
Amazon Lex
Developer Guide

Amazon Lex Developer Guide

Amazon Lex: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Lex Developer Guide

Table of Contents
What Is Amazon Lex? 1

Are You a First-time User of Amazon Lex? 2
How It Works 3

Programming Model ... 4
Model Building API Operations 5
Runtime API Operations 6
Lambda Functions as Code Hooks 6

Service Permissions 8
Creating Resource-Based Policies for AWS Lambda 8
Deleting Service-Linked Roles 8

Managing Messages (Prompts and Statements) ... 9
Types of Messages 9
Contexts for Configuring Messages 10
Supported Message Formats 13
Response Cards 14

Managing Conversation Context ... 18
Setting Session Timeout 18
Setting Session Attributes 18
Sharing Information Between Intents 19

Deployment Options 20
Built-in Intents and Slot Types 20

Built-in Intents ... 20
Built-in Slots ... 20

Getting Started 21
Step 1: Set Up an Account 21

Sign Up for AWS 21
Create an IAM User 22
Next Step 22

Step 2: Set Up the AWS CLI ... 23
.... 23

Step 3: Getting Started (Console) ... 23
Exercise 1: Create a Bot Using a Blueprint ... 24
Exercise 2: Create a Custom Bot 48
Exercise 3: Publish a Version and Create an Alias ... 57

Step 4: Getting Started (AWS CLI) ... 58
Exercise 1: Create a Bot 58
Exercise 2: Add a New Utterance 69
Exercise 3: Add a Lambda Function 72
Exercise 4: Publish a Version 75
Exercise 5: Create an Alias ... 79
Exercise 6: Clean Up 79

Versioning and Aliases 81
Versioning 81

The $LATEST Version 81
Publishing an Amazon Lex Resource Version 82
Updating an Amazon Lex Resource 82
Deleting an Amazon Lex Resource or Version 83

Aliases 83
Using Lambda Functions 85

Lambda Function Input Event and Response Format 85
Input Event Format 85
Response Format 88

Amazon Lex and AWS Lambda Blueprints ... 91
Deploying Bots 93

iii

Amazon Lex Developer Guide

Deploying an Amazon Lex Bot on a Messaging Platform 93
Integrating with Facebook 94
Integrating with Twilio SMS 96
Integrating with Slack 98

Deploying an Amazon Lex Bot in Mobile Applications 102
Bot Examples 103

Example Bot: ScheduleAppointment 103
Overview of the Bot Blueprint (ScheduleAppointment) ... 105
Overview of the Lambda Function Blueprint (lex-make-appointment-python) ... 106
Step 1: Create an Amazon Lex Bot 106
Step 2: Create a Lambda Function 108
Step 3: Update the Intent: Configure a Code Hook 108
Step 4: Deploy the Bot on the Facebook Messenger Platform 109
Details of Information Flow 110

Example Bot: BookTrip 121
Step 1: Blueprint Review 123
Step 2: Create an Amazon Lex Bot 124
Step 3: Create a Lambda function 127
Step 4: Add the Lambda Function as a Code Hook 127
Details of the Information Flow 129

Example: Using a Response Card 143
Example: Updating Utterances 145

Monitoring 147
Monitoring Amazon Lex with CloudWatch 147

Using CloudWatch Metrics for Amazon Lex 147
Access Metrics for Amazon Lex 147
Create an Alarm 148

CloudWatch Metrics for Amazon Lex 148
Runtime Metrics for Amazon Lex 149
Channel Association Metrics for Amazon Lex 151

Guidelines and Limits ... 153
General Guidelines 153
Limits ... 155

General Limits ... 155
Runtime Service Limits ... 156
Model Building Limits ... 156

Authentication and Access Control ... 160
Authentication 160
Access Control ... 161
Overview of Managing Access 162

Amazon Lex Resources and Operations 162
Understanding Resource Ownership 162
Managing Access to Resources 163
Specifying Policy Elements: Actions, Effects, and Principals ... 164
Specifying Conditions in a Policy 164

Using Identity-Based Polices (IAM Policies) for Amazon Lex 165
Permissions Required to Use the Amazon Lex Console 166
AWS Managed (Predefined) Polices for Amazon Lex 168
Examples of Customer Managed Policies ... 169

Amazon Lex API Permissions Reference 170
API Reference 172

Actions 172
Amazon Lex Model Building Service 173
Amazon Lex Runtime Service 284

Data Types 297
Amazon Lex Model Building Service 297
Amazon Lex Runtime Service 324

iv

Amazon Lex Developer Guide

Document History 329
AWS Glossary 330

v

Amazon Lex Developer Guide

What Is Amazon Lex?

Amazon Lex is an AWS service for building conversational interfaces for any applications using voice
and text. With Amazon Lex, the same conversational engine that powers Amazon Alexa is now available
to any developer, enabling you to build sophisticated, natural language chatbots into your new and
existing applications. Amazon Lex provides the deep functionality and flexibility of natural language
understanding (NLU) and automatic speech recognition (ASR) so you can build highly engaging user
experiences with lifelike, conversational interactions, and create new categories of products.

Amazon Lex enables any developer to build conversational chatbots quickly. With Amazon Lex, no deep
learning expertise is necessary—to create a bot, you just specify the basic conversation flow in the
Amazon Lex console. Amazon Lex manages the dialogue and dynamically adjusts the responses in the
conversation. Using the console, you can build, test, and publish your text or voice chatbot. You can then
add the conversational interfaces to bots on mobile devices, web applications, and chat platforms (for
example, Facebook Messenger).

Amazon Lex provides pre-built integration with AWS Lambda, and you can easily integrate with many
other services on the AWS platform, including Amazon Cognito, AWS Mobile Hub, Amazon CloudWatch,
and Amazon DynamoDB. Integration with Lambda provides bots access to pre-built serverless enterprise
connectors to link to data in SaaS applications, such as Salesforce, HubSpot, or Marketo.

Some of the benefits of using Amazon Lex include:

• Simplicity – Amazon Lex guides you through using the console to create your own chatbot in minutes.
You supply just a few example phrases, and Amazon Lex builds a complete natural language model
through which the bot can interact using voice and text to ask questions, get answers, and complete
sophisticated tasks.

• Democratized deep learning technologies – Powered by the same technology as Alexa, Amazon

Lex provides ASR and NLU technologies to create a Speech Language Understanding (SLU) system.
Through SLU, Amazon Lex takes natural language speech and text input, understands the intent
behind the input, and fulfills the user intent by invoking the appropriate business function.

Speech recognition and natural language understanding are some of the most challenging problems
to solve in computer science, requiring sophisticated deep learning algorithms to be trained on
massive amounts of data and infrastructure. Amazon Lex puts deep learning technologies within reach
of all developers, powered by the same technology as Alexa. Amazon Lex chatbots convert incoming

1

Amazon Lex Developer Guide
Are You a First-time User of Amazon Lex?

speech to text and understand the user intent to generate an intelligent response, so you can focus on
building your bots with differentiated value-add for your customers, to define entirely new categories
of products made possible through conversational interfaces.

• Seamless deployment and scaling – With Amazon Lex, you can build, test, and deploy your chatbots

directly from the Amazon Lex console. Amazon Lex enables you to easily publish your voice or text
chatbots for use on mobile devices, web apps, and chat services (for example, Facebook Messenger).
Amazon Lex scales automatically so you don’t need to worry about provisioning hardware and
managing infrastructure to power your bot experience.

• Built-in integration with the AWS platform – Amazon Lex has native interoperability with other AWS

services, such as Amazon Cognito, AWS Lambda, Amazon CloudWatch, and AWS Mobile Hub. You
can take advantage of the power of the AWS platform for security, monitoring, user authentication,
business logic, storage, and mobile app development.

• Cost-effectiveness – With Amazon Lex, there are no upfront costs or minimum fees. You are charged

only for the text or speech requests that are made. The pay-as-you-go pricing and the low cost per
request make the service a cost-effective way to build conversational interfaces. With the Amazon Lex
free tier, you can easily try Amazon Lex without any initial investment.

Are You a First-time User of Amazon Lex?
If you are a first-time user of Amazon Lex, we recommend that you read the following sections in order:

1. Getting Started with Amazon Lex (p. 21) – In this section, you set up your account and test
Amazon Lex.

2. API Reference (p. 172) – This section provides additional examples that you can use to explore
Amazon Lex.

2

Amazon Lex Developer Guide

Amazon Lex: How It Works

Amazon Lex enables you to build applications using a speech or text interface powered by the same
technology that powers Amazon Alexa. Following are the typical steps you perform when working with
Amazon Lex:

1. Create a bot and configure it with one or more intents that you want to support. You add the
configuration so that the bot is able to understand the user's goal (intent), engage in conversation
with the user to elicit information, and, after the user provides the necessary data, fulfill the user's
intent.

2. Test the bot. You can use the test window client provided by the Amazon Lex console.
3. Publish a version and create an alias.
4. Deploy the bot. You can deploy the bot on platforms such as mobile applications or messaging

platforms such as Facebook Messenger.

Before you get started, familiarize yourself with the following Amazon Lex core concepts and
terminology:

• Bot – A bot performs automated tasks such as ordering a pizza, booking a hotel, ordering flowers, and
so on. An Amazon Lex bot is powered by Automatic Speech Recognition (ASR) and Natural Language
Understanding (NLU) capabilities, the same technology that powers Amazon Alexa.

Amazon Lex bots can understand user input provided with text or speech and converse in natural
language. You can create Lambda functions and add them as code hook in your intent configuration to
perform user data validation and fulfillment tasks.

• Intent – An intent represents an action that the user wants to perform. You create a bot to support

one or more related intents. For example, you might create a bot that orders pizza and drinks. For each
intent, you provide the following required information:

• Intent name– A descriptive name for the intent. For example, OrderPizza.
• Sample utterances – How a user might convey the intent. For example, a user might say "Can I order

a pizza please" or "I want to order a pizza".
• How to fulfill the intent – How you want to fulfill the intent after the user provides the necessary

information (for example, place order with a local pizza shop). We recommend that you create a
Lambda function to fulfill the intent.

3

Amazon Lex Developer Guide
Programming Model

You can optionally configure the intent so Amazon Lex simply returns the information back to the
client application to do the necessary fulfillment.

In addition to custom intents such as ordering a pizza, Amazon Lex also provides built-in intents to
quickly set up your bot. For more information, see Built-in Intents and Slot Types (p. 20).

• Slot – An intent can require zero or more slots or parameters. You add slots as part of the intent

configuration. At runtime, Amazon Lex prompts the user for specific slot values. The user must provide
values for all required slots before Amazon Lex can fulfill the intent.

For example, the OrderPizza intent requires slots such as pizza size, crust type, and number of pizzas.
In the intent configuration, you add these slots. For each slot, you provide slot type and a prompt for
Amazon Lex to send to the client to elicit data from the user. A user can reply with a slot value that
includes additional words, such as "large pizza please" or "let's stick with small." Amazon Lex can still
understand the intended slot value.

• Slot type – Each slot has a type. You can create your custom slot types or use built-in slot types. For

example, you might create and use the following slot types for the OrderPizza intent:

• Size – With enumeration values Small, Medium, and Large.
• Crust – With enumeration values Thick and Thin.

Amazon Lex also provides built-in slot types. For example, AMAZON.NUMBER is a built-in slot type that
you can use for the number of pizzas ordered. For more information, see Built-in Intents and Slot
Types (p. 20).

The following topics provide additional information. We recommend that you review them in order and
then explore the Getting Started with Amazon Lex (p. 21) exercises.

Topics
• Programming Model (p. 4)
• Service Permissions (p. 8)
• Managing Messages (Prompts and Statements) (p. 9)
• Managing Conversation Context (p. 18)
• Bot Deployment Options (p. 20)
• Built-in Intents and Slot Types (p. 20)

Programming Model
A bot is the primary resource type in Amazon Lex. The other resource types in Amazon Lex are intent, slot
type, alias, and bot channel association.

4

Amazon Lex Developer Guide
Model Building API Operations

You create a bot using the Amazon Lex console or the model building API. The console provides a
graphical user interface that you use to build a production-ready bot for your application. If you prefer,
you can use the model building API through the AWS CLI or your own custom program to create a bot.

After you create a bot, you deploy it on one of the supported platforms or integrate it into your own
application. When a user interacts with the bot, the client application sends requests to the bot using
the Amazon Lex runtime API. For example, when a user says "I want to order pizza," your client sends
the user input to Amazon Lex using one of the runtime API operations. Users can provide speech or text
input.

You can also create Lambda functions and use them in an intent. Use these Lambda function code hooks
to perform runtime activities such as initialization, validation of user input, and intent fulfillment. The
following sections provide additional information.

Topics
• Model Building API Operations (p. 5)
• Runtime API Operations (p. 6)
• Lambda Functions as Code Hooks (p. 6)

Model Building API Operations
To programmatically create bots, intents, and slot types, use the model building API operations. You
can also use the model building API to manage, update, and delete resources for your bot. The model
building API operations include:

• PutBot (p. 260), PutBotAlias (p. 268), PutIntent (p. 272), and PutSlotType (p. 281) to create and
update bots, bot aliases, intents, and slot types, respectively.

• CreateBotVersion (p. 175), CreateIntentVersion (p. 180), and CreateSlotTypeVersion (p. 186) to
create and publish versions of your bots, intents, and slot types, respectively.

• GetBot (p. 208) and GetBots (p. 225) to get a specific bot or a list of bots that you have created,
respectively.

• GetIntent (p. 237) and GetIntents (p. 242) to get a specific intent or a list of intents that you have
created, respectively.

• GetSlotType (p. 248) and GetSlotTypes (p. 251) to get a specific slot type or a list of slot types that
you have created, respectively.

• GetBuiltinIntent (p. 231), GetBuiltinIntents (p. 233), and GetBuiltinSlotTypes (p. 235) to get an
Amazon Lex built-in intent, a list of Amazon Lex built-in intents, or a list of built-in slot types that you
can use in your bot, respectively.

• GetBotChannelAssociation (p. 219) and GetBotChannelAssociations (p. 222) to get an association
between your bot and a messaging platform or a list of the associations between your bot and
messaging platforms, respectively.

• DeleteBot (p. 190), DeleteBotAlias (p. 192), DeleteBotChannelAssociation (p. 194),
DeleteIntent (p. 198), and DeleteSlotType (p. 202) to remove unneeded resources in your account.

You can use the model building API to create custom tools to manage your Amazon Lex resources. For
example, there is a limit of 100 versions each for bots, intents, and slot types. You could use the model
building API to build a tool that automatically deletes old versions when your bot nears the limit.

To make sure that only one operation updates a resource at a time, Amazon Lex uses checksums.
When you use a Put API operation—PutBot (p. 260), PutBotAlias (p. 268) PutIntent (p. 272), or
PutSlotType (p. 281)—to update a resource, you must pass the current checksum of the resource
in the request. If two tools try to update a resource at the same time, they both provide the same
current checksum. The first request to reach Amazon Lex matches the current checksum of the resource.

5

http://docs.aws.amazon.com/lex/latest/dg/chatbot-service.html

Amazon Lex Developer Guide
Runtime API Operations

By the time that the second request arrives, the checksum is different. The second tool receives a
PreconditionFailedException exception and the update terminates.

The Get operations—GetBot (p. 208), GetIntent (p. 237), and GetSlotType (p. 248)—are eventually
consistent. If you use a Get operation immediately after you create or modify a resource with one of
the Put operations, the changes might not be returned. After a Get operation returns the most recent
update, it always returns that updated resource until the resource is modified again. You can determine if
an updated resource has been returned by looking at the checksum.

Runtime API Operations
Client applications use the following runtime API operations to communicate with Amazon Lex:

• PostContent (p. 285) – Takes speech or text input and returns intent information and a text or speech
message to convey to the user. Currently, Amazon Lex supports the following audio formats:

Input audio formats – LPCM and Opus

Output audio formats – MPEG, OGG, and PCM

The PostContent operation supports audio input at 8kHz and 16kHz. Applications where the end user
speaks with Amazon Lex over the telephone, such as an automated call center, can pass 8kHz audio
directly.

• PostText (p. 292) – Takes text as input and returns intent information and a text message to convey

to the user.

Your client application uses the runtime API to call a specific Amazon Lex bot to process utterances —
user text or voice input. For example, suppose that a user says "I want pizza." The client sends this user
input to a bot using one of the Amazon Lex runtime API operations. From the user input, Amazon Lex
recognizes that the user request is for the OrderPizza intent defined in the bot. Amazon Lex engages the
user in a conversation to gather the required information, or slot data, such as pizza size, toppings, and
number of pizzas. After the user provides all of the necessary slot data, Amazon Lex either invokes the
Lambda function code hook to fulfill the intent, or returns the intent data to the client, according to the
intent configuration.

Use the PostContent (p. 285) operation when your bot uses speech input. For example, an automated
call center application can send speech to a Amazon Lex bot to address customer enquiries without
needing to talk to an agent. You can use the 8kHz audio format to send audio directly from the
telephone to Amazon Lex.

The test window in the Amazon Lex console uses the PostContent (p. 285) API to send text and speech
requests to Amazon Lex. You use this test window in the Getting Started with Amazon Lex (p. 21)
exercises.

Lambda Functions as Code Hooks
You can configure your Amazon Lex bot to invoke a Lambda function as a code hook. The code hook can
serve multiple purposes:

• Customize user interaction – For example, when Joe asks for available pizza toppings, you can use prior
knowledge of Joe's choices to display a subset of toppings.

6

Amazon Lex Developer Guide
Lambda Functions as Code Hooks

• Validate the user's input – Suppose that Jen wants to pick up flowers after hours. You can validate the
time that Jen input and send an appropriate response.

• Fulfill the user's intent – After Joe provides all of the information for his pizza order, Amazon Lex can
invoke a Lambda function to place the order with a local pizzeria.

When you configure an intent, you specify Lambda functions as code hooks in the following places:

• Dialog code hook for initialization and validation – This Lambda function is invoked on each user input,
assuming Amazon Lex understood the user intent.

• Fulfillment code hook – This Lambda function is invoked after the user provides all of the slot data
required to fulfill the intent.

You choose the intent and set the code hooks in the Amazon Lex console, as shown in the following
screen shot:

You can also set the code hooks using the dialogCodeHook and fulfillmentActivity fields in
thePutIntent (p. 272) operation.

One Lambda function can do initialization, validation, and fulfillment. The event data that the Lambda
function receives has a field that identifies the caller as either a dialog or fulfillment code hook. You can
use this information to execute the appropriate portion of your code.

7

Amazon Lex Developer Guide
Service Permissions

For more information, see Using Lambda Functions (p. 85).

Service Permissions
Amazon Lex uses AWS Identity and Access Management (IAM) service-linked roles. Amazon Lex assumes
these roles to call AWS services on behalf of your bots and bot channels. The roles exist within your
account, but are linked to Amazon Lex use cases and have predefined permissions. Only Amazon Lex
can assume these roles, and you can't modify their permissions. You can delete them after deleting their
related resources using the Amazon Lex console. This protects your Amazon Lex resources because you
can't inadvertently remove necessary permissions.

Amazon Lex uses two IAM service-linked roles:

• AWSServiceRoleForLexBots — Amazon Lex uses this service-linked role to invoke Amazon Polly to
synthesize speech responses for your bot.

• AWSServiceRoleForLexChannels — Amazon Lex uses this service-linked role to post text to your bot
when managing channels.

You don't need to manually create either of these roles. When you create your first bot using the console,
Amazon Lex creates the AWSServiceRoleForLexBots role for you. When you first associate a bot with a
messaging channel, Amazon Lex creates the AWSServiceRoleForLexChannels role for you.

Creating Resource-Based Policies for AWS Lambda
When invoking Lambda functions, Amazon Lex uses resource-based policies. A resource-based policy is
attached to a resource; it lets you specify who has access to the resource and which actions they can
perform on it. This enables you to narrowly scope permissions between Lambda functions and the
intents that you have created. It also allows you to see those permissions in a single policy when you
manage Lambda functions that have many event sources.

For more information, see Using Resource-Based Polices forAWS Lambda (Lambda Function Policies) in
the AWS Lambda Developer Guide.

To create resource-based policies for intents that you associate with a Lambda function, you can use the
Amazon Lex console. Or, you can use the AWS command line interface (AWS CLI). In the AWS CLI, use the
Lambda AddPermisssion API with the Principal field set to lex.amazonaws.com and the SourceArn set to
the ARN of the intent that is allowed to invoke the function.

Deleting Service-Linked Roles
To delete the service-linked roles from your account, use the Role Management tool. Before you can
delete a role, you must delete all of the bots or bot channel associations that use the service-linked role.

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the page that lists bots, choose the Role Management tool from the toolbar in the upper-right
corner.

3. In the dialog box, choose the service-linked role that you want to delete, and then choose Delete.

8

https://docs.aws.amazon.com/console/iam/service-linked-role
http://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
http://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Managing Messages (Prompts and Statements)

Managing Messages (Prompts and Statements)
Topics

• Types of Messages (p. 9)
• Contexts for Configuring Messages (p. 10)
• Supported Message Formats (p. 13)
• Response Cards (p. 14)

You configure messages that you want a bot to send when you create the bot. Consider the following
examples:

• You can configure your bot with the following clarification prompt:

I don't understand. What would you like to do?

Amazon Lex sends this message to the client if it doesn't understand the user's intent.

• Suppose that you create a bot to support an intent called OrderPizza. For a pizza order, you want

users to provide information such as pizza size, toppings, and crust type. For example, you can
configure prompts such as the following:

What size pizza you want?
What toppings you want on the pizza?
Do you want thick or thin crust?

After Amazon Lex determines the user's intent to order pizza, it sends these messages to the client to
elicit data from the user.

This section explains designing user interactions in your bot configuration.

Types of Messages
You can classify messages as follows:

• Prompt – A prompt expects a user response, typically a question.
• Statement – A statement does not expect a response.

9

Amazon Lex Developer Guide
Contexts for Configuring Messages

The messages you configure can have dynamic components:

• Messages can use the following syntax to refer to slot values of the intent that Amazon Lex is currently
aware of:

{SlotName}

• Messages can use the following syntax to refer to session attributes:

[AttributeName]

You can have messages that include both slots and session attributes.

At runtime, Amazon Lex substitutes these references with actual values. For example, suppose that you
configure the following message in the OrderPizza intent of your bot:

"Hey [FirstName], your {PizzaTopping} pizza will arrive in [DeliveryTime] minutes"

This message refers to both slot (PizzaTopping) and session attributes (FirstName and DeliveryTime). At
runtime, Amazon Lex replaces these placeholders with values and returns the following message to the
client:

"Hey John, your cheese pizza will arrive in 30 minutes"

For information about session attributes, see the runtime API operations PostText (p. 292), and
PostContent (p. 285). For an example, see Example Bot: BookTrip (p. 121).

If you add code hooks using Lambda functions in your intent configuration, you can create messages
dynamically. Lambda functions can generate messages and return them to Amazon Lex to send to the
user. By providing the messages while configuring your bot, you can eliminate the need to construct a
prompt in code hooks.

Contexts for Configuring Messages
You can add messages in the following contexts. Use the Amazon Lex console or build-time API to
configure your bot:

• Bot-level messages – You can configure your bot with clarification prompts and hang-up messages. At
runtime, Amazon Lex uses the clarification prompts if it does not understand the user's intent. You can
also configure the number of times that Amazon Lex requests clarification before hanging up with a
hang-up message. You configure these bot-level messages with the PutBot (p. 260) operation, or in
the Error Handling section in the Amazon Lex console, as shown in the following screen shot:

10

Amazon Lex Developer Guide
Contexts for Configuring Messages

Note

• If you have a Lambda function configured as a code hook for an intent, the Lambda
function might return a response directing Amazon Lex to elicit user intent. If the Lambda
function does not provide a message to convey to the user, then Amazon Lex uses the
clarification prompt you configured.

• Amazon Lex uses the hang-up statement whenever the user doesn't respond with
an appropriate answer for a prompt within the maximum permissible attempts. This
includes responses to intent elicitations, slot elicitations, follow-up prompts, and intent
confirmations. To configure the maximum permissible attempts, use the PutBot (p. 260)
operation, or, in the console, specify it in the Error Handling section.

• Intent-level messages – You can configure the intent-level messages such as confirmation prompts,
cancel statements, goodbye message, and prompts that Amazon Lex can use to elicit slot values, as
shown in the following screenshot:

11

Amazon Lex Developer Guide
Contexts for Configuring Messages

• Confirmation prompts and cancel statements – After a user provides all of the required data,
Amazon Lex asks the user for confirmation using the specified message before fulfilling the intent.
If the user replies "No" to a confirmation prompt, Amazon Lex returns the cancel statement to the
client.

• Goodbye message or follow-up prompts – If you add a Lambda function as a code hook to fulfill
the intent, you can configure one of these messages as backup messages. If the Lambda function
succeeds but does not provide a message to send to the user, Amazon Lex sends the message that
you configured.

• The following is an example of a goodbye message. The example assumes that the application
maintains the DeliveryTime session attribute.

 "I have placed your order for pizza. It will arrive in [DeliveryTime] minutes."

• The following is an example of a follow-up prompt:

"I have placed your order for pizza. Do you want me to do anything else?".

If you configure a follow-up prompt, you must also configure a cancel statement. If the user's
reply to a follow-up prompt is a "Yes," Amazon Lex recognizes the user's confirmation and also
recognizes the user's intent (OrderDrink), and then follows up accordingly. For example:

12

Amazon Lex Developer Guide
Supported Message Formats

"Yes, I also want to order a drink."

If the user says "No," Amazon Lex sends the cancel statement. For example:

"Alright. Let me know if you need anything else."

• Prompts to elicit value slot values – You must specify at least one prompt message for each of the
required slots in an intent. At runtime, Amazon Lex uses one of these messages to prompt the user
to provide value for this slot. For example, for a cityName slot, the following is a valid prompt:

 "Which city would you like to fly to?"

Note
In a Lambda function that is a code hook for an intent, you can override any of the messages
that you configured at build time.

You can configure more than one message for a specific context. At runtime, Amazon Lex picks the
message with the maximum possible substitutions. For example, to elicit a value for crust type in the
OrderPizza intent, you can configure multiple messages, as follows:

Hey [FirstName], what topping would you like for your {PizzaSize} pizza?
Hey [FirstName], what topping would you like for your pizza?
What topping would you like?
Tell me the topping you would like on your pizza.

Then, Amazon Lex uses the following order of selection:

• If both the FirstName session attribute and the PizzaSize slot value are available, Amazon Lex uses
the first prompt.

• If the FirstName session attribute is available, but the PizzaSize slot value isn't, Amazon Lex uses the
second prompt.

• If both the session attribute and the slot value aren't available, Amazon Lex randomly chooses the
third or fourth prompt.

At runtime, Amazon Lex disregards messages with references to unresolved slot values. If all of the
messages for a given context have unresolved references, Amazon Lex throws a BadRequestException
error. We recommend that you have at least one message without references.

Supported Message Formats
Amazon Lex supports messages in the following formats: plain text and Speech Synthesis Markup
Language (SSML).

If the output mode is text, such as when a client sends requests using the PostText API operation or the
PostContent API operation with the Accept HTTP header set to text/plain; charset=utf-8, Amazon
Lex selects only plain text messages. It disregards SSML messages.

Note

• If you configure your bot with only SSML messages and a text client communicates with your
bot, Amazon Lex returns a BadRequestException error. We recommend that you provide at
least one PlainText message for each context.

13

Amazon Lex Developer Guide
Response Cards

• If outputDialogMode in the incoming event is text, you must return a PlainText message from
your AWS Lambda function. For more information, see Lambda Function Input Event and
Response Format (p. 85).

Amazon Lex also supports synthesizing audio from SSML. For more information, see Using SSML in the
Amazon Polly Developer Guide.

Response Cards
Use response cards to simplify interactions for your users and increase your bot's accuracy by reducing
typographical errors in text interactions. A response card contains a set of appropriate responses that a
user can select to respond to a prompt. You can send a response card for each prompt that Amazon Lex
sends to your client application. You can use response cards with Facebook Messenger, Slack, and Twilio
as well as your own client applications.

For example, in a taxi application, you can configure an option in the response card for "Home" and set
the value to the user's home address. When the user selects this option, Amazon Lex receives the entire
address as the input text.

You can define a response card for the following prompts:

• Conclusion statement
• Confirmation prompt
• Follow-up prompt
• Rejection statement
• Slot type utterances

You can define only one response card for each prompt.

You configure response cards when you create an intent.You can define a static response card at build
time using the console or the PutIntent (p. 272) operation. Or you can define a dynamic response card
at runtime in a Lambda function. If you define both static and dynamic response cards, the dynamic
response card takes precedence.

Amazon Lex sends response cards in the format that the client understands. It transforms response cards
for Facebook Messenger, Slack, and Twilio. For other clients, Amazon Lex sends a JSON structure in the
PostText (p. 292) response. For example, if the client is Facebook Messenger, Amazon Lex transforms
the response card to a generic template. For more information about Facebook Messenger generic
templates, see Generic Template on the Facebook website. For an example of the JSON structure, see
Generating Response Cards Dynamically (p. 17).

You can use response cards only with the PostText (p. 292) operation. You can't use response cards with
the PostContent (p. 285) operation.

14

http://docs.aws.amazon.com/polly/latest/dg/ssml.html
https://developers.facebook.com/docs/messenger-platform/send-api-reference/generic-template

Amazon Lex Developer Guide
Response Cards

Defining Static Response Cards

Define static response cards with the PutBot (p. 260) operation or the Amazon Lex console when you
create an intent. A static response card is defined at the same time as the intent. Use a static response
card when the responses are fixed. Suppose that you are creating a bot with an intent that has a slot for
flavor. When defining the flavor slot, you specify prompts, as shown in the following console screenshot:

When defining prompts, you can optionally associate a response card and define details with the
PutBot (p. 260) operation, or, in the Amazon Lex console, as shown in the following example:

15

Amazon Lex Developer Guide
Response Cards

Now suppose that you've integrated your bot with Facebook Messenger. The user can click the buttons to
choose a flavor, as shown in the following illustration:

16

Amazon Lex Developer Guide
Response Cards

To customize the content of a response card, you can refer to session attributes. At runtime, Amazon Lex
substitutes these references with appropriate values from the session attributes. For more information,
see Setting Session Attributes (p. 18). For an example, see Example: Using a Response Card (p. 143).

Generating Response Cards Dynamically
To generate response cards dynamically at runtime, use the initialization and validation Lambda
function for the intent. Use a dynamic response card when the responses are determined at runtime
in the Lambda function. In response to user input, the Lambda function generates a response card
and returns the it in the dialogAction section of the response. For more information, see Response
Format (p. 88).

The following is a partial response from a Lambda function that shows the responseCard element. It
generates a user experience similar to the one shown in the preceding section.

responseCard: {
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title": "What Flavor?",
 "subtitle": "What flavor do you want?",
 "imageUrl: "Link to image",
 "attachmentLinkUrl: "Link to attachment",

17

Amazon Lex Developer Guide
Managing Conversation Context

 "buttons": [
 {
 "text": "Lemon",
 "value": "lemon"
 },
 {
 "text": "Raspberry",
 "value": "raspberry"
 },
 {
 "text": "Plain",
 "value": "plain"
 }
]
 }
]
}

For an example, see Example Bot: ScheduleAppointment (p. 103).

Managing Conversation Context
Conversation context is the information that a user shares with Amazon Lex to fulfill an intent. This can
be slot data that your user provides and session attributes that are created by the client application and
Lambda functions. This topic explains the following:

• Setting Session Timeout (p. 18) — How long Amazon Lex maintains context information for an in-
progress intent activity.

• Setting Session Attributes (p. 18) — How to manage application-specific information.

• Sharing Information Between Intents (p. 19) — How you can share context information across
intents.

Setting Session Timeout
For each Amazon Lex bot, you can configure the session timeout, the length of time that a conversation
session lasts. For each in-progress conversation, Amazon Lex retains context information, slot data and
session attributes, until the session ends. By default, the session duration is five minutes, but you can
specify any duration between 0 and 1,440 minutes (24 hours).

For example, suppose that you create a ShoeOrdering bot that supports intents such as OrderShoes and
GetOrderStatus. When Amazon Lex detects that the user's intent is to order shoes, it asks the user for
slot data. For example, it would ask for shoe size, color, brand, etc. If the user provides some of the slot
data but doesn't complete the shoe purchase, Amazon Lex remembers all of the slot data and session
attributes for the duration of the session. If the user returns before the session expires, he or she can
provide the remaining slot data, and complete the purchase.

Set the session timeout when you create a bot using the Amazon Lex console. Or, set it in the AWS
command line interface (AWS CLI) when you create or update a bot with the PutBot (p. 260) operation
by setting the idleSessionTTLInSeconds field.

Setting Session Attributes
Session attributes are application-specific information passed between Amazon Lex and a client
application using the sessionAttributes field in the PostContent (p. 285) or the PostText (p. 292)

18

http://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-idleSessionTTLInSeconds

Amazon Lex Developer Guide
Sharing Information Between Intents

request and response. Amazon Lex passes session attributes to all Lambda functions configured for a
bot. If a Lambda function adds or updates session attributes, Amazon Lex passes the new information
back to the client application. For example:

• In Create an Amazon Lex Bot Using a Blueprint, the example bot uses the price session attribute to
maintain the price of flowers ordered. The Lambda function sets this attribute based on the type of
flowers ordered. For more information, see Review the Details of the Information Flow .

• In BookTrip, the example bot uses the currentReservation session attribute to maintain a copy of the
slot type data during the conversation to book a hotel or to book a rental car. For more information,
see Details of the Information Flow (p. 129).

Use session attributes in your Lambda functions to initialize and customize prompts and response cards.
For example:

• Initialization — In a pizza ordering bot, the client application passes the user's location as a session
attribute in the first call to the PostContent (p. 285) or PostText (p. 292) operation. For example,
"Location": "111 Maple Street". The Lambda function uses this information to find the closest
pizzeria to place the order.

• Personalize prompts — Configure prompts to refer to session attributes, for example, "Hey
[FirstName], what toppings would you like?" If you pass the user's first name as a session attribute
("{FirstName": "Jo"}), Amazon Lex substitutes the session attribute for the placeholder to send a
personalized prompt to the user, "Hey Jo, which toppings would you like?"

Session attributes persist for the duration of the session. Amazon Lex stores them in an encrypted data
store until the session ends. The client can create session attributes in a request by calling either the
PostContent (p. 285) or the PostText (p. 292) operation with the sessionAttributes field set to
a value. A Lambda function can create a session attribute in a response. After the client or a Lambda
function establishes a session attribute, the attribute is used any time that the sessionAttribute field is
not included in a request to Amazon Lex.

For example, suppose session attributes {"x": 1, "y": 2} have been created for a session. If the
client makes a subsequent call to the PostContent or PostText operation without specifying the
sessionAttributes field, Amazon Lex calls the Lambda function with the stored session attributes
({"x": 1, "y": 2}). If the Lambda function doesn't return session attributes, Amazon Lex returns the
stored session attributes back to the client application.

If either the client application or a Lambda function passes session attributes, Amazon Lex updates the
stored session attributes. Passing an existing value, such as {"x": 2}, updates the stored value. When
an empty map, {}, is passed, stored values are erased.

Sharing Information Between Intents
Amazon Lex supports sharing information between intents. To share across intents, you use session
attributes.

For example, a user of the ShoeOrdering bot starts by ordering shoes. Amazon Lex engages in a
conversation with the user, gathering slot data, such as shoe size, color, and brand. When the user places
an order, the Lambda function that fulfills the order sets the orderNumber session attribute, which
contains the order number. To get the status of the order, the user uses the GetOrderStatus intent.
Amazon Lex can ask the user for slot data, such as order number and order date. Once Amazon Lex has
the required information, it can return the status of the order.

However, if you think that your users might switch intents during the same session, you can design
your bot to return the status of the latest order. Instead of asking the user for order information
again, you can use the orderNumber session attribute to share information across intents and fulfill the
GetOrderStatus intent by returning the status of the last order that the user placed.

19

http://docs.aws.amazon.com/lex/latest/dg/gs-bp.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp-details-after-lambda.html
http://docs.aws.amazon.com/lex/latest/dg/ex-book-trip.html

Amazon Lex Developer Guide
Deployment Options

For an example of cross-intent information sharing, see Example Bot: BookTrip (p. 121).

Bot Deployment Options
Currently, Amazon Lex provides the following bot deployment options:

• AWS Mobile SDK – You can build mobile applications that communicate with Amazon Lex using the
AWS Mobile SDKs.

• Facebook Messenger – You can integrate your Facebook Messenger page with your Amazon Lex bot
so that end users on Facebook can communicate with the bot. In the current implementation, this
integration supports only text input messages.

• Slack – You can integrate your Amazon Lex bot with a Slack messaging application.
• Twilio – You can integrate your Amazon Lex bot with the Twilio Simple Messaging Service (SMS).

For examples, see Deploying Amazon Lex Bots on Various Platforms (p. 93).

Built-in Intents and Slot Types
Topics

• Built-in Intents (p. 20)
• Built-in Slots (p. 20)

Built-in Intents
Amazon Lex supports the Alexa standard built-in intents library for common actions. To create an intent
from a built-in intent, select one of the existing built-in intents in the console, and add a custom name.

The base intent configuration, such as sample utterances and slots, is available to the intent you are
creating.

For a list of built-in intents, see Standard Built-in Intents in the Alexa Skills Kit.

Note

• Amazon Lex doesn't support AMAZON.YesIntent and AMAZON.NoIntent.
• Amazon Lex doesn't support the intents in the Built-in Intent Library in the Alexa Skills Kit.
• In the current implementation, you can't add or remove sample utterances or slots from the

base intent. Also, you cannot configure slots for build-in intents.

Built-in Slots
Amazon Lex supports several built-in slot types from the Alexa Skills Kit. You can create slots of these
types in your intents. They eliminate the need to create enumeration values for commonly used slot data
such as date, time, and location. The built-in slot types do not have versions.

For a list of available built-in slot types, see Slot Type Reference in the Alexa Skills Kit. Amazon Lex
supports all of the built-in slot types except the ones marked "Developer Preview."

Note
Amazon Lex doesn't support the AMAZON.LITERAL built-in slot type. This slot type is deprecated
in the Alexa Skills Kit.

20

https://aws.amazon.com/mobile/sdk/
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/built-in-intent-library
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex Developer Guide
Step 1: Set Up an Account

Getting Started with Amazon Lex

Learn to use Amazon Lex using the console or the AWS CLI.

Amazon Lex provides API operations that you can integrate with your existing applications. For a list of
supported operations, see the API Reference (p. 172). You can use any of the following options:

• AWS SDK — When using the SDKs your requests to Amazon Lex are automatically signed and
authenticated using the credentials that you provide. This is the recommended choice for building your
applications.

• AWS CLI — You can use the AWS CLI to access any Amazon Lex feature without having to write any
code.

• AWS Console — The console is the easiest way to get started testing and using Amazon Lex

If you are new to Amazon Lex, we recommend that you read Amazon Lex: How It Works (p. 3). first.

Topics
• Step 1: Set Up an AWS Account and Create an Administrator User (p. 21)
• Step 2: Set Up the AWS Command Line Interface (p. 23)
• Step 3: Getting Started (Console) (p. 23)
• Step 4: Getting Started (AWS CLI) (p. 58)

Step 1: Set Up an AWS Account and Create an
Administrator User

Before you use Amazon Lex for the first time, complete the following tasks:

1. Sign Up for AWS (p. 21)
2. Create an IAM User (p. 22)

Sign Up for AWS
If you already have an AWS account, skip this task.

21

Amazon Lex Developer Guide
Create an IAM User

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
services in AWS, including Amazon Lex. You are charged only for the services that you use.

With Amazon Lex, you pay only for the resources that you use. If you are a new AWS customer, you can
get started with Amazon Lex for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Write down your AWS account ID because you'll need it for the next task.

Create an IAM User
Services in AWS, such as Amazon Lex, require that you provide credentials when you access them so that
the service can determine whether you have permissions to access the resources owned by that service.
The console requires your password. You can create access keys for your AWS account to access the AWS
CLI or API.

However, we don't recommend that you access AWS using the credentials for your AWS account. Instead,
we recommend that you:

• Use AWS Identity and Access Management (IAM) to create an IAM user
• Add the user to an IAM group with administrative permissions
• Grant administrative permissions to the IAM user that you created.

You can then access AWS using a special URL and the IAM user's credentials.

The Getting Started exercises in this guide assume that you have a user (adminuser) with administrator
privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see Creating
Your First IAM User and Administrators Group in the IAM User Guide.

2. As a user, you can sign in to the AWS Management Console using a special URL. For more
information, How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

• Identity and Access Management (IAM)
• Getting Started
• IAM User Guide

Next Step
Step 2: Set Up the AWS Command Line Interface (p. 23)

22

https://aws.amazon.com//free/
https://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Lex Developer Guide
Step 2: Set Up the AWS CLI

Step 2: Set Up the AWS Command Line Interface
If you prefer to use Amazon Lex with the AWS Command Line Interface (AWS CLI), download and
configure it.

Important
You don't need the AWS CLI to perform the steps in the Getting Started exercises. However,
some of the later exercises in this guide use the AWS CLI. If you prefer to start by using the
console, skip this step and go to Step 3: Getting Started (Console) (p. 23). Later, when you
need the AWS CLI, return here to set it up.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface
• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user to the end of the AWS CLI config file. You use this
profile when executing AWS CLI commands. For more information about named profiles, see Named
Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

3. Verify the setup by typing the Help command at the command prompt:

aws help

Step 3: Getting Started (Console) (p. 23)

Step 3: Getting Started (Console)
The easiest way to learn how to use Amazon Lex is by using the console. To get you started, we created
the following exercises, all of which use the console:

• Exercise 1 — Create an Amazon Lex bot using a blueprint, a predefined bot that provides all of the
necessary bot configuration. You do only a minimum of work to test the end-to-end setup.

In addition, you use the Lambda function blueprint, provided by AWS Lambda, to create a Lambda
function. The function is a code hook that uses predefined code that is compatible with your bot.

• Exercise 2 — Create a custom bot by manually creating and configuring a bot. You also create a
Lambda function as a code hook. Sample code is provided.

• Exercise 3 — Publish a bot, and then create a new version of it. As part of this exercise you create an
alias that points to the bot version.

Topics

23

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

• Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console) (p. 24)

• Exercise 2: Create a Custom Amazon Lex Bot (p. 48)

• Exercise 3: Publish a Version and Create an Alias (p. 57)

Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console)
In this exercise, you do the following:

• Create your first Amazon Lex bot, and test it in the Amazon Lex console.

For this exercise, you use the OrderFlowers blueprint. For information about blueprints, see Amazon
Lex and AWS Lambda Blueprints (p. 91).

• Create an AWS Lambda function and test it in the Lambda console. While processing a request, your
bot calls this Lambda function. For this exercise, you use a Lambda blueprint (lex-order-flowers-
python) provided in the AWS Lambda console to create your Lambda function. The blueprint code
illustrates how you can use the same Lambda function to perform initialization and validation, and to
fulfill the OrderFlowers intent.

• Update the bot to add the Lambda function as the code hook to fulfill the intent. Test the end-to-end
experience.

The following sections explain what the blueprints do.

Amazon Lex Bot: Blueprint Overview
You use the OrderFlowers blueprint to create an Amazon Lex bot.For more information about the
structure of a bot, see Amazon Lex: How It Works (p. 3). The bot is preconfigured as follows:

• Intent – OrderFlowers

• Slot types – One custom slot type called FlowerTypes with enumeration values: roses, lilies, and
tulips.

• Slots – The intent requires the following information (that is, slots) before the bot can fulfill the intent.

• PickupTime (AMAZON.TIME built-in type)

• FlowerType (FlowerTypes custom type)

• PickupDate (AMAZON.DATE built-in type)

• Utterance – The following sample utterances indicate the user's intent:

• "I would like to pick up flowers."

• "I would like to order some flowers."

• Prompts – After the bot identifies the intent, it uses the following prompts to fill the slots:

• Prompt for the FlowerType slot – "What type of flowers would you like to order?"

• Prompt for the PickupDate slot – "What day do you want the {FlowerType} to be picked up?"

• Prompt for the PickupTime slot – "At what time do you want the {FlowerType} to be picked up?"

• Confirmation statement – "Okay, your {FlowerType} will be ready for pickup by {PickupTime} on
{PickupDate}. Does this sound okay?"

24

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

AWS Lambda Function: Blueprint Summary

The Lambda function in this exercise performs both initialization and validation and fulfillment tasks.
Therefore, after creating the Lambda function, you update the intent configuration by specifying the
same Lambda function as a code hook to handle both the initialization and validation and fulfillment
tasks.

• As an initialization and validation code hook, the Lambda function performs basic validation. For
example, if the user provides a time for pickup that is outside of normal business hours, the Lambda
function directs Amazon Lex to re-prompt the user for the time.

• As part of the fulfillment code hook, the Lambda function returns a summary message indicating that
the flower order has been placed (that is, the intent is fulfilled).

Next Step

Step 1: Create an Amazon Lex Bot (Console) (p. 25)

Step 1: Create an Amazon Lex Bot (Console)
For this exercise, create a bot for ordering flowers, called OrderFlowersBot.

To create an Amazon Lex bot (console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.

3. On the Create your Lex bot page, provide the following information, and then choose Create.

• Choose the OrderFlowers blueprint.

• Leave the default bot name (OrderFlowers).

4. Choose Create. The console makes the necessary requests to Amazon Lex to save the configuration.
The console then displays the bot editor window.

5. To build the bot, choose Build twice.

6. Test the bot.

Note
You can test the bot by typing text into the test window, or, for compatible browsers, by
choosing the microphone button in the test window and speaking.

Use the following example text to engage in conversation with the bot to order flowers:

25

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

From this input, the bot infers the OrderFlowers intent and prompts for slot data. When you
provide all of the required slot data, the bot fulfills the intent (OrderFlowers) by returning all of the
information to the client application (in this case, the console). The console shows the information in
the test window.

Specifically:

• In the statement "What day do you want the roses to be picked up?,"the term "roses" appears
because the prompt for the pickupDate slot is configured using substitutions, {FlowerType}.
Verify this in the console.

• The "Okay, your roses will be ready..." statement is the confirmation prompt that you configured.

• The last statement ("FlowerType:roses...") is just the slot data that is returned to the client, in
this case, in the test window. In the next exercise, you use a Lambda function to fulfill the intent,
in which case you get a message indicating that the order is fulfilled.

Next Step

Step 2 (Optional): Review the Details of Information Flow (Console) (p. 26)

Step 2 (Optional): Review the Details of Information Flow
(Console)
This section explains the flow of information between a client and Amazon Lex for each user input in our
example conversation.

To see the flow of information for spoken or typed content, choose the appropriate topic.

Topics

• Step 2a (Optional): Review the Details of the Spoken Information Flow (Console) (p. 27)

• Step 2b (Optional): Review the Details of the Typed Information Flow (Console) (p. 31)

26

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)

This section explains the flow of information between the client and Amazon Lex when the client uses
speech to send requests. For more information, see PostContent (p. 285).

1. The user says: I would like to order some flowers.

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/content
 HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides the bot name (OrderFlowers), bot alias ($LATEST), and the user name
(a random string that identifies the user). content indicates that this is a PostContent API
request (not a PostText request).

• Request headers

• x-amz-lex-session-attributes – The base64-encoded value represents "{}". When the
client makes the first request, there are no session attributes.

• Content-Type – Reflects the audio format.

• Request body – The user input audio stream ("I would like to order some flowers.").

Note
If the user chooses to send text ("I would like to order some flowers") to the
PostContent API instead of speaking, the request body is the user input. The Content-
Type header is set accordingly:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "text/plain; charset=utf-8"
Accept: accept

Request body
input stream

b. From the input stream, Amazon Lex detects the intent (OrderFlowers). It then chooses one of
the intent's slots (in this case, the FlowerType) and one of its value elicitation prompts, and then
sends a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:I would like to order some flowers.
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:What type of flowers would you like to order?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:FlowerType
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjpudWxsLCJQaWNrdXBEYXRlIjpudWxsfQ==

27

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

The header values provide the following information:

• x-amz-lex-input-transcript – Provides the transcript of the audio (user input) from the
request

• x-amz-lex-message – Provides the transcript of the audio Amazon Lex returned in the
response

• x-amz-lex-slots – The base64 encoded version of the slots and values:

{"PickupTime":null,"FlowerType":null,"PickupDate":null}

• x-amz-lex-session-attributes – The base64-encoded version of the session attributes ({})

The client plays the audio in the response body.

2. The user says: roses

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/content
 HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream ("roses")

The request body is the user input audio stream (roses). The sessionAttributes remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the FlowerType slot). Amazon Lex
first updates the slot value for the current intent. It then chooses another slot (PickupDate),
along with one of its prompt messages (When do you want to pick up the roses?), and returns a
response with the following headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:roses
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:When do you want to pick up the roses?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:PickupDate
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6bnVsbH0=

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":null,"FlowerType":"roses","PickupDate":null}

• x-amz-lex-session-attributes – The base64-encoded version of the session attributes ({})

The client plays the audio in the response body.

3. The user says: tomorrow

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

28

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/content
 HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream ("tomorrow")

The request body is the user input audio stream ("tomorrow").The sessionAttributes remains
empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers that
it had asked this user for information pertaining to the PickupDate slot). Amazon Lex updates
the slot (PickupDate) value for the current intent. It then chooses another slot to elicit value for
(PickupTime) and one of the value elicitation prompts (When do you want to pick up the roses
on 2017-03-18?), and returns a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:tomorrow
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:When do you want to pick up the roses on 2017-03-18?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:PickupTime
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==
x-amzn-RequestId:3a205b70-0b69-11e7-b447-eb69face3e6f

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":null,"FlowerType":"roses","PickupDate":"2017-03-18"}

• x-amz-lex-session-attributes – The base64-encoded version of the session attributes ({})

The client plays the audio in the response body.

4. The user says: 6 pm

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/content
 HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "text/plain; charset=utf-8"
Accept: "audio/mpeg"

Request body
input stream ("6 pm")

The request body is the user input audio stream ("6 pm"). The sessionAttributes remains
empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers that
it had asked this user for information pertaining to the PickupTime slot). It first updates the slot
value for the current intent.

29

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

Now Amazon Lex detects that it has information for all of the slots. However, the OrderFlowers
intent is configured with a confirmation message. Therefore, Amazon Lex needs an explicit
confirmation from the user before it can proceed to fulfill the intent. It sends a response with
the following headers requesting confirmation before ordering the flowers:

x-amz-lex-dialog-state:ConfirmIntent
x-amz-lex-input-transcript:six p. m.
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:Okay, your roses will be ready for pickup by 18:00 on 2017-03-18.
 Does this sound okay?
x-amz-lex-session-attributes:e30=
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjoiMTg6MDAiLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==
x-amzn-RequestId:083ca360-0b6a-11e7-b447-eb69face3e6f

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":"18:00","FlowerType":"roses","PickupDate":"2017-03-18"}

• x-amz-lex-session-attributes – The base64-encoded version of the session attributes ({})

The client plays the audio in the response body.

5. The user says: Yes

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/content
 HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream ("Yes")

The request body is the user input audio stream ("Yes"). The sessionAttributes remains empty.

b. Amazon Lex interprets the input stream and understands that the user want to proceed with the
order. The OrderFlowers intent is configured with ReturnIntent as the fulfillment activity. This
directs Amazon Lex to return all of the intent data to the client. Amazon Lex returns a response
with following:

x-amz-lex-dialog-state:ReadyForFulfillment
x-amz-lex-input-transcript:yes
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-session-attributes:e30=
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjoiMTg6MDAiLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==

Thex-amz-lex-dialog-state response header is set to ReadyForFulfillment. The client can
then fulfill the intent.

6. Now, retest the bot. To establish a new (user) context, choose the Clear link in the console. Provide
data for the OrderFlowers intent, and include some invalid data. For example:

30

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

• Jasmine as the flower type (it is not one of the supported flower types)

• Yesterday as the day when you want to pick up the flowers

Notice that the bot accepts these values because you don't have any code to initialize and validate
the user data. In the next section, you add a Lambda function to do this. Note the following about
the Lambda function:

• It validates slot data after every user input. It fulfills the intent at the end. That is, the bot
processes the flower order and returns a message to the user instead of simply returning slot data
to the client. For more information, see Using Lambda Functions (p. 85).

• It also sets the session attributes. For more information about session attributes, see
PostText (p. 292).

After you complete the Getting Started section, you can do the additional exercises (Additional
Examples: Creating Amazon Lex Bots (p. 103)). Example Bot: BookTrip (p. 121) uses session
attributes to share cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console) (p. 35)

Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

This section explains flow of information between client and Amazon Lex in which the client uses the
PostText API to send requests. For more information, see PostText (p. 292).

1. User types: I would like to order some flowers

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "I would like to order some flowers",
 "sessionAttributes": {}
}

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides bot name (OrderFlowers), bot alias ($LATEST), and user name (a
random string identifying the user). The trailing text indicates that it is a PostText API
request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes. When the
client makes the first request, there are no session attributes. The Lambda function initiates
them later.

b. From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent does not have
any code hooks (that is, the Lambda functions) for initialization and validation of user input or
fulfillment.

Amazon Lex chooses one of the intent's slots (FlowerType) to elicit the value. It also selects one
of the value-elicitation prompts for the slot (all part of the intent configuration), and then sends

31

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

the following response back to the client. The console displays the message in the response to
the user.

The client displays the message in the response.

2. User types: roses

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "roses",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—the service
remembers that it had asked the specific user for information about the FlowerType slot.
Amazon Lex first updates the slot value for the current intent and chooses another slot
(PickupDate) along with one of its prompt messages—What day do you want the roses to be
picked up?— for the slot.

Then, Amazon Lex returns the following response:

The client displays the message in the response.

32

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

3. User types: tomorrow

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "tomorrow",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—the service
remembers that it had asked the specific user for information about the PickupDate slot.
Amazon Lex updates the slot (PickupDate) value for the current intent. It chooses another slot
to elicit value for (PickupTime). It returns one of the value-elicitation prompts—Deliver the roses
at what time on 2017-01-01?—to the client.

Amazon Lex then returns the following response:

The client displays the message in the response.

4. User types: 6 pm

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "6 pm",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—the service
remembers that it had asked the specific user for information about the PickupTime slot.
Amazon Lex first updates the slot value for the current intent. Now Amazon Lex detects that it
has information for all the slots.

33

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

The OrderFlowers intent is configured with a confirmation message. Therefore, Amazon Lex
needs an explicit confirmation from the user before it can proceed to fulfill the intent. Amazon
Lex sends the following message to the client requesting confirmation before ordering the
flowers:

The client displays the message in the response.

5. User types: Yes

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "Yes",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes remains empty.

b. Amazon Lex interprets the inputText in the context of confirming the current intent. It
understands that the user want to proceed with the order. The OrderFlowers intent is
configured with ReturnIntent as the fulfillment activity (there is no Lambda function to fulfill
the intent). Therefore, Amazon Lex returns the slot data to the client.

Amazon Lex set the dialogState to ReadyForFulfillment. The client can then fulfill the intent.

34

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

6. Now test the bot again. To do that, you must choose the Clear link in the console to establish a new
(user) context. Now as you provide data for the order flowers intent, try to provide invalid data. For
example:

• Jasmine as the flower type (it is not one of the supported flower types).
• Yesterday as the day when you want to pick up the flowers.

Notice that the bot accepts these values because you don't have any code to initialize/validate
user data. In the next section, you add a Lambda function to do this. Note the following about the
Lambda function:

• The Lambda function validates slot data after every user input. It fulfills the intent at the end.
That is, the bot processes the flowers order and returns a message to the user instead of simply
returning slot data to the client. For more information, see Using Lambda Functions (p. 85).

• The Lambda function also sets the session attributes. For more information about session
attributes, see PostText (p. 292).

After you complete the Getting Started section, you can do the additional exercises (Additional
Examples: Creating Amazon Lex Bots (p. 103)). Example Bot: BookTrip (p. 121) uses session
attributes to share cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console) (p. 35)

Step 3: Create a Lambda Function (Console)
Create a Lambda function (using the lex-order-flowers-python blueprint) and perform test invocation
using sample event data in the AWS Lambda console. This Lambda function is written in Node.js.

You return to the Amazon Lex console and add the Lambda function as the code hook to fulfill the
OrderFlowers intent in the OrderFlowersBot that you created in the preceding section.

To create the Lambda function (console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.
3. On Select blueprint, type lex to find the blueprint, choose the lex-order-flowers-python

blueprint.

Lambda function blueprints are provided in both Node.js and Python. For this exercise, use the
Python-based blueprint.

4. Choose Next on the Configure Triggers page.
5. On the Configure function page, do the following, and then choose Next.

• Type a Lambda function name (OrderFlowersCodeHook).
• For the IAM role, choose Create a new role from template(s).
• Type a role name.
• Leave the other default values.

6. On the Review page, choose Create function.
7. Test the Lambda function.

a. Choose Actions, Configure test event.

35

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

b. Choose Lex-Order Flowers (preview) from the Sample event template list. This sample event
matches the Amazon Lex request/response model (see Using Lambda Functions (p. 85)).

c. Choose Save and test.
d. Verify that the Lambda function successfully executed. The response in this case matches the

Amazon Lex response model.

Next Step

Step 4: Add the Lambda Function as Code Hook (Console) (p. 36)

Step 4: Add the Lambda Function as Code Hook (Console)
In this section, you update the configuration of the OrderFlowers intent to use the Lambda function as
follows:

• First use the Lambda function as a code hook to perform fulfillment of the OrderFlowers intent. You
test the bot and verify that you received a fulfillment message from the Lambda function. Amazon Lex
invokes the Lambda function only after you provide data for all the required slots for ordering flowers.

• Configure the same Lambda function as a code hook to perform initialization and validation. You test
and verify that the Lambda function performs validation (as you provide slot data).

To add a Lambda function as a code hook (console)

1. In the Amazon Lex console, select the OrderFlowers bot. The console shows the OrderFlowers
intent. Make sure that the intent version is set to $LATEST because this is the only version that we
can modify.

2. Add the Lambda function as the fulfillment code hook and test it.

a. In the Editor, choose AWS Lambda function as Fulfillment, and select the Lambda function
that you created in the preceding step (OrderFlowersCodeHook). Choose OK to give Amazon Lex
permission to invoke the Lambda function.

You are configuring this Lambda function as a code hook to fulfill the intent. Amazon Lex
invokes this function only after it has all the necessary slot data from the user to fulfill the
intent.

b. Specify a Goodbye message.
c. Choose Build.
d. Test the bot using the previous conversation.

The last statement "Thanks, your order for roses....." is a response from the Lambda function that
you configured as a code hook. In the preceding section, there was no Lambda function. Now you are
using a Lambda function to actually fulfill the OrderFlowers intent.

3. Add the Lambda function as an initialization and validation code hook, and test.

The sample Lambda function code that you are using can both perform user input validation and
fulfillment. The input event the Lambda function receives has a field (invocationSource) that the
code uses to determine what portion of the code to execute. For more information, see Lambda
Function Input Event and Response Format (p. 85).

a. Select the $LATEST version of the OrderFlowers intent. That's is the only version that you can
update.

b. In the Editor, choose Initialization and validation in Options.
c. Again, select the same Lambda function.

36

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

d. Choose Build.
e. Test the bot.

You are now ready to converse with Amazon Lex as follows. To test the validation portion,
choose time 6 PM, and your Lambda function returns a response ("Our business hours are from
10 AM to 5 PM."), and prompts you again. After you provide all the valid slot data, the Lambda
function fulfills the order.

Next Step

Step 5 (Optional): Review the Details of the Information Flow (Console) (p. 37)

Step 5 (Optional): Review the Details of the Information Flow
(Console)
This section explains the flow of information between the client and Amazon Lex for each user input,
including the integration of the Lambda function.

Note
The section assumes that the client sends requests to Amazon Lex using the PostText runtime
API and shows request and response details accordingly. For an example of the information
flow between the client and Amazon Lex in which client uses the PostContent API, see Step 2a
(Optional): Review the Details of the Spoken Information Flow (Console) (p. 27).

For more information about the PostText runtime API and additional details on the requests and
responses shown in the following steps, see PostText (p. 292).

1. User: I would like to order some flowers.

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text

37

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "I would like to order some flowers",
 "sessionAttributes": {}
}

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides bot name (OrderFlowers), bot alias ($LATEST), and user name (a
random string identifying the user). The trailing text indicates that it is a PostText API
request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes. When the
client makes the first request, there are no session attributes. The Lambda function initiates
them later.

b. From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent is configured
with a Lambda function as a code hook for user data initialization and validation. Therefore,
Amazon Lex invokes that Lambda function by passing the following information as event data:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {},
 "bot": {
 "name": "OrderFlowers",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": null,
 "PickupDate": null
 },
 "confirmationStatus": "None"
 }
}

For more information, see Input Event Format (p. 85).

In addition to the information that the client sent, Amazon Lex also includes the following
additional data:

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

• invocationSource – Indicates the purpose of Lambda function invocation. In this case, it is to
perform user data initialization and validation. At this time, Amazon Lex knows that the user
has not provided all the slot data to fulfill the intent.

• currentIntent information with all of the slot values set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to validate.
The Lambda function returns the following response to Amazon Lex:

{
 "sessionAttributes": {},
 "dialogAction": {
 "type": "Delegate",

38

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

 "slots": {
 "PickupTime": null,
 "FlowerType": null,
 "PickupDate": null
 }
 }
}

For information about the response format, see Response Format (p. 88).

Note the following:

• dialogAction.type – By setting this value to Delegate, Lambda function delegates the
responsibility of deciding the next course of action to Amazon Lex.

Note
If Lambda function detects anything in the user data validation, it instructs Amazon
Lex what to do next, as shown in the next few steps.

d. According to the dialogAction.type, Amazon Lex decides the next course of action. Because
none of the slots are filled, it decides to elicit the value for the FlowerType slot. It selects one of
the value elicitation prompts ("What type of flowers would you like to order?") for this slot and
sends the following response back to the client:

The client displays the message in the response.

2. User: roses

a. The client sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "roses",
 "sessionAttributes": {}
}

In the request body, the inputText provides user input. The sessionAttributes remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent. The service
remembers that it had asked the specific user for information about the FlowerType slot. It
updates the slot value in the current intent and invokes the Lambda function with the following
event data:

39

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {},
 "bot": {
 "name": "OrderFlowers",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": null
 },
 "confirmationStatus": "None"
 }
}

Note the following:

• invocationSource – continues to be DialogCodeHook (we are simply validating user data).

• currentIntent.slots – Amazon Lex has updated the FlowerType slot to roses.

c. According to the invocationSource value of DialogCodeHook, the Lambda function performs
user data validation. It recognizes roses as a valid slot value (and sets Price as a session
attribute) and returns the following response to Amazon Lex.

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": null
 }
 }
}

Note the following:

• sessionAttributes – Lambda function has added Price (of the roses) as a session attribute.

• dialogAction.type – is set to Delegate. The user data was valid so the Lambda function
directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action. Amazon
Lex knows it needs more slot data so it picks the next unfilled slot (PickupDate) with the highest
priority according to the intent configuration. Amazon Lex selects one of the value-elicitation
prompt messages—"What day do you want the roses to be picked up?"—for this slot according
to the intent configuration, and then sends the following response back to the client:

40

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

The client simply displays the message in the response – "What day do you want the roses to be
picked up?."

3. User: tomorrow

a. The client sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "tomorrow",
 "sessionAttributes": {
 "Price": "25"
 }
}

In the request body, inputText provides user input and the client passes the session attributes
back to the service.

b. Amazon Lex remembers the context—that it was eliciting data for the PickupDate slot. In this
context, it knows the inputText value is for the PickupDate slot. Amazon Lex then invokes the
Lambda function by sending the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "None"

41

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

 }
}

Amazon Lex has updated the currentIntent.slots by setting the PickupDate value. Also note
that the service passes the sessionAttributes as it is to the Lambda function.

c. As per invocationSource value of DialogCodeHook, the Lambda function performs user data
validation. It recognizes PickupDate slot value is valid and returns the following response to
Amazon Lex:

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 }
 }
}

Note the following:

• sessionAttributes – No change.

• dialogAction.type – is set to Delegate. The user data was valid, and the Lambda function
directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action. Amazon
Lex knows it needs more slot data so it picks the next unfilled slot (PickupTime) with the
highest priority according to the intent configuration. Amazon Lex selects one of the prompt
messages ("Deliver the roses at what time on 2017-01-01?") for this slot according to the intent
configuration and sends the following response back to the client:

The client displays the message in the response – "Deliver the roses at what time on
2017-01-01?"

4. User: 4 pm

a. The client sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

42

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

{
 "inputText": "4 pm",
 "sessionAttributes": {
 "Price": "25"
 }
}

In the request body, inputText provides user input. The client passes the sessionAttributes in
the request.

b. Amazon Lex understands context. It understands that it was eliciting data for the PickupTime
slot. In this context, it knows that the inputText value is for the PickupTime slot. Amazon Lex
then invokes the Lambda function by sending the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "None"
 }
}

Amazon Lex has updated the currentIntent.slots by setting the PickupTime value.

c. According to the invocationSource value of DialogCodeHook, the Lambda function performs
user data validation. It recognizes PickupDate slot value is valid and returns the following
response to Amazon Lex.

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 }
 }
}

Note the following:

• sessionAttributes – No change in session attribute.

43

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

• dialogAction.type – is set to Delegate. The user data was valid so the Lambda function
directs Amazon Lex to choose the next course of action.

d. At this time Amazon Lex knows it has all the slot data. This intent is configured with a
confirmation prompt. Therefore, Amazon Lex sends the following response to the user asking
for confirmation before fulfilling the intent:

The client simply displays the message in the response and waits for the user response.

5. User: Yes

a. The client sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "yes",
 "sessionAttributes": {
 "Price": "25"
 }
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent. Amazon
Lex understands that the user wants to proceed with the order. This time Amazon Lex invokes
the Lambda function to fulfill the intent by sending the following event, which sets the
invocationSource to FulfillmentCodeHook in the event it sends to the Lambda function.
Amazon Lex also sets the confirmationStatus to Confirmed.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {

44

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "Confirmed"
 }
}

Note the following:

• invocationSource – This time Amazon Lex set this value to FulfillmentCodeHook, directing
the Lambda function to fulfill the intent.

• confirmationStatus – is set to Confirmed.

c. This time, the Lambda function fulfills the OrderFlowers intent, and returns the following
response:

{
 "sessionAttributes": {
 "Price": "25"
 },
 "dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled",
 "message": {
 "contentType": "PlainText",
 "content": "Thanks, your order for roses has been placed and will be
 ready for pickup by 16:00 on 2017-01-05"
 }
 }
}

Note the following:

• Sets the dialogAction.type – The Lambda function sets this value to Close, directing
Amazon Lex to not expect a user response.

• dialogAction.fulfillmentState – is set to Fulfilled and includes an appropriate message to
convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response back to the client.

Amazon Lex then returns the following to the client:

Note that:

45

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

• dialogState – Amazon Lex sets this value to fulfilled.

• message – is the same message that the Lambda function provided.

The client displays the message.

6. Now test the bot again. To establish a new (user) context, choose the Clear link in the test window.
Now provide invalid slot data for the OrderFlowers intent. This time the Lambda function performs
the data validation, resets invalid slot data value to null, and asks Amazon Lex to prompt the user
for valid data. For example, try the following:

• Jasmine as the flower type (it is not one of the supported flower types).

• Yesterday as the day when you want to pick up the flowers.

• After placing your order, enter another flower type instead of replying "yes" to confirm the order.
In response, the Lambda function updates the Price in the session attribute, keeping a running
total of flower orders.

The Lambda function also performs the fulfillment activity.

Next Step

Step 6: Update the Intent Configuration to Add an Utterance (Console) (p. 46)

Step 6: Update the Intent Configuration to Add an Utterance
(Console)

The OrderFlowers bot is configured with only two utterances. This provides limited information for
Amazon Lex to build a machine learning model that recognizes and responds to the user's intent. Try
typing "I want to order flowers" in the test window. Amazon Lex doesn’t recognize the text, and responds
with "I didn't understand you, what would you like to do?" You can improve the machine learning model
by adding more utterances.

46

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

Each utterance that you add provides Amazon Lex with more information about how to respond to your
users. You don't need to add an exact utterance, Amazon Lex generalizes from the samples that you
provide to recognize both exact matches and similar input.

To add an utterance (console)

1. Add the utterance "I want flowers" to the intent by typing it in the Sample utterances section of the
intent editor, and then clicking the plus icon next to the new utterance.

2. Build your bot to pick up the change. Choose Build, and then choose Build again.

3. Test your bot to confirm that it recognized the new utterance . In the test window, type "I want to
order flowers." Amazon Lex recognizes the phrase and responds with "What type of flowers would
you like to order?".

Next Step

Step 7 (Optional): Clean Up (Console) (p. 47)

Step 7 (Optional): Clean Up (Console)
Now, delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the following
order:

• Delete bots to free up intent resources.

47

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

• Delete intents to free up slot type resources.
• Delete slot types last.

To clean up your account (console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose the check box next to OrderFlowers.
3. To delete the bot, choose Delete, and then choose Continue in the confirmation dialog box.
4. In the left pane, choose Intents.
5. In the list of intents, choose OrderFlowersIntent.
6. To delete the intent, choose Delete, and then choose Continue in the confirmation dialog box.
7. In the left pane, choose Slot types.
8. In the list of slot types, choose Flowers.
9. To delete the slot type, choose Delete, and then choose Continue in the confirmation dialog box.

You have removed all of the resources that you created and cleaned up your account.

Exercise 2: Create a Custom Amazon Lex Bot
Use the Amazon Lex console to create a custom bot.

In this exercise, you use the Amazon Lex console to create a custom bot that orders pizza
(OrderPizzaBot). You configure the bot by adding a custom intent (OrderPizza), defining custom slot
types, and defining the slots required to fulfill a pizza order (pizza crust, size, and so on). For more
information about slot types and slots, see Amazon Lex: How It Works (p. 3).

Topics
• Step 1: Create a Lambda Function (p. 48)
• Step 2: Create a Bot (p. 50)
• Step 3: Build and Test the Bot (p. 55)
• Step 4 (Optional): Clean up (p. 56)

Step 1: Create a Lambda Function
First, create a Lambda function which fulfills a pizza order. You specify this function in your Amazon Lex
bot, which you create in the next section.

To create a Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose the US East (N. Virginia) Region (us-east-1).
3. Choose Create a Lambda function.
4. On the Select blueprint page, choose Blank function.

Because you are using custom code provided to you in this exercise to create a Lambda function, you
choose the Blank function option.

5. On the Configure triggers page, choose Next.

48

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

6. On the Configure function page, do the following:

a. Type the name (PizzaOrderProcessor) and choose Node.js.4.3 as the runtime.

b. In the Lambda function code section, choose Edit code inline, and then copy the following
Node.js function code and paste it in the window.

'use strict';

// Close dialog with the customer, reporting fulfillmentState of Failed or
 Fulfilled ("Thanks, your pizza will arrive in 20 minutes")
function close(sessionAttributes, fulfillmentState, message) {
 return {
 sessionAttributes,
 dialogAction: {
 type: 'Close',
 fulfillmentState,
 message,
 },
 };
}

// --------------- Events -----------------------

function dispatch(intentRequest, callback) {
 console.log('request received for userId=${intentRequest.userId}, intentName=
${intentRequest.currentIntent.intentName}');
 const sessionAttributes = intentRequest.sessionAttributes;
 const slots = intentRequest.currentIntent.slots;
 const crust = slots.crust;
 const size = slots.size;
 const pizzaKind = slots.pizzaKind;

 callback(close(sessionAttributes, 'Fulfilled',
 {'contentType': 'PlainText', 'content': `Okay, I have ordered your ${size}
 ${pizzaKind} pizza on ${crust} crust`}));

}

// --------------- Main handler -----------------------

// Route the incoming request based on intent.
// The JSON body of the request is provided in the event slot.
exports.handler = (event, context, callback) => {
 try {
 dispatch(event,
 (response) => {
 callback(null, response);
 });
 } catch (err) {
 callback(err);
 }
};

c. In the Lambda function handler and role section, choose Choose a new role from template(s)
for the Role, and then type a role name.

d. Choose Next.

7. On the Review page, choose Create function.

Test the Lambda Function Using Sample Event Data

In the console, test the Lambda function by using sample event data to manually invoke it.

49

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

To test the Lambda function:

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. On the Lambda function page, choose Actions, and then choose Configure test event.
3. Choose the Lambda function.
4. On the Input test event page, copy the following Amazon Lex event into the window.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "user-1",
 "sessionAttributes": {},
 "bot": {
 "name": "PizzaOrderingApp",
 "alias": "$LATEST",
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderPizza",
 "slots": {
 "size": "large",
 "pizzaKind": "meat",
 "crust": "thin"
 },
 "confirmationStatus": "None"
 }
}

5. Choose Save and test.

AWS Lambda executes your Lambda function and displays the following output in the Execution result
pane.

{
 "sessionAttributes": {},
 "dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled",
 "message": {
 "contentType": "PlainText",
 "content": "Okay, I have ordered your large meat pizza on thin crust"
 }
}

Next Step

Step 2: Create a Bot (p. 50)

Step 2: Create a Bot
In this step, you create a bot to handle pizza orders.

Topics
• Create the Bot (p. 51)
• Create an Intent (p. 51)
• Create Slot Types (p. 52)

50

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

• Configure the Intent (p. 53)
• Configure the Bot (p. 54)

Create the Bot

Create the PizzaOrderingBot bot with the minimum information needed. You add an intent, an action
that the user wants to perform, for the bot later.

To create the bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Create a bot.

a. If you are creating your first bot, choose Get Started. Otherwise, choose Bots, and then choose
Create.

b. On the Create your Lex bot page, choose Custom bot and provide the following information:

• App name: PizzaOrderingBot
• Output voice: Salli
• Session timeout : 5 minutes.
• Child-Directed: Choose the appropriate response.

c. Choose Create.

The console sends Amazon Lex a request to create a new bot. Amazon Lex sets the bot version
to $LATEST. After creating the bot, Amazon Lex shows the bot Editor tab:

• The bot version, Latest, appears next to the bot name in the console. New Amazon
Lex resources have $LATEST as the version. For more information, see Versioning and
Aliases (p. 81).

• Because you haven't created any intents or slots types, none are listed.
• Build and Publish are bot-level activities. After you configure the entire bot, you'll learn more

about these activities.

Next Step

Create an Intent (p. 51)

Create an Intent

Now, create the OrderPizza intent , an action that the user wants to perform, with the minimum
information needed. You add slot types for the intent and then configure the intent later.

To create an intent

1. In the Amazon Lex console, choose the plus sign (+) next to Intents, and then choose Create new
intent.

51

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

2. In the Create intent dialog box, type the name of the intent (OrderPizza), and then choose Add.

The console sends a request to Amazon Lex to create the OrderPizza intent. You configure the intent
after you create slot types.

Next Step

Create Slot Types (p. 52)

Create Slot Types

Create the slot types, or parameter values, that the OrderPizza intent uses.

To create slot types

1. In the left menu, choose the plus sign (+) next to Slot types.

2. In the Add slot type dialog box, add the following:

• Slot type name – Crusts

• Description – Available crusts

• Value – Type thick and then choose the plus sign (+). Type thin and then choose the plus sign (+)
again.

The dialog should look like this:

3. Choose Add slot to intent.

4. On the Intent page, choose Required. Change the name of the slot from slotOne to crust. Change
the prompt to What kind of crust would you like?

5. Repeat Step 1 through Step 4 using the values in the following table:

Name Description Values Slot name Prompt

Sizes Available sizes small, medium,
large

size What size pizza?

PizzaKind Available pizzas veg, cheese pizzaKind Do you want a
veg or cheese
pizza?

52

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

Next Step

Configure the Intent (p. 53)

Configure the Intent

Configure the OrderPizza intent to fulfill a user's request to order a pizza.

To configure an intent

• On the OrderPizza configuration page, configure the intent as follows:

• Sample utterances – Type the following strings. The curly braces {} enclose slot names.

• I want to order pizza please

• I want to order a pizza

• I want to order a {pizzaKind} pizza

• I want to order a {size} {pizzaKind} pizza

• I want a {size} {crust} crust {pizzaKind} pizza

• Can I get a pizza please

• Can I get a {pizzaKind} pizza

• Can I get a {size} {pizzaKind} pizza

• Lambda initialization and validation – Leave the default setting.

• Confirmation prompt – Leave the default setting.

• Fulfillment – Perform the following tasts:

• Choose AWS Lambda function.

• Choose PizzaOrderProcessor.

• If the Add permission to Lambda function dialog box is shown, choose OK to give the
OrderPizza intent permission to call the PizzaOrderProcessor Lambda function.

• Leave None selected.

The intent should look like the following:

53

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

Next Step

Configure the Bot (p. 54)

Configure the Bot

Configure error handling for the PizzaOrderingBot bot.

1. Navigate to the PizzaOrderingBot bot. Choose Editor. and then choose Error Handling.

54

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

2. Use the Editor tab to configure bot error handling.

• Information you provide in Clarification Prompts maps to the bot's clarificationPrompt
configuration.

When Amazon Lex can't determine the user intent, the service returns a response with this
message

• Information that you provide in the Hang-up phrase maps to the bot's abortStatement
configuration.

If the service can't determine the user's intent after a set number of consecutive requests, Amazon
Lex returns a response with this message.

Leave the defaults.

Next Step

Step 3: Build and Test the Bot (p. 55)

Step 3: Build and Test the Bot

Make sure the bot works, by building and testing it.

To build and test the bot

1. To build the PizzaOrderingBot bot, choose Build.

Amazon Lex builds a machine learning model for the bot. When you test the bot, the console uses
the runtime API to send the user input back to Amazon Lex. Amazon Lex then uses the machine
learning model to interpret the user input.

It can take some time to complete the build.

2. To test the bot, in the Test Bot window, start communicating with your Amazon Lex bot.

• For example, you might say or type:

55

http://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-clarificationPrompt
http://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-abortStatement

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

• Use the sample utterances that you configured in the OrderPizza intent to test the bot. For
example, the following is one of the sample utterances that you configured for the PizzaOrder
intent:

I want a {size} {crust} crust {pizzaKind} pizza

To test it, type the following:

I want a large thin crust cheese pizza

When you type "I want to order a pizza," Amazon Lex detects the intent (OrderPizza). Then, Amazon
Lex asks for slot information.

After you provide all of the slot information, Amazon Lex invokes the code hook (that is, the Lambda
function that you configured for the intent).

The Lambda function returns a message ("Okay, I have ordered your ...") to Amazon Lex, which
Amazon Lex returns to you..

Next Step

Step 4 (Optional): Clean up (p. 56)

Step 4 (Optional): Clean up
Delete the resources that you created and clean up your account to avoid incurring more charges for the
resources you created.

You can delete only resources that are not in use. For example, you cannot delete a slot type that is
referenced by an intent. You cannot delete an intent that is referenced by a bot.

Delete resources in the following order:

• Delete bots to free up intent resources.

• Delete intents to free up slot type resources.

• Delete slot types last.

56

Amazon Lex Developer Guide
Exercise 3: Publish a Version and Create an Alias

To clean up your account

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose PizzaOrderingBot.

3. To delete the bot, choose Delete, and then choose Continue.

4. In the left pane, choose Intents.

5. In the list of intents, choose OrderPizza.

6. To delete the intent, choose Delete, and then choose Continue.

7. In the left menu, choose Slot types.

8. In the list of slot types, choose Crusts.

9. To delete the slot type, choose Delete, and then choose Continue.

10. Repeat Step 8 and Step 9 for the Sizes and PizzaKind slot types.

You have removed all of the resources that you created and cleaned up your account.

Next Steps

• Publish a Version and Create an Alias

• Create an Amazon Lex bot with the AWS Command Line Interface

Exercise 3: Publish a Version and Create an Alias
In Getting Started Exercises 1 and 2, you created a bot and tested it. In this exercise, you do the
following:

• Publish a new version of the bot. Amazon Lex takes a snapshot copy of the $LATEST version to publish
a new version.

• Create an alias that points to the new version.

For more information about versioning and aliases, see Versioning and Aliases (p. 81).

Do the following to publish a version of a bot you created for this exercise:

1. In the Amazon Lex console, choose one of the bots you created.

Verify that the console shows the $LATEST as the bot version next to the bot name.

2. Choose Publish.

3. On the Publish botname wizard, specify an alias (BETA), and then choose Publish.

4. Verify that the Amazon Lex console shows the new version next to the bot name.

57

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
http://docs.aws.amazon.com/lex/latest/dg/gettingstarted-ex3.html
http://docs.aws.amazon.com/lex/latest/dg/gs-cli.html

Amazon Lex Developer Guide
Step 4: Getting Started (AWS CLI)

Now that you have a working bot with published version and an alias, you can deploy the bot (in your
mobile application or integrate the bot with Facebook Messenger). For an example, see Integrating an
Amazon Lex Bot with Facebook Messenger (p. 94).

Step 4: Getting Started (AWS CLI)
In this step, you use the AWS CLI to create, test, and modify an Amazon Lex bot. To complete these
exercises, you need to be familiar with using the CLI and have a text editor. For more information, see
Step 2: Set Up the AWS Command Line Interface (p. 23)

• Exercise 1 — Create and test an Amazon Lex bot. The exercise provides all of the JSON objects that you
need to create a custom slot type, an intent, and a bot. For more information, see Amazon Lex: How It
Works (p. 3)

• Exercise 2 — Update the bot that you created in Exercise 1 to add an additional sample utterance.
Amazon Lex uses sample utterances to build the machine learning model for your bot.

• Exercise 3 — Update the bot that you created in Exercise 1 to add a Lambda function to validate user
input and to fulfill the intent.

• Exercise 4 — Publish a version of the slot type, intent, and bot resources that you created in Exercise 1.
A version is a snapshot of a resource that can't be changed.

• Exercise 5 — Create an alias for the bot that you created in Exercise 1.
• Exercise 6 — Clean up your account by deleting the slot type, intent, and bot that you created in

Exercise 1, and the alias that you created in Exercise 5.

Topics
• Exercise 1: Create an Amazon Lex Bot (AWS CLI) (p. 58)
• Exercise 2: Add a New Utterance (AWS CLI) (p. 69)
• Exercise 3: Add a Lambda Function (AWS CLI) (p. 72)
• Exercise 4: Publish a Version (AWS CLI) (p. 75)
• Exercise 5: Create an Alias (AWS CLI) (p. 79)
• Exercise 6: Clean Up (AWS CLI) (p. 79)

Exercise 1: Create an Amazon Lex Bot (AWS CLI)
In general, when you create bots, you:

58

Amazon Lex Developer Guide
Exercise 1: Create a Bot

1. Create slot types to define the information that your bot will be working with.
2. Create intents that define the user actions that your bot supports. Use the custom slot types that you

created earlier to define the slots, or parameters, that your intent requires.
3. Create a bot that uses the intents that you defined.

In this exercise you create and test a new Amazon Lex bot using the CLI. Use the JSON structures that we
provide to create the bot.

Topics
• Step 1: Create a Service-Linked Role (AWS CLI) (p. 59)
• Step 2: Create a Custom Slot Type (AWS CLI) (p. 60)
• Step 3: Create an Intent (AWS CLI) (p. 61)
• Step 4: Create a Bot (AWS CLI) (p. 64)
• Step 5: Test a Bot (AWS CLI) (p. 66)

Step 1: Create a Service-Linked Role (AWS CLI)
Amazon Lex assumes AWS Identity and Access Management service-linked roles to call AWS services on
behalf of your bots. The roles, which are in your account, are linked to Amazon Lex use cases and have
predefined permissions. For more information, see Service Permissions (p. 8).

If you've already created an Amazon Lex bot using the console, the service-linked role was created
automatically. Skip to Step 2: Create a Custom Slot Type (AWS CLI) (p. 60).

To create a service-linked role (AWS CLI)

1. In the AWS CLI, type the following command:

aws iam create-service-linked-role --aws-service-name lex.amazonaws.com

2. Check the policy using the following command:

aws iam get-role --role-name AWSServiceRoleForLexBots

The response is:

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "lex.amazonaws.com"
 }
 }
]
 },
 "RoleName": "AWSServiceRoleForLexBots",
 "Path": "/aws-service-role/lex.amazonaws.com/",
 "Arn": "arn:aws:iam::account-id:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
}

59

Amazon Lex Developer Guide
Exercise 1: Create a Bot

Next Step

Step 2: Create a Custom Slot Type (AWS CLI) (p. 60)

Step 2: Create a Custom Slot Type (AWS CLI)
Create a custom slot type with enumeration values for the flowers that can be ordered. You use this type
in the next step when you create the OrderFlowers intent. A slot type defines the possible values for a
slot, or parameter, of the intent.

To create a custom slot type (AWS CLI)

1. Create a text file named FlowerTypes.json. Copy the JSON code from FlowerTypes.json (p. 60)
into the text file.

2. Call the PutSlotType (p. 281) operation using the AWS CLI to create the slot type:

aws lex-models put-slot-type --name FlowerTypes --cli-input-json file://
FlowerTypes.json

The response from the server is:

{
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "checksum": "checksum",
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "description": "Types of flowers to pick up"
}

Next Step

Step 3: Create an Intent (AWS CLI) (p. 61)

FlowerTypes.json

The following code is the JSON data required to create the FlowerTypes custom slot type:

{
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"

60

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 }
],
 "name": "FlowerTypes",
 "description": "Types of flowers to pick up"
}

Step 3: Create an Intent (AWS CLI)
Create an intent for the OrderFlowersBot bot and provide three slots, or parameters. The slots allow the
bot to fulfill the intent:

• FlowerType is a custom slot type that specifies which types of flowers can be ordered.
• AMAZON.DATE and AMAZON.TIME are built-in slot types used for getting the date and time to deliver the

flowers from the user.

To create the OrderFlowers intent (AWS CLI)

1. Create a text file named OrderFlowers.json. Copy the JSON code from OrderFlowers.json (p. 62)
into the text file.

2. In the AWS CLI, call the PutIntent (p. 272) operation to create the intent:

aws lex-models put-intent --name OrderFlowers --cli-input-json file://OrderFlowers.json

The server responds with the following:

{
 "confirmationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "$LATEST",
 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers"
],
 "slots": [
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {

61

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 },
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to order?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },
 {
 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be picked
 up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Next Step

Step 4: Create a Bot (AWS CLI) (p. 64)

OrderFlowers.json

The following code is the JSON data required to create the OrderFlowers intent:

62

Amazon Lex Developer Guide
Exercise 1: Create a Bot

{
 "confirmationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers"
],
 "slots": [
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to order?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },
 {
 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be picked
 up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 },
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",

63

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Step 4: Create a Bot (AWS CLI)
The OrderFlowersBot bot has one intent, the OrderFlowers intent that you created in the previous step.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To create the OrderFlowersBot bot (AWS CLI)

1. Create a text file named OrderFlowersBot.json. Copy the JSON code from
OrderFlowersBot.json (p. 65) into the text file.

2. In the AWS CLI, call the PutBot (p. 260) operation to create the bot:

aws lex-models put-bot --name OrderFlowersBot --cli-input-json file://
OrderFlowersBot.json

The response from the server follows. When you create or update bot, the status field is set to
BUILDING. This indicates that the bot isn't ready to use. To determine when the bot is ready for use,
use the GetBot (p. 208) operation in the next step .

{
 "status": "BUILDING",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",
 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",

64

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "processBehavior": "BUILD",
 "description": "Bot to order flowers on the behalf of a user"
}

3. To determine if your new bot is ready for use, run the following command. Repeat this command
until the status field returns READY:

aws lex-models get-bot --name OrderFlowersBot --version-or-alias "\$LATEST"

Look for the status field in the response:

{
 "status": "READY",

 ...

}

Next Step

Step 5: Test a Bot (AWS CLI) (p. 66)

OrderFlowersBot.json

The following code provides the JSON data required to build the OrderFlowers Amazon Lex bot:

{
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [

65

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"
}

Step 5: Test a Bot (AWS CLI)
To test the bot,you can use either a text-based or a speech-based test.

Topics
• Test the Bot Using Text Input (AWS CLI) (p. 66)
• Test the Bot Using Speech Input (AWS CLI) (p. 67)

Test the Bot Using Text Input (AWS CLI)

To verify that the bot works correctly with text input, use the PostText (p. 292) operation.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To use text to test the bot (AWS CLI)

1. In the AWS CLI, start a conversation with the OrderFlowersBot bot:

aws lex-runtime post-text --bot-name OrderFlowersBot --bot-alias "\$LATEST" --user-id
 UserOne --input-text "i would like to order flowers"

Amazon Lex recognizes the user's intent and starts a conversation by returning the following
response:

{
 "slotToElicit": "FlowerType",
 "slots": {
 "PickupDate": null,
 "PickupTime": null,
 "FlowerType": null
 },
 "dialogState": "ElicitSlot",
 "message": "What type of flowers would you like to order?",
 "intentName": "OrderFlowers"
}

2. Run the following commands to finish the conversation with the bot.

aws lex-runtime post-text --bot-name OrderFlowersBot --bot-alias "\$LATEST" --user-id
 UserOne --input-text "roses"

aws lex-runtime post-text --bot-name OrderFlowersBot --bot-alias "\$LATEST" --user-id
 UserOne --input-text "tuesday"

66

Amazon Lex Developer Guide
Exercise 1: Create a Bot

aws lex-runtime post-text --bot-name OrderFlowersBot --bot-alias "\$LATEST" --user-id
 UserOne --input-text "10:00 a.m."

aws lex-runtime post-text --bot-name OrderFlowersBot --bot-alias "\$LATEST" --user-id
 UserOne --input-text "yes"

After you confirm the order, Amazon Lex sends a fulfillment response to complete the conversation:

{
 "slots": {
 "PickupDate": "2017-05-16",
 "PickupTime": "10:00",
 "FlowerType": "roses"
 },
 "dialogState": "ReadyForFulfillment",
 "intentName": "OrderFlowers"
}

Next Step

Test the Bot Using Speech Input (AWS CLI) (p. 67)

Test the Bot Using Speech Input (AWS CLI)

To test the bot using audio files, use the PostContent (p. 285) operation. You generate the audio files
using Amazon Polly text-to-speech operations.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To use a speech input to test the bot (AWS CLI)

1. In the AWS CLI, create an audio file using Amazon Polly:

aws polly synthesize-speech --output-format pcm --text "i would like to order flowers"
 --voice-id "Kendra" IntentSpeech.mpg

2. To send the audio file to Amazon Lex, run the following command. Amazon Lex saves the audio from
the response in the specified output file.

aws lex-runtime post-content --bot-name OrderFlowersBot --bot-alias "\$LATEST" --
user-id UserOne --content-type "audio/l16; rate=16000; channels=1" --input-stream
 IntentSpeech.mpg IntentOutputSpeech.mpg

Amazon Lex responds with a request for the first slot. It saves the audio response in the specified
output file.

{
 "contentType": "audio/mpeg",
 "slotToElicit": "FlowerType",
 "dialogState": "ElicitSlot",
 "intentName": "OrderFlowers",
 "inputTranscript": "i would like to order some flowers",
 "slots": {
 "PickupDate": null,

67

Amazon Lex Developer Guide
Exercise 1: Create a Bot

 "PickupTime": null,
 "FlowerType": null
 },
 "message": "What type of flowers would you like to order?"
}

3. To set the appointment type, create the following audio file and send it to Amazon Lex :

aws polly synthesize-speech --output-format pcm --text "roses" --voice-id "Kendra"
 FlowerTypeSpeech.mpg

aws lex-runtime post-content --bot-name OrderFlowersBot --bot-alias "\$LATEST" --
user-id UserOne --content-type "audio/l16; rate=16000; channels=1" --input-stream
 FlowerTypeSpeech.mpg FlowerTypeOutputSpeech.mpg

4. To set the appointment date, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech --output-format pcm --text "tuesday" --voice-id "Kendra"
 DateSpeech.mpg

aws lex-runtime post-content --bot-name OrderFlowersBot --bot-alias "\$LATEST" --
user-id UserOne --content-type "audio/l16; rate=16000; channels=1" --input-stream
 DateSpeech.mpg DateOutputSpeech.mpg

5. UTo set the appointment time, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech --output-format pcm --text "10:00 a.m." --voice-id "Kendra"
 TimeSpeech.mpg

aws lex-runtime post-content --bot-name OrderFlowersBot --bot-alias "\$LATEST" --
user-id UserOne --content-type "audio/l16; rate=16000; channels=1" --input-stream
 TimeSpeech.mpg TimeOutputSpeech.mpg

6. To confirm the appointment, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech --output-format pcm --text "yes" --voice-id "Kendra"
 ConfirmSpeech.mpg

aws lex-runtime post-content --bot-name OrderFlowersBot --bot-alias "\$LATEST" --
user-id UserOne --content-type "audio/l16; rate=16000; channels=1" --input-stream
 ConfirmSpeech.mpg ConfirmOutputSpeech.mpg

After you confirm the appointment, Amazon Lex sends a response that confirms fulfillment of the
intent:

{
 "contentType": "text/plain;charset=utf-8",
 "dialogState": "ReadyForFulfillment",
 "intentName": "OrderFlowers",
 "inputTranscript": "yes",
 "slots": {
 "PickupDate": "2017-05-16",
 "PickupTime": "10:00",
 "FlowerType": "roses"
 }
}

68

Amazon Lex Developer Guide
Exercise 2: Add a New Utterance

Next Step

Exercise 2: Add a New Utterance (AWS CLI) (p. 69)

Exercise 2: Add a New Utterance (AWS CLI)
To improve the machine learning model that Amazon Lex uses to recognize requests from your users,
add another sample utterance to the bot.

Adding a new utterance is a four-step process.

1. Use the GetIntent (p. 237) operation to get an intent from Amazon Lex.
2. Update the intent.
3. Use the PutIntent (p. 272) operation to send the updated intent back to Amazon Lex.
4. Use the GetBot (p. 208) and PutBot (p. 260) operations to rebuild any bot that uses the intent.

The response from the GetIntent operation contains a field called checksum that identifies a specific
revision of the intent. You must provide the checksum value when you use the PutIntent (p. 272)
operation to update an intent. If you don't, you'll get the following error message:

 An error occurred (PreconditionFailedException) when calling
 the PutIntent operation: Intent intent name already exists.
 If you are trying to update intent name you must specify the
 checksum.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To update the OrderFlowers intent (AWS CLI)

1. In the AWS CLI, get the intent from Amazon Lex. Amazon Lex sends the output to a file called
OrderFlowers-V2.json.

aws lex-models get-intent --name OrderFlowers --intent-version "\$LATEST" >
 OrderFlowers-V2.json

2. Open OrderFlowers-V2.json in a text editor.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.
2. Add the following to the sampleUtterances field:

I want to order flowers

3. Save the file.
3. Send the updated intent to Amazon Lex with the following command:

aws lex-models put-intent --name OrderFlowers --cli-input-json file://OrderFlowers-
V2.json

Amazon Lex sends the following response:

{
 "confirmationPrompt": {

69

Amazon Lex Developer Guide
Exercise 2: Add a New Utterance

 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "$LATEST",
 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers",
 "I want to order flowers"
],
 "slots": [
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 },
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to order?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },
 {

70

Amazon Lex Developer Guide
Exercise 2: Add a New Utterance

 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be picked
 up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Now that you have updated the intent, rebuild any bot that uses it.

To rebuild the OrderFlowersBot bot (AWS CLI)

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file with the following
command:

aws lex-models get-bot --name OrderFlowersBot --version-or-alias "\$LATEST" >
 OrderFlowersBot-V2.json

2. In a text editor, open OrderFlowersBot-V2.json. Remove the createdDate, lastUpdatedDate, status
and version fields.

3. In a text editor, add the following line to the bot definition:

"processBehavior": "BUILD",

4. In the AWS CLI, build a new revision of the bot by running the following command to :

aws lex-models put-bot --name OrderFlowersBot --cli-input-json file://OrderFlowersBot-
V2.json

The response from the server is:

{
 "status": "BUILDING",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",
 "abortStatement": {
 "messages": [
 {

71

Amazon Lex Developer Guide
Exercise 3: Add a Lambda Function

 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"
}

Next Step
Exercise 3: Add a Lambda Function (AWS CLI) (p. 72)

Exercise 3: Add a Lambda Function (AWS CLI)
Add a Lambda function that validates user input and fulfills the user's intent to the bot.

Adding a Lambda expression is a five-step process.

1. Use the Lambda AddPermission function to enable the OrderFlowers intent to call the Lambda Invoke
operation.

2. Use the GetIntent (p. 237) operation to get the intent from Amazon Lex.
3. Update the intent to add the Lambda function.
4. Use the PutIntent (p. 272) operation to send the updated intent back to Amazon Lex.
5. Use the GetBot (p. 208) and GetBot (p. 208) operations to rebuild any bot that uses the intent.

If you add a Lambda function to an intent before you add the InvokeFunction permission, you get the
following error message:

 An error occurred (BadRequestException) when calling the
 PutIntent operation: Lex is unable to access the Lambda
 function Lambda function ARN in the context of intent
 intent ARN. Please check the resource-based policy on
 the function.

The response from the GetIntent operation contains a field called checksum that identifies a specific
revision of the intent. When you use the PutIntent (p. 272) operation to update an intent, you must
provide the checksum value. If you don't, you get the following error message:

 An error occurred (PreconditionFailedException) when calling

72

http://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html

Amazon Lex Developer Guide
Exercise 3: Add a Lambda Function

 the PutIntent operation: Intent intent name already exists.
 If you are trying to update intent name you must specify the
 checksum.

This exercise uses the Lambda function from Example Bot: ScheduleAppointment (p. 103). For
instructions to create the Lambda function, see Step 2: Create a Lambda Function (p. 108).

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To add a Lambda function to an intent

1. In the AWS CLI, add the InvokeFunction permission for the OrderFlowers intent:

aws lambda add-permission --function-name OrderFlowersCodeHook --statement-id
 LexGettingStarted-OrderFlowersBot --action lambda:InvokeFunction --principal
 lex.amazonaws.com --source-arn "arn:aws:lex:region:account ID:intent:OrderFlowers:*"

Lambda sends the following response:

{
 "Statement": "{\"Sid\":\"LexGettingStarted-OrderFlowersBot\",
 \"Resource\":\"arn:aws:lambda:region:account ID:function:OrderFlowersCodeHook\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"Service\":\"lex.amazonaws.com\"},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Condition\":{\"ArnLike\":
 {\"AWS:SourceArn\":
 \"arn:aws:lex:region:account ID:intent:OrderFlowers:*\"}}}"
}

2. Get the intent from Amazon Lex. Amazon Lex sends the output to a file called OrderFlowers-
V3.json.

aws lex-models get-intent --name OrderFlowers --intent-version "\$LATEST" >
 OrderFlowers-V3.json

3. In a text editor, open the OrderFlowers-V3.json.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.
2. Update the fulfillmentActivity field :

 "fulfillmentActivity": {
 "type": "CodeHook",
 "codeHook": {
 "uri": "arn:aws:lambda:region:account ID:function:OrderFlowersCodeHook",
 "messageVersion": "1.0"
 },

3. Save the file.
4. In the AWS CLI, send the updated intent to Amazon Lex:

aws lex-models put-intent --name OrderFlowers --cli-input-json file://OrderFlowers-
V3.json

Now that you have updated the intent, rebuild the bot.

73

Amazon Lex Developer Guide
Exercise 3: Add a Lambda Function

To rebuild the OrderFlowersBot bot

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot --name OrderFlowersBot --version-or-alias "\$LATEST" >
 OrderFlowersBot-V3.json

2. In a text editor,open OrderFlowersBot-V3.json. Remove the createdDate, lastUpdatedDate, status,
and version fields.

3. In the text editor, add the following line to the definition of the bot:

"processBehavior": "BUILD",

4. In the AWS CLI, build a new revision of the bot:

aws lex-models put-bot --name OrderFlowersBot --cli-input-json file://OrderFlowersBot-
V3.json

The response from the server is:

{
 "status": "READY",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",
 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"
}

74

Amazon Lex Developer Guide
Exercise 4: Publish a Version

Next Step

Exercise 4: Publish a Version (AWS CLI) (p. 75)

Exercise 4: Publish a Version (AWS CLI)
Now, create a version of the bot that you created in Exercise 1. A version is a snapshot of the bot. After
you create a version, you can’t change it. The only version of a bot that you can update is the $LATEST
version. For more information about versions, see Versioning and Aliases (p. 81).

Before you can publish a version of a bot, you must publish the intents that is uses. Likewise, you must
publish the slot types that those intents refer to. In general, to publish a version of a bot, you do the
following:

1. Publish a version of a slot type with the CreateSlotTypeVersion (p. 186) operation.

2. Publish a version of an intent with the CreateIntentVersion (p. 180) operation.

3. Publish a version of a bot with the CreateBotVersion (p. 175) operation .

Topics

• Step 1: Publish the Slot Type (AWS CLI) (p. 75)

• Step 2: Publish the Intent (AWS CLI) (p. 76)

• Step 3: Publish the Bot (AWS CLI) (p. 77)

Step 1: Publish the Slot Type (AWS CLI)

Before you can publish a version of any intents that use a slot type, you must publish a version of that
slot type. In this case, you publish the FlowerTypes slot type.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To publish a slot type (AWS CLI)

1. In the AWS CLI, get the latest version of the slot type:

aws lex-models get-slot-type --name FlowerTypes --slot-type-version "\$LATEST"

The response from Amazon Lex follows. Record the checksum for the current revision of the $LATEST
version.

{
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],

75

Amazon Lex Developer Guide
Exercise 4: Publish a Version

 "name": "FlowerTypes",
 "checksum": "checksum",
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "description": "Types of flowers to pick up"
}

2. Publish a version of the slot type. Use the checksum that you recorded in the previous step.

aws lex-models create-slot-type-version --name FlowerTypes --checksum "checksum"

The response from Amazon Lex follows. Record the version number for the next step.

{
 "version": "1",
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "description": "Types of flowers to pick up"
}

Next Step

Step 2: Publish the Intent (AWS CLI) (p. 76)

Step 2: Publish the Intent (AWS CLI)

Before you can publish an intent, you have to publish all of the slot types referred to by the intent. The
slot types must be numbered versions, not the $LATEST version.

First, update the OrderFlowers intent to use the version of the FlowerTypes slot type that you published
in the previous step. Then publish a new version of the OrderFlowers intent.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To publish a version of an intent (AWS CLI)

1. In the AWS CLI, get the $LATEST version of the OrderFlowers intent and save it to a file:

aws lex-models get-intent --name OrderFlowers --intent-version "\$LATEST" >
 OrderFlowers_V4.json

2. In a text editor, open the OrderFlowers_V4.json file. Delete the createdDate, lastUpdatedDate, and
version fields. Find the FlowerTypes slot type and change the version to the version number that

76

Amazon Lex Developer Guide
Exercise 4: Publish a Version

you recorded in the previous step. The following fragment of the OrderFlowers_V4.json file shows
the location of the change:

 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "version",
 "sampleUtterances": []
 },

3. In the AWS CLI, save the revision of the intent:

aws lex-models put-intent --name OrderFlowers --cli-input-json file://
OrderFlowers_V4.json

4. Get the checksum of the latest revision of the intent:

aws lex-models get-intent --name OrderFlowers > OrderFlowers_V4a.json

The following fragment of the response shows the checksum of the intent. Record this for the next
step.

 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "$LATEST",

5. Publish a new version of the intent:

aws lex-models create-intent-version --name OrderFlowers --checksum "checksum"

The following fragment of the response shows the new version of the intent. Record the version
number for the next step.

 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "version",

Next Step

Step 3: Publish the Bot (AWS CLI) (p. 77)

Step 3: Publish the Bot (AWS CLI)

After you have published all of the slot types and intents that are used by your bot, you can publish the
bot.

77

Amazon Lex Developer Guide
Exercise 4: Publish a Version

Update the OrderFlowersBot bot to use the OrderFlowers intent that you updated in the previous step.
Then, publish a new version of the OrderFlowersBot bot.

Note
The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows, change
"\$LATEST" to $LATEST.

To publish a version of a bot (AWS CLI)

1. In the AWS CLI, get the $LATEST version of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot --name OrderFlowersBot --version-or-alias "\$LATEST" >
 OrderFlowersBot_V4.json

2. In a text editor, open the OrderFlowersBot_V4.json file. Delete the createdDate, lastUpdatedDate,
status and version fields. Find the OrderFlowers intent and change the version to
the version number that you recorded in the previous step. The following fragment of
OrderFlowersBot_V4.json shows the location of the change.

 "intents": [
 {
 "intentVersion": "version",
 "intentName": "OrderFlowers"
 }

3. In the AWS CLI, save the new revision of the bot:

aws lex-models put-bot --name OrderFlowersBot --cli-input-json file://
OrderFlowersBot_V4.json

4. Get the checksum of the latest revision of the bot:

aws lex-models get-bot --name OrderFlowersBot > OrderFlowersBot_V4a.json

The following fragment of the response shows the checksum of the bot. Record this for the next
step.

 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",

5. Publish a new version of the bot:

aws lex-models create-bot-version --name OrderFlowersBot --checksum "checksum"

The following fragment of the response shows the new version of the bot.

 "checksum": "checksum",
 "abortStatement": {
 ...
 },
 "version": "1",
 "lastUpdatedDate": timestamp,

Next Step

Exercise 5: Create an Alias (AWS CLI) (p. 79)

78

Amazon Lex Developer Guide
Exercise 5: Create an Alias

Exercise 5: Create an Alias (AWS CLI)
An alias is a pointer to a specific version of a bot. With an alias you can easily update the version that
your client applications are using. For more information, see Versioning and Aliases (p. 81)

To create an alias (AWS CLI)

1. In the AWS CLI, get the version of the OrderFlowersBot bot that you created in Exercise 4: Publish a
Version (AWS CLI) (p. 75).

aws lex-models get-bot --name OrderFlowersBot --version-or-alias version >
 OrderFlowersBot_V5.json

2. In a text editor, open OrderFlowersBot_v5.json. Find and record the version number.
3. In the AWS CLI, create the bot alias:

aws lex-models put-bot-alias --name PROD --bot-name OrderFlowersBot --bot-
version version

The following is the reponse from the server:

{
 "name": "PROD",
 "createdDate": timestamp,
 "checksum": "checksum",
 "lastUpdatedDate": timestamp,
 "botName": "OrderFlowersBot",
 "botVersion": "1"
}}

Next Step
Exercise 6: Clean Up (AWS CLI) (p. 79)

Exercise 6: Clean Up (AWS CLI)
Delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the following
order.

1. Delete aliases to free up bot resources.
2. Delete bots to free up intent resources.
3. Delete intents to free up slot type resources.
4. Delete slot types.

To clean up your account (AWS CLI)

1. In the AWS CLI command line, delete the alias:

aws lex-models delete-bot-alias --name PROD --bot-name OrderFlowersBot

2. In the AWS CLI command line, delete the bot:

79

Amazon Lex Developer Guide
Exercise 6: Clean Up

aws lex-models delete-bot --name OrderFlowersBot

3. In the AWS CLI command line, delete the intent:

aws lex-models delete-intent --name OrderFlowers

4. From the AWS CLI command line, delete the slot type:

aws lex-models delete-slot-type --name FlowerTypes

You have removed all of the resources that you created and cleaned up your account.

80

Amazon Lex Developer Guide
Versioning

Versioning and Aliases

Describes using versions and aliases with Amazon Lex.

Amazon Lex supports publishing versions of bots, intents, and slot types so that you can control the
implementation that your client applications use. A version is a numbered snapshot of your work that
you can publish for use in different parts of your workflow, such as development, beta deployment, and
production.

Amazon Lex bots also support aliases. An alias is a pointer to a specific version of a bot. With an alias,
you can easily update the version that your client applications are using. For example, you can point an
alias to version 1 of your bot. When you are ready to update the bot, you publish version 2 and change
the alias to point to the new version. Because your applications use the alias instead of a specific version,
all of your clients get the new functionality without needing to be updated.

Topics
• Versioning (p. 81)
• Aliases (p. 83)

Versioning
When you version an Amazon Lex resource you create a snapshot of the resource so that you can use
the resource as it existed when the version was made. Once you've created a version it will stay the same
while you continue to work on your application.

The $LATEST Version
When you create an Amazon Lex bot, intent, or slot type there is only one version, the $LATEST version.

81

Amazon Lex Developer Guide
Publishing an Amazon Lex Resource Version

$LATEST is the working copy of your resource. You can update only the $LATEST version and until you
publish your first version, $LATEST is the only version of the resource that you have.

Only the $LATEST version of a resource can use the $LATEST version of another resource. For example, the
$LATEST version of a bot can use the $LATEST version of an intent, and the $LATEST version of an intent
can use the $LATEST version of a slot type.

Publishing an Amazon Lex Resource Version
When you publish a resource, Amazon Lex makes a copy of the $LATEST version and saves it as a
numbered version. The published version can't be changed.

You create and publish versions using the Amazon Lex console or the CreateBotVersion (p. 175)
operation. For an example, see Exercise 3: Publish a Version and Create an Alias (p. 57).

When you modify the $LATEST version of a resource, you can publish the new version to make the
changes available to your client applications. Every time you publish a version, Amazon Lex copies the
$LATEST version to create the new version and increments the version number by 1. Version numbers are
never reused. For example, if you remove a resource numbered version 10 and then recreate it, the next
version number Amazon Lex assigns is version 11.

Before you can publish a bot, you must point it to a numbered version of any intent that it uses. If you
try to publish a new version of a bot that uses the $LATEST version of an intent, Amazon Lex returns an
HTTP 400 Bad Request exception. Before you can publish a numbered version of the intent, you must
point the intent to a numbered version of any slot type that it uses. Otherwise you will get an HTTP 400
Bad Request exception.

Note
Amazon Lex publishes a new version only if the last published version is different from the
$LATEST version. If you try to publish the $LATEST version without modifying it, Amazon Lex
doesn't create or publish a new version.

Updating an Amazon Lex Resource
You can update only the $LATEST version of an Amazon Lex bot, intent, or slot type. Published
versions can't be changed. You can publish a new version any time after you update a resource

82

Amazon Lex Developer Guide
Deleting an Amazon Lex Resource or Version

in the console or with the CreateBotVersion (p. 175), the CreateIntentVersion (p. 180) or the
CreateSlotTypeVersion (p. 186) operations.

Deleting an Amazon Lex Resource or Version
Amazon Lex supports deleting a resource or version using the console or one of the API operations:

• DeleteBot (p. 190)

• DeleteBotVersion (p. 196)

• DeleteBotAlias (p. 192)

• DeleteBotChannelAssociation (p. 194)

• DeleteIntent (p. 198)

• DeleteIntentVersion (p. 200)

• DeleteSlotType (p. 202)

• DeleteSlotTypeVersion (p. 204)

Aliases
An alias is a pointer to a specific version of an Amazon Lex bot. Use an alias to allow client applications
to use a specific version of the bot without requiring the application to track which version that is.

The following example shows two versions of an Amazon Lex bot, version $LATEST and version 1. Each of
these bot versions has an associated alias, DEV and PROD, respectively. Client applications use the PROD
alias to access the bot.

When you create a second version of the bot, you can update the alias to point to the new version of the
bot using the console or the PutBot (p. 260) operation. When you change the alias, all of your client
applications use the new version. If there is a problem with the new version, you can roll back to the
previous version by simply changing the alias to point to that version.

83

Amazon Lex Developer Guide
Aliases

Note
Although you can test the $LATEST version of a bot in the console, we recommend that when
you integrate a bot with your client application, you first publish a version and create an alias
that points to that version. Use the alias in your client application for the reasons explained in
this section. When you update an alias, it might take a few minutes for the change to propagate.

84

Amazon Lex Developer Guide
Lambda Function Input Event and Response Format

Using Lambda Functions

You can create AWS Lambda functions to use as code hooks for your Amazon Lex bot. You can
identify Lambda functions to perform initialization and validation, fulfillment, or both in your intent
configuration.

We recommend that you use a Lambda function as a code hook for your bot. Without a Lambda
function, your bot returns the intent information to the client application for fulfillment.

Topics
• Lambda Function Input Event and Response Format (p. 85)
• Amazon Lex and AWS Lambda Blueprints (p. 91)

Lambda Function Input Event and Response
Format

This section describes the structure of the event data that Amazon Lex provides to a Lambda function.
Use this information to parse the input in your Lambda code. It also explains the format of the response
that Amazon Lex expects your Lambda function to return.

Topics
• Input Event Format (p. 85)
• Response Format (p. 88)

Input Event Format
The following shows the general format of an Amazon Lex event that is passed to a Lambda function.
Use this information when you are writing your Lambda function.

Note
The input format may change without a corresponding change in the messageVersion. Your
code should not throw an error if new fields are present.

{
 "currentIntent": {
 "name": "intent-name",
 "slots": {

85

Amazon Lex Developer Guide
Input Event Format

 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)",
 },
 "bot": {
 "name": "bot-name",
 "alias": "bot-alias",
 "version": "bot-version"
 },
 "userId": "User ID specified in the POST request to Amazon Lex.",
 "inputTranscript": "Text used to process the request",
 "invocationSource": "FulfillmentCodeHook or DialogCodeHook",
 "outputDialogMode": "Text or Voice, based on ContentType request header in runtime API
 request",
 "messageVersion": "1.0",
 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2"
 }
}

Note the following additional information about the event fields:

• currentIntent – Provides the intent name, slots, and confirmationStatus fields.

Slots provides a list of slots that are configured for the intent and values that are recognized by
Amazon Lex in the user conversation. Otherwise, the values are null.

Slots is a map of slot names, configured for the intent, to slot values that Amazon Lex has recognized
in the user conversation. A slot value remains null until the user provides a value.

A slot value may not match one of the slot values configured for the slot. For example, if the user
responds to the prompt "What color car would you like?" with "pizza," Amazon Lex will return "pizza"
as the slot type value. Your function should validate the values to make sure that they make sense in
context.

confirmationStatus provides the user response to a confirmation prompt, if there is one. For example,
if Amazon Lex asks "Do you want to order a large cheese pizza?," depending on the user response, the
value of this field can be Confirmed or Denied. Otherwise, this value of this field is None.

If the user confirms the intent, Amazon Lex sets this field to Confirmed. If the user denies the intent,
Amazon Lex sets this value to Denied.

In the confirmation response, a user utterance might provide slot updates. For example, the user might
say "yes, change size to medium." In this case, the subsequent Lambda event has the updated slot
value, PizzaSize set to medium. Amazon Lex sets the confirmationStatus to None, because the user
modified some slot data, requiring the Lambda function to perform user data validation.

86

Amazon Lex Developer Guide
Input Event Format

• bot – Information about the bot that processed the request.

• name – The name of the bot that processed the request.

• alias – The alias of the bot version that processed the request.

• version – The version of the bot that processed the request.

• userId – This value is provided by the client application. Amazon Lex passes it to the Lambda function.

• inputTranscript – The text used to process the request.

If the input was text, the inputTranscript field contains the text that was input by the user.

If the input was an audio stream, the inputTranscript field contains the text extracted from the audio
stream. This is the text that is actually processed to recognize intents and slot values.

• invocationSource – To indicate why Amazon Lex is invoking the Lambda function, it sets this to one of
the following values:

• DialogCodeHook – Amazon Lex sets this value to direct the Lambda function to initialize the function
and to validate the user's data input.

When the intent is configured to invoke a Lambda function as an initialization and validation code
hook, Amazon Lex invokes the specified Lambda function on each user input (utterance) after
Amazon Lex understands the intent.

Note
If the intent is not clear, Amazon Lex can't invoke the Lambda function.

• FulfillmentCodeHook – Amazon Lex sets this value to direct the Lambda function to fulfill an intent.

If the intent is configured to invoke a Lambda function as a fulfillment code hook, Amazon Lex sets
the invocationSource to this value only after it has all the slot data to fulfill the intent.

In your intent configuration, you can have two separate Lambda functions to initialize and validate
user data and to fulfill the intent. You can also use one Lambda function to do both. In that case, your
Lambda function can use the invocationSource value to follow the correct code path.

• outputDialogMode – For each user input, the client sends the request to Amazon Lex using one of
the runtime API operations, PostContent (p. 285) or PostText (p. 292). Amazon Lex use the request
parameters, Amazon Lex to determine whether the response to the client is text or voice, and sets this
field accordingly.

The Lambda function can use this information to generate an appropriate message. For example,
if the client expects a voice response, your Lambda function could return Speech Synthesis Markup
LanguageSpeech Synthesis Markup Language (SSML) instead of text.

87

Amazon Lex Developer Guide
Response Format

• messageVersion – The version of the message that identifies the format of the event data going into

the Lambda function and the expected format of the response from a Lambda function.

Note
You configure this value when you define an intent. In the current implementation, only
message version 1.0 is supported. Therefore, the console assumes the default value of 1.0 and
doesn't show the message version.

• sessionAttributes – Application-specific session attributes that the client sent in the request. If you
want Amazon Lex to include them in the response to the client, your Lambda function should send
these back to Amazon Lex in the response. For more information, see the runtime API operations,
PostContent (p. 285) and PostText (p. 292).

Response Format
Amazon Lex expects a response from a Lambda function in the following format:

{
 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2"
 ...
 },
 "dialogAction": {
 "type": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or Close",
 Full structure based on the type field. See below for details.
 }
}

The response consists of two fields. The sessionAttributes field is optional, the dialogAction field is
required. The contents of the dialogAction field depends on the value of the type field.For details,
see dialogAction (p. 88).

sessionAttributes
Optional. If you include the sessionAttributes field it can be empty. If you want Amazon Lex to include
any session attributes in the response to the client application, your Lambda function must return them
in this field. For more information, see the PostContent (p. 285) and PostText (p. 292) operations.

 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2"
 }

dialogAction
Required. The dialogAction field directs Amazon Lex to the next course of action, and describes what to
expect from the user after Amazon Lex returns a response to the client.

The type field indicates the next course of action. It also determines the other fields that the Lambda
function needs to provide as part of the dialogAction value.

• Close — Informs Amazon Lex not to expect a response from the user. For example, "Your pizza order
has been placed" does not require a response.

88

Amazon Lex Developer Guide
Response Format

The fulfillmentState field is required. Amazon Lex uses this value to set the dialogState in the
response to the client application. The message and responseCard fields are optional. If you don't
specify a message, Amazon Lex uses the goodbye message or the follow-up message configured for
the intent.

"dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled or Failed",
 "message": {
 "contentType": "PlainText or SSML",
 "content": "Message to convey to the user. For example, Thanks, your pizza has been
 ordered."
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

• ConfirmIntent — Informs Amazon Lex that the user is expected to give a yes or no answer to confirm
or deny the current intent.

You must include the intentName and slots fields. The slots field must contain an entry for each of
the slots configured for the specified intent. If the value of a slot is unknown, you must set it to null.
The message and responseCard fields are optional.

"dialogAction": {
 "type": "ConfirmIntent",
 "message": {
 "contentType": "PlainText or SSML",
 "content": "Message to convey to the user. For example, Are you sure you want a
 large pizza?"
 },
 "intentName": "intent-name",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {

89

Amazon Lex Developer Guide
Response Format

 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

• Delegate — Directs Amazon Lex to choose the next course of action based on the bot configuration.
The response must include any session attributes, and the slots field must include all of the slots
specified for the requested intent. If the value of the field is unknown, you must set it to null. You will
get a DependencyFailedException exception if your fufillment function returns the Delegate dialog
action without removing any slots.

 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 }
 }

• ElicitIntent — Informs Amazon Lex that the user is expected to respond with an utterance that
includes an intent. For example, "I want a large pizza," which indicates the OrderPizzaIntent. The
utterance "large," on the other hand, is not sufficient for Amazon Lex to infer the user's intent.

The message and responseCard fields are optional. If you don't provide a message, Amazon Lex uses
one of the bot's clarification prompts.

 {
 "dialogAction": {
 "type": "ElicitIntent",
 "message": {
 "contentType": "PlainText or SSML",
 "content": "Message to convey to the user. For example, What can I help you
 with?"
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the
 card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }

90

Amazon Lex Developer Guide
Amazon Lex and AWS Lambda Blueprints

]
 }
]
 }
 }

• ElicitSlot — Informs Amazon Lex that the user is expected to provide a slot value in the response.

The intentName, slotToElicit, and slots fields are required. The slots field must include all of the
slots specified for the requested intent. The message and responseCard fields are optional. If you don't
specify a message, Amazon Lex uses one of the slot elicitation prompts configured for the slot.

 "dialogAction": {
 "type": "ElicitSlot",
 "message": {
 "contentType": "PlainText or SSML",
 "content": "Message to convey to the user. For example, What size pizza would you
 like?"
 },
 "intentName": "intent-name",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "slotToElicit" : "slot-name",
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

Amazon Lex and AWS Lambda Blueprints
The Amazon Lex console provides example bots (called bot blueprints) that are preconfigured so you can
quickly create and test a bot in the console. For each of these bot blueprints, Lambda function blueprints
are also provided. These blueprints provide sample code that works with their corresponding bots. You
can use these blueprints to quickly create a bot that is configured with a Lambda function as a code
hook, and test the end-to-end setup without having to write code.

You can use the following Amazon Lex bot blueprints and the corresponding AWS Lambda function
blueprints as code hooks for bots:

• Amazon Lex blueprint — OrderFlowers

91

Amazon Lex Developer Guide
Amazon Lex and AWS Lambda Blueprints

• AWS Lambda blueprints — lex-order-flowers (Node.js code) and lex-order-flowers-python
• Amazon Lex blueprint — ScheduleAppointment

• AWS Lambda blueprints — lex-make-appointment (Node.js code) and lex-make-appointment-
python

• Amazon Lex blueprint — BookTrip
• AWS Lambda blueprints — lex-book-trip (Node.js code) and lex-book-trip-python

To create a bot using a blueprint and configure it to use a Lambda function as a code hook, see
Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console) (p. 24). For an example of using other
blueprints, see Additional Examples: Creating Amazon Lex Bots (p. 103).

92

Amazon Lex Developer Guide
Deploying an Amazon Lex Bot on a Messaging Platform

Deploying Amazon Lex Bots on
Various Platforms

This section provides examples of deploying your Amazon Lex bot on various platforms.

Topics

• Deploying an Amazon Lex Bot on a Messaging Platform (p. 93)

• Deploying an Amazon Lex Bot in Mobile Applications (p. 102)

Deploying an Amazon Lex Bot on a Messaging
Platform

This section provides examples of deploying your Amazon Lex bot on various platforms.

Note
Amazon Lex uses AWS Key Management Service customer master keys (CMK) when storing your
Facebook, Slack, or Twilio configurations. The first time that you integrate a messaging channel,
Amazon Lex creates a default CMK (aws/lex). Alternatively, you can create your own CMK with
AWS KMS. This gives you more flexibility, including the ability to create, rotate, and disable keys.
You can also define access controls and audit the encryption keys used to protect your data. For
more information, see the AWS Key Management Service Developer Guide.

Topics

• Integrating an Amazon Lex Bot with Facebook Messenger (p. 94)

• Integrating an Amazon Lex Bot with Twilio Programmable SMS (p. 96)

• Integrating an Amazon Lex Bot with Slack (p. 98)

93

http://docs.aws.amazon.com/kms/latest/developerguide/

Amazon Lex Developer Guide
Integrating with Facebook

Integrating an Amazon Lex Bot with Facebook
Messenger
Topics

• Step 1: Create an Amazon Lex Bot (p. 94)
• Step 2: Create a Facebook Application (p. 94)
• Step 3: Integrate Facebook Messenger with the Amazon Lex Bot (p. 94)
• Step 4: Test the Integration (p. 95)

This exercise shows how to integrate Facebook Messenger with your Amazon Lex bot. You perform the
following steps:

• Create an Amazon Lex bot.
• Integrate Facebook Messenger with your Amazon Lex bot.

Step 1: Create an Amazon Lex Bot
In this section, you create an Amazon Lex bot.

1. Create an Amazon Lex bot. For instructions, see Getting Started with Amazon Lex (p. 21).
2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and Create an

Alias (p. 57).

Step 2: Create a Facebook Application
On the Facebook developer portal, create a Facebook application and a Facebook page. For instructions,
see Quick Start in the Facebook Messenger platform documentation. Write down the following:

• App Secret for the Facebook App.
• Page Access Token for the Facebook page.

Step 3: Integrate Facebook Messenger with the Amazon Lex Bot
In this section, you integrate Facebook Messenger with your Amazon Lex bot.

1. Open the Amazon Lex console, and then associate Facebook Messenger with your Amazon Lex bot.

After you complete this step, the console provides a callback URL. Write down this URL.

a. Choose your Amazon Lex bot.
b. Choose the Channels tab.
c. Choose Facebook under For Chatbots. The console displays the Facebook integration page.
d. On the Facebook integration page, provide the following information:

• Type a name: BotFacebookAssociation
• Choose "aws/lex" from the KMS key drop-down.
• Choose the bot alias from the drop-down.
• Type the verify token. This can be any string you choose (for example, ExampleToken). You use

this same token in the Facebook developer portal in the Webhook setup step.

94

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex Developer Guide
Integrating with Facebook

• Type the page access token and the app secret key you obtained from Facebook in the
preceding step.

e. Choose Activate.

The console creates the bot channel association and returns a callback URL. Write down this
URL.

2. On the Facebook developer portal, choose your app. Then, select the Messenger product and choose
Setup webhooks in the Webhooks section of the page.

For instructions, see Quick Start in the Facebook Messenger platform documentation.

On the webhook page of the subscription wizard, do the following:

• For Callback URL, type the callback URL provided in the Amazon Lex console in the preceding
section.

• For Verify Token, type the same token that you used in Amazon Lex.

• Choose Subscription Fields (messages, messaging_postbacks, and messaging_optins).

• Choose Verify and Save. This results in a handshake between Facebook and Amazon Lex.

3. Enable Webhooks integration. Choose the page you created, and then choose subscribe.

Note
If you update or recreate a webhook, you must unsubscribe and then subscribe to the page
again.

Step 4: Test the Integration

You can now start conversation from Facebook Messenger with your Amazon Lex bot.

1. Open your Facebook page and choose, Message.

2. In the Messenger window that opens, use the same test utterances provided in getting started with
your Amazon Lex bot.

95

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex Developer Guide
Integrating with Twilio SMS

Integrating an Amazon Lex Bot with Twilio
Programmable SMS
Topics

• Step 1: Create an Amazon Lex Bot (p. 96)
• Step 2: Create a Twilio SMS Account (p. 96)
• Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot (p. 96)
• Step 4: Test the Integration (p. 97)

This exercise provides instructions for integrating an Amazon Lex bot with the Twilio simple messaging
service (SMS). You perform the following steps:

• Create an Amazon Lex bot.
• Integrate Twilio programmable SMS with your bot Amazon Lex.
• Engage in an interaction with the Amazon Lex bot by testing the setup using the SMS service on your

mobile phone.

Step 1: Create an Amazon Lex Bot
If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of the
example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an Amazon Lex
Bot Using a Blueprint (Console) (p. 24).

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console) (p. 24).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and Create an
Alias (p. 57).

Step 2: Create a Twilio SMS Account
Sign up for a Twilio account and have the following account information available:

• ACCOUNT SID
• AUTH TOKEN

For sign-up instructions, see https://www.twilio.com/console.

Step 3: Integrate the Twilio Messaging Service Endpoint with
the Amazon Lex Bot

To integrate Twilio with your Amazon Lex bot

1. To associate the Amazon Lex bot with your Twilio programmable SMS endpoint, activate bot
channel association in the Amazon Lex console. When the bot channel association has been
activated, Amazon Lex returns a callback URL. Record this callback URL because you need it later.

a. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

96

https://www.twilio.com/console
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Integrating with Twilio SMS

b. Choose the Amazon Lex bot that you created in Step 1.

c. Choose the Channels tab.

d. In the Chatbots section, choose Twilio SMS.

e. On the Twilio SMS page, provide the following information:

• Type a name. For example, BotTwilioAssociation.

• Choose "aws/lex" from the KMS key drop-down.

• For Alias, choose the bot alias.

• For Authentication Token, type the AUTH TOKEN for your Twilio account.

• For Account SID, type the ACCOUNT SID for your Twilio account.

f. Choose Activate.

The console creates the bot channel association and returns a callback URL. Record this URL.

2. On the Twilio console, connect the Twilio SMS endpoint to the Amazon Lex bot.

a. Sign in to the Twilio console at https://www.twilio.com/console.

b. If you don't have a Twilio SMS endpoint, create it.

c. Update the Inbound Settings configuration of the messaging service by setting the REQUEST
URL value to the callback URL that Amazon Lex provided in the preceding step.

Step 4: Test the Integration

Use your mobile phone to test the integration between Twilio SMS and your bot.

To test integration

1. Sign in to the Twilio console at https://www.twilio.com/console and do the following:

97

https://www.twilio.com/console
https://www.twilio.com/console

Amazon Lex Developer Guide
Integrating with Slack

a. Verify that you have a Twilio number associated with the messaging service under Manage
Numbers.

You send messages to this number, and engage in SMS interaction with the Amazon Lex bot,
from your mobile phone.

b. Verify that your mobile phone is whitelisted as Verified Caller ID.

If it isn't, follow instructions on the Twilio console to whitelist the mobile phone that you plan
to use for testing.

Now you can use your mobile phone to send messages to the Twilio SMS endpoint, which is
mapped to the Amazon Lex bot.

2. Using your mobile phone, send messages to the Twilio number.

The Amazon Lex bot responds. If you created the bot using Getting Started Exercise 1, you can use
the example conversations provided in that exercise. For more information, see Step 4: Add the
Lambda Function as Code Hook (Console) (p. 36).

Integrating an Amazon Lex Bot with Slack
Topics

• Step 1: Create an Amazon Lex Bot (p. 98)

• Step 2: Sign Up for Slack and Create a Slack Team (p. 99)

• Step 3: Create a Slack Application (p. 99)

• Step 4: Integrate the Slack Application with the Amazon Lex Bot (p. 100)

• Step 5: Complete Slack Integration (p. 101)

• Step 6: Test the Integration (p. 101)

This exercise provides instructions for integrating an Amazon Lex bot with the Slack messaging
application. You perform the following steps:

• Create an Amazon Lex bot.

• Create a Slack messaging application and integrate it with your bot Amazon Lex.

• Test the integration by engaging in conversation with your Amazon Lex bot. You sending messages
with the Slack application and test in a browser window.

Step 1: Create an Amazon Lex Bot
If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of the
example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an Amazon Lex
Bot Using a Blueprint (Console) (p. 24)

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console) (p. 24).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and Create an
Alias (p. 57).

Next Step

98

Amazon Lex Developer Guide
Integrating with Slack

Step 2: Sign Up for Slack and Create a Slack Team (p. 99)

Step 2: Sign Up for Slack and Create a Slack Team
Sign up for a Slack account and create a Slack team. For instructions, see Using Slack. In the next section,
you create a Slack application, which any Slack team can install.

Next Step

Step 3: Create a Slack Application (p. 99)

Step 3: Create a Slack Application
In this section, you do the following:

• Create a Slack application on the Slack API Console.
• Configure the application to add the following features:

• A bot user
• Interactive messaging

At the end of this section, you get the application credentials (Client Id, Client Secret, and Verification
Token). In the next section, you use this information to configure bot channel association in the Amazon
Lex console.

1. Sign in to the Slack API Console at http://api.slack.com .
2. Create an application.

After you have successfully created the application, Slack displays the Basic Information page for
the application.

3. Configure the application features as follows:

a. In the left menu, choose Bot Users.

• Provide a user name.
• For Always Show My Bot as Online, choose On.

Save the changes.
b. Choose Interactive Messages from the left menu.

• Choose Enable Interactive Messages.
• Specify any valid URL in the Request URL box. For example, you can use https://slack.com.

Note
For now, enter any valid URL so that you get the verification token that you need in
the next step. You will update this URL after you add the bot channel association in
the Amazon Lex console.

• Choose Enable Interactive Messages.

4. In the Settings section in the left menu, choose Basic Information. Record the following application
credentials:

• Client ID
• Client Secret

99

https://get.slack.help/hc/en-us/articles/212675257-Creating-a-Slack-account
http://api.slack.com

Amazon Lex Developer Guide
Integrating with Slack

• Verification Token

Next Step

Step 4: Integrate the Slack Application with the Amazon Lex Bot (p. 100)

Step 4: Integrate the Slack Application with the Amazon Lex Bot
Now that you have Slack application credentials, you can integrate the application with your Amazon Lex
bot. To associate the Slack application with your bot, you add a bot channel association in Amazon Lex.

To integrate the Slack application with your Amazon Lex bot

In the Amazon Lex console, activate a bot channel association to associate the bot with your Slack
application. When the bot channel association is activated, Amazon Lex returns two URLs (Postback URL
and OAuth URL). Record these URLs because you need them later.

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the Amazon Lex bot that you created in Step 1.

3. Choose the Channels tab.

4. In the Chatbots section, choose Slack.

5. On the Slack page, provide the following:

• Type a name. For example, BotSlackIntegration.

• Choose "aws/lex" from the KMS key drop-down.

• For Alias, choose the bot alias.

• Type the Client Id, Client secret, and Verification Token, which you recorded in the preceding
step. These are the credentials of the Slack application.

6. Choose Activate.

100

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Integrating with Slack

The console creates the bot channel association and returns two URLs (Postback URL and OAuth
URL). Record them. In the next section, you update your Slack application configuration to use these
endpoints as follows:

• The Postback URL is the Amazon Lex bot's endpoint that listens to Slack events. You use this URL:
• As the request URL in the Event Subscriptions feature of the Slack application.
• To replace the placeholder value for the request URL in the Interactive Messages feature of the

Slack application.
• The OAuth URL is your Amazon Lex bot's endpoint for an OAuth handshake with Slack.

Next Step

Step 5: Complete Slack Integration (p. 101)

Step 5: Complete Slack Integration
In this section, use the Slack API console to complete integration of the Slack application.

1. Sign in to the Slack API console at http://api.slack.com.
2. Update the OAuth & Permissions feature as follows:

a. In the Redirect URLs section, add the OAuth URL that Amazon Lex provided in the preceding
step. Choose Add a new Redirect URL, and then choose Save URLs.

b. In the Permission Scopes section, choose two permissions in the Select Permission Scopes
drop down. Filter the list with the following text:

• chat:write:bot

• team:read

Choose Save Changes.
3. Update the Interactive Messages feature by updating the Request URL value to the Postback URL

that Amazon Lex provided in the preceding step. Choose Add, and then choose Save URLs.
4. Subscribe to the Event Subscriptions feature as follows:

• Enable events by choosing the On option.
• Set the Request URL value to the Postback URL that Amazon Lex provided in the preceding step.
• Subscribe to the message.im bot event to enable direct messaging between the end user and the

Slack bot.
• Save the changes.

Next Step

Step 6: Test the Integration (p. 101)

Step 6: Test the Integration
Now use a browser window to test the integration of Slack with your Amazon Lex bot.

1. Choose Manage Distribution under Settings. Choose Add to Slack to install the application.
Authorize the bot to respond to messsages.

101

http://api.slack.com

Amazon Lex Developer Guide
Deploying an Amazon Lex Bot in Mobile Applications

2. You are redirected to your Slack team. Choose your bot from the Direct Messages section in the left
menu. If you don't see your bot, choose the plus icon (+) next to Direct Messages to search for your
bot.

3. Engage in a chat with your Slack application, which is linked to the Amazon Lex bot. Your bot now
responds to messages.

If you created the bot using Getting Started Exercise 1, you can use the example conversations
provided in that exercise. For more information, see Step 4: Add the Lambda Function as Code Hook
(Console) (p. 36).

Deploying an Amazon Lex Bot in Mobile
Applications

Using AWS SDKs, you can integrate your Amazon Lex bot with your mobile applications. For more
information, see the following topics:

• Android SDK – Getting Started with Amazon Lex Android SDK
• iOS SDK – Getting Started with Amazon Lex iOS SDK

You can also use the AWS Mobile Hub to create a quickstart mobile app that demonstrates using the
Amazon Lex SDK in iOS and Android mobile applications. For more information, see AWS Mobile Hub
Conversational Bots.

102

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/getting-started-understand-natural-language-lex.html
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/getting-started-understand-natural-language-lex.html
http://docs.aws.amazon.com/mobile-hub/latest/developerguide/conversational-bots.html
http://docs.aws.amazon.com/mobile-hub/latest/developerguide/conversational-bots.html

Amazon Lex Developer Guide
Example Bot: ScheduleAppointment

Additional Examples: Creating
Amazon Lex Bots

The following sections provide additional Amazon Lex exercises with step-by-step instructions.

Topics
• Example Bot: ScheduleAppointment (p. 103)
• Example Bot: BookTrip (p. 121)
• Example: Using a Response Card (p. 143)
• Example: Updating Utterances (p. 145)

Example Bot: ScheduleAppointment
The example bot in this exercise schedules appointments for a dentist's office. The example also
illustrates using response cards to obtain user input with buttons. Specifically, the example illustrates
generating response cards dynamically at runtime.

You can configure response cards at build time (also referred to as static response cards) or generate
them dynamically in an AWS Lambda function. In this example, the bot uses the following response
cards:

• A response card that lists buttons for appointment type. For example:

• A response card that lists buttons for appointment date. For example:

103

Amazon Lex Developer Guide
Example Bot: ScheduleAppointment

• A response card that lists buttons to confirm a suggested appointment time. For example:

The available appointment dates and times vary, which requires you to generate response cards at
runtime. You use an AWS Lambda function to generate these response cards dynamically. The Lambda
function returns response cards in its response to Amazon Lex. Amazon Lex includes the response card in
its response to the client.

If a client (for example, Facebook Messenger) supports response cards, the user can either choose from
the list of buttons or type the response. Otherwise, the user simply types the response.

In addition to the button shown in the preceding example, you can also include images, attachments,
and other useful information to display on response cards. For information about response cards, see
Response Cards (p. 14).

In this exercise, you do the following:

• Create and test a bot (using the ScheduleAppointment blueprint). For this exercise, you use a bot
blueprint to quickly set up and test the bot. For a list of available blueprints, see Amazon Lex and AWS
Lambda Blueprints (p. 91).This bot is preconfigured with one intent (MakeAppointment).

• Create and test a Lambda function (using the lex-make-appointment-python blueprint provided by

Lambda). You configure the MakeAppointment intent to use this Lambda function as a code hook to
perform initialization, validation, and fulfillment tasks.

Note
The provided example Lambda function showcases a dynamic conversation based on the
mocked-up availability of a dentist appointment. In a real application, you might use a real
calendar to set an appointment.

• Update the MakeAppointment intent configuration to use the Lambda function as a code hook. Then,
test the end-to-end experience.

104

Amazon Lex Developer Guide
Overview of the Bot Blueprint (ScheduleAppointment)

• Publish the schedule appointment bot to Facebook Messenger so you can see the response cards in
action (the client in the Amazon Lex console currently does not support response cards).

The following sections provide summary information about the blueprints you use in this exercise.

Topics

• Overview of the Bot Blueprint (ScheduleAppointment) (p. 105)

• Overview of the Lambda Function Blueprint (lex-make-appointment-python) (p. 106)

• Step 1: Create an Amazon Lex Bot (p. 106)

• Step 2: Create a Lambda Function (p. 108)

• Step 3: Update the Intent: Configure a Code Hook (p. 108)

• Step 4: Deploy the Bot on the Facebook Messenger Platform (p. 109)

• Details of Information Flow (p. 110)

Overview of the Bot Blueprint
(ScheduleAppointment)
The ScheduleAppointment blueprint that you use to create a bot for this exercise is preconfigured with
the following:

• Slot types – One custom slot type called AppointmentTypeValue, with the enumeration values root
canal, cleaning, and whitening.

• Intent – One intent (MakeAppointment), which is preconfigured as follows:

• Slots – The intent is configured with the following slots:

• Slot AppointmentType, of the AppointmentTypes custom type.

• Slot Date, of the AMAZON.DATE built-in type.

• Slot Time, of the AMAZON.TIME built-in type.

• Utterances – The intent is preconfigured with the following utterances:

• "I would like to book an appointment"

• "Book an appointment"

• "Book a {AppointmentType}"

If the user utters any of these, Amazon Lex determines that MakeAppointment is the intent, and then
uses the prompts to elicit slot data.

• Prompts – The intent is preconfigured with the following prompts:

• Prompt for the AppointmentType slot – "What type of appointment would you like to schedule?"

• Prompt for the Date slot – "When should I schedule your {AppointmentType}?"

• Prompt for the Time slot – "At what time do you want to schedule the {AppointmentType}?" and

"At what time on {Date}?"

• Confirmation prompt – "{Time} is available, should I go ahead and book your appointment?"

• Cancel message– "Okay, I will not schedule an appointment."

105

Amazon Lex Developer Guide
Overview of the Lambda Function

Blueprint (lex-make-appointment-python)

Overview of the Lambda Function Blueprint (lex-
make-appointment-python)
The Lambda function blueprint (lex-make-appointment-python) is a code hook for bots that you create
using the ScheduleAppointment bot blueprint.

This Lambda function blueprint code can perform both initialization/validation and fulfillment tasks.

• The Lambda function code showcases a dynamic conversation that is based on example availability for
a dentist appointment (in real applications, you might use a calendar). For the day or date that the user
specifies, the code is configured as follows:

• If there are no appointments available, the Lambda function returns a response directing Amazon
Lex to prompt the user for another day or date (by setting the dialogAction type to ElicitSlot).
For more information, see Response Format (p. 88).

• If there is only one appointment available on the specified day or date, the Lambda function
suggests the available time in the response and directs Amazon Lex to obtain user confirmation by
setting the dialogAction in the response to ConfirmIntent. This illustrates how you can improve
the user experience by proactively suggesting the available time for an appointment.

• If there are multiple appointments available, the Lambda function returns a list of available times in
the response to Amazon Lex. Amazon Lex returns a response to the client with the message from the
Lambda function.

• As the fulfillment code hook, the Lambda function returns a summary message indicating that an
appointment is scheduled (that is, the intent is fulfilled).

Note
In this example, we show how to use response cards. The Lambda function constructs and
returns a response card to Amazon Lex. The response card lists available days and times
as buttons to choose from. When testing the bot using the client provided by the Amazon
Lex console, you cannot see the response card. To see it, you must integrate the bot with a
messaging platform, such as Facebook Messenger. For instructions, see Integrating an Amazon
Lex Bot with Facebook Messenger (p. 94). For more information about response cards, see
Managing Messages (Prompts and Statements) (p. 9).

When Amazon Lex invokes the Lambda function, it passes event data as input. One of the event fields
is invocationSource, which the Lambda function uses to choose between an input validation and
fulfillment activity. For more information, see Input Event Format (p. 85).

Next Step

Step 1: Create an Amazon Lex Bot (p. 106)

Step 1: Create an Amazon Lex Bot
In this section, you create an Amazon Lex bot using the ScheduleAppointment blueprint, which is
provided in the Amazon Lex console.

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.

3. On the Create your Lex bot page, do the following:

• Choose the ScheduleAppointment blueprint.

• Leave the default bot name (ScheduleAppointment).

106

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 1: Create an Amazon Lex Bot

4. Choose Create.

This step saves and builds the bot. The console sends the following requests to Amazon Lex during
the build process:

• Create a new version of the slot types (from the $LATEST version). For information
about slot types defined in this bot blueprint, see Overview of the Bot Blueprint
(ScheduleAppointment) (p. 105).

• Create a version of the MakeAppointment intent (from the $LATEST version). In some cases, the
console sends a request for the update API operation before creating a new version.

• Update the $LATEST version of the bot.

At this time, Amazon Lex builds a machine learning model for the bot. When you test the bot in
the console, the console uses the runtime API to send user input back to Amazon Lex. Amazon Lex
then uses the machine learning model to interpret the user input.

5. The console shows the ScheduleAppointment bot. On the Editor tab, review the preconfigured
intent (MakeAppointment) details.

6. Test the bot in the test window. Use the following screen shot to engage in a test conversation with
your bot:

Note the following:

• From the initial user input ("Book an appointment"), the bot infers the intent (MakeAppointment).

• The bot then uses the configured prompts to get slot data from the user.

• The bot blueprint has the MakeAppointment intent configured with the following confirmation
prompt:

107

Amazon Lex Developer Guide
Step 2: Create a Lambda Function

{Time} is available, should I go ahead and book your appointment?

After the user provides all of the slot data, Amazon Lex returns a response to the client with a
confirmation prompt as the message. The client displays the message for the user:

16:00 is available, should I go ahead and book your appointment?

Notice that the bot accepts any appointment date and time values because you don't have any code
to initialize or validate the user data. In the next section, you add a Lambda function to do this.

Next Step

Step 2: Create a Lambda Function (p. 108)

Step 2: Create a Lambda Function
In this section, you create a Lambda function using a blueprint (lex-make-appointment-python) that is
provided in the Lambda console. You also test the Lambda function by invoking it using sample Amazon
Lex event data that is provided by the console.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.
3. For Select blueprint, type lex to find the blueprint, and then choose the lex-make-appointment-

python blueprint.
4. Configure the Lambda function as follows, and then choose Create Function.

• Type the Lambda function name (MakeAppointmentCodeHook).
• For the role, choose Create a new role from template(s), and then type a role name.
• Leave other default values.

5. Test the Lambda function.

a. Choose Actions, and then chooseConfigure test event.
b. From the Sample event template list, choose Lex-Make Appointment (preview). This sample

event uses the Amazon Lex request/response model, with values set to match a request from
your Amazon Lex bot. For information about the Amazon Lex request/response model, see
Using Lambda Functions (p. 85).

c. Choose Save and test.
d. Verify that the Lambda function successfully executed. The response in this case matches the

Amazon Lex response model.

Next Step

Step 3: Update the Intent: Configure a Code Hook (p. 108)

Step 3: Update the Intent: Configure a Code Hook
In this section, you update the configuration of the MakeAppointment intent to use the Lambda function
as a code hook for the validation and fulfillment activities.

108

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 4: Deploy the Bot on the
Facebook Messenger Platform

1. In the Amazon Lex console, select the ScheduleAppointment bot. The console shows the
MakeAppointment intent. Modify the intent configuration as follows.

Note
You can update only the $LATEST versions of any of the Amazon Lex resources, including
the intents. Make sure that the intent version is set to $LATEST. You have not published a
version of your bot yet, so it should still be the $LATEST version in the console.

a. In the Options section, choose Initialization and validation code hook, and then choose the
Lambda function from the list.

b. In the Fulfillment section, choose AWS Lambda function, and then choose the Lambda
function from the list.

c. Choose Goodbye message, and type a message.
2. Choose Save, and then choose Build.
3. Test the bot.

Next Step

Step 4: Deploy the Bot on the Facebook Messenger Platform (p. 109)

Step 4: Deploy the Bot on the Facebook Messenger
Platform
In the preceding section, you tested the ScheduleAppointment bot using the client in the Amazon Lex
console. Currently, the Amazon Lex console does not support response cards. To test the dynamically

109

Amazon Lex Developer Guide
Details of Information Flow

generated response cards that the bot supports, deploy the bot on the Facebook Messenger platform
and test it.

For instructions, see Integrating an Amazon Lex Bot with Facebook Messenger (p. 94).

Next Step

Details of Information Flow (p. 110)

Details of Information Flow
The ScheduleAppointment bot blueprint primarily showcases the use of dynamically generated response
cards. The Lambda function in this exercise includes response cards in its response to Amazon Lex.
Amazon Lex includes the response cards in its reply to the client. This section explains both the
following:

• Data flow between client and Amazon Lex.

The section assumes client sends requests to Amazon Lex using the PostText runtime API and shows
request/response details accordingly. For more information about the PostText runtime API, see
PostText (p. 292).

Note
For an example of information flow between client and Amazon Lex in which client uses the
PostContent API, see Step 2a (Optional): Review the Details of the Spoken Information Flow
(Console) (p. 27).

• Data flow between Amazon Lex and the Lamba function. For more information, see Lambda Function
Input Event and Response Format (p. 85).

Note
The example assumes that you are using the Facebook Messenger client, which does not pass
session attributes in the request to Amazon Lex. Accordingly, the example requests shown in
this section show empty sessionAttributes. If you test the bot using the client provided in the
Amazon Lex console, the client includes the session attributes.

This section describes what happens after each user input.

1. User: Types Book an appointment.

a. The client (console) sends the following PostContent (p. 285) request to Amazon Lex:

POST /bot/ScheduleAppointment/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/
text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"book appointment",
 "sessionAttributes":{}
}

Both the request URI and the body provide information to Amazon Lex:

110

Amazon Lex Developer Guide
Details of Information Flow

• Request URI – Provides the bot name (ScheduleAppointment), the bot alias ($LATEST), and
the user name ID. The trailing text indicates that it is a PostText (not PostContent) API
request.

• Request body – Includes the user input (inputText) and empty sessionAttributes.

b. From the inputText, Amazon Lex detects the intent (MakeAppointment). The service invokes the
Lambda function, which is configured as a code hook, to perform initialization and validation by
passing the following event. For details, see Input Event Format (p. 85).

{
 "currentIntent": {
 "slots": {
 "AppointmentType": null,
 "Date": null,
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "bijt6rovckwecnzesbthrr1d7lv3ja3n",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {}
}

In addition to the information sent by the client, Amazon Lex also includes the following data:

• currentIntent – Provides current intent information.

• invocationSource – Indicates the purpose of the Lambda function invocation. In this case, the
purpose is to perform user data initialization and validation. (Amazon Lex knows that the user
has not provided all of the slot data to fulfill the intent yet.)

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

c. At this time, all of the slot values are null (there is nothing to validate). The Lambda function
returns the following response to Amazon Lex, directing the service to elicit information for the
AppointmentType slot. For information about the response format, see Response Format (p. 88).

{
 "dialogAction": {
 "slotToElicit": "AppointmentType",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "cleaning (30 min)",
 "value": "cleaning"
 },
 {
 "text": "root canal (60 min)",
 "value": "root canal"
 },
 {
 "text": "whitening (30 min)",

111

Amazon Lex Developer Guide
Details of Information Flow

 "value": "whitening"
 }
],
 "subTitle": "What type of appointment would you like to
 schedule?",
 "title": "Specify Appointment Type"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": null,
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "What type of appointment would you like to schedule?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {}
}

The response includes the dialogAction and sessionAttributes fields. Among other things,
the dialogAction field returns the following fields:

• type – By setting this field to ElicitSlot, the Lambda function directs Amazon Lex to elicit
the value for the slot specified in the slotToElicit field. The Lambda function also provides a
message to convey to the user.

• responseCard – Identifies a list of possible values for the AppointmentType slot. A client that
supports response cards (for example, the Facebook Messenger) displays a response card to
allow the user to choose an appointment type, as follows:

d. As indicated by the dialogAction.type in the response from the Lambda function, Amazon Lex
sends the following response back to the client:

112

Amazon Lex Developer Guide
Details of Information Flow

The client reads the response, and then displays the message: "What type of appointment
would you like to schedule?" and the response card (if the client supports response cards).

2. User: Depending on the client, the user has two options:

• If the response card is shown, choose root canal (60 min) or type root canal.

• If the client does not support response cards, type root canal.

a. The client sends the following PostText request to Amazon Lex (line breaks have been added
for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "root canal",
 "sessionAttributes": {}
}

b. Amazon Lex invokes the Lambda function for user data validation by sending the following
event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "bijt6rovckwecnzesbthrr1d7lv3ja3n",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",

113

Amazon Lex Developer Guide
Details of Information Flow

 "sessionAttributes": {}
}

In the event data, note the following:

• invocationSource continues to be DialogCodeHook. In this step, we are just validating user
data.

• Amazon Lex sets the AppointmentType field in the currentIntent.slots slot to root canal.

• Amazon Lex simply passes the sessionAttributes field between the client and the Lambda
function.

c. The Lambda function validates the user input and returns the following response to Amazon
Lex, directing the service to elicit a value for the appointment date.

{
 "dialogAction": {
 "slotToElicit": "Date",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "2-15 (Wed)",
 "value": "Wednesday, February 15, 2017"
 },
 {
 "text": "2-16 (Thu)",
 "value": "Thursday, February 16, 2017"
 },
 {
 "text": "2-17 (Fri)",
 "value": "Friday, February 17, 2017"
 },
 {
 "text": "2-20 (Mon)",
 "value": "Monday, February 20, 2017"
 },
 {
 "text": "2-21 (Tue)",
 "value": "Tuesday, February 21, 2017"
 }
],
 "subTitle": "When would you like to schedule your root canal?",
 "title": "Specify Date"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "When would you like to schedule your root canal?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {}
}

114

Amazon Lex Developer Guide
Details of Information Flow

Again, the response includes the dialogAction and sessionAttributes fields. Among other
things, the dialogAction field returns the following fields:

• type – By setting this field to ElicitSlot, the Lambda function directs Amazon Lex to elicit
the value for the slot specified in the slotToElicit field. The Lambda function also provides a
message to convey to the user.

• responseCard – Identifies a list of possible values for the Date slot. A client that supports
response cards (for example, Facebook Messenger) displays a response card that allows the
user to choose an appointment date:

Although the Lambda function returned five dates, the client (Facebook Messenger) has a
limit of three buttons for a response card. Therefore, you see only the first three values in the
screen shot.

These dates are hard coded in the Lambda function. In a production application, you might
use a calendar to get available dates in real time. Because the dates are dynamic, you must
generate the response card dynamically in the Lambda function.

d. Amazon Lex notices the dialogAction.type and returns a response to the client that includes
information from the Lambda function's response.

The client displays the message: When would you like to schedule your root canal? and the
response card (if the client supports response cards).

3. User: Types Thursday.

115

Amazon Lex Developer Guide
Details of Information Flow

a. The client sends the following PostText request to Amazon Lex (line breaks have been added
for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "Thursday",
 "sessionAttributes": {}
}

b. Amazon Lex invokes the Lambda function for user data validation by sending in the following
event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-16",
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {}
}

In the event data, note the following:

• invocationSource continues to be DialogCodeHook. In this step, we are just validating the
user data.

• Amazon Lex sets the Date field in the currentIntent.slots slot to 2017-02-16.

• Amazon Lex simply passes the sessionAttributes between the client and the Lambda
function.

c. The Lambda function validates the user input. This time the Lambda function determines that
there are no appointments available on the specified date. It returns the following response to
Amazon Lex, directing the service to again elicit a value for the appointment date.

{
 "dialogAction": {
 "slotToElicit": "Date",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "2-15 (Wed)",
 "value": "Wednesday, February 15, 2017"
 },

116

Amazon Lex Developer Guide
Details of Information Flow

 {
 "text": "2-16 (Thu)",
 "value": "Thursday, February 16, 2017"
 },
 {
 "text": "2-17 (Fri)",
 "value": "Friday, February 17, 2017"
 },
 {
 "text": "2-20 (Mon)",
 "value": "Monday, February 20, 2017"
 },
 {
 "text": "2-21 (Tue)",
 "value": "Tuesday, February 21, 2017"
 }
],
 "subTitle": "When would you like to schedule your root canal?",
 "title": "Specify Date"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "We do not have any availability on that date, is there
 another day which works for you?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {
 "bookingMap": "{\"2017-02-16\": []}"
 }
}

Again, the response includes the dialogAction and sessionAttributes fields. Among other
things, the dialogAction returns the following fields:

• dialogAction field:

• type – The Lambda function sets this value to ElicitSlot and resets the slotToElicit field
to Date. The Lambda function also provides an appropriate message to convey to the user.

• responseCard – Returns a list of values for the Date slot.

• sessionAttributes - This time the Lambda function includes the bookingMap session
attribute. Its value is the requested date of the appointment and available appointments (an
empty object indicates that no appointments are available).

d. Amazon Lex notices the dialogAction.type and returns a response to the client that includes
information from the Lambda function's response.

117

Amazon Lex Developer Guide
Details of Information Flow

The client displays the message: We do not have any availability on that date, is there another
day which works for you? and the response card (if the client supports response cards).

4. User: Depending on the client, the user has two options:

• If the response card is shown, choose 2-15 (Wed) or type Wednesday.

• If the client does not support response cards, type Wednesday.

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "Wednesday",
 "sessionAttributes": {
 }
}

Note
The Facebook Messenger client does not set any session attributes. If you want to
maintain session states between requests, you must do so in the Lambda function. In
a real application, you might need to maintain these session attributes in a backend
database.

b. Amazon Lex invokes the Lambda function for user data validation by sending the following
event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-15",
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },

118

Amazon Lex Developer Guide
Details of Information Flow

 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {
 }
}

Amazon Lex updated currentIntent.slots by setting the Date slot to 2017-02-15.

c. The Lambda function validates the user input and returns the following response to Amazon
Lex, directing it to elicit the value for the appointment time.

{
 "dialogAction": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-15",
 "Time": "16:00"
 },
 "message": {
 "content": "What time on 2017-02-15 works for you? 4:00 p.m. is our
 only availability, does that work for you?",
 "contentType": "PlainText"
 },
 "type": "ConfirmIntent",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "yes",
 "value": "yes"
 },
 {
 "text": "no",
 "value": "no"
 }
],
 "subTitle": "Is 4:00 p.m. on 2017-02-15 okay?",
 "title": "Confirm Appointment"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 }
 },
 "sessionAttributes": {
 "bookingMap": "{\"2017-02-15\": [\"10:00\", \"16:00\", \"16:30\"]}"
 }
}

Again, the response includes the dialogAction and sessionAttributes fields. Among other
things, the dialogAction returns the following fields:

• dialogAction field:

119

Amazon Lex Developer Guide
Details of Information Flow

• type – The Lambda function sets this value to ConfirmIntent, directing Amazon Lex to
obtain user confirmation of the appointment time suggested in the message.

• responseCard – Returns a list of yes/no values for the user to choose from. If the client
supports response cards, it displays the response card, as shown in the following example:

• sessionAttributes - The Lambda function sets the bookingMap session attribute with its
value set to the appointment date and available appointments on that date. In this example,
these are 30-minute appointments. For a root canal that requires one hour, only 4 p.m. can be
booked.

d. As indicated in the dialogAction.type in the Lambda function's response, Amazon Lex returns
the following response to the client:

The client displays the message: What time on 2017-02-15 works for you? 4:00 p.m. is our
only availability, does that work for you?

5. User: Types yes.

Amazon Lex invokes the Lambda function with the following event data. Because the user
replied yes, Amazon Lex sets the confirmationStatus to Confirmed, and sets the Time field in
currentIntent.slots to 4 p.m.

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",

120

Amazon Lex Developer Guide
Example Bot: BookTrip

 "Date": "2017-02-15",
 "Time": "16:00"
 },
 "name": "MakeAppointment",
 "confirmationStatus": "Confirmed"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "FulfillmentCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {
 }
}

Because the confirmationStatus is confirmed, the Lambda function processes the intent (books a
dental appointment) and returns the following response to Amazon Lex:

{
 "dialogAction": {
 "message": {
 "content": "Okay, I have booked your appointment. We will see you at 4:00
 p.m. on 2017-02-15",
 "contentType": "PlainText"
 },
 "type": "Close",
 "fulfillmentState": "Fulfilled"
 },
 "sessionAttributes": {
 "formattedTime": "4:00 p.m.",
 "bookingMap": "{\"2017-02-15\": [\"10:00\"]}"
 }
}

Note the following:

• The Lambda function has updated the sessionAttributes.
• dialogAction.type is set to Close, which directs Amazon Lex to not expect a user response.
• dialogAction.fulfillmentState is set to Fulfilled, indicating that the intent is successfully

fulfilled.

The client displays the message: Okay, I have booked your appointment. We will see you at 4:00
p.m. on 2017-02-15.

Example Bot: BookTrip
This example illustrates creating a bot that is configured to support multiple intents. The example
also illustrates how you can use session attributes for cross-intent information sharing. After creating
the bot, you use a test client in the Amazon Lex console to test the bot (BookTrip). The client uses the
PostText (p. 292) runtime API operation to send requests to Amazon Lex for each user input.

121

Amazon Lex Developer Guide
Example Bot: BookTrip

The BookTrip bot in this example is configured with two intents (BookHotel and BookCar). For example,
suppose a user first books a hotel. During the interaction, the user provides information such as check-in
dates, location, and number of nights. After the intent is fulfilled, the client can persist this information
using session attributes. For more information about session attributes, see PostText (p. 292).

Now suppose that the user continues to book a car. Using information that the user provided in the
previous BookHotel intent (that is, destination city, and check-in and check-out dates), the code hook
(Lambda function) you configured to initialize and validate the BookCar intent, initializes slot data for
the BookCar intent (that is, destination, pick-up city, pick-up date, and return date). This illustrates how
cross-intent information sharing enables you to build bots that can engage in dynamic conversation with
the user.

In this example, we use the following session attributes. Only the client and the Lambda function can
set and update session attributes. Amazon Lex only passes these between the client and the Lambda
function. Amazon Lex doesn't maintain or modify any session attributes.

• currentReservation – Contains slot data for an in-progress reservation and other relevant
information. For example, the following is a sample request from the client to Amazon Lex. It shows
the currentReservation session attribute in the request body.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Chicago",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Moscow\",
 \"RoomType\":null,
 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

• lastConfirmedReservation – Contains similar information for a previous intent, if any. For example, if
the user booked a hotel and then is in process of booking a car, this session attribute stores slot data
for the previous BookHotel intent.

• confirmationContext – The Lambda function sets this to AutoPopulate when it prepopulates some
of the slot data based on slot data from the previous reservation (if there is one). This enables cross-
intent information sharing. For example, if the user previously booked a hotel and now wants to book
a car, Amazon Lex can prompt the user to confirm (or deny) that the car is being booked for the same
city and dates as their hotel reservation

In this exercise you use blueprints to create an Amazon Lex bot and a Lambda function. For more
information about blueprints, see Amazon Lex and AWS Lambda Blueprints (p. 91).

Next Step

Step 1: Review the Blueprints Used in this Exercise (p. 123)

122

Amazon Lex Developer Guide
Step 1: Blueprint Review

Step 1: Review the Blueprints Used in this Exercise
Topics

• Overview of the Bot Blueprint (BookTrip) (p. 123)

• Overview of the Lambda Function Blueprint (lex-book-trip-python) (p. 124)

Overview of the Bot Blueprint (BookTrip)

The blueprint (BookTrip) you use to create a bot provides the following preconfiguration:

• Slot types – Two custom slot types:

• RoomTypes with enumeration values: king, queen, and deluxe, for use in the BookHotel intent.

• CarTypes with enumeration values: economy, standard, midsize, full size, luxury, and minivan, for
use in the CarTypes intent.

• Intent 1 (BookHotel) – It is preconfigured as follows:

• Preconfigured slots

• RoomType, of the RoomTypes custom slot type

• Location, of the AMAZON.US_CITY built-in slot type

• CheckInDate, of the AMAZON.DATE built-in slot type

• Nights, of the AMAZON.NUMBER built-in slot type

• Preconfigured utterances

• "Book a hotel"

• "I want to make hotel reservations"

• "Book a {Nights} stay in {Location}"

If the user utters any of these, Amazon Lex determines that BookHotel is the intent and then
prompts the user for slot data.

• Preconfigured prompts

• Prompt for the Location slot – "What city will you be staying in?"

• Prompt for the CheckInDate slot – "What day do you want to check in?"

• Prompt for the Nights slot – "How many nights will you be staying?"

• Prompt for the RoomType slot – "What type of room would you like, queen, king, or deluxe?"

• Confirmation statement – "Okay, I have you down for a {Nights} night stay in {Location} starting
{CheckInDate}. Shall I book the reservation?"

• Denial – "Okay, I have cancelled your reservation in progress."

• Intent 2 (BookCar) – It is preconfigured as follows:

• Preconfigured slots

• PickUpCity, of the AMAZON.US_CITY built-in type

• PickUpDate4, of the AMAZON.DATE built-in type

• ReturnDate, of the AMAZON.DATE built-in type

• DriverAge, of the AMAZON.NUMBER built-in type

• CarType, of the CarTypes custom type

• Preconfigured utterances

• "Book a car" 123

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

• "Reserve a car"
• "Make a car reservation"

If the user utters any of these, Amazon Lex determines BookCar is the intent and then prompts the
user for slot data.

• Preconfigured prompts
• Prompt for the PickUpCity slot – "In what city do you need to rent a car?"
• Prompt for the PickUpDate slot – "What day do you want to start your rental?""
• Prompt for the ReturnDate slot – "What day do you want to return this car?"
• Prompt for the DriverAge slot – "How old is the driver for this rental?"
• Prompt for the CarType slot – "What type of car would you like to rent? Our most popular options

are economy, midsize, and luxury"
• Confirmation statement – "Okay, I have you down for a {CarType} rental in {PickUpCity} from

{PickUpDate} to {ReturnDate}. Should I book the reservation?"
• Denial – "Okay, I have cancelled your reservation in progress."

Overview of the Lambda Function Blueprint (lex-book-trip-
python)
In addition to the bot blueprint, AWS Lambda provides a blueprint (lex-book-trip-python) that you
can use as a code hook with the bot blueprint. For a list of bot blueprints and corresponding Lambda
function blueprints, see Amazon Lex and AWS Lambda Blueprints (p. 91).

When you create a bot using the BookTrip blueprint, you update configuration of both the intents
(BookCar and BookHotel) by adding this Lambda function as a code hook for both initialization/
validation of user data input and fulfillment of the intents.

This Lambda function code provided showcases dynamic conversation using previously known
information (persisted in session attributes) about a user to initialize slot values for an intent. For more
information, see Managing Conversation Context (p. 18).

Next Step

Step 2: Create an Amazon Lex Bot (p. 124)

Step 2: Create an Amazon Lex Bot
In this section, you create an Amazon Lex bot (BookTrip).

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.
3. On the Create your Lex bot page,

• Choose BookTrip blueprint.
• Leave the default bot name (BookTrip).

4. Choose Create. The console sends a series of requests to Amazon Lex to create the bot. Note the
following:

5. The console shows the BookTrip bot. On the Editor tab, review the details of the preconfigured
intents (BookCar and BookHotel).

6. Test the bot in the test window. Use the following to engage in a test conversation with your bot:

124

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

From the initial user input ("Book a hotel"), Amazon Lex infers the intent (BookHotel). The bot then
uses the prompts preconfigured in this intent to elicit slot data from the user. After user provide all
of the slot data, Amazon Lex returns a response back to the client with a message that includes all
the user input as a message. The client displays the message in the response as shown.

CheckInDate:2016-12-18 Location:Chicago Nights:4 RoomType:queen

Now you continue the conversation and try to book a car.

125

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

Note that,

• There is no user data validation at this time. For example, you can provide any city to book a hotel.

• You are providing some of the same information again (destination, pick-up city, pick-up date,
and return date) to book a car. In a dynamic conversation, your bot should initialize some of this
information based on prior input user provided for booking hotel.

In this next section, you create a Lambda function to do some of the user data validation, and
initialization using cross-intent information sharing via session attributes. Then you update the
intent configuration by adding the Lambda function as code hook to perform initialization/
validation of user input and fulfill intent.

Next Step

Step 3: Create a Lambda function (p. 127)

126

Amazon Lex Developer Guide
Step 3: Create a Lambda function

Step 3: Create a Lambda function
In this section you create a Lambda function using a blueprint (lex-book-trip-python) provided in the
Amazon Lex console. You also test the Lambda function by invoking it using sample event data provided
by the console.

This Lambda function is written in Node.js.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.
3. On Select blueprint, type lex to find the blueprint, choose the lex-book-trip-python blueprint.
4. Configure the Lambda function as follows and then choose Create Function.

• Type a Lambda function name (BookTripCodeHook).
• For the role, choose Create a new role from template(s) and then type a role name.
• Leave the other default values.

5. Test the Lambda function. You invoke the Lambda function twice, using sample data for both
booking a car and booking a hotel.

a. Choose Actions, Configure test event.
b. Choose Lex-Book Hotel (preview) from the Sample event template list.

This sample event matches the Amazon Lex request/response model. For more information, see
Using Lambda Functions (p. 85).

c. Choose Save and test.
d. Verify that the Lambda function successfully executed. The response in this case matches the

Amazon Lex response model.
e. Repeat the step. This time you choose the Lex-Book Car (preview) from the Sample event

template list. The Lambda function processes the car reservation.

Next Step

Step 4: Add the Lambda Function as a Code Hook (p. 127)

Step 4: Add the Lambda Function as a Code Hook
In this section, you update the configurations of both the BookCar and BookHotel intents by adding the
Lambda function as a code hook for initialization/validation and fulfillment activities. Make sure you
choose the $LATEST version of the intents because you can only update the $LATEST version of your
Amazon Lex resources.

1. In the Amazon Lex console, choose the BookTrip bot.
2. On the Editor tab, choose the BookHotel intent. Update the intent configuration as follows:

a. Make sure the intent version (next to the intent name) is $LATEST.
b. Add the Lambda function as an initialization and validation code hook as follows:

• In Options, choose Initialization and validation code hook.
• Choose your Lambda function from the list.

127

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 4: Add the Lambda Function as a Code Hook

c. Add the Lambda function as a fulfillment code hook as follows:

• In Fulfillment, choose AWS Lambda function.

• Choose your Lambda function from the list.

• Choose Goodbye message and type a message.

d. Choose Save.

3. On the Editor tab, choose the BookCar intent. Follow the preceding step to add your Lambda
function as validation and fulfillment code hook.

4. Choose Build. The console sends a series of requests to Amazon Lex to save the configurations.

5. Test the bot. Now that you a have a Lambda function performing the initialization, user data
validation and fulfillment, you can see the difference in the user interaction.

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Hotel Intent (p. 130).

6. Continue the conversation and book a car as shown following:

128

Amazon Lex Developer Guide
Details of the Information Flow

When you choose to book a car, the client (console) sends a request to Amazon Lex that includes the
session attributes (from the previous conversation, BookHotel). Amazon Lex passes this information
to the Lambda function, which then initializes (that is, it prepopulates) some of the BookCar slot
data (that is, PickUpDate, ReturnDate, and PickUpCity).

Note
This illustrates how session attributes can be used to maintain context across intents. The
console client provides the Clear link in the test window that a user can use to clear any
prior session attributes.

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Car Intent (p. 138).

Details of the Information Flow
In this exercise, you engaged in a conversation with the Amazon Lex BookTrip bot using the test window
client provided in the Amazon Lex console. This section explains the following:

129

Amazon Lex Developer Guide
Details of the Information Flow

• The data flow between the client and Amazon Lex.

The section assumes that the client sends requests to Amazon Lex using the PostText runtime API and
shows request and response details accordingly. For more information about the PostText runtime
API, see PostText (p. 292).

Note
For an example of the information flow between the client and Amazon Lex in which the
client uses the PostContent API, see Step 2a (Optional): Review the Details of the Spoken
Information Flow (Console) (p. 27).

• The data flow between Amazon Lex and the Lambda function. For more information, see Lambda

Function Input Event and Response Format (p. 85).

Topics
• Data Flow: Book Hotel Intent (p. 130)
• Data Flow: Book Car Intent (p. 138)

Data Flow: Book Hotel Intent
This section explains what happens after each user input.

1. User: "book a hotel"

a. The client (console) sends the following PostText (p. 292) request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"book a hotel",
 "sessionAttributes":{}
}

Both the request URI and the body provides information to Amazon Lex:

• Request URI – Provides bot name (BookTrip), bot alias ($LATEST) and the user name. The
trailing text indicates that it is a PostText API request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes. Initially,
this is an empty object and the Lambda function first sets the session attributes.

b. From the inputText, Amazon Lex detects the intent (BookHotel). This intent is configured with
a Lambda function as a code hook for user data initialization/validation. Therefore, Amazon Lex
invokes that Lambda function by passing the following information as the event parameter (see
Input Event Format (p. 85)):

{
 "messageVersion":"1.0",
 "invocationSource":"DialogCodeHook",
 "userId":"wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes":{
 },

130

Amazon Lex Developer Guide
Details of the Information Flow

 "bot":{
 "name":"BookTrip",
 "alias":null,
 "version":"$LATEST"
 },
 "outputDialogMode":"Text",
 "currentIntent":{
 "name":"BookHotel",
 "slots":{
 "RoomType":null,
 "CheckInDate":null,
 "Nights":null,
 "Location":null
 },
 "confirmationStatus":"None"
 }
}

In addition to the information sent by the client, Amazon Lex also includes the following
additional data:

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

• invocationSource – Indicates the purpose of Lambda function invocation. In this case, it is to
perform user data initialization and validation (at this time Amazon Lex knows that the user
has not provided all the slot data to fulfill the intent).

• currentIntent – All of the slot values are set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to validate.
The Lambda function returns the following response to Amazon Lex. For information about
response format, see Response Format (p. 88).

{
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",\"Location\":null,
\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction":{
 "type":"Delegate",
 "slots":{
 "RoomType":null,
 "CheckInDate":null,
 "Nights":null,
 "Location":null
 }
 }
}

Note

• currentReservation – The Lambda function includes this session attribute. Its value
is a copy of the current slot information and the reservation type.

Only the Lambda function and the client can update these session attributes.
Amazon Lex simply passes these values.

• dialogAction.type – By setting this value to Delegate, the Lambda function
delegates the responsibility for the next course of action to Amazon Lex.

If the Lambda function detected anything in the user data validation, it instructs
Amazon Lex what to do next.

131

Amazon Lex Developer Guide
Details of the Information Flow

d. As per the dialogAction.type, Amazon Lex decides the next course of action—elicit data from
the user for the Location slot. It selects one of the prompt messages ("What city will you be
staying in?") for this slot, according to the intent configuration, and then sends the following
response to the user:

The session attributes are passed to the client.

The client reads the response and then displays the message: "What city will you be staying in?"

2. User: "Moscow"

a. The client sends the following PostText request to Amazon Lex (line breaks added for
readability):

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Moscow",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":null,
 \"RoomType\":null,
 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

In addition to the inputText, the client includes the same currentReservation session
attributes it received.

b. Amazon Lex first interprets the inputText in the context of the current intent (the service
remembers that it had asked the specific user for information about Location slot). It updates
the slot value for the current intent and invokes the Lambda function using the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {

132

Amazon Lex Developer Guide
Details of the Information Flow

 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":null,
\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": "Moscow"
 },
 "confirmationStatus": "None"
 }
}

Note

• invocationSource continues to be DialogCodeHook. In this step, we are just
validating user data.

• Amazon Lex is just passing the session attribute to the Lambda function.

• For currentIntent.slots, Amazon Lex has updated the Location slot to Moscow.

c. The Lambda function performs the user data validation and determines that Moscow is an invalid
location.

Note
The Lambda function in this exercise has a simple list of valid cities and Moscow is not
on the list. In a production application, you might use a back-end database to get this
information.

It resets the slot value back to null and directs Amazon Lex to prompt the user again for another
value by sending the following response:

{
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":\"Moscow
\",\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction": {
 "type": "ElicitSlot",
 "intentName": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": null
 },
 "slotToElicit": "Location",
 "message": {
 "contentType": "PlainText",
 "content": "We currently do not support Moscow as a valid destination.
 Can you try a different city?"
 }
 }
}

133

Amazon Lex Developer Guide
Details of the Information Flow

Note

• currentIntent.slots.Location is reset to null.

• dialogAction.type is set to ElicitSlot, which directs Amazon Lex to prompt the
user again by providing the following:

• dialogAction.slotToElicit – slot for which to elicit data from the user.

• dialogAction.message – a message to convey to the user.

d. Amazon Lex notices the dialogAction.type and passes the information to the client in the
following response:

The client simply displays the message: "We currently do not support Moscow as a valid
destination. Can you try a different city?"

3. User: "Chicago"

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Chicago",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Moscow\",
 \"RoomType\":null,
 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

b. Amazon Lex knows the context, that it was eliciting data for the Location slot. In this context,
it knows the inputText value is for the Location slot. It then invokes the Lambda function by
sending the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {

134

Amazon Lex Developer Guide
Details of the Information Flow

 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":Moscow,
\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": "Chicago"
 },
 "confirmationStatus": "None"
 }
}

Amazon Lex updated the currentIntent.slots by setting the Location slot to Chicago.

c. According to the invocationSource value of DialogCodeHook, the Lambda function performs
user data validation. It recognizes Chicago as a valid slot value, updates the session attribute
accordingly, and then returns the following response to Amazon Lex.

{
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": "Chicago"
 }
 }
}

Note

• currentReservation – The Lambda function updates this session attribute by setting
the Location to Chicago.

• dialogAction.type – Is set to Delegate. User data was valid, and the Lambda
function directs Amazon Lex to choose the next course of action.

d. According to dialogAction.type, Amazon Lex chooses the next course of action. Amazon Lex
knows that it needs more slot data and picks the next unfilled slot (CheckInDate) with the
highest priority according to the intent configuration. It selects one of the prompt messages
("What day do you want to check in?") for this slot according to the intent configuration and
then sends the following response back to the client:

135

Amazon Lex Developer Guide
Details of the Information Flow

The client displays the message: "What day do you want to check in?"

4. The user interaction continues—the user provides data, the Lambda function validates data, and
then delegates the next course of action to Amazon Lex. Eventually the user provides all of the slot
data, the Lambda function validates all of the user input, and then Amazon Lex recognizes it has all
the slot data.

Note
In this exercise, after the user provides all of the slot data, the Lambda function
computes the price of the hotel reservation and returns it as another session attribute
(currentReservationPrice).

At this point, the intent is ready to be fulfilled, but the BookHotel intent is configured with a
confirmation prompt requiring user confirmation before Amazon Lex can fulfill the intent. Therefore,
Amazon Lex sends the following message to the client requesting confirmation before booking the
hotel:

The client display the message: "Okay, I have you down for a 5 night in Chicago starting 2016-12-18.
Shall I book the reservation?"

5. User: "yes"

a. The client sends the following PostText request to Amazon Lex:

136

Amazon Lex Developer Guide
Details of the Information Flow

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Yes",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}",
 "currentReservationPrice":"1195"
 }
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent. Amazon
Lex understands that the user wants to proceed with the reservation. This time Amazon Lex
invokes the Lambda function to fulfill the intent by sending the following event. By setting
the invocationSource to FulfillmentCodeHook in the event, it sends to the Lambda function.
Amazon Lex also sets the confirmationStatus to Confirmed.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}",
 "currentReservationPrice": "956"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": "queen",
 "CheckInDate": "2016-12-18",
 "Nights": "4",
 "Location": "Chicago"
 },
 "confirmationStatus": "Confirmed"
 }
}

Note

• invocationSource – This time, Amazon Lex set this value to FulfillmentCodeHook,
directing the Lambda function to fulfill the intent.

• confirmationStatus – Is set to Confirmed.

c. This time, the Lambda function fulfills the BookHotel intent, Amazon Lex completes the
reservation, and then it returns the following response:

{
 "sessionAttributes": {

137

Amazon Lex Developer Guide
Details of the Information Flow

 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}"
 },
 "dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled",
 "message": {
 "contentType": "PlainText",
 "content": "Thanks, I have placed your reservation. Please let me
 know if you would like to book a car rental, or another hotel."
 }
 }
}

Note

• lastConfirmedReservation – Is a new session attribute that the Lambda function
added (instead of the currentReservation, currentReservationPrice).

• dialogAction.type – The Lambda function sets this value to Close, indicating that
Amazon Lex to not expect a user response.

• dialogAction.fulfillmentState – Is set to Fulfilled and includes an appropriate
message to convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response to the client:

Note

• dialogState – Amazon Lex sets this value to Fulfilled.

• message – Is the same message that the Lambda function provided.

The client displays the message.

Data Flow: Book Car Intent

The BookTrip bot in this exercise supports two intents (BookHotel and BookCar). After booking a
hotel, the user can continue the conversation to book a car. As long as the session hasn't timed out,
in each subsequent request the client continues to send the session attributes (in this example, the

138

Amazon Lex Developer Guide
Details of the Information Flow

lastConfirmedReservation). The Lambda function can use this information to initialize slot data for the
BookCar intent. This shows how you can use session attributes in cross-intent data sharing.

Specifically, when the user chooses the BookCar intent, the Lambda function uses relevant information
in the session attribute to prepopulate slots (PickUpDate, ReturnDate, and PickUpCity) for the BookCar
intent.

Note
The Amazon Lex console provides the Clear link that you can use to clear any prior session
attributes.

Follow the steps in this procedure to continue the conversation.

1. User: "also book a car"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"also book a car",
 "sessionAttributes":{
 "lastConfirmedReservation":""{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}"
 }
}

The client includes the lastConfirmedReservation session attribute.

b. Amazon Lex detects the intent (BookCar) from the inputText. This intent is also configured
to invoke the Lambda function to perform the initialization and validation of the user data.
Amazon Lex invokes the Lambda function with the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookCar",
 "slots": {
 "PickUpDate": null,
 "ReturnDate": null,
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": null
 },
 "confirmationStatus": "None"

139

Amazon Lex Developer Guide
Details of the Information Flow

 }
}

Note

• messageVersion – Currently Amazon Lex supports the 1.0 version only.

• invocationSource – Indicates the purpose of invocation is to perform initialization
and user data validation.

• currentIntent – It includes the intent name and the slots. At this time, all slot values
are null.

c. The Lambda function notices all null slot values with nothing to validate. However, it
uses session attributes to initialize some of the slot values (PickUpDate, ReturnDate, and
PickUpCity), and then returns the following response:

{
 "sessionAttributes": {
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}",
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity\":null,
\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",
 "confirmationContext": "AutoPopulate"
 },
 "dialogAction": {
 "type": "ConfirmIntent",
 "intentName": "BookCar",
 "slots": {
 "PickUpCity": "Chicago",
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "CarType": null,
 "DriverAge": null
 },
 "message": {
 "contentType": "PlainText",
 "content": "Is this car rental for your 4 night stay in Chicago on
 2016-12-18?"
 }
 }
}

Note

• In addition to the lastConfirmedReservation, the Lambda function includes more
session attributes (currentReservation and confirmationContext).

• dialogAction.type is set to ConfirmIntent, which informs Amazon Lex that a yes,
no reply is expected from the user (the confirmationContext set to AutoPopulate, the
Lambda function knows that the yes/no user reply is to obtain user confirmation of
the initialization the Lambda function performed (auto populated slot data).

The Lambda function also includes in the response an informative message in the
dialogAction.message for Amazon Lex to return to the client.

140

Amazon Lex Developer Guide
Details of the Information Flow

Note
The term ConfirmIntent (value of the dialogAction.type) is not related
to any bot intent. In the example, Lambda function uses this term to direct
Amazon Lex to get a yes/no reply from the user.

d. According to the dialogAction.type, Amazon Lex returns the following response to the client:

The client displays the message: "Is this car rental for your 5 night stay in Chicago on
2016-12-18?"

2. User: "yes"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"yes",
 "sessionAttributes":{
 "confirmationContext":"AutoPopulate",
 "currentReservation":"{\"ReservationType\":\"Car\",
 \"PickUpCity\":null,
 \"PickUpDate\":null,
 \"ReturnDate\":null,
 \"CarType\":null}",
 "lastConfirmedReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}"
 }
}

b. Amazon Lex reads the inputText and it knows the context (asked the user to confirm the auto
population). Amazon Lex invokes the Lambda function by sending the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",

141

Amazon Lex Developer Guide
Details of the Information Flow

 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "confirmationContext": "AutoPopulate",
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity\":null,
\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookCar",
 "slots": {
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": "Chicago"
 },
 "confirmationStatus": "Confirmed"
 }
}

Because the user replied Yes, Amazon Lex sets the confirmationStatus to Confirmed.

c. From the confirmationStatus, the Lambda function knows that the prepopulated values are
correct. The Lambda function does the following:

• Updates the currentReservation session attribute to slot value it had prepopulated.

• Sets the dialogAction.type to ElicitSlot

• Sets the slotToElicit value to DriverAge.

The following response is sent:

{
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity\":
\"Chicago\",\"PickUpDate\":\"2016-12-18\",\"ReturnDate\":\"2016-12-22\",\"CarType
\":null}",
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"4\"}"
 },
 "dialogAction": {
 "type": "ElicitSlot",
 "intentName": "BookCar",
 "slots": {
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": "Chicago"
 },
 "slotToElicit": "DriverAge",
 "message": {
 "contentType": "PlainText",
 "content": "How old is the driver of this car rental?"

142

Amazon Lex Developer Guide
Example: Using a Response Card

 }
 }
}

d. Amazon Lex returns following response:

The client displays the message "How old is the driver of this car rental?" and the conversation
continues.

Example: Using a Response Card
In this exercise, you extend Getting Started Exercise 1 by adding a response card. You create a bot
that supports the OrderFlowers intent, and then update the intent by adding a response card for the
FlowerType slot. In addition to the following prompt for the FlowerType slot, the user can choose the
type of flowers from the response card:

What type of flowers would you like to order?

The following is the response card:

143

Amazon Lex Developer Guide
Example: Using a Response Card

The bot user can either type the text or choose from the list of flower types. This response card is
configured with an image, which appears in the client as shown. For more information about response
cards, see Response Cards (p. 14).

To create and test a bot with a response card:

1. Follow Getting Started Exercise 1 to create and test an OrderFlowers bot. You must complete steps
1, 2, and 3. You don't need to add a Lambda function to test the response card. For instructions, see
Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console) (p. 24).

2. Update the bot by adding the response card, and then publish a version. When you publish a version,
specify an alias (BETA) to point to it.

a. In the Amazon Lex console, choose your bot.

b. Choose the OrderFlowers intent.

c. Choose the settings gear icon next to the "What type of flowers" Prompt to configure a
response card for the FlowerType.

144

Amazon Lex Developer Guide
Example: Updating Utterances

d. Configure three buttons as shown in the following screen shot. You can optionally add an image
to the response card, provided you have an image URL.

e. Verify the button values in the Preview, and then choose Save.

f. On the Editor tab, choose Save to save the intent configuration.

g. To build the bot, choose Build.

h. To publish a bot version, choose Publish. Specify BETA as an alias that points to the bot version.
For information about versioning, see Versioning and Aliases (p. 81).

3. Deploy the bot on the Facebook Messenger platform and test the integration. For instructions, see
Integrating an Amazon Lex Bot with Facebook Messenger (p. 94).

When you order flowers, the message window shows the response card so you can choose a flower
type.

Example: Updating Utterances
In this exercise, you add additional utterances to those you created in Getting Started Exercise 1. You use
the Monitoring tab in the Amazon Lex console to view utterances that your bot did not recognize. To
improve the experience for your users, you add those utterances to the bot.

Note
Utterance statistics are generated once a day, generally in the evening. You can see the
utterance that was not recognized, how many times it was heard, and the last date and time
that the utterance was heard. It can take up to 24 hours for missed utterances to appear in the
console.

To view and add missed utterances to a bot:

1. Follow the first step of Getting Started Exercise 1 to create and test an OrderFlowers bot. For
instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console) (p. 24).

145

Amazon Lex Developer Guide
Example: Updating Utterances

2. Test the bot by typing the following utterances in the Test Bot window. Type each utterance several
times. The example bot doesn't recognize the following utterances:

• Order flowers
• Get me flowers
• Please order flowers
• Get me some flowers

3. Wait for Amazon Lex to gather usage data about the missed utterances. Utterance data is generated
once per day, generally overnight.

4. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

5. Choose the OrderFlowers bot.
6. Choose the Monitoring tab, and then choose Utterances from the left menu and then choose the

Missed button. The pane shows a maximum of 100 missed utterances.

7. To choose the missed utterances that you want to add to the bot, select the check box next to them.
To add the utterance to the $LATEST version of the intent, choose the down arrow next to the Add
utterance to intent dropdown, and then choose the intent.

8. To rebuild your bot, choose Build and then Build again to re-build your bot.
9. To verify that your bot recognizes the new utterances, use the Test Bot pane.

146

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Monitoring Amazon Lex with CloudWatch

Monitoring Amazon Lex

Monitoring is an important part of maintaining the reliability, availability, and performance of your
Amazon Lex solutions. This section provides information about the available monitoring tools and
reference content for Amazon Lex metrics.

Monitoring Amazon Lex with Amazon CloudWatch
With Amazon CloudWatch you can get metrics for individual Amazon Lex operations or global Amazon
Lex operations for your account. You can use metrics to track the health of your Amazon Lex solution and
set up alarms to notify you when one or more metrics fall outside of a defined threshold. For example,
you can monitor the number of requests made to a bot over a particular time period, view the latency of
successful requests, or raise an alarm when errors go above a threshold.

Using CloudWatch Metrics for Amazon Lex
To use metrics, you must specify the following information:

• The metric dimension. A dimension is a set of name-value pairs that helps you uniquely identify a
metric. Amazon Lex has three dimensions:
• BotAlias, BotName, Operation
• BotAlias, BotName, InputMode, Operation
• BotName, BotVersion, InputMode, Operation

• The metric name, such as MissedUtteranceCount or RuntimeRequestCount.

You can get metric information for Amazon Lex using the AWS Management Console, the AWS CLI, or
the CloudWatch API. You can use the the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The Amazon Lex console displays graphs based on
the raw data from the CloudWatch API.

You must have the appropriate CloudWatch permissions to monitor Amazon Lex with CloudWatch
For more information, see Authentication and Access Control for Amazon CloudWatch in the Amazon
CloudWatch User Guide.

Access Metrics for Amazon Lex
The following examples show how to access Amazon Lex metrics using the CloudWatch console, the AWS
CLI, and the CloudWatch API.

147

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

Amazon Lex Developer Guide
Create an Alarm

To view metrics (Amazon Lex console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose the one to see metrics for.
3. Choose Monitoring.
4. Metrics are displayed in graphs.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Metrics, choose the All Metrics tab, and then choose AWS/Lex.
3. Choose one of the dimensions, and then choose a metric. Add the metric to the graph.
4. Choose a value for the date range. The metric count for the selected date range is displayed in the

graph.

Create an Alarm
You can create a CloudWatch alarm that sends an Amazon Simple Notification Service (Amazon SNS)
message when the alarm changes state. An alarm watches a single metric over a time period that you
specify, and performs one or more actions based on the value of the metric relative to a given threshold
over a number of time periods. The action is a notification sent to an Amazon SNS topic or Auto Scaling
policy.

CloudWatch alarms don't invoke actions simply because the are in a particular state; the state must have
changed and been maintained for a specified number of periods.

To set an alarm (Console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Alarms and then Create Alarm. This launches the Create Alarm wizard.
3. Choose AWS/Lex Metrics and then choose a metric.
4. In the Time Range area, select a time range to monitor. Choose Next.
5. fill in the Name and Description. For Whenever, choose >=, and enter a maximum value of your

choice.
6. If you want CloudWatch to send an email when the alarm state is reached, in the Actions section

choose State is ALARM in the Whenever this alarm dropdown. In the Send notification to
dropdown select an exiging mailing list or click New list to create a new list.

7. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose Create
Alarm to create and save the alarm.

CloudWatch Metrics for Amazon Lex
This section provides information about the Amazon CloudWatch metrics and the dimensions available
for Amazon Lex

Topics
• CloudWatch Metrics for Amazon Lex Runtime (p. 149)
• CloudWatch Metrics for Amazon Lex Channel Associations (p. 151)

148

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Lex Developer Guide
Runtime Metrics for Amazon Lex

CloudWatch Metrics for Amazon Lex Runtime
The following table summarizes the Amazon Lex runtime metrics.

Metric Description

RuntimeInvalidLambdaResponsesThe number of invalid Lambda responses in the specified time period.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

RuntimeLambdaErrors The number of Lambda runtime errors in the specified time period.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

MissedUtteranceCount The number of utterances that were not recognized in the specified time
period.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotVersion, Operation, InputMode
• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotVersion, Operation
• BotName, BotAlias, Operation

RuntimePollyErrors The number of invalid Amazon Polly responses in the specified time
period.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

RuntimeRequestCount The number of requests in the specified time period.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotVersion, Operation, InputMode
• BotName, BotAlias, Operation, InputMode

149

Amazon Lex Developer Guide
Runtime Metrics for Amazon Lex

Metric Description

Valid dimensions (Operation=PostText)

• BotName, BotVersion, Operation
• BotName, BotAlias, Operation

Unit: Count

RuntimeSucessfulRequestLatencyThe latency for successful requests between when the request was made
and the response.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotVersion, Operation, InputMode
• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotVersion, Operation
• BotName, BotAlias, Operation

Unit: Milliseconds

RuntimeSystemErrors The number of system errors in the specified time period. The response
code range for a system error is 500 to 599.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

Unit: Count

RuntimeThrottledEvents The number of throttled requests. Amazon Lex throttles a request when
it receives more requests than the limit of transactions per second set
for your account. If the limit set for your account is frequently exceeded,
you can request a limit increase. To request an increase, see AWS Service
Limits.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

Unit: Count

150

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Lex Developer Guide
Channel Association Metrics for Amazon Lex

Metric Description

RuntimeUserErrors The number of user errors in the specified time period. The response
code range for a user error is 400 to 499.

Valid dimensions (Operation=PostContent; InputMode=Text or Speech):

• BotName, BotAlias, Operation, InputMode

Valid dimensions (Operation=PostText)

• BotName, BotAlias, Operation

Unit: Count

Amazon Lex runtime metrics use the AWS/Lex namespace and provide metrics for the following
dimensions:

Dimension Description

BotName, BotAlias,
Operation, InputMode

Metrics are grouped by the bot's alias, the bot's name, the operation
(PostContent) and finally by whether the input was text or speech.

BotName, BotVersion,
Operation, InputMode

Metrics are grouped by the bot's name, the version of the bot, the
operation (PostContent) and finally by whether the input was text or
speech.

BotName, BotVersion,
Operation

Metrics are grouped by the bot's name, the bot's version, and finally by
the operation, PostText.

BotName, BotAlias,
Operation

Metrics are grouped by the bot's name, the bot's alias, and finally by the
operation, PostText.

CloudWatch Metrics for Amazon Lex Channel
Associations
The following table lists the Amazon Lex channel association metrics.

Metric Description

BotChannelAuthErrors The number of authentication errors returned by the messsaging
channel in the specified time period. This indicates that the secret token
provided during channel creation is invalid or expired.

BotChannelConfigurationErrorsThe number of configuration errors in the specified time period. This
indicates that one or more configuration entries for the channel are
invalid.

BotChannelInboundThrottledEventsThe number of times messages sent by the messaging channel were
throttled by Amazon Lex in the specified time period.

BotChannelOutboundThrottledEventsThe number of times that outbound events from Amazon Lex to the
messaging channel were throttled in the specified time period.

151

Amazon Lex Developer Guide
Channel Association Metrics for Amazon Lex

Metric Description

BotChannelRequestCount The number of requests made on a channel in the specified time period.

BotChannelResponseCardErrorsThe number of times that Amazon Lex could not post response cards in
the specified time period.

BotChannelSystemErrors The number of internal errors that ocurred in Amazon Lex for a channel
in the specified time period.

Amazon Lex runtime metrics use the AWS/Lex namespace and provide metrics for the following
dimensions:

Dimension Description

BotAlias, BotChannelName,
BotName, Source

Metrics are grouped by the bot's alias, the channel name, the bot's name,
and finally by the source of traffic.

152

Amazon Lex Developer Guide
General Guidelines

Guidelines and Limits in Amazon Lex

The following sections provide guidelines and limits when using Amazon Lex.

Topics
• General Guidelines (p. 153)
• Limits (p. 155)

General Guidelines
This section describes general guidelines when using Amazon Lex.

• Signing requests – All Amazon Lex model-building and runtime API operations in the API
Reference (p. 172) use signature V4 for authenticating requests. For more information about
authenticating requests, see Signature Version 4 Signing Process in the Amazon Web Services General
Reference.

For PostContent (p. 285), uses the unsigned payload option described in Signature Calculations for
the Authorization Header: Transferring Payload in a Single Chunck (AWS Signature Version 4) in the
Amazon Simple Storage Service (S3) API Reference.

When you use the unsigned payload option, don't include the hash of the payload in the canonical
request. Instead, you use the literal string "UNSIGNED-PAYLOAD" as the hash of the payload. Also
include a header with the name x-amz-content-sha256 and the value UNSIGNED-PAYLOAD in the
PostContent request.

• Note the following about how Amazon Lex captures slot values from user utterances:

Amazon Lex uses the enumeration values you provide in a slot type definition to train its machine
learning models. Suppose you define an intent called GetPredictionIntent with the following sample
utterance:

153

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

Amazon Lex Developer Guide
General Guidelines

"Tell me the prediction for {Sign}"

Where {Sign} is a slot of custom type ZodiacSign. ZodiacSign has 12 enumeration values (Aries
through Pisces). From the user utterance "Tell me the prediction for ..." Amazon Lex understands that
what follows is a zodiac sign.

If the user says "Tell me the prediction for earth", Amazon Lex infers that "earth" is possibly another
ZodiacSign and passes it to your fulfillment activity. Therefore, your fulfillment activity must validate
the slot values.

When Amazon Lex calls a Lambda function or returns the result of a conversation to your client
application, the case of the slot values is not guaranteed. For example, if you are eliciting values for
the AMAZON.Movie built-in slot type, and a user says or types "Gone with the wind," Amazon Lex may
return "Gone with the Wind," "gone with the wind," or "Gone With The Wind."

• Amazon Lex does not support the AMAZON.LITERAL built-in slot type that the Alexa Skills Kit
supports. However, Amazon Lex supports creating custom slot types that you can use to implement
this functionality. As mentioned in the previous bullet, you can capture values outside the custom slot
type definition. Add more and diverse enumeration values to boost the automatic speech recognition
(ASR) and natural language understanding (NLU) accuracy.

• The AMAZON.DATE and AMAZON.TIME built-in slot types capture both absolute and relative dates and
times. Relative dates and times are resolved in the region where Amazon Lex is processing the request.

For the AMAZON.TIME built-in slot type, if the user doesn't specify that a time is before or after noon,
the time is ambiguous and Amazon Lex will prompt the user again. We recommend prompts that elicit
an absolute time. For example, use a prompt such as "When do you want your pizza delivered? You can
say 6 PM or 6 in the evening."

• Providing confusable training data in your bot reduces Amazon Lex's ability to understand user input.
Consider these examples:

Suppose you have two intents (OrderPizza and OrderDrink) in your bot and both are configured with
an "I want to order" utterance. This utterance does not map to a specific intent that Amazon Lex can
learn from while building the language model for the bot at build time. As a result, when a user inputs
this utterance at runtime, Amazon Lex can't pick an intent with a high degree of confidence.

Consider another example where you define a custom intent for getting a confirmation from the user
(for example, MyCustomConfirmationIntent) and configure the intent with the utterances "Yes" and
"No." Note that Amazon Lex also has a language model for understanding user confirmations. This
can create conflicting situation. When the user responds with a "Yes," does this mean that this is a
confirmation for the ongoing intent or that the user is requesting the custom intent that you created?

154

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#movie
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#date
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#time

Amazon Lex Developer Guide
Limits

In general, the sample utterances you provide should map to a specific intent and, optionally, to
specific slot values.

• The runtime API operations PostContent (p. 285) and PostText (p. 292) take a user ID as the

required parameter. Developers can set this to any value that meets the constraints described in the
API. We recommend you don't use this parameter to send any confidential information such as user
logins, emails, or social security numbers. This ID is primarily used to uniquely identify conversation
with a bot (there can be multiple users ordering pizza).

• If your client application uses Amazon Cognito for authentication, you might use the Amazon Cognito

user ID as Amazon Lex user ID. Note that any Lambda function configured for your bot must have
its own authentication mechanism to identify the user on whose behalf Amazon Lex is invoking the
Lambda function.

• We encourage you to define an intent that captures a user's intention to discontinue the conversation.

For example, you can define an intent (NothingIntent) with sample utterances ("I don't want
anything", "exit", "bye bye"), no slots, and no Lambda function configured as a code hook. This would
let users gracefully close a conversation.

Limits
This section describes current limits in Amazon Lex. These limits are grouped by categories.

Topics
• General Limits (p. 155)
• Runtime Service Limits (p. 156)
• Model Building Limits (p. 156)

General Limits
Currently, Amazon Lex is available in us-east-1 region.

Service Region
Name

Region Endpoint Protocol

Model
building
service

US East (N.
Virginia)

us-east-1 models.lex.us-east-1.amazonaws.com HTTPS

Runtime
service

US East (N.
Virginia)

us-east-1 runtime.lex.us-east-1.amazonaws.com HTTPS

Currently, Amazon Lex supports only US English language. That is, Amazon Lex trains your bots to
understand only US English.

155

Amazon Lex Developer Guide
Runtime Service Limits

Runtime Service Limits
Currently, Amazon Lex is available in us-east-1 region.

Region
Name

Region Endpoint Protocol

US East (N.
Virginia)

us-east-1 runtime.lex.us-east-1.amazonaws.com HTTPS

In addition to the limits described in the API reference, note the following:

• API

• Input speech in the PostContent (p. 285) can be up to 15 seconds long.

• In both the runtime API operations PostContent (p. 285) and PostText (p. 292), the input text size
can be up to 1024 Unicode characters.

• The total size of the session attributes in a PostContent request and response can be up to 12 KB.

Model Building Limits
Model building refers to creating and managing bots. This includes creating and managing bots, intents,
slot types, slots, and bot channel associations.

Currently, Amazon Lex is available in us-east-1 region.

Region
Name

Region Endpoint Protocol

US East (N.
Virginia)

us-east-1 models.lex.us-east-1.amazonaws.com HTTPS

Topics

• Bot Limits (p. 156)

• Intent Limits (p. 158)

• Slot Type Limits (p. 159)

Bot Limits
• You configure prompts and statements throughout the model building API. Each of these prompts

or statements can have up to five messages and each message can contain from 1 to 1000 UTF-8
characters.

• You can define sample utterances for intents and slots. You can use a maximum of 200,000 characters
for all utterances.

156

Amazon Lex Developer Guide
Model Building Limits

• Bot, alias, and bot channel association names are case insensitive at the time of creation. If you create
PizzaBot and then try to create pizzaBot, you will get an error. However, when accessing a resource,
the resource names are case sensitive, you must specify PizzaBot and not pizzaBot. These names must
be between 2 and 50 ASCII characters.

• The maximum number of versions you can publish for all resource types is 100. Note that there is no
versioning for aliases.

• Within a bot, intent names and slot names must be unique, you can't have an intent and a slot by the
same name.

• You can create a bot that is configured to support multiple intents. If two intents have a slot by the
same name, then the corresponding slot type must be the same.

For example, suppose you create a bot to support two intents (OrderPizza and OrderDrink). If both
these intents have the size slot, then the slot type must be the same in both places.

In addition, the sample utterances you provide for a slot in one of the intents applies to a slot with the
same name in other intents.

• You can associate a maximum of 100 intents with a bot.

• When you create a bot, you specify a session timeout. The session timeout can be between one minute
and one day. The default is five minutes.

This timeout determines how long the bot can retain conversation context, such as current user intent
and slot data.

In addition, note that after a user starts the conversation with your bot and until the session expires,
Amazon Lex uses the same bot version (even if you update the bot alias to point to another version).

• When you update the $LATEST version of the bot, Amazon Lex terminates any in-progress
conversations for any client application using the $LATEST version of the bot). Generally, you should
not use the $LATEST version of a bot in production because $LATEST version can be updated. You
should publish a version and use it instead.

• When you update an alias, Amazon Lex takes a few minutes to pick up the change. When you modify
the $LATEST version of the bot, the change is picked up immediately.

157

Amazon Lex Developer Guide
Model Building Limits

• The $LATEST version of your bot should only be used for manual testing while building the bot.
Amazon Lex limits the number of runtime requests that you can make to the $LATEST version of the
bot.

• You can create up to five aliases for a bot.

• You can create up to 100 bots per AWS account.

• You cannot create multiple intents that extend from the same built-in intent.

Intent Limits
• Intent and slot names are case insensitive at the time of creation. That is, if you create OrderPizza

intent and then again try to create another orderPizza intent, you will get an error. However,
when accessing these resources, the resource names are case sensitive, specify OrderPizza and not
orderPizza. These names must be between 1 and 100 ASCII characters.

• An intent can have up to 1,500 sample utterances. A minimum of one sample utterance is required.

Each sample utterance can be up to 200 UTF-8 characters long. You can use up to 200,000 characters
for all intent and slot utterances in a bot. A sample utterance for an intent:
• Can refer to zero or more slot names.
• Can refer to a slot name only once.

For example:

I want a pizza
I want a {pizzaSize} pizza
I want a {pizzaSize} {pizzaTopping} pizza

• Although each intent supports up to 1,500 utterances, if you use fewer utterances Amazon Lex may

have a better ability to recognize inputs outside your provided set.

• Each slot can have up to 10 sample utterances. Each sample utterance must refer to the slot name

exactly once. For example:

{pizzaSize} please

• Each bot can have a maximum of 200,000 characters for intent and slot utterences combined.

• You cannot provide utterances for intents that extend from built-in intents. For all other intents you

must provide at least one sample utterance. Intents contain slots, but the slot level sample utterances
are optional.

158

Amazon Lex Developer Guide
Model Building Limits

• Built-in intents
• Currently, Amazon Lex does not support slot elicitation for built-in intents. You cannot create

Lambda functions to return the ElicitSlot directive in the response with an intent that is derived
from built-in intents. For more information, see Response Format (p. 88).

• The service does not support adding sample utterances to built-in intents. Similarly, you cannot add
or remove slots to built-in intents.

• You can create up to 1,000 intents per AWS account. You can create up to 100 slots in an intent.

Slot Type Limits
• Slot type names are case insensitive at the time of creation. If you create the PizzaSize slot type and

then again try to create the pizzaSize slot type, you will get an error. However, when accessing these
resources, the resource names are case sensitive (you must specify PizzaSize and not pizzaSize).
These names must be between 1 and 100 ASCII characters.

• Resource (bot, intent, alias, slot, slot type) names are case insensitive.

A custom slot type you create can have a maximum of 10,000 enumeration values, and each
enumeration value can be up to 140 UTF-8 characters long. The enumeration values cannot contain
duplicates.

• For a slot type value, where appropriate, specify both upper and lower case. For example, for a slot

type called Procedure, if value is MRI, specify both MRI and mri as values.

• Built-in slot types – Currently, Amazon Lex doesn't support adding enumeration values for the built-in

slot types.

159

Amazon Lex Developer Guide
Authentication

Authentication and Access Control
for Amazon Lex

Access to Amazon Lex requires credentials that AWS can use to authenticate your requests. Those
credentials must have permissions to access AWS resources, such as an Amazon Lex chatbot or an
Amazon Lex slot type. The following sections provide details on how you can use AWS Identity and
Access Management (IAM) and Amazon Lex to help secure your resources by controlling who can access
them.

• Authentication (p. 160)

• Access Control (p. 161)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. This is your AWS account root user. Its credentials provide
complete access to all of your AWS resources.

Important
For security reasons, we recommend that you use the root user only to create an
administrator, which is an IAM user with full permissions to your AWS account. You can then
use this administrator user to create other IAM users and roles with limited permissions. For
more information, see IAM Best Practices and Creating an Admin User and Group in the IAM
User Guide.

• IAM user – An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create a bot in Amazon Lex). You can use an IAM user name
and password to sign in to secure AWS webpages like the AWS Management Console, AWS Discussion
Forums, or the AWS Support Center.

160

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/

Amazon Lex Developer Guide
Access Control

In addition to a user name and password, you can also generate access keys for each user. You can
use these keys when you access AWS services programmatically, either through one of the several
SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the access keys to
cryptographically sign your request. If you don’t use the AWS tools, you must sign the request yourself.
Amazon Lex supports Signature Version 4, a protocol for authenticating inbound API requests. For
more information about authenticating requests, see Signature Version 4 Signing Process in the AWS
General Reference.

• IAM role – An IAM role is another IAM identity that you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM role
enables you to obtain temporary access keys that can be used to access AWS services and resources.
IAM roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities from
AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access Across
AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service permissions
to access your account’s resources. For example, you can create a role that allows Amazon Redshift
to access an Amazon S3 bucket on your behalf and then load data from that bucket into an Amazon
Redshift cluster. For more information, see Creating a Role to Delegate Permissions to an AWS
Service in the IAM User Guide.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications running on an EC2 instance and making AWS API requests. This is preferable to
storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make it
available to all of its applications, you create an instance profile that is attached to the instance.
An instance profile contains the role and enables programs running on the EC2 instance to get
temporary credentials. For more information, see Using Roles for Applications on Amazon EC2 in the
IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but unless you have permissions you cannot
create or access Amazon Lex resources. For example, you must have permissions to create an Amazon Lex
bot.

The following sections describe how to manage permissions for Amazon Lex. We recommend that you
read the overview first.

• Overview of Managing Access Permissions to Your Amazon Lex Resources (p. 162)

• Using Identity-Based Polices (IAM Policies) for Amazon Lex (p. 165)

161

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Lex Developer Guide
Overview of Managing Access

Overview of Managing Access Permissions to Your
Amazon Lex Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource are
governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For more
information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.

Topics

• Amazon Lex Resources and Operations (p. 162)

• Understanding Resource Ownership (p. 162)

• Managing Access to Resources (p. 163)

• Specifying Policy Elements: Actions, Effects, and Principals (p. 164)

• Specifying Conditions in a Policy (p. 164)

Amazon Lex Resources and Operations
In Amazon Lex, the primary resource is a bot. Amazon Lex also supports additional resource types, the
intent, the slot type, the alias, and the bot channel association. Aliases and bot channel associations
are referred to as subresources. For Amazon Lex, you can create subresources only in the context of an
existing bot.

These resources and subresources have unique Amazon Resource Names (ARNs) associated with them as
shown in the following table.

Amazon Lex provides a set of operations to work with Amazon Lex resources. For a list of available
operations, see Amazon Lex Actions (p. 172).

Understanding Resource Ownership
The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the root
account, an IAM user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a bot, your AWS account is the
owner of the resource (in Amazon Lex, the resource is the bot).

• If you create an IAM user in your AWS account and grant permissions to create a bot to that user, the
user can create a bot. However, your AWS account, to which the user belongs, owns the bot resource.

• If you create an IAM role in your AWS account with permissions to create a bot, anyone who can
assume the role can create a bot. Your AWS account, to which the role belongs, owns the bot resource.

162

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon Lex Developer Guide
Managing Access to Resources

Managing Access to Resources
A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of Amazon Lex. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What Is IAM? in the
IAM User Guide. For information about IAM policy syntax and descriptions, see AWS IAM Policy
Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. Amazon Lex supports only identity-
based policies (IAM policies).

Topics
• Identity-Based Policies (IAM Policies) (p. 163)
• Resource-Based Policies (p. 164)

Identity-Based Policies (IAM Policies)
You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user or a group of users
permissions to create a Amazon Lex resource, such as a bot, you can attach a permissions policy to a
user or group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – To grant cross-account
permissions, you can attach an identity-based permissions policy to an IAM role. For example, the
administrator in Account A can create a role to grant cross-account permissions to another AWS
account (for example, Account B) or an AWS service as follows:
1. Account A administrator creates an IAM role and attaches a permissions policy to the role that

grants permissions on resources in Account A.
2. Account A administrator attaches a trust policy to the role identifying Account B as the principal

who can assume the role.
3. Account B administrator can then delegate permissions to assume the role to any users in Account

B. Doing this allows users in Account B to create or access resources in Account A. If you want to
grant an AWS service permissions to assume the role, the principal in the trust policy can also be an
AWS service principal.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

The following is an example policy that allows the user to perform the PutBot action for your AWS
account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:PutBot"
 "Resource": [
 "*"
]
 }

163

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Lex Developer Guide
Specifying Policy Elements: Actions, Effects, and Principals

]
}

For more information about using identity-based policies with Amazon Lex, see Using Identity-Based
Polices (IAM Policies) for Amazon Lex (p. 165). For more information about users, groups, roles, and
permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies
Other services, such as Lambda, support resource-based permissions policies. For example, you can
attach a policy to an S3 bucket to manage access permissions to that bucket. Amazon Lex doesn't
support resource-based policies. However, it does use resource-based policies to access Lambda and
Amazon Polly services.

Specifying Policy Elements: Actions, Effects, and
Principals
For each Amazon Lex resource (see Amazon Lex Resources and Operations (p. 162)), the service defines
a set of API operations (see Actions (p. 172)). To grant permissions for these API operations, Amazon
Lex defines a set of actions that you can specify in a policy. For example, for the Amazon Lex Intent
resource, the following actions are defined: CreateIntent and CreateIntentVersion. Performing an API
operation can require permissions for more than one action.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to which the
policy applies. For more information, see Amazon Lex Resources and Operations (p. 162).

• Action – You use action keywords to identify resource operations that you want to allow or deny. For
example, depending on the specified Effect, lex:bBot either allows or denies the user permissions to
perform the Amazon Lex CreateBot operation.

• Effect – You specify the effect of the action that occurs when the user requests the specific action
—this can be either allow or deny. If you don't explicitly grant access to (allow) a resource, access is
implicitly denied. You can also explicitly deny access to a resource. You might do this to make sure that
a user cannot access the resource, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity
that you want to receive permissions. This applies to resource-based policies only. Amazon Lex doesn't
support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM User
Guide.

For a table showing all of the Amazon Lex API actions, see Amazon Lex API Permissions: Actions,
Resources, and Conditions Reference (p. 170).

Specifying Conditions in a Policy
When you grant permissions, you use the IAM policy language to specify the conditions under which a
policy should take effect. For example, you might want a policy to be applied only after a specific date.
For more information about specifying conditions in a policy language, see Condition in the IAM User
Guide.

AWS provides a set of predefined condition keys for all AWS services that support IAM for access control.
For example, you can use the aws:userid condition key to require a specific AWS ID when requesting an

164

http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition

Amazon Lex Developer Guide
Using Identity-Based Polices (IAM Policies) for Amazon Lex

action. For more information and a complete list of AWS-wide keys, see Available Keys for Conditions in
the IAM User Guide.

Note
Condition keys are case sensitive.

Amazon Lex provides additional condition keys that you can include in Condition elements in an IAM
permissions policy. The following table shows the Amazon Lex condition keys that apply to Amazon Lex
resources.

Example Policy: Using Condition Keys
The following example shows how to use condition keys in Amazon Lex IAM permissions policies.

Example 1: Grant Permission to Create Bots Using the OrderPizza Intent

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:PutBot"
 "Resource": [
 " *"
],
 "Condition": {
 "ForAllValues:StringLike": {
 "lex:associatedIntents": [
 "OrderPizza"
]
 }
 }
 }
]
}

Using Identity-Based Polices (IAM Policies) for
Amazon Lex

This topic provides examples of identity-based policies that demonstrate how an account administrator
can attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on Amazon Lex resources.

Important
Before you proceed, we recommend that you review Overview of Managing Access Permissions
to Your Amazon Lex Resources (p. 162).

The sections in this topic cover the following:

• Permissions Required to Use the Amazon Lex Console (p. 166)
• AWS Managed (Predefined) Polices for Amazon Lex (p. 168)
• Examples of Customer Managed Policies (p. 169)

The following is an example of a permissions policy:

165

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Lex Developer Guide
Permissions Required to Use the Amazon Lex Console

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:PostText"
 "Resource": [
 "arn:aws:lex:us-east-1:account-id:bot:OrderPizza:*"
]
 }
]
}

The policy has one statement that grants permission to use the PostText action with the OrderPizza
bot. The resource specifies a wildcard character (*) to give permission to any alias of the OrderPizza bot.

The policy doesn't specify the Principal element because you don't specify the principal who gets
the permission in an identity-based policy. When you attach a policy to a user, the user is the implicit
principal. When you attach a permissions policy to an IAM role, the principal identified in the role's trust
policy gets the permissions.

For a table showing all of the Amazon Lex API actions and the resources that they apply to, see Amazon
Lex API Permissions: Actions, Resources, and Conditions Reference (p. 170).

Permissions Required to Use the Amazon Lex Console
The permissions reference table lists the Amazon Lex API operations and shows the required permissions
for each operation. For more information about Amazon Lex API operations, see Amazon Lex API
Permissions: Actions, Resources, and Conditions Reference (p. 170).

To use the Amazon Lex console, you need to grant permissions for additional actions as shown in the
following permissions policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "kms:DescribeKey",
 "kms:ListAliases",
 "lambda:GetPolicy",
 "lambda:ListFunctions",
 "lex:*",
 "polly:DescribeVoices",
 "polly:SynthesizeSpeech"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",

166

Amazon Lex Developer Guide
Permissions Required to Use the Amazon Lex Console

 "lambda:RemovePermission"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "lambda:Principal": "lex.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:DeleteRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots",
 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
],
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "lex.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:DetachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
],
 "Condition": {
 "StringLike": {
 "iam:PolicyArn": "arn:aws:iam::aws:policy/aws-service-role/
AmazonLexBotPolicy"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels"
],
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "channels.lex.amazonaws.com"
 }

167

Amazon Lex Developer Guide
AWS Managed (Predefined) Polices for Amazon Lex

 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:DetachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels"
],
 "Condition": {
 "StringLike": {
 "iam:PolicyArn": "arn:aws:iam::aws:policy/aws-service-role/
LexChannelPolicy"
 }
 }
 }
]
 }

The Amazon Lex console needs these additional permissions for the following reasons:

• cloudwatch permissions to view performance and monitoring information in the console.
• iam actions to assume IAM roles for making calls to Lambda functions and processing data for a bot

channel association.
• kms actions to manage the AWS Key Management Service keys used to encrypt data when creating a

bot channel association.
• lambda actions to display Lambda functions that your bot can use, and to grant Lex the necessary

permissions for your bot to invoke these functions.
• lex actions so that the console can display Amazon Lex resources in the account.
• polly actions so that the console can display Amazon Polly voices and so that it can translate text to

speech.
• iam actions so that the console can manage server-linked roles that grant permission to use other AWS

resources.

AWS Managed (Predefined) Polices for Amazon Lex
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. Managed policies grant necessary permissions for common use cases so you can
avoid having to investigate which permissions are needed. For more information, see AWS Managed
Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Lex:

• ReadOnly — Grants read-only access to Amazon Lex resources.
• RunBotsOnly — Grants access to run Amazon Lex conversational bots.
• FullAccess — Grants full access to create, read, update, delete, and run all Amazon Lex resources.

Grants access to associate Lambda functions whose name starts with AmazonLex with Amazon Lex
intents.

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies.

168

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Lex Developer Guide
Examples of Customer Managed Policies

You can also create your own custom IAM policies to allow permissions for Amazon Lex API actions. You
can attach these custom policies to the IAM users or groups that require those permissions.

Examples of Customer Managed Policies
In this section, we provide examples of user policies that grant permissions for various Amazon Lex
actions. These policies work with the AWS SDKs or the AWS command line interface (AWS). When you
use the console, you need to grant additional permissions specific to the console, which is discussed in
Permissions Required to Use the Amazon Lex Console (p. 166).

Note
All examples use the us-east-1 Region and contain fictitious account IDs.

Examples

• Example 1: Allow a User to Delete Any Bot (p. 169)

• Example 2: Allow a User to Update a Specific Bot (p. 169)

• Example 3: Allow a User to Manage a Specific Bot (p. 170)

Example 1: Allow a User to Delete Any Bot

The following permissions policy grants the user permissions to delete any bot that exists in the us-
east-1 Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:DeleteBot"
 "Resource": [
 "*"
]
 }
]
}

Example 2: Allow a User to Update a Specific Bot

The following policy grants the user permissions to update a specific bot in the us-east-1 Region, in this
case, the bot named "PizzaBot."

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:PutBot"
 "Resource": [
 "arn:aws:lex:us-east-1:account-id:bot:PizzaBot:$LATEST"
]
 }
]
}

169

Amazon Lex Developer Guide
Amazon Lex API Permissions Reference

Example 3: Allow a User to Manage a Specific Bot

The following permissions policy grants the user permissions to build and test a pizza ordering, and can
only use the OrderPizza intent and Toppings slot type when editing the bot in the us-east-1 region. The
policy uses the lex:associatedIntents and lex:associatedSlotType to limit the intent and slot types
that the user can use for this bot.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:Create*Version",
 "lex:Post*",
 "lex:Put*",
 "lex:Delete*"
],
 "Resource": [
 "arn:aws:lex:us-east-1:*:bot:PizzaBot:*",
 "arn:aws:lex:us-east-1:*:intent:OrderPizza:*",
 "arn:aws:lex:us-east-1:*:slottype:Toppings:*"
],
 "Condition": {
 "ForAllValues:StringEqualsIfExists": {
 "lex:associatedIntents": [
 "OrderPizza"
],
 "lex:associatedSlotTypes": [
 "Toppings"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "lex:Get*"
],
 "Resource": [
 "arn:aws:lex:us-east-1:*:bot:*",
 "arn:aws:lex:us-east-1:*:intent:*",
 "arn:aws:lex:us-east-1:*:slottype:*"
]
 }
]
 }

Amazon Lex API Permissions: Actions, Resources,
and Conditions Reference

Use the following table as a reference when setting up Access Control (p. 161) and writing a
permissions policy that you can attach to an IAM identity (an identity-based policy). The list includes
each Amazon Lex API operation, the corresponding action for which you can grant permissions to

170

Amazon Lex Developer Guide
Amazon Lex API Permissions Reference

perform the action, and the AWS resource for which you can grant the permissions. You specify the
actions in the policy's Action field, and you specify the resource value in the policy's Resource field.

To express conditions, you can use AWS-wide condition keys in your Amazon Lex policies. For a complete
list of AWS-wide keys, see Available Keys in the IAM User Guide.

Note
To specify an action, use the lex: prefix followed by the API operation name, for example,
lex:PostText.

171

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Lex Developer Guide
Actions

API Reference

This section provides documentation for the Amazon Lex API operations. Amazon Lex is available in the
following AWS region:

Service Region
Name

Region Endpoint Protocol

Model
building
service

US East (N.
Virginia)

us-east-1 models.lex.us-east-1.amazonaws.com HTTPS

Runtime
service

US East (N.
Virginia)

us-east-1 runtime.lex.us-east-1.amazonaws.com HTTPS

Topics

• Actions (p. 172)
• Data Types (p. 297)

Actions
The following actions are supported by Amazon Lex Model Building Service:

• CreateBotVersion (p. 175)
• CreateIntentVersion (p. 180)
• CreateSlotTypeVersion (p. 186)
• DeleteBot (p. 190)
• DeleteBotAlias (p. 192)
• DeleteBotChannelAssociation (p. 194)
• DeleteBotVersion (p. 196)
• DeleteIntent (p. 198)
• DeleteIntentVersion (p. 200)
• DeleteSlotType (p. 202)
• DeleteSlotTypeVersion (p. 204)

172

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• DeleteUtterances (p. 206)
• GetBot (p. 208)
• GetBotAlias (p. 213)
• GetBotAliases (p. 216)
• GetBotChannelAssociation (p. 219)
• GetBotChannelAssociations (p. 222)
• GetBots (p. 225)
• GetBotVersions (p. 228)
• GetBuiltinIntent (p. 231)
• GetBuiltinIntents (p. 233)
• GetBuiltinSlotTypes (p. 235)
• GetIntent (p. 237)
• GetIntents (p. 242)
• GetIntentVersions (p. 245)
• GetSlotType (p. 248)
• GetSlotTypes (p. 251)
• GetSlotTypeVersions (p. 254)
• GetUtterancesView (p. 257)
• PutBot (p. 260)
• PutBotAlias (p. 268)
• PutIntent (p. 272)
• PutSlotType (p. 281)

The following actions are supported by Amazon Lex Runtime Service:

• PostContent (p. 285)
• PostText (p. 292)

Amazon Lex Model Building Service
The following actions are supported by Amazon Lex Model Building Service:

• CreateBotVersion (p. 175)
• CreateIntentVersion (p. 180)
• CreateSlotTypeVersion (p. 186)
• DeleteBot (p. 190)
• DeleteBotAlias (p. 192)
• DeleteBotChannelAssociation (p. 194)
• DeleteBotVersion (p. 196)
• DeleteIntent (p. 198)
• DeleteIntentVersion (p. 200)
• DeleteSlotType (p. 202)
• DeleteSlotTypeVersion (p. 204)
• DeleteUtterances (p. 206)
• GetBot (p. 208)
• GetBotAlias (p. 213)

173

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• GetBotAliases (p. 216)
• GetBotChannelAssociation (p. 219)
• GetBotChannelAssociations (p. 222)
• GetBots (p. 225)
• GetBotVersions (p. 228)
• GetBuiltinIntent (p. 231)
• GetBuiltinIntents (p. 233)
• GetBuiltinSlotTypes (p. 235)
• GetIntent (p. 237)
• GetIntents (p. 242)
• GetIntentVersions (p. 245)
• GetSlotType (p. 248)
• GetSlotTypes (p. 251)
• GetSlotTypeVersions (p. 254)
• GetUtterancesView (p. 257)
• PutBot (p. 260)
• PutBotAlias (p. 268)
• PutIntent (p. 272)
• PutSlotType (p. 281)

174

Amazon Lex Developer Guide
Amazon Lex Model Building Service

CreateBotVersion
Service: Amazon Lex Model Building Service

Creates a new version of the bot based on the $LATEST version. If the $LATEST version of this resource
hasn't changed since you created the last version, Amazon Lex doesn't create a new version. It returns
the last created version.

Note
You can update only the $LATEST version of the bot. You can't update the numbered versions
that you create with the CreateBotVersion operation.

When you create the first version of a bot, Amazon Lex sets the version to 1. Subsequent versions
increment by 1. For more information, see Versioning (p. 81).

This operation requires permission for the lex:CreateBotVersion action.

Request Syntax

POST /bots/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request requires the following URI parameters.

name (p. 175)

The name of the bot that you want to create a new version of. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

checksum (p. 175)

Identifies a specific revision of the $LATEST version of the bot. If you specify a checksum and the
$LATEST version of the bot has a different checksum, a PreconditionFailedException exception is
returned and Amazon Lex doesn't publish a new version. If you don't specify a checksum, Amazon
Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

175

Amazon Lex Developer Guide
Amazon Lex Model Building Service

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "status": "string",
 "version": "string",
 "voiceId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

abortStatement (p. 175)

The message that Amazon Lex uses to abort a conversation. For more information, see
PutBot (p. 260).

Type: Statement (p. 322) object
checksum (p. 175)

Checksum identifying the version of the bot that was created.

Type: String
childDirected (p. 175)

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify
whether your use of Amazon Lex is related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to the Children's
Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By

176

Amazon Lex Developer Guide
Amazon Lex Model Building Service

specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a
website, program, or other application that is directed or targeted, in whole or in part, to children
under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm
that your use of Amazon Lex is not related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may
not specify a default value for the childDirected field that does not accurately reflect whether your
use of Amazon Lex is related to a website, program, or other application that is directed or targeted,
in whole or in part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed in
whole or in part, to children under age 13, you must obtain any required verifiable parental consent
under COPPA. For information regarding the use of Amazon Lex in connection with websites,
programs, or other applications that are directed or targeted, in whole or in part, to children under
age 13, see the Amazon Lex FAQ.

Type: Boolean
clarificationPrompt (p. 175)

The message that Amazon Lex uses when it doesn't understand the user's request. For more
information, see PutBot (p. 260).

Type: Prompt (p. 316) object
createdDate (p. 175)

The date when the bot version was created.

Type: Timestamp
description (p. 175)

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
failureReason (p. 175)

If status is FAILED, Amazon Lex provides the reason that it failed to build the bot.

Type: String
idleSessionTTLInSeconds (p. 175)

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation. For
more information, see PutBot (p. 260).

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.
intents (p. 175)

An array of Intent objects. For more information, see PutBot (p. 260).

Type: Array of Intent (p. 312) objects

Array Members: Minimum number of 1 item. Maximum number of 100 items.
lastUpdatedDate (p. 175)

The date when the $LATEST version of this bot was updated.

Type: Timestamp

177

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex Developer Guide
Amazon Lex Model Building Service

locale (p. 175)

Specifies the target locale for the bot.

Type: String

Valid Values: en-US
name (p. 175)

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
status (p. 175)

When you send a request to create or update a bot, Amazon Lex sets the status response element
to BUILDING. After Amazon Lex builds the bot, it sets status to READY. If Amazon Lex can't build the
bot, it sets status to FAILED. Amazon Lex returns the reason for the failure in the failureReason
response element.

Type: String

Valid Values: BUILDING | READY | FAILED | NOT_BUILT
version (p. 175)

The version of the bot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+
voiceId (p. 175)

The Amazon Polly voice ID that Amazon Lex uses for voice interactions with the user.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

178

Amazon Lex Developer Guide
Amazon Lex Model Building Service

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

179

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateBotVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/CreateBotVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

CreateIntentVersion
Service: Amazon Lex Model Building Service

Creates a new version of an intent based on the $LATEST version of the intent. If the $LATEST version of
this intent hasn't changed since you last updated it, Amazon Lex doesn't create a new version. It returns
the last version you created.

Note
You can update only the $LATEST version of the intent. You can't update the numbered versions
that you create with the CreateIntentVersion operation.

When you create a version of an intent, Amazon Lex sets the version to 1. Subsequent versions increment
by 1. For more information, see Versioning (p. 81).

This operation requires permissions to perform the lex:CreateIntentVersion action.

Request Syntax

POST /intents/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request requires the following URI parameters.

name (p. 180)

The name of the intent that you want to create a new version of. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

checksum (p. 180)

Checksum of the $LATEST version of the intent that should be used to create the new version. If you
specify a checksum and the $LATEST version of the intent has a different checksum, Amazon Lex
returns a PreconditionFailedException exception and doesn't publish a new version. If you don't
specify a checksum, Amazon Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

180

Amazon Lex Developer Guide
Amazon Lex Model Building Service

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"

181

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "description": "string",
 "name": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 }
],
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

checksum (p. 180)

Checksum of the intent version created.

Type: String
conclusionStatement (p. 180)

After the Lambda function specified in the fulfillmentActivity field fulfills the intent, Amazon Lex
conveys this statement to the user.

Type: Statement (p. 322) object
confirmationPrompt (p. 180)

If defined, the prompt that Amazon Lex uses to confirm the user's intent before fulfilling it.

Type: Prompt (p. 316) object
createdDate (p. 180)

The date that the intent was created.

Type: Timestamp
description (p. 180)

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

182

Amazon Lex Developer Guide
Amazon Lex Model Building Service

dialogCodeHook (p. 180)

If defined, Amazon Lex invokes this Lambda function for each user input.

Type: CodeHook (p. 308) object
followUpPrompt (p. 180)

If defined, Amazon Lex uses this prompt to solicit additional user activity after the intent is fulfilled.

Type: FollowUpPrompt (p. 310) object
fulfillmentActivity (p. 180)

Describes how the intent is fulfilled.

Type: FulfillmentActivity (p. 311) object
lastUpdatedDate (p. 180)

The date that the intent was updated.

Type: Timestamp
name (p. 180)

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
parentIntentSignature (p. 180)

A unique identifier for a built-in intent.

Type: String
rejectionStatement (p. 180)

If the user answers "no" to the question defined in confirmationPrompt, Amazon Lex responds with
this statement to acknowledge that the intent was canceled.

Type: Statement (p. 322) object
sampleUtterances (p. 180)

An array of sample utterances configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.
slots (p. 180)

An array of slot types that defines the information required to fulfill the intent.

Type: Array of Slot (p. 318) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.
version (p. 180)

The version number assigned to the new version of the intent.

183

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

184

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateIntentVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/CreateIntentVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

185

Amazon Lex Developer Guide
Amazon Lex Model Building Service

CreateSlotTypeVersion
Service: Amazon Lex Model Building Service

Creates a new version of a slot type based on the $LATEST version of the specified slot type. If the
$LATEST version of this resource has not changed since the last version that you created, Amazon Lex
doesn't create a new version. It returns the last version that you created.

Note
You can update only the $LATEST version of a slot type. You can't update the numbered versions
that you create with the CreateSlotTypeVersion operation.

When you create a version of a slot type, Amazon Lex sets the version to 1. Subsequent versions
increment by 1. For more information, see Versioning (p. 81).

This operation requires permissions for the lex:CreateSlotTypeVersion action.

Request Syntax

POST /slottypes/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request requires the following URI parameters.

name (p. 186)

The name of the slot type that you want to create a new version for. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

checksum (p. 186)

Checksum for the $LATEST version of the slot type that you want to publish. If you specify a
checksum and the $LATEST version of the slot type has a different checksum, Amazon Lex returns a
PreconditionFailedException exception and doesn't publish the new version. If you don't specify a
checksum, Amazon Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

186

Amazon Lex Developer Guide
Amazon Lex Model Building Service

{
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "enumerationValues": [
 {
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

checksum (p. 186)

Checksum of the $LATEST version of the slot type.

Type: String
createdDate (p. 186)

The date that the slot type was created.

Type: Timestamp
description (p. 186)

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
enumerationValues (p. 186)

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue (p. 309) objects

Array Members: Minimum number of 1 item. Maximum number of 10000 items.
lastUpdatedDate (p. 186)

The date that the slot type was updated. When you create a resource, the creation date and last
update date are the same.

Type: Timestamp
name (p. 186)

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

187

Amazon Lex Developer Guide
Amazon Lex Model Building Service

version (p. 186)

The version assigned to the new slot type version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3

188

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateSlotTypeVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Python
• AWS SDK for Ruby V2

189

http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/CreateSlotTypeVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteBot
Service: Amazon Lex Model Building Service

Deletes all versions of the bot, including the $LATEST version. To delete a specific version of the bot, use
the DeleteBotVersion (p. 196) operation.

If a bot has an alias, you can't delete it. Instead, the DeleteBot operation returns a
ResourceInUseException exception that includes a reference to the alias that refers to the bot. To
remove the reference to the bot, delete the alias. If you get the same exception again, delete the
referring alias until the DeleteBot operation is successful.

This operation requires permissions for the lex:DeleteBot action.

Request Syntax

DELETE /bots/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 190)

The name of the bot. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

190

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

191

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBot
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteBot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteBotAlias
Service: Amazon Lex Model Building Service

Deletes an alias for the specified bot.

You can't delete an alias that is used in the association between a bot and a messaging channel. If
an alias is used in a channel association, the DeleteBot operation returns a ResourceInUseException
exception that includes a reference to the channel association that refers to the bot. You can remove the
reference to the alias by deleting the channel association. If you get the same exception again, delete the
referring association until the DeleteBotAlias operation is successful.

Request Syntax

DELETE /bots/botName/aliases/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botName (p. 192)

The name of the bot that the alias points to.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
name (p. 192)

The name of the alias to delete. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

192

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

193

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotAlias
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteBotAlias

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteBotChannelAssociation
Service: Amazon Lex Model Building Service

Deletes the association between an Amazon Lex bot and a messaging platform.

This operation requires permission for the lex:DeleteBotChannelAssociation action.

Request Syntax

DELETE /bots/botName/aliases/aliasName/channels/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botAlias (p. 194)

An alias that points to the specific version of the Amazon Lex bot to which this association is being
made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botName (p. 194)

The name of the Amazon Lex bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
name (p. 194)

The name of the association. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

194

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

195

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteBotChannelAssociation

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteBotVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of a bot. To delete all versions of a bot, use the DeleteBot (p. 190) operation.

This operation requires permissions for the lex:DeleteBotVersion action.

Request Syntax

DELETE /bots/name/versions/version HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 196)

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 196)

The version of the bot to delete. You cannot delete the $LATEST version of the bot. To delete the
$LATEST version, use the DeleteBot (p. 190) operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

196

Amazon Lex Developer Guide
Amazon Lex Model Building Service

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

197

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteBotVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteIntent
Service: Amazon Lex Model Building Service

Deletes all versions of the intent, including the $LATEST version. To delete a specific version of the intent,
use the DeleteIntentVersion (p. 200) operation.

You can delete a version of an intent only if it is not referenced. To delete an intent that is referred to in
one or more bots (see Amazon Lex: How It Works (p. 3)), you must remove those references first.

Note
If you get the ResourceInUseException exception, it provides an example reference that shows
where the intent is referenced. To remove the reference to the intent, either update the bot or
delete it. If you get the same exception when you attempt to delete the intent again, repeat
until the intent has no references and the call to DeleteIntent is successful.

This operation requires permission for the lex:DeleteIntent action.

Request Syntax

DELETE /intents/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 198)

The name of the intent. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

198

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

199

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteIntent
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteIntent

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteIntentVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of an intent. To delete all versions of a intent, use the DeleteIntent (p. 198)
operation.

This operation requires permissions for the lex:DeleteIntentVersion action.

Request Syntax

DELETE /intents/name/versions/version HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 200)

The name of the intent.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 200)

The version of the intent to delete. You cannot delete the $LATEST version of the intent. To delete
the $LATEST version, use the DeleteIntent (p. 198) operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

200

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

201

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteIntentVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteIntentVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteSlotType
Service: Amazon Lex Model Building Service

Deletes all versions of the slot type, including the $LATEST version. To delete a specific version of the slot
type, use the DeleteSlotTypeVersion (p. 204) operation.

You can delete a version of a slot type only if it is not referenced. To delete a slot type that is referred to
in one or more intents, you must remove those references first.

Note
If you get the ResourceInUseException exception, the exception provides an example reference
that shows the intent where the slot type is referenced. To remove the reference to the slot
type, either update the intent or delete it. If you get the same exception when you attempt to
delete the slot type again, repeat until the slot type has no references and the DeleteSlotType
call is successful.

This operation requires permission for the lex:DeleteSlotType action.

Request Syntax

DELETE /slottypes/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 202)

The name of the slot type. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

202

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

203

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteSlotType
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteSlotType

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteSlotTypeVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of a slot type. To delete all versions of a slot type, use the
DeleteSlotType (p. 202) operation.

This operation requires permissions for the lex:DeleteSlotTypeVersion action.

Request Syntax

DELETE /slottypes/name/version/version HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 204)

The name of the slot type.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 204)

The version of the slot type to delete. You cannot delete the $LATEST version of the slot type. To
delete the $LATEST version, use the DeleteSlotType (p. 202) operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

204

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404
ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

205

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteSlotTypeVersion
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteSlotTypeVersion

Amazon Lex Developer Guide
Amazon Lex Model Building Service

DeleteUtterances
Service: Amazon Lex Model Building Service

Deletes stored utterances.

Amazon Lex stores the utterances that users send to your bot unless the childDirected field in the bot
is set to true. Utterances are stored for 15 days for use with the GetUtterancesView (p. 257) operation,
and then stored indefinately for use in improving the ability of your bot to respond to user input.

Use the DeleteStoredUtterances operation to manually delete stored utterances for a specific user.

This operation requires permissions for the lex:DeleteUtterances action.

Request Syntax

DELETE /bots/botName/utterances/userId HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botName (p. 206)

The name of the bot that stored the utterances.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
userId (p. 206)

The unique identifier for the user that made the utterances. This is the user ID that was sent in the
PostContent or PostText operation request that contained the utterance.

Length Constraints: Minimum length of 2. Maximum length of 100.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400

206

http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostContent.html
http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html

Amazon Lex Developer Guide
Amazon Lex Model Building Service

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

207

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteUtterances
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/DeleteUtterances

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBot
Service: Amazon Lex Model Building Service

Returns metadata information for a specific bot. You must provide the bot name and the bot version or
alias.

The GetBot operation requires permissions for the lex:GetBot action.

Request Syntax

GET /bots/name/versions/versionoralias HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 208)

The name of the bot. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
versionOrAlias (p. 208)

The version or alias of the bot.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "createdDate": number,

208

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "description": "string",
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "status": "string",
 "version": "string",
 "voiceId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

abortStatement (p. 208)

The message that Amazon Lex returns when the user elects to end the conversation without
completing it. For more information, see PutBot (p. 260).

Type: Statement (p. 322) object
checksum (p. 208)

Checksum of the bot used to identify a specific revision of the bot's $LATEST version.

Type: String
childDirected (p. 208)

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify
whether your use of Amazon Lex is related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to the Children's
Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By
specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a
website, program, or other application that is directed or targeted, in whole or in part, to children
under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm
that your use of Amazon Lex is not related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may
not specify a default value for the childDirected field that does not accurately reflect whether your
use of Amazon Lex is related to a website, program, or other application that is directed or targeted,
in whole or in part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed in
whole or in part, to children under age 13, you must obtain any required verifiable parental consent
under COPPA. For information regarding the use of Amazon Lex in connection with websites,
programs, or other applications that are directed or targeted, in whole or in part, to children under
age 13, see the Amazon Lex FAQ.

Type: Boolean
clarificationPrompt (p. 208)

The message Amazon Lex uses when it doesn't understand the user's request. For more information,
see PutBot (p. 260).

209

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: Prompt (p. 316) object
createdDate (p. 208)

The date that the bot was created.

Type: Timestamp
description (p. 208)

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
failureReason (p. 208)

If status is FAILED, Amazon Lex explains why it failed to build the bot.

Type: String
idleSessionTTLInSeconds (p. 208)

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation. For
more information, see PutBot (p. 260).

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.
intents (p. 208)

An array of intent objects. For more information, see PutBot (p. 260).

Type: Array of Intent (p. 312) objects

Array Members: Minimum number of 1 item. Maximum number of 100 items.
lastUpdatedDate (p. 208)

The date that the bot was updated. When you create a resource, the creation date and last updated
date are the same.

Type: Timestamp
locale (p. 208)

The target locale for the bot.

Type: String

Valid Values: en-US
name (p. 208)

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
status (p. 208)

The status of the bot. If the bot is ready to run, the status is READY. If there was a problem with
building the bot, the status is FAILED and the failureReason explains why the bot did not build. If
the bot was saved but not built, the status is NOT BUILT.

210

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: String

Valid Values: BUILDING | READY | FAILED | NOT_BUILT
version (p. 208)

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+
voiceId (p. 208)

The Amazon Polly voice ID that Amazon Lex uses for voice interaction with the user. For more
information, see PutBot (p. 260).

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python

211

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBot
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Ruby V2

212

http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBotAlias
Service: Amazon Lex Model Building Service

Returns information about an Amazon Lex bot alias. For more information about aliases, see Versioning
and Aliases (p. 81).

This operation requires permissions for the lex:GetBotAlias action.

Request Syntax

GET /bots/botName/aliases/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botName (p. 213)

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
name (p. 213)

The name of the bot alias. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName (p. 213)

The name of the bot that the alias points to.

213

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botVersion (p. 213)

The version of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+
checksum (p. 213)

Checksum of the bot alias.

Type: String
createdDate (p. 213)

The date that the bot alias was created.

Type: Timestamp
description (p. 213)

A description of the bot alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
lastUpdatedDate (p. 213)

The date that the bot alias was updated. When you create a resource, the creation date and the last
updated date are the same.

Type: Timestamp
name (p. 213)

The name of the bot alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

214

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

215

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotAlias
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBotAlias

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBotAliases
Service: Amazon Lex Model Building Service

Returns a list of aliases for a specified Amazon Lex bot.

This operation requires permissions for the lex:GetBotAliases action.

Request Syntax

GET /bots/botName/aliases/?
maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botName (p. 216)

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
maxResults (p. 216)

The maximum number of aliases to return in the response. The default is 50. .

Valid Range: Minimum value of 1. Maximum value of 50.
nameContains (p. 216)

Substring to match in bot alias names. An alias will be returned if any part of its name matches the
substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 216)

A pagination token for fetching the next page of aliases. If the response to this call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of aliases, specify the
pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "BotAliases": [
 {
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",

216

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BotAliases (p. 216)

An array of BotAliasMetadata objects, each describing a bot alias.

Type: Array of BotAliasMetadata (p. 299) objects
nextToken (p. 216)

A pagination token for fetching next page of aliases. If the response to this call is truncated, Amazon
Lex returns a pagination token in the response. To fetch the next page of aliases, specify the
pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java

217

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBotAliases

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

218

http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotAliases
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBotAliases

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBotChannelAssociation
Service: Amazon Lex Model Building Service

Returns information about the association between an Amazon Lex bot and a messaging platform.

This operation requires permissions for the lex:GetBotChannelAssociation action.

Request Syntax

GET /bots/botName/aliases/aliasName/channels/name HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botAlias (p. 219)

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botName (p. 219)

The name of the Amazon Lex bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
name (p. 219)

The name of the association between the bot and the channel. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botAlias": "string",
 "botConfiguration": {
 "string" : "string"
 },
 "botName": "string",
 "createdDate": number,
 "description": "string",
 "name": "string",
 "type": "string"

219

Amazon Lex Developer Guide
Amazon Lex Model Building Service

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botAlias (p. 219)

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botConfiguration (p. 219)

Provides information that the messaging platform needs to communicate with the Amazon Lex bot.

Type: String to string map
botName (p. 219)

The name of the Amazon Lex bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
createdDate (p. 219)

The date that the association between the bot and the channel was created.

Type: Timestamp
description (p. 219)

A description of the association between the bot and the channel.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
name (p. 219)

The name of the association between the bot and the channel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
type (p. 219)

The type of the messaging platform.

Type: String

Valid Values: Facebook | Slack | Twilio-Sms

220

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

221

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBotChannelAssociation

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBotChannelAssociations
Service: Amazon Lex Model Building Service

Returns a list of all of the channels associated with the specified bot.

The GetBotChannelAssociations operation requires permissions for the
lex:GetBotChannelAssociations action.

Request Syntax

GET /bots/botName/aliases/aliasName/channels/?
maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botAlias (p. 222)

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^(-|^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*))$

botName (p. 222)

The name of the Amazon Lex bot in the association.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

maxResults (p. 222)

The maximum number of associations to return in the response. The default is 50.

Valid Range: Minimum value of 1. Maximum value of 50.

nameContains (p. 222)

Substring to match in channel association names. An association will be returned if any part of its
name matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz." To return all
bot channel associations, use a hyphen ("-") as the nameContains parameter.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

nextToken (p. 222)

A pagination token for fetching the next page of associations. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
associations, specify the pagination token in the next request.

Request Body

The request does not have a request body.

222

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botChannelAssociations": [
 {
 "botAlias": "string",
 "botConfiguration": {
 "string" : "string"
 },
 "botName": "string",
 "createdDate": number,
 "description": "string",
 "name": "string",
 "type": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botChannelAssociations (p. 223)

An array of objects, one for each association, that provides information about the Amazon Lex bot
and its association with the channel.

Type: Array of BotChannelAssociation (p. 301) objects

nextToken (p. 223)

A pagination token that fetches the next page of associations. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
associations, specify the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

223

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

224

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotChannelAssociations
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBotChannelAssociations

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBots
Service: Amazon Lex Model Building Service

Returns bot information as follows:

• If you provide the nameContains field, the response includes information for the $LATEST version of all
bots whose name contains the specified string.

• If you don't specify the nameContains field, the operation returns information about the $LATEST
version of all of your bots.

This operation requires permission for the lex:GetBots action.

Request Syntax

GET /bots/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 225)

The maximum number of bots to return in the response that the request will return. The default is
10.

Valid Range: Minimum value of 1. Maximum value of 50.
nameContains (p. 225)

Substring to match in bot names. A bot will be returned if any part of its name matches the
substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 225)

A pagination token that fetches the next page of bots. If the response to this call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of bots, specify the
pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "bots": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",

225

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "status": "string",
 "version": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

bots (p. 225)

An array of botMetadata objects, with one entry for each bot.

Type: Array of BotMetadata (p. 303) objects
nextToken (p. 225)

If the response is truncated, it includes a pagination token that you can specify in your next request
to fetch the next page of bots.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

226

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBots

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

227

http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBots
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBots

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBotVersions
Service: Amazon Lex Model Building Service

Gets information about all of the versions of a bot.

The GetBotVersions operation returns a BotMetadata object for each version of a bot. For example, if a
bot has three numbered versions, the GetBotVersions operation returns four BotMetadata objects in the
response, one for each numbered version and one for the $LATEST version.

The GetBotVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetBotVersions action.

Request Syntax

GET /bots/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 228)

The maximum number of bot versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
name (p. 228)

The name of the bot for which versions should be returned.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 228)

A pagination token for fetching the next page of bot versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "bots": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "status": "string",
 "version": "string"
 }

228

Amazon Lex Developer Guide
Amazon Lex Model Building Service

],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

bots (p. 228)

An array of BotMetadata objects, one for each numbered version of the bot plus one for the $LATEST
version.

Type: Array of BotMetadata (p. 303) objects
nextToken (p. 228)

A pagination token for fetching the next page of bot versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

229

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

230

http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotVersions
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBotVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBuiltinIntent
Service: Amazon Lex Model Building Service

Returns information about a built-in intent.

This operation requires permission for the lex:GetBuiltinIntent action.

Request Syntax

GET /builtins/intents/signature HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

signature (p. 231)

The unique identifier for a built-in intent. To find the signature for an intent, see Standard Built-in
Intents in the Alexa Skills Kit.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "signature": "string",
 "slots": [
 {
 "name": "string"
 }
],
 "supportedLocales": ["string"]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

signature (p. 231)

The unique identifier for a built-in intent.

Type: String
slots (p. 231)

An array of BuiltinIntentSlot objects, one entry for each slot type in the intent.

Type: Array of BuiltinIntentSlot (p. 306) objects
supportedLocales (p. 231)

A list of locales that the intent supports.

231

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: Array of strings

Valid Values: en-US

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

232

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinIntent
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBuiltinIntent

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBuiltinIntents
Service: Amazon Lex Model Building Service

Gets a list of built-in intents that meet the specified criteria.

This operation requires permission for the lex:GetBuiltinIntents action.

Request Syntax

GET /builtins/intents/?
locale=locale&maxResults=maxResults&nextToken=nextToken&signatureContains=signatureContains
 HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

locale (p. 233)

A list of locales that the intent supports.

Valid Values: en-US
maxResults (p. 233)

The maximum number of intents to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
nextToken (p. 233)

A pagination token that fetches the next page of intents. If this API call is truncated, Amazon Lex
returns a pagination token in the response. To fetch the next page of intents, use the pagination
token in the next request.

signatureContains (p. 233)

Substring to match in built-in intent signatures. An intent will be returned if any part of its signature
matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz." To find the signature
for an intent, see Standard Built-in Intents in the Alexa Skills Kit.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "signature": "string",
 "supportedLocales": ["string"]
 }
],
 "nextToken": "string"
}

233

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents (p. 233)

An array of builtinIntentMetadata objects, one for each intent in the response.

Type: Array of BuiltinIntentMetadata (p. 305) objects
nextToken (p. 233)

A pagination token that fetches the next page of intents. If the response to this API call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of intents, specify
the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

234

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinIntents
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBuiltinIntents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetBuiltinSlotTypes
Service: Amazon Lex Model Building Service

Gets a list of built-in slot types that meet the specified criteria.

For a list of built-in slot types, see Slot Type Reference in the Alexa Skills Kit.

This operation requires permission for the lex:GetBuiltInSlotTypes action.

Request Syntax

GET /builtins/slottypes/?
locale=locale&maxResults=maxResults&nextToken=nextToken&signatureContains=signatureContains
 HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

locale (p. 235)

A list of locales that the slot type supports.

Valid Values: en-US
maxResults (p. 235)

The maximum number of slot types to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
nextToken (p. 235)

A pagination token that fetches the next page of slot types. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of slot
types, specify the pagination token in the next request.

signatureContains (p. 235)

Substring to match in built-in slot type signatures. A slot type will be returned if any part of its
signature matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "signature": "string",
 "supportedLocales": ["string"]
 }
]
}

235

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken (p. 235)

If the response is truncated, the response includes a pagination token that you can use in your next
request to fetch the next page of slot types.

Type: String
slotTypes (p. 235)

An array of BuiltInSlotTypeMetadata objects, one entry for each slot type returned.

Type: Array of BuiltinSlotTypeMetadata (p. 307) objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

236

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinSlotTypes
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetBuiltinSlotTypes

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetIntent
Service: Amazon Lex Model Building Service

Returns information about an intent. In addition to the intent name, you must specify the intent version.

This operation requires permissions to perform the lex:GetIntent action.

Request Syntax

GET /intents/name/versions/version HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 237)

The name of the intent. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 237)

The version of the intent.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"

237

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 },
 "createdDate": number,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "description": "string",
 "name": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],

238

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "responseCard": "string"
 }
 }
],
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum (p. 237)

Checksum of the intent.

Type: String
conclusionStatement (p. 237)

After the Lambda function specified in the fulfillmentActivity element fulfills the intent, Amazon
Lex conveys this statement to the user.

Type: Statement (p. 322) object
confirmationPrompt (p. 237)

If defined in the bot, Amazon Lex uses prompt to confirm the intent before fulfilling the user's
request. For more information, see PutIntent (p. 272).

Type: Prompt (p. 316) object
createdDate (p. 237)

The date that the intent was created.

Type: Timestamp
description (p. 237)

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
dialogCodeHook (p. 237)

If defined in the bot, Amazon Amazon Lex invokes this Lambda function for each user input. For
more information, see PutIntent (p. 272).

Type: CodeHook (p. 308) object
followUpPrompt (p. 237)

If defined in the bot, Amazon Lex uses this prompt to solicit additional user activity after the intent
is fulfilled. For more information, see PutIntent (p. 272).

Type: FollowUpPrompt (p. 310) object
fulfillmentActivity (p. 237)

Describes how the intent is fulfilled. For more information, see PutIntent (p. 272).

Type: FulfillmentActivity (p. 311) object

239

Amazon Lex Developer Guide
Amazon Lex Model Building Service

lastUpdatedDate (p. 237)

The date that the intent was updated. When you create a resource, the creation date and the last
updated date are the same.

Type: Timestamp
name (p. 237)

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
parentIntentSignature (p. 237)

A unique identifier for a built-in intent.

Type: String
rejectionStatement (p. 237)

If the user answers "no" to the question defined in confirmationPrompt, Amazon Lex responds with
this statement to acknowledge that the intent was canceled.

Type: Statement (p. 322) object
sampleUtterances (p. 237)

An array of sample utterances configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.
slots (p. 237)

An array of intent slots configured for the intent.

Type: Array of Slot (p. 318) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.
version (p. 237)

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

240

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

241

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntent
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetIntent

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetIntents
Service: Amazon Lex Model Building Service

Returns intent information as follows:

• If you specify the nameContains field, returns the $LATEST version of all intents that contain the
specified string.

• If you don't specify the nameContains field, returns information about the $LATEST version of all
intents.

The operation requires permission for the lex:GetIntents action.

Request Syntax

GET /intents/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 242)

The maximum number of intents to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
nameContains (p. 242)

Substring to match in intent names. An intent will be returned if any part of its name matches the
substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 242)

A pagination token that fetches the next page of intents. If the response to this API call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of intents, specify
the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"

242

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents (p. 242)

An array of Intent objects. For more information, see PutBot (p. 260).

Type: Array of IntentMetadata (p. 313) objects
nextToken (p. 242)

If the response is truncated, the response includes a pagination token that you can specify in your
next request to fetch the next page of intents.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java

243

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetIntents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

244

http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntents
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetIntents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetIntentVersions
Service: Amazon Lex Model Building Service

Gets information about all of the versions of an intent.

The GetIntentVersions operation returns an IntentMetadata object for each version of an intent.
For example, if an intent has three numbered versions, the GetIntentVersions operation returns four
IntentMetadata objects in the response, one for each numbered version and one for the $LATEST version.

The GetIntentVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetIntentVersions action.

Request Syntax

GET /intents/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 245)

The maximum number of intent versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
name (p. 245)

The name of the intent for which versions should be returned.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 245)

A pagination token for fetching the next page of intent versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
 }
],

245

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents (p. 245)

An array of IntentMetadata objects, one for each numbered version of the intent plus one for the
$LATEST version.

Type: Array of IntentMetadata (p. 313) objects
nextToken (p. 245)

A pagination token for fetching the next page of intent versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java

246

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetIntentVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

247

http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntentVersions
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetIntentVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetSlotType
Service: Amazon Lex Model Building Service

Returns information about a specific version of a slot type. In addition to specifying the slot type name,
you must specify the slot type version.

This operation requires permissions for the lex:GetSlotType action.

Request Syntax

GET /slottypes/name/versions/version HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

name (p. 248)

The name of the slot type. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 248)

The version of the slot type.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "enumerationValues": [
 {
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

248

Amazon Lex Developer Guide
Amazon Lex Model Building Service

The following data is returned in JSON format by the service.

checksum (p. 248)

Checksum of the $LATEST version of the slot type.

Type: String
createdDate (p. 248)

The date that the slot type was created.

Type: Timestamp
description (p. 248)

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
enumerationValues (p. 248)

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue (p. 309) objects

Array Members: Minimum number of 1 item. Maximum number of 10000 items.
lastUpdatedDate (p. 248)

The date that the slot type was updated. When you create a resource, the creation date and last
update date are the same.

Type: Timestamp
name (p. 248)

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 248)

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400

249

Amazon Lex Developer Guide
Amazon Lex Model Building Service

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

250

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotType
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetSlotType

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetSlotTypes
Service: Amazon Lex Model Building Service

Returns slot type information as follows:

• If you specify the nameContains field, returns the $LATEST version of all slot types that contain the
specified string.

• If you don't specify the nameContains field, returns information about the $LATEST version of all slot
types.

The operation requires permission for the lex:GetSlotTypes action.

Request Syntax

GET /slottypes/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken
 HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 251)

The maximum number of slot types to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
nameContains (p. 251)

Substring to match in slot type names. A slot type will be returned if any part of its name matches
the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 251)

A pagination token that fetches the next page of slot types. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch next page of slot types,
specify the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,

251

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "name": "string",
 "version": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken (p. 251)

If the response is truncated, it includes a pagination token that you can specify in your next request
to fetch the next page of slot types.

Type: String
slotTypes (p. 251)

An array of objects, one for each slot type, that provides information such as the name of the slot
type, the version, and a description.

Type: Array of SlotTypeMetadata (p. 320) objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

252

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotTypes

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

253

http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotTypes
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetSlotTypes

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetSlotTypeVersions
Service: Amazon Lex Model Building Service

Gets information about all versions of a slot type.

The GetSlotTypeVersions operation returns a SlotTypeMetadata object for each version of a slot type.
For example, if a slot type has three numbered versions, the GetSlotTypeVersions operation returns
four SlotTypeMetadata objects in the response, one for each numbered version and one for the $LATEST
version.

The GetSlotTypeVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetSlotTypeVersions action.

Request Syntax

GET /slottypes/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

maxResults (p. 254)

The maximum number of slot type versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.
name (p. 254)

The name of the slot type for which versions should be returned.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
nextToken (p. 254)

A pagination token for fetching the next page of slot type versions. If the response to this call
is truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"

254

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken (p. 254)

A pagination token for fetching the next page of slot type versions. If the response to this call
is truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String
slotTypes (p. 254)

An array of SlotTypeMetadata objects, one for each numbered version of the slot type plus one for
the $LATEST version.

Type: Array of SlotTypeMetadata (p. 320) objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

255

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotTypeVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

256

http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotTypeVersions
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetSlotTypeVersions

Amazon Lex Developer Guide
Amazon Lex Model Building Service

GetUtterancesView
Service: Amazon Lex Model Building Service

Use the GetUtterancesView operation to get information about the utterances that your users have
made to your bot. You can use this list to tune the utterances that your bot responds to.

For example, say that you have created a bot to order flowers. After your users have used your bot for a
while, use the GetUtterancesView operation to see the requests that they have made and whether they
have been successful. You might find that the utterance "I want flowers" is not being recognized. You
could add this utterance to the OrderFlowers intent so that your bot recognizes that utterance.

After you publish a new version of a bot, you can get information about the old version and the new so
that you can compare the performance across the two versions.

Data is available for the last 15 days. You can request information for up to 5 versions in each request.
The response contains information about a maximum of 100 utterances for each version.

If the bot's childDirected field is set to true, utterances for the bot are not stored and cannot be
retrieved with the GetUtterancesView operation. For more information, see PutBot (p. 260).

This operation requires permissions for the lex:GetUtterancesView action.

Request Syntax

GET /bots/botname/utterances?view=aggregation?
bot_versions=botVersions&status_type=statusType HTTP/1.1

URI Request Parameters

The request requires the following URI parameters.

botName (p. 257)

The name of the bot for which utterance information should be returned.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botVersions (p. 257)

An array of bot versions for which utterance information should be returned. The limit is 5 versions
per request.

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+
statusType (p. 257)

To return utterances that were recognized and handled, useDetected. To return utterances that were
not recognized, use Missed.

Valid Values: Detected | Missed

Request Body

The request does not have a request body.

257

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botName": "string",
 "utterances": [
 {
 "botVersion": "string",
 "utterances": [
 {
 "count": number,
 "distinctUsers": number,
 "firstUtteredDate": number,
 "lastUtteredDate": number,
 "utteranceString": "string"
 }
]
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName (p. 258)

The name of the bot for which utterance information was returned.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
utterances (p. 258)

An array of UtteranceList (p. 324) objects, each containing a list of UtteranceData (p. 323) objects
describing the utterances that were processed by your bot. The response contains a maximum of 100
UtteranceData objects for each version.

Type: Array of UtteranceList (p. 324) objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

258

Amazon Lex Developer Guide
Amazon Lex Model Building Service

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

259

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetUtterancesView
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/GetUtterancesView

Amazon Lex Developer Guide
Amazon Lex Model Building Service

PutBot
Service: Amazon Lex Model Building Service

Creates an Amazon Lex conversational bot or replaces an existing bot. When you create or update a bot
you are only required to specify a name. You can use this to add intents later, or to remove intents from
an existing bot. When you create a bot with a name only, the bot is created or updated but Amazon
Lex returns the response FAILED. You can build the bot after you add one or more intents. For more
information about Amazon Lex bots, see Amazon Lex: How It Works (p. 3).

If you specify the name of an existing bot, the fields in the request replace the existing values in the
$LATEST version of the bot. Amazon Lex removes any fields that you don't provide values for in the
request, except for the idleTTLInSeconds and privacySettings fields, which are set to their default
values. If you don't specify values for required fields, Amazon Lex throws an exception.

This operation requires permissions for the lex:PutBot action. For more information, see Authentication
and Access Control for Amazon Lex (p. 160).

Request Syntax

PUT /bots/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "description": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "locale": "string",
 "processBehavior": "string",
 "voiceId": "string"
}

URI Request Parameters

The request requires the following URI parameters.

260

Amazon Lex Developer Guide
Amazon Lex Model Building Service

name (p. 260)

The name of the bot. The name is not case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

abortStatement (p. 260)

When Amazon Lex can't understand the user's input in context, it tries to elicit the information a few
times. After that, Amazon Lex sends the message defined in abortStatement to the user, and then
aborts the conversation. To set the number of retries, use the valueElicitationPrompt field for the
slot type.

For example, in a pizza ordering bot, Amazon Lex might ask a user "What type of crust would you
like?" If the user's response is not one of the expected responses (for example, "thin crust, "deep
dish," etc.), Amazon Lex tries to elicit a correct response a few more times.

For example, in a pizza ordering application, OrderPizza might be one of the intents. This intent
might require the CrustType slot. You specify the valueElicitationPrompt field when you create
the CrustType slot.

Type: Statement (p. 322) object

Required: No
checksum (p. 260)

Identifies a specific revision of the $LATEST version.

When you create a new bot, leave the checksum field blank. If you specify a checksum you get a
BadRequestException exception.

When you want to update a bot, set the checksum field to the checksum of the most recent revision
of the $LATEST version. If you don't specify the checksum field, or if the checksum does not match
the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No
childDirected (p. 260)

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify
whether your use of Amazon Lex is related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to the Children's
Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By
specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a
website, program, or other application that is directed or targeted, in whole or in part, to children
under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm
that your use of Amazon Lex is not related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may
not specify a default value for the childDirected field that does not accurately reflect whether your
use of Amazon Lex is related to a website, program, or other application that is directed or targeted,
in whole or in part, to children under age 13 and subject to COPPA.

261

Amazon Lex Developer Guide
Amazon Lex Model Building Service

If your use of Amazon Lex relates to a website, program, or other application that is directed in
whole or in part, to children under age 13, you must obtain any required verifiable parental consent
under COPPA. For information regarding the use of Amazon Lex in connection with websites,
programs, or other applications that are directed or targeted, in whole or in part, to children under
age 13, see the Amazon Lex FAQ.

Type: Boolean

Required: Yes
clarificationPrompt (p. 260)

When Amazon Lex doesn't understand the user's intent, it uses this message to get clarification. To
specify how many times Amazon Lex should repeate the clarification prompt, use the maxAttempts
field. If Amazon Lex still doesn't understand, it sends the message in the abortStatement field.

When you create a clarification prompt, make sure that it suggests the correct response from the
user. for example, for a bot that orders pizza and drinks, you might create this clarification prompt:
"What would you like to do? You can say 'Order a pizza' or 'Order a drink.'"

Type: Prompt (p. 316) object

Required: No
description (p. 260)

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
idleSessionTTLInSeconds (p. 260)

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation.

A user interaction session remains active for the amount of time specified. If no conversation occurs
during this time, the session expires and Amazon Lex deletes any data provided before the timeout.

For example, suppose that a user chooses the OrderPizza intent, but gets sidetracked halfway
through placing an order. If the user doesn't complete the order within the specified time, Amazon
Lex discards the slot information that it gathered, and the user must start over.

If you don't include the idleSessionTTLInSeconds element in a PutBot operation request, Amazon
Lex uses the default value. This is also true if the request replaces an existing bot.

The default is 300 seconds (5 minutes).

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.

Required: No
intents (p. 260)

An array of Intent objects. Each intent represents a command that a user can express. For example,
a pizza ordering bot might support an OrderPizza intent. For more information, see Amazon Lex:
How It Works (p. 3).

Type: Array of Intent (p. 312) objects

262

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Required: No
locale (p. 260)

Specifies the target locale for the bot. Any intent used in the bot must be compatible with the locale
of the bot.

The default is en-US.

Type: String

Valid Values: en-US

Required: Yes
processBehavior (p. 260)

If you set the processBehavior element to Build, Amazon Lex builds the bot so that it can be run. If
you set the element to SaveAmazon Lex saves the bot, but doesn't build it.

If you don't specify this value, the default value is Save.

Type: String

Valid Values: SAVE | BUILD

Required: No
voiceId (p. 260)

The Amazon Polly voice ID that you want Amazon Lex to use for voice interactions with the user. The
locale configured for the voice must match the locale of the bot. For more information, see Available
Voices in the Amazon Polly Developer Guide.

Type: String

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }

263

http://docs.aws.amazon.com/polly/latest/dg/voicelist.html
http://docs.aws.amazon.com/polly/latest/dg/voicelist.html

Amazon Lex Developer Guide
Amazon Lex Model Building Service

],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "status": "string",
 "version": "string",
 "voiceId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

abortStatement (p. 263)

The message that Amazon Lex uses to abort a conversation. For more information, see
PutBot (p. 260).

Type: Statement (p. 322) object
checksum (p. 263)

Checksum of the bot that you created.

Type: String
childDirected (p. 263)

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify
whether your use of Amazon Lex is related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to the Children's
Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By
specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a
website, program, or other application that is directed or targeted, in whole or in part, to children
under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm
that your use of Amazon Lex is not related to a website, program, or other application that is
directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may
not specify a default value for the childDirected field that does not accurately reflect whether your
use of Amazon Lex is related to a website, program, or other application that is directed or targeted,
in whole or in part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed in
whole or in part, to children under age 13, you must obtain any required verifiable parental consent
under COPPA. For information regarding the use of Amazon Lex in connection with websites,
programs, or other applications that are directed or targeted, in whole or in part, to children under
age 13, see the Amazon Lex FAQ.

Type: Boolean

264

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex Developer Guide
Amazon Lex Model Building Service

clarificationPrompt (p. 263)

The prompts that Amazon Lex uses when it doesn't understand the user's intent. For more
information, see PutBot (p. 260).

Type: Prompt (p. 316) object
createdDate (p. 263)

The date that the bot was created.

Type: Timestamp
description (p. 263)

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
failureReason (p. 263)

If status is FAILED, Amazon Lex provides the reason that it failed to build the bot.

Type: String
idleSessionTTLInSeconds (p. 263)

The maximum length of time that Amazon Lex retains the data gathered in a conversation. For more
information, see PutBot (p. 260).

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.
intents (p. 263)

An array of Intent objects. For more information, see PutBot (p. 260).

Type: Array of Intent (p. 312) objects

Array Members: Minimum number of 1 item. Maximum number of 100 items.
lastUpdatedDate (p. 263)

The date that the bot was updated. When you create a resource, the creation date and last updated
date are the same.

Type: Timestamp
locale (p. 263)

The target locale for the bot.

Type: String

Valid Values: en-US
name (p. 263)

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

265

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
status (p. 263)

When you send a request to create a bot with processBehavior set to BUILD, Amazon Lex sets the
status response element to BUILDING. After Amazon Lex builds the bot, it sets status to READY. If
Amazon Lex can't build the bot, Amazon Lex sets status to FAILED. Amazon Lex returns the reason
for the failure in the failureReason response element.

When you set processBehaviorto SAVE, Amazon Lex sets the status code to NOT BUILT.

Type: String

Valid Values: BUILDING | READY | FAILED | NOT_BUILT
version (p. 263)

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+
voiceId (p. 263)

The Amazon Polly voice ID that Amazon Lex uses for voice interaction with the user. For more
information, see PutBot (p. 260).

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

266

Amazon Lex Developer Guide
Amazon Lex Model Building Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

267

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutBot
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/PutBot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

PutBotAlias
Service: Amazon Lex Model Building Service

Creates an alias for the specified version of the bot or replaces an alias for the specified bot. To change
the version of the bot that the alias points to, replace the alias. For more information about aliases, see
Versioning and Aliases (p. 81).

This operation requires permissions for the lex:PutBotAlias action.

Request Syntax

PUT /bots/botName/aliases/name HTTP/1.1
Content-type: application/json

{
 "botVersion": "string",
 "checksum": "string",
 "description": "string"
}

URI Request Parameters

The request requires the following URI parameters.

botName (p. 268)

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
name (p. 268)

The name of the alias. The name is not case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

botVersion (p. 268)

The version of the bot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes
checksum (p. 268)

Identifies a specific revision of the $LATEST version.

268

Amazon Lex Developer Guide
Amazon Lex Model Building Service

When you create a new bot alias, leave the checksum field blank. If you specify a checksum you get a
BadRequestException exception.

When you want to update a bot alias, set the checksum field to the checksum of the most recent
revision of the $LATEST version. If you don't specify the checksum field, or if the checksum does not
match the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No
description (p. 268)

A description of the alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName (p. 269)

The name of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
botVersion (p. 269)

The version of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

269

Amazon Lex Developer Guide
Amazon Lex Model Building Service

checksum (p. 269)

The checksum for the current version of the alias.

Type: String
createdDate (p. 269)

The date that the bot alias was created.

Type: Timestamp
description (p. 269)

A description of the alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
lastUpdatedDate (p. 269)

The date that the bot alias was updated. When you create a resource, the creation date and the last
updated date are the same.

Type: Timestamp
name (p. 269)

The name of the alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

270

Amazon Lex Developer Guide
Amazon Lex Model Building Service

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

271

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutBotAlias
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/PutBotAlias

Amazon Lex Developer Guide
Amazon Lex Model Building Service

PutIntent
Service: Amazon Lex Model Building Service

Creates an intent or replaces an existing intent.

To define the interaction between the user and your bot, you use one or more intents. For a pizza
ordering bot, for example, you would create an OrderPizza intent.

To create an intent or replace an existing intent, you must provide the following:

• Intent name. For example, OrderPizza.
• Sample utterances. For example, "Can I order a pizza, please." and "I want to order a pizza."
• Information to be gathered. You specify slot types for the information that your bot will request from

the user. You can specify standard slot types, such as a date or a time, or custom slot types such as the
size and crust of a pizza.

• How the intent will be fulfilled. You can provide a Lambda function or configure the intent to return
the intent information to the client application. If you use a Lambda function, when all of the intent
information is available, Amazon Lex invokes your Lambda function. If you configure your intent to
return the intent information to the client application.

You can specify other optional information in the request, such as:

• A confirmation prompt to ask the user to confirm an intent. For example, "Shall I order your pizza?"
• A conclusion statement to send to the user after the intent has been fulfilled. For example, "I placed

your pizza order."
• A follow-up prompt that asks the user for additional activity. For example, asking "Do you want to

order a drink with your pizza?"

If you specify an existing intent name to update the intent, Amazon Lex replaces the values in the
$LATEST version of the slot type with the values in the request. Amazon Lex removes fields that you don't
provide in the request. If you don't specify the required fields, Amazon Lex throws an exception.

For more information, see Amazon Lex: How It Works (p. 3).

This operation requires permissions for the lex:PutIntent action.

Request Syntax

PUT /intents/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",

272

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "description": "string",
 "name": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }

273

Amazon Lex Developer Guide
Amazon Lex Model Building Service

],
 "responseCard": "string"
 }
 }
]
}

URI Request Parameters

The request requires the following URI parameters.

name (p. 272)

The name of the intent. The name is not case sensitive.

The name can't match a built-in intent name, or a built-in intent name with "AMAZON." removed.
For example, because there is a built-in intent called AMAZON.HelpIntent, you can't create a custom
intent called HelpIntent.

For a list of built-in intents, see Standard Built-in Intents in the Alexa Skills Kit.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

checksum (p. 272)

Identifies a specific revision of the $LATEST version.

When you create a new intent, leave the checksum field blank. If you specify a checksum you get a
BadRequestException exception.

When you want to update a intent, set the checksum field to the checksum of the most recent
revision of the $LATEST version. If you don't specify the checksum field, or if the checksum does not
match the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No
conclusionStatement (p. 272)

The statement that you want Amazon Lex to convey to the user after the intent is successfully
fulfilled by the Lambda function.

This element is relevant only if you provide a Lambda function in the fulfillmentActivity. If you
return the intent to the client application, you can't specify this element.

Note
The followUpPrompt and conclusionStatement are mutually exclusive. You can specify only
one.

Type: Statement (p. 322) object

Required: No
confirmationPrompt (p. 272)

Prompts the user to confirm the intent. This question should have a yes or no answer.

274

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Amazon Lex uses this prompt to ensure that the user acknowledges that the intent is ready for
fulfillment. For example, with the OrderPizza intent, you might want to confirm that the order is
correct before placing it. For other intents, such as intents that simply respond to user questions, you
might not need to ask the user for confirmation before providing the information.

Note
You you must provide both the rejectionStatement and the confirmationPrompt, or
neither.

Type: Prompt (p. 316) object

Required: No
description (p. 272)

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
dialogCodeHook (p. 272)

Specifies a Lambda function to invoke for each user input. You can invoke this Lambda function to
personalize user interaction.

For example, suppose your bot determines that the user is John. Your Lambda function might
retrieve John's information from a backend database and prepopulate some of the values. For
example, if you find that John is gluten intolerant, you might set the corresponding intent slot,
GlutenIntolerant, to true. You might find John's phone number and set the corresponding session
attribute.

Type: CodeHook (p. 308) object

Required: No
followUpPrompt (p. 272)

Amazon Lex uses this prompt to solicit additional activity after fulfilling an intent. For example, after
the OrderPizza intent is fulfilled, you might prompt the user to order a drink.

The action that Amazon Lex takes depends on the user's response, as follows:
• If the user says "Yes" it responds with the clarification prompt that is configured for the bot.
• if the user says "Yes" and continues with an utterance that triggers an intent it starts a

conversation for the intent.
• If the user says "No" it responds with the rejection statement configured for the the follow-up

prompt.
• If it doesn't recognize the utterance it repeats the follow-up prompt again.

The followUpPrompt field and the conclusionStatement field are mutually exclusive. You can specify
only one.

Type: FollowUpPrompt (p. 310) object

Required: No
fulfillmentActivity (p. 272)

Describes how the intent is fulfilled. For example, after a user provides all of the information for a
pizza order, fulfillmentActivity defines how the bot places an order with a local pizza store.

275

Amazon Lex Developer Guide
Amazon Lex Model Building Service

You might configure Amazon Lex to return all of the intent information to the client application, or
direct it to invoke a Lambda function that can process the intent (for example, place an order with a
pizzeria).

Type: FulfillmentActivity (p. 311) object

Required: No
parentIntentSignature (p. 272)

A unique identifier for the built-in intent to base this intent on. To find the signature for an intent,
see Standard Built-in Intents in the Alexa Skills Kit.

Type: String

Required: No
rejectionStatement (p. 272)

When the user answers "no" to the question defined in confirmationPrompt, Amazon Lex responds
with this statement to acknowledge that the intent was canceled.

Note
You must provide both the rejectionStatement and the confirmationPrompt, or neither.

Type: Statement (p. 322) object

Required: No
sampleUtterances (p. 272)

An array of utterances (strings) that a user might say to signal the intent. For example, "I want
{PizzaSize} pizza", "Order {Quantity} {PizzaSize} pizzas".

In each utterance, a slot name is enclosed in curly braces.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

Required: No
slots (p. 272)

An array of intent slots. At runtime, Amazon Lex elicits required slot values from the user using
prompts defined in the slots. For more information, see <xref linkend="how-it-works"/>.

Type: Array of Slot (p. 318) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {

276

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [

277

Amazon Lex Developer Guide
Amazon Lex Model Building Service

 {
 "description": "string",
 "name": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string"
 }
],
 "responseCard": "string"
 }
 }
],
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum (p. 276)

Checksum of the $LATESTversion of the intent created or updated.

Type: String
conclusionStatement (p. 276)

After the Lambda function specified in thefulfillmentActivityintent fulfills the intent, Amazon
Lex conveys this statement to the user.

Type: Statement (p. 322) object
confirmationPrompt (p. 276)

If defined in the intent, Amazon Lex prompts the user to confirm the intent before fulfilling it.

Type: Prompt (p. 316) object
createdDate (p. 276)

The date that the intent was created.

Type: Timestamp
description (p. 276)

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
dialogCodeHook (p. 276)

If defined in the intent, Amazon Lex invokes this Lambda function for each user input.

278

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: CodeHook (p. 308) object
followUpPrompt (p. 276)

If defined in the intent, Amazon Lex uses this prompt to solicit additional user activity after the
intent is fulfilled.

Type: FollowUpPrompt (p. 310) object
fulfillmentActivity (p. 276)

If defined in the intent, Amazon Lex invokes this Lambda function to fulfill the intent after the user
provides all of the information required by the intent.

Type: FulfillmentActivity (p. 311) object
lastUpdatedDate (p. 276)

The date that the intent was updated. When you create a resource, the creation date and last update
dates are the same.

Type: Timestamp
name (p. 276)

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
parentIntentSignature (p. 276)

A unique identifier for the built-in intent that this intent is based on.

Type: String
rejectionStatement (p. 276)

If the user answers "no" to the question defined in confirmationPrompt Amazon Lex responds with
this statement to acknowledge that the intent was canceled.

Type: Statement (p. 322) object
sampleUtterances (p. 276)

An array of sample utterances that are configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.
slots (p. 276)

An array of intent slots that are configured for the intent.

Type: Array of Slot (p. 318) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.
version (p. 276)

The version of the intent. For a new intent, the version is always $LATEST.

279

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500
LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

280

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutIntent
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/PutIntent

Amazon Lex Developer Guide
Amazon Lex Model Building Service

PutSlotType
Service: Amazon Lex Model Building Service

Creates a custom slot type or replaces an existing custom slot type.

To create a custom slot type, specify a name for the slot type and a set of enumeration values, which
are the values that a slot of this type can assume. For more information, see Amazon Lex: How It
Works (p. 3).

If you specify the name of an existing slot type, the fields in the request replace the existing values in the
$LATEST version of the slot type. Amazon Lex removes the fields that you don't provide in the request. If
you don't specify required fields, Amazon Lex throws an exception.

This operation requires permissions for the lex:PutSlotType action.

Request Syntax

PUT /slottypes/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "checksum": "string",
 "description": "string",
 "enumerationValues": [
 {
 "value": "string"
 }
]
}

URI Request Parameters

The request requires the following URI parameters.

name (p. 281)

The name of the slot type. The name is not case sensitive.

The name can't match a built-in slot type name, or a built-in slot type name with "AMAZON."
removed. For example, because there is a built-in slot type called AMAZON.DATE, you can't create a
custom slot type called DATE.

For a list of built-in slot types, see Slot Type Reference in the Alexa Skills Kit.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Request Body

The request accepts the following data in JSON format.

checksum (p. 281)

Identifies a specific revision of the $LATEST version.

When you create a new slot type, leave the checksum field blank. If you specify a checksum you get a
BadRequestException exception.

281

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex Developer Guide
Amazon Lex Model Building Service

When you want to update a slot type, set the checksum field to the checksum of the most recent
revision of the $LATEST version. If you don't specify the checksum field, or if the checksum does not
match the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No
description (p. 281)

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
enumerationValues (p. 281)

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue (p. 309) objects

Array Members: Minimum number of 1 item. Maximum number of 10000 items.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "enumerationValues": [
 {
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum (p. 282)

Checksum of the $LATEST version of the slot type.

Type: String
createdDate (p. 282)

The date that the slot type was created.

282

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: Timestamp
description (p. 282)

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.
enumerationValues (p. 282)

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue (p. 309) objects

Array Members: Minimum number of 1 item. Maximum number of 10000 items.
lastUpdatedDate (p. 282)

The date that the slot type was updated. When you create a slot type, the creation date and last
update date are the same.

Type: Timestamp
name (p. 282)

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)
version (p. 282)

The version of the slot type. For a new slot type, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing. Check
the field values, and try again.

HTTP Status Code: 400
ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409
InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

283

Amazon Lex Developer Guide
Amazon Lex Runtime Service

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429
PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in the
request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

Amazon Lex Runtime Service
The following actions are supported by Amazon Lex Runtime Service:

• PostContent (p. 285)
• PostText (p. 292)

284

http://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutSlotType
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/PutSlotType

Amazon Lex Developer Guide
Amazon Lex Runtime Service

PostContent
Service: Amazon Lex Runtime Service

Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to
Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it
built for the bot.

The PostContent operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve
higher speech recognition accuracy in telephone audio applications.

In response, Amazon Lex returns the next message to convey to the user. Consider the following example
messages:

• For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting
slot data (for example, PizzaSize): "What size pizza would you like?".

• After the user provides all of the pizza order information, Amazon Lex might return a response with a
message to get user confirmation: "Order the pizza?".

• After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion
statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a response from the user. For example, conclusion statements do
not require a response. Some messages require only a yes or no response. In addition to the message,
Amazon Lex provides additional context about the message in the response that you can use to enhance
client behavior, such as displaying the appropriate client user interface. Consider the following examples:

• If the message is to elicit slot data, Amazon Lex returns the following context information:

• x-amz-lex-dialog-state header set to ElicitSlot

• x-amz-lex-intent-name header set to the intent name in the current context

• x-amz-lex-slot-to-elicit header set to the slot name for which the message is eliciting
information

• x-amz-lex-slots header set to a map of slots configured for the intent with their current values

• If the message is a confirmation prompt, the x-amz-lex-dialog-state header is set to Confirmation
and the x-amz-lex-slot-to-elicit header is omitted.

• If the message is a clarification prompt configured for the intent, indicating that the user intent is not
understood, the x-amz-dialog-state header is set to ElicitIntent and the x-amz-slot-to-elicit
header is omitted.

In addition, Amazon Lex also returns your application-specific sessionAttributes. For more information,
see Managing Conversation Context.

Request Syntax

POST /bot/botName/alias/botAlias/user/userId/content HTTP/1.1
x-amz-lex-session-attributes: sessionAttributes
Content-Type: contentType
Accept: accept

inputStream

URI Request Parameters

The request requires the following URI parameters.

285

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex Developer Guide
Amazon Lex Runtime Service

accept (p. 285)

You pass this value as the Accept HTTP header.

The message Amazon Lex returns in the response can be either text or speech based on the Accept
HTTP header value in the request.
• If the value is text/plain; charset=utf-8, Amazon Lex returns text in the response.
• If the value begins with audio/, Amazon Lex returns speech in the response. Amazon Lex uses

Amazon Polly to generate the speech (using the configuration you specified in the Accept header).
For example, if you specify audio/mpeg as the value, Amazon Lex returns speech in the MPEG
format.

The following are the accepted values:
• audio/mpeg
• audio/ogg
• audio/pcm
• text/plain; charset=utf-8
• audio/* (defaults to mpeg)

botAlias (p. 285)

Alias of the Amazon Lex bot.
botName (p. 285)

Name of the Amazon Lex bot.
contentType (p. 285)

You pass this value as the Content-Type HTTP header.

Indicates the audio format or text. The header value must start with one of the following prefixes:
• PCM format, audio data must be in little-endian byte order.

• audio/l16; rate=16000; channels=1
• audio/x-l16; sample-rate=16000; channel-count=1
• audio/lpcm; sample-rate=8000; sample-size-bits=16; channel-count=1; is-big-endian=false

• Opus format
• audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=256000; frame-size-milliseconds=4

• Text format
• text/plain; charset=utf-8

sessionAttributes (p. 285)

You pass this value as the x-amz-lex-session-attributes HTTP header.

Application-specific information passed between Amazon Lex and a client application. The value
must be a JSON serialized and base64 encoded map with string keys and values.

For more information, see Setting Session Attributes.
userId (p. 285)

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your
bot. At runtime, each request must contain the userID field.

To decide the user ID to use for your application, consider the following factors.
• The userID field must not contain any personally identifiable information of the user, for example,

name, personal identification numbers, or other end user personal information.

286

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs

Amazon Lex Developer Guide
Amazon Lex Runtime Service

• If you want a user to start a conversation on one device and continue on another device, use a
user-specific identifier.

• If you want the same user to be able to have two independent conversations on two different
devices, choose a device-specific identifier.

• A user can't have two independent conversations with two different versions of the same bot. For
example, a user can't have a conversation with the PROD and BETA versions of the same bot. If
you anticipate that a user will need to have conversation with two different versions, for example,
while testing, include the bot alias in the user ID to separate the two conversations.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Request Body

The request accepts the following data in JSON format.

inputStream (p. 285)

User input in PCM or Opus audio format or text format as described in the Content-Type HTTP
header.

You can stream audio data to Amazon Lex or you can create a local buffer that captures all of the
audio data before sending. In general, you get better performance if you stream audio data rather
than buffering the data locally.

Type: Binary data object

Required: Yes

Response Syntax

HTTP/1.1 200
Content-Type: contentType
x-amz-lex-intent-name: intentName
x-amz-lex-slots: slots
x-amz-lex-session-attributes: sessionAttributes
x-amz-lex-message: message
x-amz-lex-dialog-state: dialogState
x-amz-lex-slot-to-elicit: slotToElicit
x-amz-lex-input-transcript: inputTranscript

audioStream

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The response returns the following HTTP headers.

contentType (p. 287)

Content type as specified in the Accept HTTP header in the request.
dialogState (p. 287)

Identifies the current state of the user interaction. Amazon Lex returns one of the following values
as dialogState. The client can optionally use this information to customize the user interface.

287

Amazon Lex Developer Guide
Amazon Lex Runtime Service

• ElicitIntent – Amazon Lex wants to elicit the user's intent. Consider the following examples:

For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer
the user intent from this utterance, it will return this dialog state.

• ConfirmIntent – Amazon Lex is expecting a "yes" or "no" response.

For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple
"yes" or "no" response, a user might respond with additional information. For example, "yes,
but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such
additional information (in these examples, update the crust type slot or change the intent from
OrderPizza to OrderDrink).

• ElicitSlot – Amazon Lex is expecting the value of a slot for the current intent.

For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can
process such additional information appropriately.

• Fulfilled – Conveys that the Lambda function has successfully fulfilled the intent.
• ReadyForFulfillment – Conveys that the client has to fulfill the request.
• Failed – Conveys that the conversation with the user failed.

This can happen for various reasons, including that the user does not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can prompt
a user for specific information), or if the Lambda function fails to fulfill the intent.

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Fulfilled | ReadyForFulfillment
| Failed

inputTranscript (p. 287)

The text used to process the request.

If the input was an audio stream, the inputTranscript field contains the text extracted from the
audio stream. This is the text that is actually processed to recognize intents and slot values. You can
use this information to determine if Amazon Lex is correctly processing the audio that you send.

intentName (p. 287)

Current user intent that Amazon Lex is aware of.
message (p. 287)

Message to convey to the user. It can come from the bot's configuration or a code hook (Lambda
function). If the current intent is not configured with a code hook or if the code hook returned
Delegate as the dialogAction.type in its response, then Amazon Lex decides the next course of
action and selects an appropriate message from the bot configuration based on the current user
interaction context. For example, if Amazon Lex is not able to understand the user input, it uses a
clarification prompt message (For more information, see the Error Handling section in the Amazon
Lex console). Another example: if the intent requires confirmation before fulfillment, then Amazon
Lex uses the confirmation prompt message in the intent configuration. If the code hook returns a
message, Amazon Lex passes it as-is in its response to the client.

Length Constraints: Minimum length of 1. Maximum length of 1024.
sessionAttributes (p. 287)

Map of key/value pairs representing the session-specific context information.
slots (p. 287)

Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during
the conversation.

288

Amazon Lex Developer Guide
Amazon Lex Runtime Service

slotToElicit (p. 287)

If the dialogState value is ElicitSlot, returns the name of the slot for which Amazon Lex is
eliciting a value.

The response returns the following as the HTTP body.
<varlistentry> audioStream (p. 287)

The prompt (or statement) to convey to the user. This is based on the bot configuration and context.
For example, if Amazon Lex did not understand the user intent, it sends the clarificationPrompt
configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends
the confirmationPrompt. Another example: Suppose that the Lambda function successfully fulfilled the
intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response.
</varlistentry>

Errors

BadGatewayException

Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS
Lambda) failed with an internal service error.

HTTP Status Code: 502
BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is still in
progress, or contains unbuilt changes.

HTTP Status Code: 400
ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409
DependencyFailedException

One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example,
• If Amazon Lex does not have sufficient permissions to call a Lambda function.
• If a Lambda function takes longer than 30 seconds to execute.
• If a fulfillment Lambda function returns a Delegate dialog action without removing any slot

values.

HTTP Status Code: 424
InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500
LimitExceededException

Exceeded a limit.

HTTP Status Code: 429
LoopDetectedException

This exception is not used.

289

Amazon Lex Developer Guide
Amazon Lex Runtime Service

HTTP Status Code: 508
NotAcceptableException

The accept header in the request does not have a valid value.

HTTP Status Code: 406
NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404
RequestTimeoutException

The input speech is too long.

HTTP Status Code: 408
UnsupportedMediaTypeException

The Content-Type header (PostContent API) has an invalid value.

HTTP Status Code: 415

Example

Example 1

In this request, the URI identifies a bot (Traffic), bot version ($LATEST), and end user name (someuser).
The Content-Type header identifies the format of the audio in the body. Amazon Lex also supports
other formats. To convert audio from one format to another, if necessary, you can use SoX open source
software. You specify the format in which you want to get the response by adding the Accept HTTP
header.

In the response, the x-amz-lex-message header shows the response that Amazon Lex returned. The
client can then send this response to the user. The same message is sent in audio/MPEG format through
chunked encoding (as requested).

Sample Request

"POST /bot/Traffic/alias/$LATEST/user/someuser/content HTTP/1.1[\r][\n]"
"x-amz-lex-session-attributes: eyJ1c2VyTmFtZSI6IkJvYiJ9[\r][\n]"
"Content-Type: audio/x-l16; channel-count=1; sample-rate=16000f[\r][\n]"
"Accept: audio/mpeg[\r][\n]"
"Host: runtime.lex.us-east-1.amazonaws.com[\r][\n]"
"Authorization: AWS4-HMAC-SHA256 Credential=BLANKED_OUT/20161230/us-east-1/lex/
aws4_request,
SignedHeaders=accept;content-type;host;x-amz-content-sha256;x-amz-date;x-amz-lex-session-
attributes, Signature=78ca5b54ea3f64a17ff7522de02cd90a9acd2365b45a9ce9b96ea105bb1c7ec2[\r]
[\n]"
"X-Amz-Date: 20161230T181426Z[\r][\n]"
"X-Amz-Content-Sha256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855[\r]
[\n]"
"Transfer-Encoding: chunked[\r][\n]"
"Connection: Keep-Alive[\r][\n]"
"User-Agent: Apache-HttpClient/4.5.x (Java/1.8.0_112)[\r][\n]"
"Accept-Encoding: gzip,deflate[\r][\n]"
"[\r][\n]"
"1000[\r][\n]"
"[0x7][0x0][0x7][0x0][\n]"
"[0x0][0x7][0x0][0xfc][0xff][\n]"
"[0x0][\n]"

290

Amazon Lex Developer Guide
Amazon Lex Runtime Service

…

Sample Response

"HTTP/1.1 200 OK[\r][\n]"
"x-amzn-RequestId: cc8b34af-cebb-11e6-a35c-55f3a992f28d[\r][\n]"
"x-amz-lex-message: Sorry, can you repeat that?[\r][\n]"
"x-amz-lex-dialog-state: ElicitIntent[\r][\n]"
"x-amz-lex-session-attributes: eyJ1c2VyTmFtZSI6IkJvYiJ9[\r][\n]"
"Content-Type: audio/mpeg[\r][\n]"
"Transfer-Encoding: chunked[\r][\n]"
"Date: Fri, 30 Dec 2016 18:14:28 GMT[\r][\n]"
"[\r][\n]"
"2000[\r][\n]"
"ID3[0x4][0x0][0x0][0x0][0x0][0x0]#TSSE[0x0][0x0][0x0][0xf][0x0][0x0]
[0x3]Lavf57.41.100[0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0xff]
[0xf3]`[0xc4][0x0][0x1b]{[0x8d][0xe8][0x1]C[0x18][0x1][0x0]J[0xe0]`b[0xdd][0xd1][0xb]
[0xfd][0x11][0xdf][0xfe]";[0xbb][0xbb][0x9f][0xee][0xee][0xee][0xee]|DDD/[0xff][0xff]
[0xff][0xff]www?D[0xf7]w^?[0xff][0xfa]h[0x88][0x85][0xfe][0x88][0x88][0x88][[0xa2]'[0xff]
[0xfa]"{[0x9f][0xe8][0x88]]D[0xeb][0xbb][0xbb][0xa2]!u[0xfd][0xdd][0xdf][0x88][0x94]
[0x0]F[0xef][0xa1]8[0x0][0x82]w[0x88]N[0x0][0x0][0x9b][0xbb][0xe8][0xe
…

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

291

http://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForJava/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.lex-2016-11-28/PostContent

Amazon Lex Developer Guide
Amazon Lex Runtime Service

PostText
Service: Amazon Lex Runtime Service

Sends user input (text-only) to Amazon Lex. Client applications can use this API to send requests to
Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it
built for the bot.

In response, Amazon Lex returns the next message to convey to the user an optional responseCard to
display. Consider the following example messages:

• For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting
slot data (for example, PizzaSize): "What size pizza would you like?"

• After the user provides all of the pizza order information, Amazon Lex might return a response with a
message to obtain user confirmation "Proceed with the pizza order?".

• After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion
statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a user response. For example, a conclusion statement does
not require a response. Some messages require only a "yes" or "no" user response. In addition to the
message, Amazon Lex provides additional context about the message in the response that you might
use to enhance client behavior, for example, to display the appropriate client user interface. These are
the slotToElicit, dialogState, intentName, and slots fields in the response. Consider the following
examples:

• If the message is to elicit slot data, Amazon Lex returns the following context information:

• dialogState set to ElicitSlot

• intentName set to the intent name in the current context

• slotToElicit set to the slot name for which the message is eliciting information

• slots set to a map of slots, configured for the intent, with currently known values

• If the message is a confirmation prompt, the dialogState is set to ConfirmIntent and SlotToElicit is
set to null.

• If the message is a clarification prompt (configured for the intent) that indicates that user intent is not
understood, the dialogState is set to ElicitIntent and slotToElicit is set to null.

In addition, Amazon Lex also returns your application-specific sessionAttributes. For more information,
see Managing Conversation Context.

Request Syntax

POST /bot/botName/alias/botAlias/user/userId/text HTTP/1.1
Content-type: application/json

{
 "inputText": "string",
 "sessionAttributes": {
 "string" : "string"
 }
}

URI Request Parameters

The request requires the following URI parameters.

292

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex Developer Guide
Amazon Lex Runtime Service

botAlias (p. 292)

The alias of the Amazon Lex bot.

botName (p. 292)

The name of the Amazon Lex bot.

userId (p. 292)

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your
bot. At runtime, each request must contain the userID field.

To decide the user ID to use for your application, consider the following factors.

• The userID field must not contain any personally identifiable information of the user, for example,
name, personal identification numbers, or other end user personal information.

• If you want a user to start a conversation on one device and continue on another device, use a
user-specific identifier.

• If you want the same user to be able to have two independent conversations on two different
devices, choose a device-specific identifier.

• A user can't have two independent conversations with two different versions of the same bot. For
example, a user can't have a conversation with the PROD and BETA versions of the same bot. If
you anticipate that a user will need to have conversation with two different versions, for example,
while testing, include the bot alias in the user ID to separate the two conversations.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Request Body

The request accepts the following data in JSON format.

inputText (p. 292)

The text that the user entered (Amazon Lex interprets this text).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

sessionAttributes (p. 292)

Application-specific information passed between Amazon Lex and a client application. The value
must be a JSON serialized and base64 encoded map with string keys and values.

For more information, see Setting Session Attributes.

Type: String to string map

Required: No

Response Syntax

HTTP/1.1 200

293

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs

Amazon Lex Developer Guide
Amazon Lex Runtime Service

Content-type: application/json

{
 "dialogState": "string",
 "intentName": "string",
 "message": "string",
 "responseCard": {
 "contentType": "string",
 "genericAttachments": [
 {
 "attachmentLinkUrl": "string",
 "buttons": [
 {
 "text": "string",
 "value": "string"
 }
],
 "imageUrl": "string",
 "subTitle": "string",
 "title": "string"
 }
],
 "version": "string"
 },
 "sessionAttributes": {
 "string" : "string"
 },
 "slots": {
 "string" : "string"
 },
 "slotToElicit": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

dialogState (p. 293)

Identifies the current state of the user interaction. Amazon Lex returns one of the following values
as dialogState. The client can optionally use this information to customize the user interface.

• ElicitIntent – Amazon Lex wants to elicit user intent.

For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer
the user intent from this utterance, it will return this dialogState.

• ConfirmIntent – Amazon Lex is expecting a "yes" or "no" response.

For example, Amazon Lex wants user confirmation before fulfilling an intent.

Instead of a simple "yes" or "no," a user might respond with additional information. For example,
"yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such
additional information (in these examples, update the crust type slot value, or change intent from
OrderPizza to OrderDrink).

• ElicitSlot – Amazon Lex is expecting a slot value for the current intent.

For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can
process such additional information appropriately.

294

Amazon Lex Developer Guide
Amazon Lex Runtime Service

• Fulfilled – Conveys that the Lambda function configured for the intent has successfully fulfilled
the intent.

• ReadyForFulfillment – Conveys that the client has to fulfill the intent.
• Failed – Conveys that the conversation with the user failed.

This can happen for various reasons including that the user did not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can prompt
a user for specific information), or the Lambda function failed to fulfill the intent.

Type: String

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Fulfilled | ReadyForFulfillment
| Failed

intentName (p. 293)

The current user intent that Amazon Lex is aware of.

Type: String
message (p. 293)

A message to convey to the user. It can come from the bot's configuration or a code hook (Lambda
function). If the current intent is not configured with a code hook or the code hook returned
Delegate as the dialogAction.type in its response, then Amazon Lex decides the next course of
action and selects an appropriate message from the bot configuration based on the current user
interaction context. For example, if Amazon Lex is not able to understand the user input, it uses a
clarification prompt message (for more information, see the Error Handling section in the Amazon
Lex console). Another example: if the intent requires confirmation before fulfillment, then Amazon
Lex uses the confirmation prompt message in the intent configuration. If the code hook returns a
message, Amazon Lex passes it as-is in its response to the client.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.
responseCard (p. 293)

Represents the options that the user has to respond to the current prompt. Response Card can come
from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or
from a code hook (Lambda function).

Type: ResponseCard (p. 328) object
sessionAttributes (p. 293)

A map of key-value pairs representing the session-specific context information.

Type: String to string map
slots (p. 293)

The intent slots (name/value pairs) that Amazon Lex detected so far from the user input in the
conversation.

Type: String to string map
slotToElicit (p. 293)

If the dialogState value is ElicitSlot, returns the name of the slot for which Amazon Lex is
eliciting a value.

Type: String

295

Amazon Lex Developer Guide
Amazon Lex Runtime Service

Errors

BadGatewayException

Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS
Lambda) failed with an internal service error.

HTTP Status Code: 502
BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is still in
progress, or contains unbuilt changes.

HTTP Status Code: 400
ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409
DependencyFailedException

One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example,
• If Amazon Lex does not have sufficient permissions to call a Lambda function.
• If a Lambda function takes longer than 30 seconds to execute.
• If a fulfillment Lambda function returns a Delegate dialog action without removing any slot

values.

HTTP Status Code: 424
InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500
LimitExceededException

Exceeded a limit.

HTTP Status Code: 429
LoopDetectedException

This exception is not used.

HTTP Status Code: 508
NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++

296

http://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PostText

Amazon Lex Developer Guide
Data Types

• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

Data Types
The following data types are supported by Amazon Lex Model Building Service:

• BotAliasMetadata (p. 299)
• BotChannelAssociation (p. 301)
• BotMetadata (p. 303)
• BuiltinIntentMetadata (p. 305)
• BuiltinIntentSlot (p. 306)
• BuiltinSlotTypeMetadata (p. 307)
• CodeHook (p. 308)
• EnumerationValue (p. 309)
• FollowUpPrompt (p. 310)
• FulfillmentActivity (p. 311)
• Intent (p. 312)
• IntentMetadata (p. 313)
• Message (p. 315)
• Prompt (p. 316)
• ResourceReference (p. 317)
• Slot (p. 318)
• SlotTypeMetadata (p. 320)
• Statement (p. 322)
• UtteranceData (p. 323)
• UtteranceList (p. 324)

The following data types are supported by Amazon Lex Runtime Service:

• Button (p. 325)
• GenericAttachment (p. 326)
• ResponseCard (p. 328)

Amazon Lex Model Building Service
The following data types are supported by Amazon Lex Model Building Service:

• BotAliasMetadata (p. 299)
• BotChannelAssociation (p. 301)
• BotMetadata (p. 303)
• BuiltinIntentMetadata (p. 305)

297

http://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForJava/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.lex-2016-11-28/PostText

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• BuiltinIntentSlot (p. 306)
• BuiltinSlotTypeMetadata (p. 307)
• CodeHook (p. 308)
• EnumerationValue (p. 309)
• FollowUpPrompt (p. 310)
• FulfillmentActivity (p. 311)
• Intent (p. 312)
• IntentMetadata (p. 313)
• Message (p. 315)
• Prompt (p. 316)
• ResourceReference (p. 317)
• Slot (p. 318)
• SlotTypeMetadata (p. 320)
• Statement (p. 322)
• UtteranceData (p. 323)
• UtteranceList (p. 324)

298

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BotAliasMetadata
Service: Amazon Lex Model Building Service

Provides information about a bot alias.

Contents

botName

The name of the bot to which the alias points.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
botVersion

The version of the Amazon Lex bot to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No
checksum

Checksum of the bot alias.

Type: String

Required: No
createdDate

The date that the bot alias was created.

Type: Timestamp

Required: No
description

A description of the bot alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
lastUpdatedDate

The date that the bot alias was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

Required: No

299

Amazon Lex Developer Guide
Amazon Lex Model Building Service

name

The name of the bot alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

300

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotAliasMetadata
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotAliasMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BotAliasMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BotAliasMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BotChannelAssociation
Service: Amazon Lex Model Building Service

Represents an association between an Amazon Lex bot and an external messaging platform.

Contents

botAlias

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
botConfiguration

Provides information necessary to communicate with the messaging platform.

Type: String to string map

Required: No
botName

The name of the Amazon Lex bot to which this association is being made.

Note
Currently, Amazon Lex supports associations with Facebook and Slack, and Twilio.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
createdDate

The date that the association between the Amazon Lex bot and the channel was created.

Type: Timestamp

Required: No
description

A text description of the association you are creating.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
name

The name of the association between the bot and the channel.

301

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
type

Specifies the type of association by indicating the type of channel being established between the
Amazon Lex bot and the external messaging platform.

Type: String

Valid Values: Facebook | Slack | Twilio-Sms

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

302

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BotChannelAssociation
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BotChannelAssociation

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BotMetadata
Service: Amazon Lex Model Building Service

Provides information about a bot. .

Contents

createdDate

The date that the bot was created.

Type: Timestamp

Required: No
description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
lastUpdatedDate

The date that the bot was updated. When you create a bot, the creation date and last updated date
are the same.

Type: Timestamp

Required: No
name

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
status

The status of the bot.

Type: String

Valid Values: BUILDING | READY | FAILED | NOT_BUILT

Required: No
version

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

303

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

304

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotMetadata
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BotMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BotMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BuiltinIntentMetadata
Service: Amazon Lex Model Building Service

Provides metadata for a built-in intent.

Contents

signature

A unique identifier for the built-in intent. To find the signature for an intent, see Standard Built-in
Intents in the Alexa Skills Kit.

Type: String

Required: No
supportedLocales

A list of identifiers for the locales that the intent supports.

Type: Array of strings

Valid Values: en-US

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

305

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinIntentMetadata
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinIntentMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BuiltinIntentMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BuiltinIntentMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BuiltinIntentSlot
Service: Amazon Lex Model Building Service

Provides information about a slot used in a built-in intent.

Contents

name

A list of the slots defined for the intent.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

306

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinIntentSlot
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinIntentSlot
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BuiltinIntentSlot
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BuiltinIntentSlot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

BuiltinSlotTypeMetadata
Service: Amazon Lex Model Building Service

Provides information about a built in slot type.

Contents

signature

A unique identifier for the built-in slot type. To find the signature for a slot type, see Slot Type
Reference in the Alexa Skills Kit.

Type: String

Required: No
supportedLocales

A list of target locales for the slot.

Type: Array of strings

Valid Values: en-US

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

307

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinSlotTypeMetadata
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinSlotTypeMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/BuiltinSlotTypeMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/BuiltinSlotTypeMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

CodeHook
Service: Amazon Lex Model Building Service

Specifies a Lambda function that verifies requests to a bot or fulfills the user's request to a bot..

Contents

messageVersion

The version of the request-response that you want Amazon Lex to use to invoke your Lambda
function. For more information, see Using Lambda Functions (p. 85).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 5.

Required: Yes
uri

The Amazon Resource Name (ARN) of the Lambda function.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws:lambda:[a-z]+-[a-z]+-[0-9]:[0-9]{12}:function:[a-zA-Z0-9-_]+(/[0-9a-f]
{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?(:[a-zA-Z0-9-_]+)?

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

308

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CodeHook
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CodeHook
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/CodeHook
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/CodeHook

Amazon Lex Developer Guide
Amazon Lex Model Building Service

EnumerationValue
Service: Amazon Lex Model Building Service

Each slot type can have a set of values. Each enumeration value represents a value the slot type can take.

For example, a pizza ordering bot could have a slot type that specifies the type of crust that the pizza
should have. The slot type could include the values

• thick
• thin
• stuffed

Contents

value

The value of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

309

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/EnumerationValue
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/EnumerationValue
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/EnumerationValue
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/EnumerationValue

Amazon Lex Developer Guide
Amazon Lex Model Building Service

FollowUpPrompt
Service: Amazon Lex Model Building Service

A prompt for additional activity after an intent is fulfilled. For example, after the OrderPizza intent is
fulfilled, you might prompt the user to find out whether the user wants to order drinks.

Contents

prompt

Prompts for information from the user.

Type: Prompt (p. 316) object

Required: Yes
rejectionStatement

If the user answers "no" to the question defined in the prompt field, Amazon Lex responds with this
statement to acknowledge that the intent was canceled.

Type: Statement (p. 322) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

310

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/FollowUpPrompt
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/FollowUpPrompt
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/FollowUpPrompt
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/FollowUpPrompt

Amazon Lex Developer Guide
Amazon Lex Model Building Service

FulfillmentActivity
Service: Amazon Lex Model Building Service

Describes how the intent is fulfilled after the user provides all of the information required for the intent.
You can provide a Lambda function to process the intent, or you can return the intent information to the
client application. We recommend that you use a Lambda function so that the relevant logic lives in the
Cloud and limit the client-side code primarily to presentation. If you need to update the logic, you only
update the Lambda function; you don't need to upgrade your client application.

Consider the following examples:

• In a pizza ordering application, after the user provides all of the information for placing an order, you
use a Lambda function to place an order with a pizzeria.

• In a gaming application, when a user says "pick up a rock," this information must go back to the
client application so that it can perform the operation and update the graphics. In this case, you want
Amazon Lex to return the intent data to the client.

Contents

codeHook

A description of the Lambda function that is run to fulfill the intent.

Type: CodeHook (p. 308) object

Required: No
type

How the intent should be fulfilled, either by running a Lambda function or by returning the slot data
to the client application.

Type: String

Valid Values: ReturnIntent | CodeHook

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

311

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/FulfillmentActivity
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/FulfillmentActivity
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/FulfillmentActivity
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/FulfillmentActivity

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Intent
Service: Amazon Lex Model Building Service

Identifies the specific version of an intent.

Contents

intentName

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: Yes
intentVersion

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

312

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Intent
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Intent
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/Intent
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/Intent

Amazon Lex Developer Guide
Amazon Lex Model Building Service

IntentMetadata
Service: Amazon Lex Model Building Service

Provides information about an intent.

Contents

createdDate

The date that the intent was created.

Type: Timestamp

Required: No
description

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
lastUpdatedDate

The date that the intent was updated. When you create an intent, the creation date and last updated
date are the same.

Type: Timestamp

Required: No
name

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
version

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

313

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/IntentMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

314

http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/IntentMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/IntentMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/IntentMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Message
Service: Amazon Lex Model Building Service

The message object that provides the message text and its type.

Contents

content

The text of the message.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1000.

Required: Yes
contentType

The content type of the message string.

Type: String

Valid Values: PlainText | SSML

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

315

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Message
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Message
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/Message
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/Message

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Prompt
Service: Amazon Lex Model Building Service

Obtains information from the user. To define a prompt, provide one or more messages and specify the
number of attempts to get information from the user. If you provide more than one message, Amazon
Lex chooses one of the messages to use to prompt the user. For more information, see Amazon Lex: How
It Works (p. 3).

Contents

maxAttempts

The number of times to prompt the user for information.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 5.

Required: Yes
messages

An array of objects, each of which provides a message string and its type. You can specify the
message string in plain text or in Speech Synthesis Markup Language (SSML).

Type: Array of Message (p. 315) objects

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Required: Yes
responseCard

A response card. Amazon Lex uses this prompt at runtime, in the PostText API response. It
substitutes session attributes and slot values for placeholders in the response card. For more
information, see Example: Using a Response Card (p. 143).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

316

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Prompt
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Prompt
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/Prompt
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/Prompt

Amazon Lex Developer Guide
Amazon Lex Model Building Service

ResourceReference
Service: Amazon Lex Model Building Service

Describes the resource that refers to the resource that you are attempting to delete. This object is
returned as part of the ResourceInUseException exception.

Contents

name

The name of the resource that is using the resource that you are trying to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z]+

Required: No
version

The version of the resource that is using the resource that you are trying to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

317

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/ResourceReference
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/ResourceReference
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/ResourceReference
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/ResourceReference

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Slot
Service: Amazon Lex Model Building Service

Identifies the version of a specific slot.

Contents

description

A description of the slot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
name

The name of the slot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+(((_|.)[a-zA-Z]+)*|([a-zA-Z]+(_|.))*|(_|.))

Required: Yes
priority

Directs Lex the order in which to elicit this slot value from the user. For example, if the intent has
two slots with priorities 1 and 2, AWS Lex first elicits a value for the slot with priority 1.

If multiple slots share the same priority, the order in which Lex elicits values is arbitrary.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
responseCard

A set of possible responses for the slot type used by text-based clients. A user chooses an option
from the response card, instead of using text to reply.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No
sampleUtterances

If you know a specific pattern with which users might respond to an Amazon Lex request for a slot
value, you can provide those utterances to improve accuracy. This is optional. In most cases, Amazon
Lex is capable of understanding user utterances.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

318

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Required: No
slotConstraint

Specifies whether the slot is required or optional.

Type: String

Valid Values: Required | Optional

Required: Yes
slotType

The type of the slot, either a custom slot type that you defined or one of the built-in slot types.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([a-zA-Z]|AMAZON.)+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
slotTypeVersion

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No
valueElicitationPrompt

The prompt that Amazon Lex uses to elicit the slot value from the user.

Type: Prompt (p. 316) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

319

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Slot
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Slot
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/Slot
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/Slot

Amazon Lex Developer Guide
Amazon Lex Model Building Service

SlotTypeMetadata
Service: Amazon Lex Model Building Service

Provides information about a slot type..

Contents

createdDate

The date that the slot type was created.

Type: Timestamp

Required: No
description

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No
lastUpdatedDate

The date that the slot type was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

Required: No
name

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^[a-zA-Z]+((_[a-zA-Z]+)*|([a-zA-Z]+_)*|_)

Required: No
version

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

320

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotTypeMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

321

http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotTypeMetadata
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/SlotTypeMetadata
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/SlotTypeMetadata

Amazon Lex Developer Guide
Amazon Lex Model Building Service

Statement
Service: Amazon Lex Model Building Service

A collection of messages that convey information to the user. At runtime, Amazon Lex selects the
message to convey.

Contents

messages

A collection of message objects.

Type: Array of Message (p. 315) objects

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Required: Yes
responseCard

At runtime, if the client is using the PostText API, Amazon Lex includes the response card in the
response. It substitutes all of the session attributes and slot values for placeholders in the response
card.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

322

http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html
http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Statement
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Statement
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/Statement
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/Statement

Amazon Lex Developer Guide
Amazon Lex Model Building Service

UtteranceData
Service: Amazon Lex Model Building Service

Provides information about a single utterance that was made to your bot.

Contents

count

The number of times that the utterance was processed.

Type: Integer

Required: No
distinctUsers

The total number of individuals that used the utterance.

Type: Integer

Required: No
firstUtteredDate

The date that the utterance was first recorded.

Type: Timestamp

Required: No
lastUtteredDate

The date that the utterance was last recorded.

Type: Timestamp

Required: No
utteranceString

The text that was entered by the user or the text representation of an audio clip.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

323

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/UtteranceData
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/UtteranceData
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/UtteranceData
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/UtteranceData

Amazon Lex Developer Guide
Amazon Lex Runtime Service

UtteranceList
Service: Amazon Lex Model Building Service

Provides a list of utterances that have been made to a specific version of your bot. The list contains a
maximum of 100 utterances.

Contents

botVersion

The version of the bot that processed the list.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No
utterances

One or more UtteranceData (p. 323) objects that contain information about the utterances that have
been made to a bot. The maximum number of object is 100.

Type: Array of UtteranceData (p. 323) objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

Amazon Lex Runtime Service
The following data types are supported by Amazon Lex Runtime Service:

• Button (p. 325)
• GenericAttachment (p. 326)
• ResponseCard (p. 328)

324

http://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/UtteranceList
http://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/UtteranceList
http://docs.aws.amazon.com/goto/SdkForJava/lex-models-2017-04-19/UtteranceList
http://docs.aws.amazon.com/goto/SdkForRubyV2/lex-models-2017-04-19/UtteranceList

Amazon Lex Developer Guide
Amazon Lex Runtime Service

Button
Service: Amazon Lex Runtime Service

Represents an option to be shown on the client platform (Facebook, Slack, etc.)

Contents

text

Text that is visible to the user on the button.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 15.

Required: Yes
value

The value sent to Amazon Lex when a user chooses the button. For example, consider button text
"NYC." When the user chooses the button, the value sent can be "New York City."

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1000.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

325

http://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForJava/runtime.lex-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.lex-2016-11-28/Button

Amazon Lex Developer Guide
Amazon Lex Runtime Service

GenericAttachment
Service: Amazon Lex Runtime Service

Represents an option rendered to the user when a prompt is shown. It could be an image, a button, a
link, or text.

Contents

attachmentLinkUrl

The URL of an attachment to the response card.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No
buttons

The list of options to show to the user.

Type: Array of Button (p. 325) objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

Required: No
imageUrl

The URL of an image that is displayed to the user.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No
subTitle

The subtitle shown below the title.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 80.

Required: No
title

The title of the option.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 80.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

326

http://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/GenericAttachment

Amazon Lex Developer Guide
Amazon Lex Runtime Service

• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

327

http://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/GenericAttachment
http://docs.aws.amazon.com/goto/SdkForJava/runtime.lex-2016-11-28/GenericAttachment
http://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.lex-2016-11-28/GenericAttachment

Amazon Lex Developer Guide
Amazon Lex Runtime Service

ResponseCard
Service: Amazon Lex Runtime Service

If you configure a response card when creating your bots, Amazon Lex substitutes the session attributes
and slot values that are available, and then returns it. The response card can also come from a Lambda
function (dialogCodeHook and fulfillmentActivity on an intent).

Contents

contentType

The content type of the response.

Type: String

Valid Values: application/vnd.amazonaws.card.generic

Required: No
genericAttachments

An array of attachment objects representing options.

Type: Array of GenericAttachment (p. 326) objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Required: No
version

The version of the response card format.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for Ruby V2

328

http://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForJava/runtime.lex-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.lex-2016-11-28/ResponseCard

Amazon Lex Developer Guide

Document History for Amazon Lex

The following table describes the documentation for this release of Amazon Lex.

• Latest documentation update:May 22, 2017

Change Description Date

Expanded documentation Added Getting Started examples
for the AWS CLI. For more
information, see Step 4: Getting
Started (AWS CLI) (p. 58).

May 22, 2017

New guide This is the first release of the
Amazon Lex User Guide.

April 19, 2017

329

Amazon Lex Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

330

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Lex
	Table of Contents
	What Is Amazon Lex?
	Are You a First-time User of Amazon Lex?

	Amazon Lex: How It Works
	Programming Model
	Model Building API Operations
	Runtime API Operations
	Lambda Functions as Code Hooks

	Service Permissions
	Creating Resource-Based Policies for AWS Lambda
	Deleting Service-Linked Roles

	Managing Messages (Prompts and Statements)
	Types of Messages
	Contexts for Configuring Messages
	Supported Message Formats
	Response Cards
	Defining Static Response Cards
	Generating Response Cards Dynamically

	Managing Conversation Context
	Setting Session Timeout
	Setting Session Attributes
	Sharing Information Between Intents

	Bot Deployment Options
	Built-in Intents and Slot Types
	Built-in Intents
	Built-in Slots

	Getting Started with Amazon Lex
	Step 1: Set Up an AWS Account and Create an Administrator User
	Sign Up for AWS
	Create an IAM User
	Next Step

	Step 2: Set Up the AWS Command Line Interface
	

	Step 3: Getting Started (Console)
	Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)
	Amazon Lex Bot: Blueprint Overview
	AWS Lambda Function: Blueprint Summary
	Step 1: Create an Amazon Lex Bot (Console)
	Step 2 (Optional): Review the Details of Information Flow (Console)
	Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)
	Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

	Step 3: Create a Lambda Function (Console)
	Step 4: Add the Lambda Function as Code Hook (Console)
	Step 5 (Optional): Review the Details of the Information Flow (Console)
	Step 6: Update the Intent Configuration to Add an Utterance (Console)
	Step 7 (Optional): Clean Up (Console)

	Exercise 2: Create a Custom Amazon Lex Bot
	Step 1: Create a Lambda Function
	Test the Lambda Function Using Sample Event Data
	Next Step

	Step 2: Create a Bot
	Create the Bot
	Next Step

	Create an Intent
	Next Step

	Create Slot Types
	Next Step

	Configure the Intent
	Next Step

	Configure the Bot
	Next Step

	Step 3: Build and Test the Bot
	Next Step

	Step 4 (Optional): Clean up
	Next Steps

	Exercise 3: Publish a Version and Create an Alias

	Step 4: Getting Started (AWS CLI)
	Exercise 1: Create an Amazon Lex Bot (AWS CLI)
	Step 1: Create a Service-Linked Role (AWS CLI)
	Next Step

	Step 2: Create a Custom Slot Type (AWS CLI)
	Next Step
	FlowerTypes.json

	Step 3: Create an Intent (AWS CLI)
	Next Step
	OrderFlowers.json

	Step 4: Create a Bot (AWS CLI)
	Next Step
	OrderFlowersBot.json

	Step 5: Test a Bot (AWS CLI)
	Test the Bot Using Text Input (AWS CLI)
	Next Step

	Test the Bot Using Speech Input (AWS CLI)
	Next Step

	Exercise 2: Add a New Utterance (AWS CLI)
	Next Step

	Exercise 3: Add a Lambda Function (AWS CLI)
	Next Step

	Exercise 4: Publish a Version (AWS CLI)
	Step 1: Publish the Slot Type (AWS CLI)
	Next Step

	Step 2: Publish the Intent (AWS CLI)
	Next Step

	Step 3: Publish the Bot (AWS CLI)
	Next Step

	Exercise 5: Create an Alias (AWS CLI)
	Next Step

	Exercise 6: Clean Up (AWS CLI)

	Versioning and Aliases
	Versioning
	The $LATEST Version
	Publishing an Amazon Lex Resource Version
	Updating an Amazon Lex Resource
	Deleting an Amazon Lex Resource or Version

	Aliases

	Using Lambda Functions
	Lambda Function Input Event and Response Format
	Input Event Format
	Response Format
	sessionAttributes
	dialogAction

	Amazon Lex and AWS Lambda Blueprints

	Deploying Amazon Lex Bots on Various Platforms
	Deploying an Amazon Lex Bot on a Messaging Platform
	Integrating an Amazon Lex Bot with Facebook Messenger
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Facebook Application
	Step 3: Integrate Facebook Messenger with the Amazon Lex Bot
	Step 4: Test the Integration

	Integrating an Amazon Lex Bot with Twilio Programmable SMS
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Twilio SMS Account
	Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot
	Step 4: Test the Integration

	Integrating an Amazon Lex Bot with Slack
	Step 1: Create an Amazon Lex Bot
	Step 2: Sign Up for Slack and Create a Slack Team
	Step 3: Create a Slack Application
	Step 4: Integrate the Slack Application with the Amazon Lex Bot
	Step 5: Complete Slack Integration
	Step 6: Test the Integration

	Deploying an Amazon Lex Bot in Mobile Applications

	Additional Examples: Creating Amazon Lex Bots
	Example Bot: ScheduleAppointment
	Overview of the Bot Blueprint (ScheduleAppointment)
	Overview of the Lambda Function Blueprint (lex-make-appointment-python)
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Lambda Function
	Step 3: Update the Intent: Configure a Code Hook
	Step 4: Deploy the Bot on the Facebook Messenger Platform
	Details of Information Flow

	Example Bot: BookTrip
	Step 1: Review the Blueprints Used in this Exercise
	Overview of the Bot Blueprint (BookTrip)
	Overview of the Lambda Function Blueprint (lex-book-trip-python)

	Step 2: Create an Amazon Lex Bot
	Step 3: Create a Lambda function
	Step 4: Add the Lambda Function as a Code Hook
	Details of the Information Flow
	Data Flow: Book Hotel Intent
	Data Flow: Book Car Intent

	Example: Using a Response Card
	Example: Updating Utterances

	Monitoring Amazon Lex
	Monitoring Amazon Lex with Amazon CloudWatch
	Using CloudWatch Metrics for Amazon Lex
	Access Metrics for Amazon Lex
	Create an Alarm

	CloudWatch Metrics for Amazon Lex
	CloudWatch Metrics for Amazon Lex Runtime
	CloudWatch Metrics for Amazon Lex Channel Associations

	Guidelines and Limits in Amazon Lex
	General Guidelines
	Limits
	General Limits
	Runtime Service Limits
	Model Building Limits
	Bot Limits
	Intent Limits
	Slot Type Limits

	Authentication and Access Control for Amazon Lex
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Amazon Lex Resources
	Amazon Lex Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy
	Example Policy: Using Condition Keys
	Example 1: Grant Permission to Create Bots Using the OrderPizza Intent

	Using Identity-Based Polices (IAM Policies) for Amazon Lex
	Permissions Required to Use the Amazon Lex Console
	AWS Managed (Predefined) Polices for Amazon Lex
	Examples of Customer Managed Policies
	Example 1: Allow a User to Delete Any Bot
	Example 2: Allow a User to Update a Specific Bot
	Example 3: Allow a User to Manage a Specific Bot

	Amazon Lex API Permissions: Actions, Resources, and Conditions Reference

	API Reference
	Actions
	Amazon Lex Model Building Service
	CreateBotVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateIntentVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateSlotTypeVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotChannelAssociation
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteIntentVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteSlotTypeVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteUtterances
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotAliases
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotChannelAssociation
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotChannelAssociations
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBots
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinIntents
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinSlotTypes
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntents
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntentVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotTypes
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotTypeVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetUtterancesView
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	Amazon Lex Runtime Service
	PostContent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Example
	Example 1
	Sample Request
	Sample Response

	See Also

	PostText
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	Data Types
	Amazon Lex Model Building Service
	BotAliasMetadata
	Contents
	See Also

	BotChannelAssociation
	Contents
	See Also

	BotMetadata
	Contents
	See Also

	BuiltinIntentMetadata
	Contents
	See Also

	BuiltinIntentSlot
	Contents
	See Also

	BuiltinSlotTypeMetadata
	Contents
	See Also

	CodeHook
	Contents
	See Also

	EnumerationValue
	Contents
	See Also

	FollowUpPrompt
	Contents
	See Also

	FulfillmentActivity
	Contents
	See Also

	Intent
	Contents
	See Also

	IntentMetadata
	Contents
	See Also

	Message
	Contents
	See Also

	Prompt
	Contents
	See Also

	ResourceReference
	Contents
	See Also

	Slot
	Contents
	See Also

	SlotTypeMetadata
	Contents
	See Also

	Statement
	Contents
	See Also

	UtteranceData
	Contents
	See Also

	UtteranceList
	Contents
	See Also

	Amazon Lex Runtime Service
	Button
	Contents
	See Also

	GenericAttachment
	Contents
	See Also

	ResponseCard
	Contents
	See Also

	Document History for Amazon Lex
	AWS Glossary

