP Address from the Instance Properties

amazon
webservices

http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.realvnc.com/
http://www.realvnc.com/

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 17 of 42

0.

When you connect to the instance in VNC Viewer, it will prompt you to
press Ctrl+Alt+Delete to log in. Ordinarily, that keystroke sequence is
captured by your local workstation. The trick is to slide your mouse toward
the top center of the VNC Viewer window. That will drop down the toolbar
where you can click the Ctrl+Alt+Delete button to transmit the keystroke to
the remote machine. VNC Viewer shows the remote machine prompting
you for your Windows administrator password. Type the password that you
set in Windows when you logged in previously with RDC.

Do steps 10-12 on the instance while connected through VNC.

10.

Open Internet Explorer to download the NVIDIA graphics driver. As of this
writing, the latest version on the NVIDIA support site is NVIDIA GRID
K520/K340 Release 33412 (Figure 11). Although the page title says 334, the
version is 335. Regardless, you should be fine if you get the latest version.

When the NVIDIA installation completes, it prompts you to reboot. You
can save time if you complete the next few steps first.

NVIDIA Installer - |O| X

N

nvinia

Installation in progress

Installing Graphics Driver...

Install

Figure 11: Installing the NVIDIA Graphics Driver

11. Don’t reboot after installing the NVIDIA graphics driver. Instead, on the

Windows Start screen, type ec2, and click to run the EC2Config service.
To make the image compatible with AWS Elastic Beanstalk, select the User
Data box on the General tab (Figure 12), and choose Random for the
Administrator Password on the Image tab (Figure 13). Click Apply,
and then click OK.

amazon
webservices

http://www.nvidia.com/download/driverResults.aspx/74642/en-us
http://www.nvidia.com/download/driverResults.aspx/74642/en-us

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Ec2 Service Properties - | o [Ec2 Service Properties - | o [
EI | General | Image |Stomge I Support | lzl

Sysprep
Sysprep is a Microsoft tool that prepares an image for multiple launches.

General |Image | Storage | Support

Set Computer Name
[] Set the computer name of the instance to ip-<hex Intemal IP> name.

Disable this feature to persist your own computer name setting. NOTE: Afterthis EBS-root instance shuts down, you will have to run EC2's Create
Image APl call (ec2-create-image) against it in order to actually create the
User Data AMI
Enable UserData execution for next service start (automatically enabled at Sysprep) Administrator Password

eg. <scrpt></script> or <powershell></powershell = o X
! Random (Retrieve password from console; set at next service start)

Event Log) Specify (Stores in Sysprep answer file as clear text): |

[] Output evert log entries on the console for easy monitoring and

debugging from the client.

) Keep Bxdsting (Will not be able to retrieve password from console)
NOTE: 'Keep Existing' will not work in Windows 2008 and greater when
running Sysprep because Sysprep will wipe the existing local
CloudWatch Logs Administrator password: workaround is to create another local admin
user or set a group policy.

[] Enable CloudWatch Logs integration

Shutdown without Sysprep | [Shutdown with Sysprep |

Wallpaper Information
Check the box to overay information on the cument wallpaper.

This will be generated eventime a user logs in. Note: f you have changed the Time Zone on the

Lincheck the box to reset the background to what was previously sat. machine, please edit the sysprep answer file to
persist this change.

Mote: These changes will take affect on next boot or restart of the ec2corfig service.
Remote Desktop Cerificate

Generate new Remote Deskiop Certfficate

NOTE:

Windows 2008 Remote Desktop Server creates its own seffsigned cerificates.

Pttribution To cortrol its certificate behavior, run Remote Desktop Session Host
_— Corfiguration Lkility under Administrative Tools.

Version: 2.2.11.24

ok] [| [| oc] [om | o |
Figure 12: Checking User Data in EC2Config Figure 13: Checking Random Password in
EC2Config

12. Click the Windows Start button. Click Administrative Tools. Double-
click Computer Management. Click Device Manager. Under display
adapters, you should see both the NVIDIA driver and the Microsoft Basic
Display Adapter, as shown in Figure 14. Right-click Microsoft Basic
Display Adapter, and then click Disable.

amazon
Page 18 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU

April 2015

File Action View Help

«9 2EE B= 8 B8%S

Computer Management

A Computer Management (Local
A '[["E Systern Tools

3 IZE-:ZI Task Scheduler

I @ Event Viewer

I @2l Shared Folders

I- &% Local Users and Groups

b (%) Performance
=5 Device Manager

4 =5 Storage

i 4 Windows Server Backup

= Disk Managerment
b :: Services and Applications

4 = WIN-AE0TQ40FLO3

M Computer
b Disk drives
4 B Display adapters

B, Microsoft Basic Dicnla Adantar

B NVIDIA GRID K5
b == Floppy drive contro
I+ g |IDE ATASATAPI con
[+ &= Keyboards
I jn_{ Mice and other poil
B Maonitors
b ¥ Metwork adapters

Update Driver Software...
Disable

Uninstall
Scan for hardware changes

Properties

- 'S Ports (COM &L LPT)

Figure 14: Disabling the Microsoft Basic Display Adapter in Device Manager

13. Now on your local workstation, in AWS Explorer, expand Amazon EC2,
Instances. Right-click your GPU instance, and choose Stop (do not
choose Terminate). This will automatically disconnect your VNC session.
Later, you’ll use AWS Elastic Beanstalk to start a new instance when you
deploy the code.

14. After the instance status changes from stopping to stopped, right-click your
GPU instance again in AWS Explorer, and then click Create Image (EBS
AMI). Give the image a name and description, and then let it run in the
background. There is a small storage charge for the images you save in
AWS,; but it’s convenient to be able to reuse the images with everything pre-
installed if you decide to terminate the instance. Whenever you make
configuration changes or apply Windows Update on your instance in the
future, you should create a new image, and then optionally deregister your
older images.

15. After the image is created, look in AWS Explorer under Amazon EC2,
AMISs, and jot down the AMI ID of the image you just created. The ID is
case-sensitive.

Now that you have your own AMI, you're ready to switch hats and start working
with the code in Visual Studio.

amazon

Page 19 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Comparing the Performance of Various
Matrix Multiplication Algorithms

Before you deploy the code with AWS Elastic Beanstalk, here’s a screenshot of the
web application after it completes running. The user interface is simple: it
consists of an HTML table listing the timing and relative performance (versus the
baseline) of each algorithm, as shown in Figure 15.

Matrix Multiplication Results (1024 X 1024)
AMP Default Device: NVIDIA GRID K520

@ http://csharpmatrix-dev.elastic.. 2 v & (2 csharpmatrix-dev.elasticbe...

Algorithm Time (secs) | Relative Speed

C# Basic Serial (CPU) 16.453 1.0X]

C# Improved Serial (CPU) 2.437 6.9%]

C# Parallel with TPL (CPU) 0.370 45.6X

C++ Basic Serial (CPU) 16.870 1.0X]

C++ Parallel with PPL (CPU) 4.042 4.2%]

C++ Parallel with AMP (GPU) 0.099 ‘

G-+ parallel with AMP Tilng (GPU) | 0.026 ‘

Page 20 of 42

Figure 15: The ASP.NET MVC Application Displaying the Results

You’ll notice in the UI that the matrix size used is 1024 x 1024. There are 1,536
CUDA cores on the NVIDIA GPU instance type in Amazon EC2. Because the
outer loop of the algorithm will execute in parallel once for each row of the
matrix, 1024 was selected as the matrix size to take advantage of a large number
of the CUDA cores. Also note that the matrix size must be a multiple of the tile
size used in the AMP tiling algorithm.

You may also notice a couple of curiosities in the relative performance of the
algorithms. First, the performance of the basic C++ algorithm is almost identical
to the performance of the basic C# algorithm. That’s interesting, because many

amazon
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

developers suspect that C++ is about twice as fast as C#. A possible explanation
for this might be that the C# code is using ragged arrays, which is a known
optimization for the .NET Framework.

Another curiosity is that the parallel C# code that uses TPL is about seven times
faster than the serial C# code, but the parallel C++ code that uses PPL is only
about four times faster than the serial C++ code. Since there are eight virtual
cores on the instance, we might expect a parallel algorithm to be about seven
times faster. There are ways to get more out of PPL, but that’s outside the scope
of this paper.

Working with the Code

If you haven’t downloaded the Visual Studio solution and source code for this
whitepaper yet, you should download it now.'3 Open the CSharpMatrixMultiply
solution in Visual Studio. The solution includes two projects. The ASP.NET MVC
project is adapted from the basic project that was created with the Visual Studio
New Project wizard. The following sections explain the C# code and C++ code in
the projects. The C# project has a dependency on the C++ DLL.

To deploy the application by using the image and security group you created
earlier:

1. (Recommended) Switch the build configuration in Visual Studio from Debug
to Release.

2. In Solution Explorer, right-click the CSharpMatrixMultiply project (not the
CSharpMatrixMultiply solution), and then click Publish to AWS.

3. Click Next to accept the defaults in the first screen.

4. Inthe Application Environment dialog box, you must provide an
environment name, but the default name for this project is too long, so just
shorten it until the red border disappears from the text box (Figure 16). Click
Next.

amazon
Page 21 of 42 webservices

http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

* Publish to Amazon Web W=k

Application Environment

Enter the details for your new application environment. To create a new new environment for an existing application, select the
appropriate application.

Application Application

Envirenment Mamme: |CSharpl’\uﬂatrixMul'cipl},r hd
AWS Options

VPC Environment

Updates Mame: | CSharpMatriq-dev -
Options
Review

URL
http: csharpmatrix-dev .elasticheanstalk.com Check availability...

| Close | | Bak || Nea || Finish

Figure 16: Specifying the Application Environment Details

5. Inthe Amazon EC2 Launch Configuration screen (Figure 17), verify that
Windows Server 2012 R2 is selected. For the instance type, select GPU
Double Extra Large. Select your key pair. Finally, you must provide the
AMI ID of the image you created previously. You can find that ID in the
Amazon EC2 console under Images, or in AWS Explorer, under Amazon
EC2, AMIs. Note that you must enter the ID in lowercase, e.g., ami-
12345678. Click Next, Next, and Deploy.

amazon
Page 22 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

* Publish to Amazon Web Servi =h

AWS
Set Amazon EC2 and other AWS-related options for the deployed application,

Amazon EC2 Launch Configuration

Application
Environment Container type = |54bit Windows Server 2012 R2 running II5 8.5 - |
AWS Options Instance type ™ |GPU Double Extra Large v| Key pair = |G2 v|
VPC Use custom AMI: | | |
Updates . : . .
[E]] Use a VPC Single instance environment Enable Rolling Deployments
Options
Review Deployed Application Permissions
Role: |aw5—elasticbeanstalk—ed—role -

Relational Database Access

Close | [Back | [Next | [Finish |

Figure 17: Picking the G2 instance type and Your Custom AMI ID

To ensure smooth builds and deployments of this solution with AWS Elastic
Beanstalk, make sure that the version of your AWS Toolkit for Visual Studio is
1.9.2.0 or higher.

The first time you deploy your project with AWS Elastic Beanstalk, it can take 5-
10 minutes. When it’s done, you may notice that the console or the AWS Toolkit
temporarily reports that the deployment is complete but with errors. This can be
disconcerting, but if you wait another minute you should see the status change to
success.

To run your application, open AWS Explorer and expand the AWS Elastic
Beanstalk node. Fully expand your environment name and double-click it to see
the status pane displayed. The status will show as “Launching” for a few minutes.
When the status changes to “Environment is healthy” (again, there could be a
delay after it temporarily reports that the environment is unhealthy), click the
URL at the top of the status pane. This should launch your default browser, and
now you get to wait another couple of minutes while the application performs all
seven matrix multiplications in the background. To keep things simple, the web
application does not display a progress bar or use an AJAX framework (such as
KnockoutJS) for partial updates. (In your production code, you would certainly

amazon
Page 23 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 24 of 42

want to consider implementing a feature for the user to see the progress of the
computation running in the background, and to cancel it if desired.)

After running your application, you may change your program and need to
deploy it again. Redeployment is much faster than an initial deployment. In
Visual Studio Solution Explorer, right-click the menu for the web project (again,
right-click the project, not the solution), and then click Republish to
Environment.

When you run the web application, the C++ DLL gets loaded into the IIS process
on the web server. This locks the file on the server disk, which can prevent AWS
Elastic Beanstalk from being able to overwrite it with a new version when you
redeploy your application. One workaround is to connect through VNC and
restart the IIS service. Another solution is to use the ebextensions feature that is
built into AWS Elastic Beanstalk.

In Solution Explorer, notice the folder in the C# project called .ebextensions
(prefaced by a dot). Any text files in this folder that have a file extension of .config
will be executed on the server after the deployment. The only tricky thing is that
Visual Studio opens .config files in a different editor that doesn’t preserve line
breaks, so you need to right-click the file and choose Open With, Source Code
(Text) Editor. Here is the file:

commands :
restart-iis:
command: iisreset /restart

waitForCompletion:0

This ebextensions file instructs AWS Elastic Beanstalk to run the iisreset
command on the server. For more information, see the blog post “Customizing
Windows Elastic Beanstalk Environments,” Part 114 and Part 215, on the AWS
.NET Development blog.

amazon
webservices

http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

The following code is the Model class in the web application. In this application,
the data flows one way from the Controller to the View.

public class TaskResults
{
public int NumAlgorithms { get; set; }
public int Dimension { get; set; }
public string[] Description { get; set; }
public string[] Time { get; set; }
public string[] RelativeSpeedLabel { get; set; }
public int[] PercentOfMax { get; set; }
public string StatusMessage { get; set; }
public string AMPDeviceName { get; set; }

public TaskResults (int NumAlgorithms)

{
NumAlgorithms = NumAlgorithms;
Description = new string[NumAlgorithms];
Time = new string[NumAlgorithms];
RelativeSpeedLabel = new string[NumAlgorithms];
PercentOfMax = new int[NumAlgorithms];
StatusMessage = string.Empty;
AMPDeviceName = string.Empty;

The following code is the first few lines of the file Index.cshtml. You see that the
TaskResults object created in the Controller is retrieved through the MVC
ViewBag, and then the @ syntax with the Razor Engine is used on the viewdata
object to insert data (e.g., @viewdata.AMPDeviceName) from the Model into
HTML.

amazon
Page 25 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

@using CSharpMatrixMultiply.Models;

@
ViewBag.Title = "Home Page";
var viewdata = ViewData["TaskResults"] as TaskResults;
}
<link href="../../Content/MyStyles.css" rel="stylesheet" type="text/css" />

<h3 style="font-family:verdana">Matrix Multiplication Results
(e@viewdata.Dimension X @viewdata.Dimension)</h3>

<h3 style="font-family:verdana">AMP Default Device:

@viewdata.AMPDeviceName</h3>

<h3 style="font-family:verdana; color:red">Q@viewdata.StatusMessage</h3>

The following code is the main Controller class in the web application. It
invokes each algorithm (except the first one) three times, calculates the average
elapsed time, and stores the results in the TaskResults class (the Model).

enum Algorithms // this must exactly duplicate enum in C++
{

CSharp Basic = 0,

CSharp ImprovedSerial = 1,

CSharp TPL = 2,

CPP Basic = 3,

CPP_PPL = 4,

CPP_AMP = 5,

CPP_AMPTiling = 6
}i

delegate float[][] CSharpMatrixMultiply(float[][] A, float[][] B, int N);

const int TESTLOOPS = 3;
const int N = 1024; // matrix size must be multiple of C++ tilesize

public unsafe ActionResult Index ()

{
int NumAlgorithms = Enum.GetNames (typeof (Algorithms)) .Length;

var rand = new Random() ;
double[] durations = new double[NumAlgorithms];

alna4uil
Page 26 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

var TaskResults = new TaskResults (NumAlgorithms) ;
TaskResults.Description[0] = "C# Basic Serial (CPU)";
TaskResults.Description[l] = "C# Improved Serial (CPU)";
TaskResults.Description[2] = "C# Parallel with TPL (CPU)";
TaskResults.Description[3] = "C++ Basic Serial (CPU)";
TaskResults.Description[4] = "C++ Parallel with PPL (CPU)";
TaskResults.Description[5] = "C++ Parallel with AMP (GPU)";
[

TaskResults.Description[6] = "C++ Parallel with AMP Tiling (GPU)";
TaskResults.Dimension = N;

TaskResults.NumAlgorithms = NumAlgorithms;

ViewData ["TaskResults"] = TaskResults;

// According to

// http://www.heatonresearch.com/content/choosing-best-c-array-type-
matrix-multiplication

// ragged arrays perform better in C# than 2D arrays for matrix
multiplication

float[][] A CreateRaggedMatrix (N) ;

float[][] B = CreateRaggedMatrix (N) ;

FillRaggedMatrix (A, N, rand);

FillRaggedMatrix (B, N, rand);

// C++ doesn't need ragged arrays for performance, and it's easier to
marshall

// and process the data as 2D arrays

float[,] A2 = new float[N, N];

float[,] B2 = new float[N, N];

// for comparing results, use the same random data in C++ as in C#

CopyRaggedMatrixTo2D (A, A2, N);

CopyRaggedMatrixTo2D (B, B2, N);

// warm-up AMP and get GPU name before timing
var sb = new StringBuilder (256) ;

CPPWrapper .WarmUpAMP (sb, sb.Capacity);
TaskResults.AMPDeviceName = sb.ToString () ;

//*** Basic C#. Save this original result for future comparisons.
long start = DateTime.Now.Ticks;

float[][] original = MatrixMultiplyBasic (A, B, N);

long stop = DateTime.Now.Ticks;

durations[0] = (stop - start) / 10000000.0;

if (!RunCSharpAlgorithm (
original,

MatrixMultiplySerial,

"C# Improved Serial",
(int)Algorithms.CSharp ImprovedSerial,
TaskResults,

ref durations))

return PartialView () ;

Allivamyll
Page 27 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015
}
if (!RunCSharpAlgorithm (
original,
A,
B,
N,
MatrixMultiplyTPL,
"Cc# TPL",
(int)Algorithms.CSharp TPL,
TaskResults,
ref durations))
{
return PartialView () ;
}
if (!RunCPPAlgorithm(original, A2, B2, N, "C++ Basic",
(int)Algorithms.CPP Basic, TaskResults, ref durations))
{
return PartialView () ;
}
if (!RunCPPAlgorithm(original, A2, B2, N, "C++ PPL",
(int)Algorithms.CPP PPL, TaskResults, ref durations))
{
return PartialView () ;
}
if (!RunCPPAlgorithm(original, A2, B2, N, "C++ AMP",
(int)Algorithms.CPP AMP, TaskResults, ref durations))
{
return PartialView () ;
}
if (!RunCPPAlgorithm(original, A2, B2, N, "C++ AMP Tiling",
(int)Algorithms.CPP_AMPTiling, TaskResults, ref durations))
{
return PartialView () ;
}
var slowest = durations.Max () ;
var fastest = durations.Min () ;
// populate the Model for the HTML table in the View
for (int k = 0; k < NumAlgorithms; k++)
{
TaskResults.Time[k] = string.Format ("{0:0.000}", durations[k]);
TaskResults.RelativeSpeedLabel [k] = string.Format ("{0:0.0}X", slowest
/ durations[k]) ;
TaskResults.PercentOfMax[k] = (int) (fastest / durations[k] * 100.0);

}

return PartialView () ;

Page 28 of 42

AllIemVYIl

webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU

April 2015

bool RunCSharpAlgorithm (
float[][] original,

float[][] A,
float[][] B,
int N,

CSharpMatrixMultiply function,
string FunctionName,

int AlgorithmIndex,
TaskResults results,

ref double[] durations)

double[] test durations = new double[TESTLOOPS];

for (int k = 0; k < TESTLOOPS; k++)
{

long start = DateTime.Now.Ticks;
float[][] C = function(A, B, N);
test durations[k] = (DateTime.Now.Ticks - start)
if (!CompareMatrixes (original, C, N))
{
results.StatusMessage = "Error verifying " + FunctionName;

return false;

}
durations[AlgorithmIndex] = test durations.Average() ;

return true;

}

unsafe bool RunCPPAlgorithm (
float[][] original,
float[,] AZ2,
float[,] B2,
int N,
string FunctionName,
int AlgorithmIndex,
TaskResults results,
ref double[] durations)

double[] test durations = new double[TESTLOOPS];

for (int k = 0; k < TESTLOOPS; k++)
{

// allocate memory in C# to simplify marshalling/deallocation

float[,] C2 = new float[N, N];

long start = DateTime.Now.Ticks;
fixed (float* pA2 = &A2[0, 0])
fixed (float* pB2 = &B2[0, 0])
fixed (float* pC2 = &C2[0, 0])

{

/ 10000000.0;

var error = new StringBuilder (1024) ; // allocate string memory

Page 29 of 42

AllIemVYIl

webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU

April 2015

if

pAZ, pB2, pC2,

results.StatusMessage

return false;

}

if
{

results.StatusMessage

return false;

}

test durations[k]

}

durations[AlgorithmIndex]
return true;

}

// Standard algorithm
float[][]
{

float[][] C =

= i < N; 1++)
0; j < N;
k = 0;

51 4=

(int i =
for (int
for

for 0;
j =
(int
Cli][Ali]

return C;

}

N,

(!CompareRaggedMatrixTo2D (original,

(DateTime.Now.Ticks

(!CPPWrapper.CallCPPMatrixMultiply (AlgorithmIndex,
error,

error.Capacity))

error.ToString() ;

Cz, N))

"Error verifying " + FunctionName;

- start)

test durations.Average() ;

MatrixMultiplyBasic (float[][]

CreateRaggedMatrix (N) ;

544)

[k]

A, float[][] B, int N)

// C is the result matrix

k < N; k++)

* BLk][J]7

/ 10000000.0;

// This function was developed by Heaton Research and is licensed under the

Apache License, Version 2.0,

// available here: https://www.apache.org/licenses/LICENSE-2.0.html
// Improve the basic serial algorithm with optimized index order

float[][]
{

float[][] C =

MatrixMultiplySerial (float[][]

A, float[][] B, int N)

CreateRaggedMatrix (N) ;

// according to http://www.heatonresearch.com/content/choosing-best-c-

array-type-matrix-multiplication
// this ikj index order performs the best for C# matrix multiplication

for (int i = 0; i < N; i++)
{
float[] arowi = A[i];
float[] crowi = C[i];

for (int k = 0; k < N; k++)
{
float[] browk = B[k];
float aik = arowil[k];
for (int j = 0; j < N;

{

Page 30 of 42

Jt+)

AllIemVYIl

webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

}

crowi[]j] += aik * browk[j];

return C;

}

// Parallel algorithm using TPL
float[][] MatrixMultiplyTPL (float[][] A, float[][] B, int N)

{

float[][] C = CreateRaggedMatrix (N) ;

Parallel.For (0, N, i =>

{

) ;

float[] arowi Ali];
float[] crowi = C[i];
for (int k = 0; k < N; k++)
{
float[] browk = B[k];
float aik = arowi[k];
for (int j = 0; j < N; J++)
{
crowi[j] += aik * browk[j];

}

return C;

Page 31 of 42

A basic algorithm for matrix multiplication is used as the baseline for the
algorithms in subsequent sections. There is only one optimization applied in this
basic algorithm. When using two-dimensional arrays in the .NET Framework,
method calls would ordinarily be made to the Array class. Since the inner loop
executes so many times, that’s expensive. But there is a simple workaround: use
ragged arrays. For example, instead of declaring a 10x20 array like this:

double[,] MyArray = new double[10,20];

declare it like this, and create each row as a separate array of 20 columns in a for
loop:

double[] [] MyArray = new double[10][];
for (int 1 = 0; i < 10; i++)

aimma«vll
webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

MyArray[i] = new double[20];

Here is the code for basic matrix multiplication. This will execute in serial fashion

on the CPU:
float[][] MatrixMultiplyBasic (float[][] A, float[][] B, int N)
{
float[][] C = CreateRaggedMatrix (N); // C is the result matrix

for (int i = 0; i < N; i++)
for (int j = 0; j < N; J++)
for (int k = 0; k < N; k++)
Cl[i][3] += A[i][k] * B[kII[J];

return C;

The code for this algorithm was obtained from the article Choosing the Best C#
Array Type for Matrix Multiplication!® By Heaton Research. In the article, the
author writes several variations of the order of the for loop indexes, and
measures the timing of each. For this whitepaper, we are using the variation that
was found to perform the best with the NET Framework 4.5.

float[][] MatrixMultiplySerial (float[][] A, float[][] B, int N)

{
float[][] C = CreateRaggedMatrix (N) ;

// according to http://www.heatonresearch.com/content/choosing-best-c-
array-type-matrix-multiplication
// this ikj index order performs the best for C# matrix multiplication

for (int i = 0; 1 < N; 1i++)
{
float[] arowi = A[i];
float[] crowi = C[i];

for (int k = 0; k < N; k++)
{
float[] browk = B[k];
float aik = arowilk];
for (int j = 0; j < N; J++)

Page 32 o1 42 webservices

http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

crowi[j] += aik * browk[]];

return C;

The following code simply replaces the standard outer loop in the previous
algorithm with a Parallel.For loop from the .NET Framework Task Parallel
Library (TPL). For more information, see Matrix Multiplication in Parallel with
C# and the TPL'7 by James D. McCaffrey.

float[][] MatrixMultiplyTPL (float([][] A, float[][] B, int N)
{
float[][] C = CreateRaggedMatrix (N) ;

Parallel.For (0, N, i =>
{
float[] arowi = A[i];
float[] crowi = C[i];
for (int k = 0; k < N; k++)
{
float[] browk = B[k];
float aik = arowil[k];
for (int j = 0; j < N; J++)
{

crowi[j] += aik * browk[]j];

If you decide to build your own program, you must follow the steps in the blog
post How to use C++ AMP from C#!8 on the Parallel Programming with .NET

amazon
Page 33 of 42 webservices

http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspxhttp:/blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

blog on MSDN. If you only want to download and run the sample code provided
with this whitepaper, there is no need to follow that procedure, because those
steps have already been included in the Visual Studio solution.

One difference between our solution and the information in the blog post is that
our solution uses all 64-bit code. When combining C# and C++, you need to be
careful to use the same platform in each language. The platform is usually set to
Any CPU in C#, but it must be changed to x64 in the Visual Studio
Configuration Manager, as shown in Figure 18.

Active soluticn configuration: Active solution platform:

Release VI [1154 -

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build Deploy
CPPMatrixMultiply Release x6d
CSharpMatrixMultiply Release E‘ x04 E‘

Close

Figure 18: Setting the Platform to x64 in the Visual Studio Configuration Manager

See the blog post Debugging VS2013 websites using 64-bit IIS Express'9 for
additional helpful information.

Before you can invoke C++ functions from C#, you need to declare them for
P/Invoke on the C# side. The following code shows the CPPWrapper class in
the Controller folder in the Visual Studio solution. As required, these methods are
declared with the unsafe keyword in C#. Rather than create a public entry point
for each C++ algorithm, it was deemed a bit cleaner to create a single function to
call each one based on the algorithm index passed in. This simplifies the
exception handling which had to be written in C++. I would have liked to write a
single exception handler in C# for all the calls to the different algorithms,

amazon
Page 34 of 42 webservices

http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

including C++, but it was necessary to write an error handler in C++ for the error
codes that can be returned by C++ AMP.

public class CPPWrapper
{
[DllImport ("CPPMatrixMultiply.dl1l",
CallingConvention = CallingConvention.StdCall,
CharSet = CharSet.Unicode)]
public extern unsafe static bool
CallCPPMatrixMultiply(int algorithm, float* A, float* B, float* C,

int N, StringBuilder error, int errsize);

[DllImport ("CPPMatrixMultiply.dl1l",
CallingConvention = CallingConvention.StdCall,
CharSet = CharSet.Unicode)]

public extern unsafe static void WarmUpAMP (StringBuilder buffer, int
bufsize) ;

}

Here is the C++ dispatcher function, which is exported for C#:

extern "C" declspec (dllexport) bool stdcall
CallCPPMatrixMultiply (int algorithm, float A[], float B[], float CI[],
int N, wchar t* error, size t errsize)

try

{

switch (algorithm)

{

case Algorithms::CPP Basic:
MatrixMultiplyBasic (A, B, C, N); break;

case Algorithms::CPP PPL:
MatrixMultiplyPPL (A, B, C, N); break;

case Algorithms::CPP_AMP:
MatrixMultiplyAMP (A, B, C, N); break;

case Algorithms::CPP AMPTiling:
MatrixMultiplyTiling (A, B, C, N); break;

default:
wcscpy_ s (error, errsize, L"Invalid C++ algorithm index.");
return false;

}

}

catch (concurrency::runtime exception& ex)

alasvil
Page 35 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

std: :wstring result = stows (ex.what());
wcscpy_ s (error, errsize, result.c str()):;

return false;

return true;

Now that you've taken care of those preliminaries, you're ready to implement the
C++ function for basic matrix multiplication. It looks very similar to the basic
algorithm in C# except that it doesn’t use ragged arrays, and it introduces a
temporary sum variable to reduce array references to the result array in the inner
loop.

void MatrixMultiplyBasic(float A[], float B[], float C[], int N)
{
for (int i = 0; 1 < N; 1i++)
{
for (int j = 0; j < N; J++)
{
float sum = 0.0;
for (int k = 0; k < N; k++)
{
sum += A[i*N + k] * B[k*N + j];
}

C[i*N + j] = sum;

The next optimization is to rewrite the serial C++ function as a parallel function.
This code will still be running on the CPU, but it will give us an interesting
comparison with the parallel code we’ll write later to run on the GPU.

In the past, writing parallel code in Windows with the Win32 thread APIs was
complicated. There are still many difficulties in multithreaded programming, but

amazon
Page 36 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

now the Microsoft Parallel Patterns Library (PPL) makes it much easier. For
more information about PPL, see the following;:

e This article in the MSDN Library explains a parallel matrix multiplication
algorithm written in C++ using PPL: How to: Write a parallel for Loop2°

e This article describes several optimization techniques for writing parallel
for loops in C++: C++11: Multi-core Programming — PPL Parallel
Aggregation Explained.2!

Here’s the non-optimized parallel C++ function:

void MatrixMultiplyPPL(float A[], float B[], float C[], int N)
{
parallel for (0, N, [&] (int i)
{
for (int j = 0; j < N; Jj++)
{
float sum = 0.0;
for (int k = 0; k < N; k++)
{

sum += A[i*N + k] * B[k*N + j];

}
CIi*N + 3]

sum;,

Now you're ready to write AMP code. To get started, you may want to review the
blog post How to measure the performance of C++ AMP alglorithms22 on the
Parallel Programming in Native Code blog on MSDN. As that author points out,
there is overhead when AMP initializes itself on first use. It enumerates the GPU
devices in the system and picks the default one. The idea of warming up AMP
before timing it may or may not apply to your use case, but the code provided
with this whitepaper does implement such a function. The following function
returns the name of the GPU device so it can be displayed in the ASP.NET MVC
web page.

// Return the name of the default GPU device (or the emulator if no GPU

exists) .

(e R LT AV]]]
Page 37 of 42 webservices

http://msdn.microsoft.com/en-us/library/dd728073.aspx
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

// AMP will enumerate devices to initialize itself outside of the timing
code.
extern "C" _ declspec (dllexport) void stdcall
WarmUpAMP (wchar t* buffer, size t bufsize)
{
accelerator default device;

wcscpy s (buffer, bufsize, default device.get description().c str()):;

String types in C# and C++ are not directly compatible, but there are various
ways to pass strings between them (this is called marshaling). In all cases, it’s
important to pay attention to where the string memory is allocated and how it
will be freed. The P/Invoke declaration in C# must be carefully written to match
the string-passing technique you decide to use in C++. The technique used in the
previous code is to allocate a StringBuilder object with a fixed capacity in C#
before passing it into C++. That way, the C# side is responsible for freeing the
memory when the object goes out of scope, which only happens after the C++
function is done writing to the memory. The C++ code just copies the name of the
GPU device into the buffer passed in from C#.

The next task is to adapt the parallel C++ matrix multiplication algorithm to use
AMP. The following AMP code is based on the Matrix Multiplication Sample23 on
the Parallel Programming in Native Code blog on MSDN.

void MatrixMultiplyAMP (float A[], float B[], float C[], int N)
{
extent<2> e a(N, N), e b(N, N), e c(N, N);

array view<float, 2> a(e a, A);
array view<float, 2> b(e b, B);
array view<float, 2> c(e c, C);

c.discard data() ; // avoid copying memory to GPU
parallel for each(c.extent, [=] (index<2> idx) restrict (amp)
{

int row = idx[0];

int col = idx[1l];

float sum = 0;
for (int inner = 0; inner < N; inner++)

{

amazon
Page 38 of 42 webservices

http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

index<2> idx a(idx[0], inner);
index<2> idx b (inner, idx[1]);
sum += alidx a] * b[idx Db];

}

c[idx] = sum;

}) s

c.synchronize () ;

Finally, let’s take another step with the AMP code to use a technique called tiling.
In a nutshell, tiling is a method of optimizing the way the algorithm uses memory
in the GPU. When you call C++ AMP from C#, there are four levels of memory
you should be aware of:

e Managed memory. This lives in RAM associated with the CPU and the
.NET Framework CLR managed process, and is controlled by the .NET
Framework garbage collector. Data passed between C# and C++ must be
“marshaled” between managed and unmanaged memory according to very
particular rules, such as padding.

¢ Unmanaged memory. This also lives in RAM associated with the CPU,
but this memory space requires Win32 memory APIs and does not include
a garbage collector.

¢ Global memory on the GPU. Programming in AMP requires that data

be moved—with thread synchronization—between unmanaged memory
and the GPU.

e Registers associated with each thread on the GPU. Accessing data
in these registers can be 1000 times faster than GPU global memory, so the
idea is to move frequently accessed data into the registers. But the registers
aren’t large enough to hold an entire matrix, so algorithms must be written
to process one “tile” at a time and then move another tile into the registers,
and so on. A full explanation of tiling is beyond the scope of this
whitepaper, but this article by Daniel Moth covers it well.24

Here is the C++ AMP code with a tiling algorithm:

amazon
Page 39 of 42 webservices

http://msdn.microsoft.com/en-us/magazine/hh882447.aspx

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

const int TILESIZE = 8; // array size passed in must be a multiple of
TILESIZE

voilid MatrixMultiplyTiling(float A[], float B[], float C[], int N)
{

X

assert ((N $ TILESIZE) == 0);

array view<const float, 2> a(N, N, A);
array view<const float, 2> b(N, N, B);
array view<float, 2> c(N, N, C);
c.discard data();

parallel for each(c.extent.tile<TILESIZE, TILESIZE>(),
[=] (tiled index<TILESIZE, TILESIZE> t idx) restrict (amp)
{

int row

t idx.local[0];

t idx.local[l];

tile static float 1locA[TILESIZE] [TILESIZE];
tile static float locB[TILESIZE] [TILESIZE];
float sum = 0;

for (int i = 0; 1 < a.extent[l]; i += TILESIZE)
{

locA[row] [col]

int col

a(t idx.global[0], col + 1i);
b(row + i, t idx.global[l]);

t idx.barrier.wait();

locB[row] [col]

for (int k = 0; k < TILESIZE; k++)
sum += locA[row] [k] * locB[k][col];

t idx.barrier.wait();

}
c[t idx.global] = sum;
) ;

c.synchronize () ;

Conclusion

This whitepaper demonstrated how to set up the G2 instance type in Amazon
EC2 with Windows Server. The NVIDIA GPU on those instances provides 1,536
cores that developers can use for compute-intensive application functions. But
programming the GPU requires the C or C++ language, whereas most Windows
developers are using C#. This article showed how to pass data between C# and

amazon
Page 40 of 42 webservices

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 41 of 42

C++, and how to use the C++ AMP library to make GPU programming accessible
and highly productive for C# web developers on Windows.

The tiled matrix multiplication algorithm written in C++ AMP was hundreds of
times faster than the basic algorithm written in C#.

Further Reading

e AWS Toolkit for Visual Studio?5

e AWS for Windows and .NET Developer Center26

e Getting Started with Amazon EC2 Windows Instances2?

e [Elastic Beanstalk Documentation?28

e C++ AMP documentation29

e ASP.NET MVC documentation3®

Notes

1 http://do.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

2 https://bitbucket.org/multicoreware/cppamp-driver-ng/overview

3 https://ampalgorithms.codeplex.com/documentation

4 http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-
sample-projects-for-download.aspx

5 http://aws.amazon.com/ec2/instance-types/

6 http://www.nvidia.com/object/cuda home new.html

7 http://aws.amazon.com/visualstudio/

8 http://aws.amazon.com/free/

9 http://www.microsoft.com/en-us/download/details.aspx?id=40784

10 http://www.realvne.com/

1 http: //www.realvne.com/

12 http://www.NVIDIA.com/download/driverResults.aspx/74642/en-us

13 http://do.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

amazon
webservices

http://aws.amazon.com/visualstudio/
http://aws.amazon.com/net/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.asp.net/mvc
http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip
https://bitbucket.org/multicoreware/cppamp-driver-ng/overview
https://ampalgorithms.codeplex.com/documentation
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://aws.amazon.com/ec2/instance-types/
http://www.nvidia.com/object/cuda_home_new.html
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/free/
http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.realvnc.com/
http://www.realvnc.com/
http://www.nvidia.com/download/driverResults.aspx/74642/en-us
http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services — Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 42 of 42

14 http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-
Windows-Elastic-Beanstalk-Environments-Part-1

15 http: //blogs.aws.amazon.com/net/post/Tx2 EMAYCXUW3HAK/Customizing-
Windows-Elastic-Beanstalk-Environments-Part-2

16 http: //www.heatonresearch.com/content/choosing-best-c-array-type-matrix-
multiplication

17 http://jamesmeccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-
parallel-with-c-and-the-tpl/

18 http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx

19 http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-
websites-using-64-bit-iis-express.aspx

20 http://msdn.microsoft.com/en-us/library/dd728073.aspx

21 https: //katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-
ppl-parallel-aggregation-explained/

22 http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28 /how-to-
measure-the-performance-of-c-amp-algorithms.aspx

23 http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-
multiplication-sample.aspx

24 http://msdn.microsoft.com/en-us/magazine/hh882447.aspx

25 http://aws.amazon.com/visualstudio/

26 http://aws.amazon.com/net/

27
http://docs.aws.amazon.com/AWSEC2 /latest/WindowsGuide/EC2Win GetSt
arted.html

28 http://docs.aws.amazon.com/elasticbeanstalk /latest/dg/customize-
containers-windows-ec2.html

29 http://msdn.microsoft.com/en-us/library/hh265137.aspx

30 http://www.asp.net/mve

amazon
webservices

http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx
http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx
http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx
http://msdn.microsoft.com/en-us/library/dd728073.aspx
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx
http://msdn.microsoft.com/en-us/magazine/hh882447.aspx
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/net/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.asp.net/mvc

