
Strategies for Managing Access
to AWS Resources

in AWS Marketplace
July 2016

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 2 of 13

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 3 of 13

Contents

Abstract 3

Overview 4

Accessing Application-Specific Resources 4

The EC2 Instance Role 5

Accessing Resources on Behalf of Users 7

The EC2 Instance Role 8

The Account Access Role 8

Switching Roles 11

AWS Marketplace Considerations 12

Using External IDs 12

Using Wildcards for IAM Roles 12

Great Documentation 13

Summary 13

Contributors 13

Notes 13

Abstract
This paper discusses how applications in AWS Marketplace that require access to

AWS resources can use AWS Identity and Access Management (IAM) roles for

authentication, to help protect customers from potential security vulnerabilities.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 4 of 13

Overview
Applications in AWS Marketplace that require access to Amazon Web Services

(AWS) resources must follow security best practices when accessing AWS to help

protect customers from potential security vulnerabilities. Typically, application

authors will use a combination of access and secret keys to authenticate against

AWS resources. However, for AWS Marketplace,1 we require application authors

to use AWS Identity and Access Management (IAM)2 roles and do not permit the

use of access or secret keys.

This requirement affects two types of applications: applications that interact

with AWS resources to operate, and applications that interact with AWS

resources on behalf of specific users, either in the same or in different AWS

accounts.

When an application requires access to AWS resources to operate, temporary

credentials can be obtained by using IAM roles for Amazon Elastic Compute

Cloud (Amazon EC2) instances.3 Applications can then interact with AWS

resources without needing to store, secure, and manage a user’s access keys.

When an application needs to access AWS resources on behalf of different users,

either in the same or in different AWS accounts, the same technique can be

applied. IAM roles can be used to access both the resources required by the

application, and the resources the application may access on behalf of a user.

By using IAM roles instead of IAM users for both application-specific and user-

specific access, you can remove the need for customers to distribute and manage

access keys. The following sections explain how you can adopt this strategy.

Accessing Application-Specific Resources
When an application needs to interact with AWS resources, access should be

provided by using IAM roles and not IAM users. For example, if an application

needs to access an Amazon DynamoDB4 database and an Amazon Simple Storage

Service (S3)5 bucket, access to these resources are not user-specific.

https://aws.amazon.com/marketplace/
https://aws.amazon.com/iam/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 5 of 13

Figure 1: Sample architecture for accessing application-specific resources

The EC2 Instance Role
The EC2 instance is started with an instance role attached. This role has a policy

that grants access to the DynamoDB database and the S3 bucket within the same

account.

When making API calls to Amazon S3, your application must retrieve the

temporary credentials from the IAM role and use those credentials. You can

retrieve these credentials from the instance metadata

(http://169.254.169.254/latest/meta-data/iam/security-credentials/rolename).

If you are using an AWS SDK, the AWS Command Line Interface (AWS CLI),6 or

AWS Tools for Windows PowerShell,7 these credentials will be obtained

automatically.

Using roles in this way has several benefits. Because role credentials are

temporary and rotated automatically, you don't have to manage credentials, and

you don't have to worry about long-term security risks.

To create and use an IAM instance role:

1. Create a new instance role.

2. Add a trust relationship that allows ec2.amazonaws.com to assume the

role.

http://169.254.169.254/latest/meta-data/iam/security-credentials/rolename)
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 6 of 13

3. Create a new policy that specifies the permissions required.

4. Add the new policy to the new instance role.

5. Create a new EC2 instance that specifies the IAM role.

6. Build your app by using one of the AWS SDKs. Do not specify credentials

when calling methods, because temporary credentials will be automatically

added by the SDK.

For more detailed instructions, see IAM Roles for Amazon EC2 in the IAM

documentation.8

Note You can also configure launch settings used by Auto Scaling groups to use

IAM roles.

In our example, we’ll create the instance role with the following trust

relationship:

{

 "Version": "2008-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "ec2.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

Add the AmazonDynamoDBFullAccess and AmazonS3FullAccess

policies to the IAM role, and then create the EC2 instance by specifying the role.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 7 of 13

Accessing Resources on Behalf of Users
To illustrate the scenario of accessing AWS resources on behalf of specific users,

consider an application that processes images stored in S3 buckets on behalf of a

user. The application itself might use services such as DynamoDB for storing

configuration and job status. The following diagram shows the architecture.

Figure 2: Sample architecture for accessing AWS resources on behalf of users

In this scenario, the EC2 instance hosting the application would use an instance

profile that gives specific permissions to DynamoDB.

When accessing Amazon S3 resources on behalf of the user, the application

would switch to a different IAM role: a role that was set up by the user with

specific permission to access the S3 buckets. This method would allow an

application to access resources on behalf of different users, without the need to

store credentials. Users would still need to create IAM policies and IAM roles, but

this is no different from creating IAM users and IAM roles for the same reason.

There are two IAM roles in play:

 EC2 instance role (application role) – This is the role the application

uses to obtain temporary credentials to access application-specific

resources, such as the DynamoDB database.

 Account access roles (user roles) – These are the roles the application

uses to obtain temporary credentials to access resources for specific users

of the application.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 8 of 13

Figure 3: Roles and policies

The EC2 Instance Role
The EC2 instance role would be configured in the same way as in the first

scenario.

The Account Access Role
Since the application can also access S3 buckets and objects from other AWS

accounts, it is tempting to maintain a list of credentials to access these AWS

resources; however, the same technique of using roles and temporary credentials

is preferred. This strategy again removes the need for the application to store

anything but benign information, or handle key rotation scenarios.

Using roles across accounts is no more difficult to set up than creating users and

assigning policies, but it requires a few extra steps:

1. In the target account (the account that contains the AWS resources):

a. Create a new IAM role.

b. Add a trust relationship that specifies the root of the application hosting

account as the principal. Include a condition that specifies an external

ID.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 9 of 13

c. Create a new policy that specifies the permissions required, and attach

it to the role.

2. In the application hosting account (the account where the application is

hosted):

a. Create a new policy that specifies that the sts:AssumeRole action is

allowed to the role defined in the target account.

b. Attach the new policy to the instance role.

In the target account, we can create a role named my-user-role with the

following trust relationship:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": [

 "arn:aws:iam::111111111111:root”

]

 },

 "Action": "sts:AssumeRole",

 "Condition": {

 "StringEquals": {

 "sts:ExternalId": "myapp"

 }

 }

 }

]

}

Note that the account number 111111111111 is used in the principal Amazon

Resource Name (ARN) to ensure that only IAM users and roles from that account

can assume this role. Furthermore, the inclusion of an sts:ExternalId

condition means that the caller also needs this information to complete the

AssumeRole function. See the code sample later in this paper for information on

how this condition is used.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 10 of 13

The permissions added to the role permit access to specific S3 buckets. It is good

practice to be explicit in permissions rather than using wildcards. The following

is an example of the permissions added:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket"

],

 "Resource": [

 "arn:aws:s3:::myBucket1",

 "arn:aws:s3:::myBucket2"

]

 }

]

}

Back in the application hosting account, we need to add a new permission to the

role to allow it to assume the role in the target account:

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Action": "sts:AssumeRole",

 "Resource": "arn:aws:iam::222222222222:role/my-

user-role"

 }

}

You can use a wildcard in the application hosting account, since the permissions

need to be explicitly defined in the target account. This also allows you to access

roles across multiple AWS accounts.

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 11 of 13

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Action": "sts:AssumeRole",

 "Resource": "arn:aws:iam::*:role/my-user-role"

 }

}

Switching Roles
In the application, we do not need to code anything special to use the instance

role and the permissions that gives us. However, to access the S3 buckets in the

other AWS accounts, we will need to assume the new role and use the temporary

credentials for that role in our SDK calls. The following code snippet shows a

Node.js example:

var accounted = ‘222222222222’; 1
var rolename = ‘my-user-role’; 2
var externalId = ‘myapp’; 3
var sts = new AWS.STS(); 4
var stsparams = { 5
 RoleArn: 'arn:aws:iam::'+ accountid + ':role/' + rolename, 6
 RoleSessionName: 'myappsession', 7
 ExternalId: externalId, 8
 DurationSeconds: 3600 9
}; 10
 11
AWS.config.credentials = new AWS.EC2MetadataCredentials(); 12
var tempCredentials = new AWS.TemporaryCredentials(stsparams); 13
var options = { 14
 credentials: tempCredentials 15
} 16
var s3 = new AWS.S3(options); 17

Lines 5–10 define the parameters (stsparams) for obtaining the temporary

credentials on line 13. We build the RoleArn from parameters defined in lines 1

and 2, along with the externalId in line 3.

Once we have the temporary credentials, we use these in line 17 to access the S3

resource.

AWS Marketplace Considerations
There are a few things to consider when using IAM roles for AWS Marketplace.

Using External IDs
It is important not to just rely on the role name; you must specify an external ID

to be used by the application. Furthermore, you should allow the customer

deploying your application to define the external ID value. You should use a

different external ID for each AWS account to limit exposure.

Using Wildcards for IAM Roles
Since users will be supplying roles in different accounts, you can use wildcards to

designate target accounts in the application hosting account. You should use a

well-known role name, but you can substitute a wildcard for the account number.

The following example is a good use of a wildcard:

arn:aws:iam::*:role/my-user-role

The following example is not an acceptable use of a wildcard:

arn:aws:iam::*

Amazon Web Services – Managing Access to Resources in AWS Marketplace July 2016

Page 13 of 13

Great Documentation
Customers need to create IAM roles and polices in the AWS accounts they want

to access, so you should provide explicit documentation to walk customers

through creating the correct roles and policies.

Summary
Applications in AWS Marketplace that require access to AWS resources must

implement authentication using IAM roles, as discussed in this guide. This helps

reduce the potential vulnerabilities within a customer’s AWS account by

providing access only to temporary credentials.

Contributors
The following individuals and organizations contributed to this document:

 David Aiken, partner solutions architect, AWS Marketplace

Notes

1 https://aws.amazon.com/marketplace/

2 https://aws.amazon.com/iam/

3 https://aws.amazon.com/ec2/

4 https://aws.amazon.com/dynamodb/

5 https://aws.amazon.com/s3/

6 https://aws.amazon.com/cli/

7 https://aws.amazon.com/powershell/

8 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-

amazon-ec2.html

https://aws.amazon.com/marketplace/
https://aws.amazon.com/iam/
https://aws.amazon.com/ec2/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

