

WordPress: Best Practices on AWS
Reference Architecture for

Scalable WordPress-powered

Websites

Andreas Chatzakis

December 2014

(Please consult http://aws.amazon.com/whitepapers for the latest version of this paper.)

http://aws.amazon.com/whitepapers

Contents
Contents 2

Abstract 2

Introduction 3

Getting Started (Single Server) 3

Installing WordPress 3

Selecting the Right Instance Type and Size 3

Recovering from Failure 4

Improving Performance and Cost Efficiency 6

Scaling Up 9

Separating the Web and Database Tiers 9

Availability of the Data Layer 11

Availability and Scalability of the Web Tier 13

Scaling the Data Layer 15

Development and Deployment Considerations 17

Reducing the Risk of Change 17

Responsive Design 18

Summary 19

Abstract
WordPress is an open-source blogging tool and content management system (CMS)

based on PHP and MySQL that is used to power anything from personal blogs to high-

traffic websites. Amazon Web Services (AWS) is designed to provide a reliable,

scalable, secure, and highly performing infrastructure built for the most demanding

applications.

This whitepaper provides system administrators with specific guidance on how to get

started with WordPress on AWS and how to improve both the cost efficiency of the

deployment as well as the end user experience. It also outlines a reference architecture

that addresses common scalability and high availability requirements.

Introduction
The first version of WordPress was released in 2003, and as such it was not built with

modern elastic and scalable cloud-based infrastructures in mind. Through the work of

the WordPress community and the release of various WordPress modules, the

capabilities of this CMS solution are constantly expanding. Today it is possible to build a

WordPress architecture that takes advantage of many of the benefits of the AWS

platform.

Getting Started (Single Server)
For low-traffic blogs or websites without strict high availability requirements a simple

deployment of a single server might be suitable. Amazon Elastic Compute Cloud

(Amazon EC2) is a web service that provides resizable compute capacity so you can

launch a virtual server within minutes.1

Installing WordPress
Because you have complete control of your Amazon EC2 instance, you can log in with

root access to install and configure all the software components required to run a

WordPress website. Once you are done, you can save that configuration as an Amazon

Machine Image (AMI), which you can use to launch new instances with all the

customizations that you've made.

An easier way to get started is via the AWS Marketplace—an online store that helps

customers find, buy, and quickly start using a large variety of software solutions.2

Customers can use AWS Marketplace’s 1-Click deployment to quickly launch an

Amazon EC2 instance based on a publicly available AMI. A range of WordPress

offerings are available, allowing users to launch a virtual server preinstalled with a

database, web server, and the WordPress application code.3

Selecting the Right Instance Type and Size
Amazon EC2 provides a wide selection of instance types optimized to fit different use

cases.4 Instance types comprise varying combinations of CPU, memory, storage, and

networking capacity and give you the flexibility to choose the appropriate mix of

resources for your applications. Each instance type includes one or more instance sizes,

so you can scale your resources to the requirements of your target workload.

1
 http://aws.amazon.com/ec2/

2
 https://aws.amazon.com/marketplace/

3
https://aws.amazon.com/marketplace/search/results/ref=gtw_navgno_search_box?searchTerms=wordpress&searc

h
4
 http://aws.amazon.com/ec2/instance-types/

http://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace/
https://aws.amazon.com/marketplace/search/results/ref=gtw_navgno_search_box?searchTerms=wordpress&search
https://aws.amazon.com/marketplace/search/results/ref=gtw_navgno_search_box?searchTerms=wordpress&search
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace/
https://aws.amazon.com/marketplace/search/results/ref=gtw_navgno_search_box?searchTerms=wordpress&search
https://aws.amazon.com/marketplace/search/results/ref=gtw_navgno_search_box?searchTerms=wordpress&search
http://aws.amazon.com/ec2/instance-types/

Initial Instance Size
If this is a new project, you must initially make some assumptions about the instance

type and size you will need. In general T2 instances offer a cost-efficient choice for low-

traffic websites that don’t use the full CPU often or consistently, but occasionally need to

burst. M3 instance types provide more capacity and a balance of compute, memory, and

network resources, making them a good choice for more demanding websites. The

above two are recommended starting points, but the optimal choice will depend on the

traffic patterns, the complexity of the website, the resources required by the installed

plugins, and more. Monitoring the performance of the host can help you find the optimal

instance type and size for your WordPress website.

Scaling Vertically (Scale Up)
As traffic grows, you can increase the size of your instance to handle the additional load.

When using an Amazon EC2 instance that is backed by Amazon Elastic Block Store

(Amazon EBS), you can increase the size of your instance by simply stopping the

instance, modifying its instance type, and restarting.5 Please note that any data stored

on the ephemeral instance storage will be lost during that process, as explained in the

Amazon EC2 User Guide for Linux.6

Recovering from Failure
Recovering from an instance failure is faster than in traditional hosting environments.

You can launch a replacement instance in minutes and use a variety of features that

help minimize disruption even in the single server scenario.

Reliable Storage and Backups
To reestablish the availability of a WordPress website, you must be able to recover the

following components:

 OS and services installation and configuration (Apache, MySQL, etc.)

 WordPress application code and configuration

 WordPress themes and plugins

 Uploads (e.g., media files for posts)

 Database content (posts, comments, etc.)

As catalogued in the whitepaper, Backup and Recovery Approaches Using Amazon

Web Services, AWS provides a variety of methods for backing up and restoring your

web application data and assets:7

5
 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device

6
 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

7
 http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf
http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf

Amazon EBS volumes provide durable block-level storage for use with Amazon EC2

instances (virtual machines). Amazon EBS volume data is replicated across multiple

servers to prevent the loss of data from the failure of any single component. Amazon

EBS volumes behave like raw, unformatted block devices that you can use as virtual

hard drives. You can create a file system on top of an EBS volume and attach it to your

Amazon EC2 instance to provide persistent storage for WordPress media and database

files. Amazon EBS volumes provide off-instance, network-attached storage (NAS) that

persists independently from the running life of a single Amazon EC2 instance. If an

instance fails, you can launch a replacement Amazon EC2 instance and attach the

Amazon EBS volume to it. This can even be fully automated with the use of Auto Scaling

(to replace the instance) and an initialization script (to attach the Amazon EBS volume to

the new instance).

As an example, in the scenario of a single-server installation described before, you could

configure your system so that user-defined code and assets (e.g., the plugins, themes,

and uploads located under the wp-content folder) and database content (e.g.,

/var/lib/mysql) are stored on an Amazon EBS volume.

Amazon EBS volumes have a lower annual failure rate (AFR) compared with commodity

hard disks, but it is always safest to follow backup best practices. In addition human

error is always a possibility (e.g., deletion of important files by a WordPress site

administrator). This highlights the importance of defining and testing your backup

strategy.

The most suitable AWS storage service for durably storing backups is Amazon Simple

Storage Service (Amazon S3).8 Amazon S3 offers software developers a highly scalable,

reliable, and low-latency data storage infrastructure at very low cost and accessible via

REST and SOAP web service APIs. Amazon S3 redundantly stores your objects not

only on multiple devices but also across multiple facilities in an Amazon S3 region

providing even greater durability than Amazon EBS. A variety of WordPress plugins are

available for scheduled and manual backups to Amazon S3.9

A more cost-efficient backup method for data that is stored on Amazon EBS volumes is

to use the snapshot functionality. This feature creates a point-in-time backup copy of an

Amazon EBS volume that is then stored in Amazon S3. Amazon EBS snapshots are

stored incrementally: Only the blocks that have changed since your last snapshot are

saved, and you are billed only for the changed blocks.

Finally it is worth noting that AMIs are also stored on Amazon S3 for durable storage of

your server(s) base configuration.

8
 http://aws.amazon.com/s3/

9
 Examples include Updraft Plus (https://wordpress.org/plugins/updraftplus/), BackWPup Free

(https://wordpress.org/plugins/backwpup/), and BackUpWordPress

(https://wordpress.org/plugins/backupwordpress/). Note that neither AWS nor the author has tested nor endorsed

these or any other specific plugin.

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://wordpress.org/plugins/updraftplus/
https://wordpress.org/plugins/backwpup/
https://wordpress.org/plugins/backupwordpress/

IP Addressing and DNS
Elastic IP addresses are static IP addresses designed for dynamic cloud computing with

which you can mask instance or Availability Zone (AZ) failures. Instead of waiting for

DNS to propagate to all of your customers, Amazon EC2 allows you to engineer around

problems with your instance or software by remapping your Elastic IP address to a

replacement instance.

In addition, you can use Amazon Route 53, Amazon’s highly available DNS hosting

solution, to point your domain name to the IP address of the instance that is hosting your

website.10

Figure 1: A Single Instance Deployment

Improving Performance and Cost Efficiency
Although the above setup can scale vertically to a certain extent by using a higher spec

instance type, you can easily increase performance, reduce cost, and improve the end

user experience with a few modifications. A lot of those modifications require the use of

one or more WordPress plugins. Although various options are available, W3 Total Cache

is a popular choice that combines many of those modifications in a single plugin.11

10
 http://aws.amazon.com/route53/

11
 https://wordpress.org/plugins/w3-total-cache/

http://aws.amazon.com/route53/
https://wordpress.org/plugins/w3-total-cache/
http://aws.amazon.com/route53/
https://wordpress.org/plugins/w3-total-cache/

Browser and Edge Caching
Any WordPress website needs to deliver a mix of static and dynamic content. Static

content includes images, JavaScript files, or style sheets; dynamic content includes

anything generated on the server side via the WordPress PHP code—e.g., elements of

your site that are loaded from the database or even personalized to each viewer. An

important aspect of the end user experience is the network latency involved when

delivering the above content to users around the world.

Amazon CloudFront is a web service that gives businesses and web application

developers an easy and cost-effective way to distribute their content with low latency

and high data transfer speeds through multiple edge locations across the globe.12

Viewer requests are automatically routed to a suitable Amazon CloudFront edge location

in order to lower the latency. If the content can be cached (for a few seconds, minutes,

or even days) and is already stored in a particular edge location, CloudFront delivers it

immediately. If the content should not be cached, has expired, or is not currently in that

edge location, CloudFront retrieves it from the origin configured as the source for the

definitive version of the content. This retrieval takes place over optimized network

connections, which work to speed up the delivery of content on your website. Apart from

improving the end user experience, the above model also reduces the load on your

origin servers and has the potential to create significant cost savings.

You can create a CloudFront distribution, map it to your website’s domain name, and

configure two origins as the sources of the content. You configure rules in the form of

CloudFront behaviors that define which origin to use based on specific path patterns.

Static Content

This includes CSS, JavaScript, and image files—either those that are part of your

WordPress themes or those media files uploaded by the content administrators. All

these files can be stored in Amazon S3 (described previously in Reliable Storage and

Backups). Apart from secure storage for private content like backups, you can configure

Amazon S3 to serve public content in a scalable and highly available manner.

This has the positive side effect of offloading this workload from your Amazon EC2 web

server and letting it focus on the dynamic content generation. This will reduce the load

on the server but later on in this document we will also see how this creates a stateless

architecture (and why this is a prerequisite before we can implement Auto Scaling).

You can subsequently configure Amazon S3 as an origin for CloudFront to improve

delivery of those static assets to users around the world. Although WordPress is not

integrated with Amazon S3 and CloudFront out of the box, a variety of plugins add that

support (e.g., W3 Total Cache).

12
 http://aws.amazon.com/cloudfront/

http://aws.amazon.com/cloudfront/
https://wordpress.org/plugins/w3-total-cache/
http://aws.amazon.com/cloudfront/

Dynamic Content

This includes the output of server-side WordPress PHP scripts and can also be served

via CloudFront by configuring the Amazon EC2 web server as an origin. Since this will

include personalized content, you need to configure CloudFront to forward certain HTTP

cookies and HTTP headers as part of a request to your custom origin server. CloudFront

uses the forwarded cookie values as part of the key that identifies a unique object in its

cache. To ensure you maximize the caching efficiency, you should configure CloudFront

to only forward those HTTP cookies and HTTP headers that really vary the content (not

cookies that are only used on the client side or by third-party applications, e.g., for web

analytics).

Figure 2: Whole Website Delivery via CloudFront

Amazon CloudFront uses standard cache control headers to identify if and for how long

it should cache specific HTTP responses. The same cache control headers are also

used by web browsers to decide when and for how long to cache content locally for even

more optimal end user experience. (For example, a .css file that is already downloaded

will not be redownloaded every time a returning visitor views a page.) You can configure

this on the web server level (e.g., via .htaccess files or modifications of the

httpd.conf file) or install a WordPress plugin (e.g., W3 Total Cache) to dictate how

those headers are set for both static and dynamic content.

Database Caching
Database caching can significantly reduce latency and increase throughput for read-

heavy application workloads like WordPress. Application performance is improved by

storing frequently accessed pieces of data in memory for low-latency access (e.g., the

results of I/O-intensive database queries). When a large percentage of the queries are

served from the cache, the number of queries that need to hit the database is reduced,

resulting in a lower cost associated with scaling the database.

https://wordpress.org/plugins/w3-total-cache/

Although WordPress has limited caching capabilities out of the box, a variety of plugins

support integration with Memcached, a widely adopted memory object caching system.

The W3 Total Cache plugin is a good example.

You can install Memcached on an Amazon EC2 instance. In the simplest scenarios, you

install Memcached on your web server and capture the result as a new AMI. In this case

you are responsible for the administrative tasks associated with running a cache.

Another option is to take advantage of Amazon ElastiCache13 and avoid that operational

burden. This is a managed service that makes it easy to deploy, operate, and scale a

distributed in-memory cache in the cloud. One of the supported caching engines of

ElastiCache is Memcached and as such it can be used with WordPress and a suitable

WordPress Memcached plugin without any further customizations.

Bytecode Caching
Each time a PHP script is executed, it gets parsed and compiled. By utilizing a PHP

bytecode cache, the output of the PHP compilation is stored in RAM so that the same

script does not have to be compiled again and again. This reduces the overhead related

to executing PHP scripts, resulting in better performance and lower CPU requirements.

A bytecode cache can be installed on any EC2 instance that hosts WordPress and can

greatly reduce its load. A popular PHP bytecode cache is Alternative PHP Cache or

APC,14 but for PHP 5.5 and later we recommend the use of OPcache that is a bundled

extension with that PHP version.15

Scaling Up
Although a single-instance deployment can be sufficient for some cases, any WordPress

website that serves a significant business or other purpose requires a highly available

and better performing architecture to power it. With AWS, you can launch such an

environment in a very short time.

Separating the Web and Database Tiers
The first step is to separate the web and the database (DB) tiers. By using two distinct

servers, we can increase the capacity of the implementation but also gain more control

on the configuration characteristics of each layer (web and database).

13
 http://aws.amazon.com/elasticache/

14
 http://php.net/apc

15
 http://php.net/manual/en/book.opcache.php

https://wordpress.org/plugins/w3-total-cache/
http://aws.amazon.com/elasticache/
http://php.net/apc
http://php.net/manual/en/book.opcache.php
http://aws.amazon.com/elasticache/
http://php.net/apc
http://php.net/manual/en/book.opcache.php

A web server and a DB server typically have different requirements for CPU, memory,

storage, and networking capacity. The single-server scenario works well with the general

purpose instance types (e.g., T2, M3), but AWS provides a wider variety of Amazon EC2

instance types so you can optimize each workload’s server configuration for both

performance and cost. Generally speaking, the compute-optimized C3 instance might be

a good choice for a WordPress web server, while a memory-optimized R3 could result in

higher database performance due to the available RAM and how it can be used, for

example, by the InnoDB storage engine for its buffer pool.16

When moving the database to its own separate infrastructure, the WordPress

configuration file (wp-config.php) on the web server would simply need to be

reconfigured to point to the host name of the separate database instance. That database

instance could be an Amazon EC2 instance that you manage on your own and where

you have installed MySQL. In that case you are responsible for the administrative tasks

associated with running a database server. A better solution is to use Amazon Relational

Database Service (RDS).17

Amazon RDS is a managed service that gives you access to the capabilities of a MySQL

database engine while managing time-consuming database administration tasks, freeing

you up to focus on your applications and business. Amazon RDS automatically patches

the database software, backs up your database, stores those backups for a user-defined

period, and supports point-in-time recovery. You can also scale your database’s

compute resources or storage capacity with a single API call.

16
 http://dev.mysql.com/doc/refman/5.6/en/innodb-buffer-pool.html

17
 http://aws.amazon.com/rds/

http://dev.mysql.com/doc/refman/5.6/en/innodb-buffer-pool.html
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://dev.mysql.com/doc/refman/5.6/en/innodb-buffer-pool.html
http://aws.amazon.com/rds/

Figure 3: Separating the Three Workloads (Web, Database, Cache)

Availability of the Data Layer
Amazon RDS Multi-AZ deployments provide enhanced availability and durability for

database instances, making them a natural fit for production database workloads. When

you provision a Multi-AZ DB instance, Amazon RDS automatically creates a primary DB

instance and synchronously replicates the data to a standby instance in a different

Availability Zone (AZ). AZs are physically distinct locations within a particular AWS

region. They provide inexpensive, low-latency network connectivity to other AZs in the

same region. Each AZ runs on its own physically distinct, independent infrastructure and

is engineered to be highly reliable. In case of an infrastructure failure, Amazon RDS

performs an automatic failover to the standby so that you can resume database

operations as soon as the failover is complete. Since the endpoint for your DB instance

remains the same after a failover, you application can resume database operation

without the need for manual administrative intervention.

Regarding the Memcached layer, ElastiCache automatically replaces individual nodes

when they fail. To further improve the reliability of the cluster, you can also take

advantage of the flexible node placement model for ElastiCache. With that configuration,

Memcached cache clusters of two or more nodes can span multiple AZs within a region.

Figure 4: Highly Available Data Layer

A Note on Amazon RDS and WordPress Multisite
WordPress provides a multisite feature with which you can power a network of sites from

a single WordPress installation. In this mode, while some of the database tables remain

shared, each of those sites also adds its own separate tables in the database. If you

plan to power hundreds of websites from a single database instance, be aware that the

best practice for Amazon RDS MySQL instances is to not create more than 10,000

tables using Provisioned IOPS or 1,000 tables using standard storage. Large numbers of

tables significantly increase database recovery time after a failover or database crash. If

you really need to create more tables than recommended, set the

innodb_file_per_table parameter to 0. For more information, see Working with

InnoDB Tablespaces to Improve Crash Recovery Times18 and Working with DB

Parameter Groups19 in the Amazon RDS User Guide.

18
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.

MySQL.CommonDBATasks.Tables
19

 http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.Tables
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.Tables
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.Tables
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.Tables
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

Availability and Scalability of the Web Tier
Once you have built a solid foundation with a highly available data tier, the next concern

is the availability and scalability of your web serving capacity.

High Availability for the Web Tier
To support high availability for the web servers that power a WordPress website you

need to deploy more than one node so that your application can withstand an individual

web server failure. Similar to what was described in Availability of the Data Layer, you

can deploy those instances in separate AZs within a region to increase the reliability of

the overall architecture.

To distribute end user requests to multiple web server nodes, you need a load balancing

solution. AWS provides this capability through Elastic Load Balancing, a highly available

service that distributes traffic to multiple Amazon EC2 instances.20

Elastic Load Balancing supports distribution of requests across multiple Availability

Zones within an AWS region. You can also configure a health check so that the Elastic

Load Balancing load balancer automatically stops sending traffic to individual instances

that have failed (e.g., due to a hardware problem or software crash). For more

information, see Health Check in the Elastic Load Balancing Developer Guide.21

Scalability for the Web Tier
Another key characteristic of the AWS platform is its elasticity. You can launch more

compute capacity (e.g., web servers) when you need it and run less when you don't.

Because you only pay for what you use and there is no need to overprovision, you can

optimize costs. You also minimize the risk of underprovisioning as you don't need to

guess the exact required capacity that you need at peak times.

20
 http://aws.amazon.com/elasticloadbalancing/

21
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#hea

lthcheck

http://aws.amazon.com/elasticloadbalancing/
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#healthcheck
http://aws.amazon.com/elasticloadbalancing/
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#healthcheck
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#healthcheck

Figure 5: High Availability and Scalability for the Web Tier

Auto Scaling is an AWS service that helps you automate this provisioning to scale your

Amazon EC2 capacity up or down according to conditions you define with no need for

manual intervention.22 You can configure Auto Scaling so that the number of Amazon

EC2 instances you’re using increases seamlessly during demand spikes to maintain

performance and decreases automatically when traffic diminishes so as to minimize

costs.

The Elastic Load Balancing service supports dynamic addition and removal of Amazon

EC2 hosts from the load-balancing rotation. The Elastic Load Balancing service itself will

also dynamically grow and shrink the load-balancing capacity to adjust to traffic

demands with no manual intervention.

A Stateless Architecture
To take advantage of multiple web servers in an Auto Scaling configuration, your web

tier must be stateless. This means that any data that needs to persist for more than a

single HTTP request is not stored on the web servers. This is because existing instances

are automatically terminated when the Auto Scaling configuration indicates that some of

22
 http://aws.amazon.com/autoscaling/

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/

the provisioned capacity is not needed. When that happens, any data that has not been

stored outside of that instance is lost.

By storing any kind of data either at the client side (e.g., cookies) or into some shared

durable storage (e.g., a Multi-AZ Amazon RDS database or Amazon S3) instead of the

local file system, you have the ability to simply launch more Amazon EC2 instances

when you need to scale up and terminate any one of them when you have excess

capacity. You also avoid the need to set up any complex mechanism to synchronize

data across multiple web servers. In addition a single web server instance failure (e.g.,

due to a hardware issue) does not impact the integrity of your data as it would not be

storing any crucial data locally. For most web applications this breaks down to two

areas, user sessions on the one hand and user-generated data and other uploads on the

other.

User Sessions

Unlike many other web applications, the WordPress core is completely stateless with

respect to session data storage. It instead relies on cookies. For example logged in

users are identified via an authentication cookie whose validity is checked against a

record stored in the database. As such, session storage is not a concern unless you

have installed any custom code (e.g., a WordPress plugin) that instead relies on native

PHP sessions. In that case Amazon DynamoDB is the best option for a fast, durable,

and scalable store for PHP sessions. For a good discussion of this, see Jeremy

Lindblom’s blog post on Scalable Session Handling with DynamoDB.23

User-generated Data and Other Uploads

By default WordPress stores user uploads on the local file system so this is an area

where WordPress does not have a stateless architecture. We already discussed how

using a plugin to store those files into Amazon S3 and serving from CloudFront helps

reduce server load and improve the end user experience. Another benefit is that it

moves this function to a separate tier and makes the web layer stateless.

Scaling the Data Layer
Even with caching, you may need more database capacity. If so, you can easily switch

to a larger Amazon RDS instance type and/or use Provisioned IOPS storage for higher

and consistent disk performance. For more information, see DB Instance Class24 and

Provisioned IOPS Storage25 in the Amazon Relational Database User Guide.

WordPress deployments are typically read-heavy workloads, so a more efficient way to

scale can be to take advantage of MySQL replication by launching one or more Amazon

RDS read replicas. These are read-only copies of your database with which you can

23
 http://aws.amazon.com/blogs/aws/scalable-session-handling-in-php-using-amazon-dynamodb/

24
 http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

25
 http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS

http://aws.amazon.com/blogs/aws/scalable-session-handling-in-php-using-amazon-dynamodb/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS
http://aws.amazon.com/blogs/aws/scalable-session-handling-in-php-using-amazon-dynamodb/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

scale out beyond the capacity of a single database deployment. See Working with

PostgreSQL and MySQL Read Replicas in the Amazon RDS documentation.26

Out of the box WordPress is not designed to take advantage of multiple database

instances, so you will need to extend it with a suitable plugin. Such an example is the

HyperDB plugin27 for WordPress, a replacement for the standard WordPress database

class, which adds the ability to use multiple database instances.28

Figure 6: Scaling the Database with RDS Read Replicas

26
 http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

27
 https://wordpress.org/plugins/hyperdb/

28
 At the time of writing, HyperDB and the W3 Total Cache mentioned previously are not compatible with each other

out of the box.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://wordpress.org/plugins/hyperdb/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://wordpress.org/plugins/hyperdb/

Development and Deployment

Considerations
Few websites remain static. In most cases you will be periodically adding publicly

available WordPress themes and plugins or upgrading to a newer WordPress version. In

other cases you will be developing your own custom themes and plugins from scratch.

Reducing the Risk of Change
Anytime you are making a structural change to your WordPress installation there is

certain risk of introducing unforeseen problems. At the very least you should be taking a

backup of your application code, configuration, and database before applying any

significant change (e.g., installing a new plugin). For web sites of business or other

value, you should certainly be testing those changes on a separate staging environment

first. With AWS it is very easy to replicate the configuration of your production

environment and run the whole deployment process in a safe manner. Once you are

done with your tests, you can simply tear down your test environment and stop paying

for those resources. Below we discuss some WordPress specific considerations but for

more information on development and test best practices on AWS please refer to the

Development and Test on Amazon Web Services whitepaper.29

Deploying New Plugins
Due to the way WordPress plugin installation takes place, some planning is often

required. On activation, some WordPress plugins write configuration information to the

wp_options database table (or introduce DB schema changes). Some plugins create

configuration files in the local file system. In a multiserver environment this can be a

challenge because only one of the running instances will have those files created. A

simple solution to that problem is to run the plugin installation on a staging server first.

Any file system modifications will have to be merged with your application code and

introduced as a new version of the application code. You would then use your standard

deployment method to make sure these changes are pushed to all your web servers.

Deploying Theme Changes
When deploying theme changes and if you are using Amazon S3 for the storage of

assets (JavaScript, style sheet, and image files), you will need a process to copy those

to the right bucket location. Plugins like W3 Total Cache provide a way for you to

manually initiate that task. Alternatively you could automate this step as part of a build

process.

Because those assets can be cached on CloudFront and at the browser, you need a

way to invalidate older versions when you deploy changes. The best way to achieve that

is by including some sort of version identifier in your object. This identifier might be a

29
 http://aws.amazon.com/whitepapers/dev-test-on-aws/

http://aws.amazon.com/whitepapers/dev-test-on-aws/
http://aws.amazon.com/whitepapers/dev-test-on-aws/

query string with a date-time stamp, or a random string. If you use the W3 Total Cache

plugin, you can update a media query string that is appended to the URLs of media files.

Responsive Design
As the use of smart phones and tablets continues to grow, it is important to optimize

your website’s viewing experience for a variety of devices. You can achieve that in a

combination of ways:

 Rely on client side logic (e.g., CSS3 media queries, fluid layout, etc) to adapt the

presentation without modifying the HTML content itself.

 Use a plugin to switch the current WordPress theme based on the user's device.

 Use conditional logic within the WordPress theme’s templates files

Although you can improve the user experience just with client side logic, you have a lot

more control when you can actually modify the HTML output on the server side. You can

use the User-Agent HTTP header to identify and discriminate between desktop and

mobile devices and to provide content that is suitable for and appropriate to each one. If

you are using CloudFront to serve dynamic content, you can instead use its device type

detection headers (CloudFront-is-mobile-viewer, CloudFront-is-desktop-viewer,

CloudFront-is-tablet-viewer). A good approach is to use those higher level headers that

vary much less in their possible values instead of passing the User-Agent back to the

origin. This results in a better cache hit-rate and reduces the number of requests that hit

your origin server(s).

The following example shows an excerpt from a WordPress template file, which uses

CloudFront’s headers to conditionally return a differently sized featured image

depending on the device type. This reduces unnecessary bandwidth usage and

improves page load speed:

<?php if (has_post_thumbnail() && !

post_password_required() && ! is_attachment()) : ?>

<div class="entry-thumbnail">

<?php if

($_SERVER['HTTP_CLOUDFRONT_IS_DESKTOP_VIEWER']=='true')

 {the_post_thumbnail('large');}

else if

($_SERVER['HTTP_CLOUDFRONT_IS_TABLET_VIEWER']=='true')

 {the_post_thumbnail('medium');}

else if

($_SERVER['HTTP_CLOUDFRONT_IS_MOBILE_VIEWER']=='true')

 {the_post_thumbnail('thumbnail');}

else

 {the_post_thumbnail('large');}?>

</div> <?php endif; ?>

Summary
AWS presents many architecture options for running WordPress. The simplest option is

a single server installation for low traffic websites. For more advanced websites, site

administrators can add several other options, each one representing an incremental

improvement in terms of availability and scalability. Administrators can select the

features that most closely match their requirements and their budget. For details on the

easiest way to implement such an architecture on AWS, please refer to the “Deploying

WordPress with AWS Elastic Beanstalk” whitepaper.

http://d0.awsstatic.com/whitepapers/deploying-wordpress-with-aws-elastic-beanstalk.pdf
http://d0.awsstatic.com/whitepapers/deploying-wordpress-with-aws-elastic-beanstalk.pdf

