Amazon Simple
Workflow Service

Developer Guide
API Version 2012-01-25

amazon
webservices™

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Service: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Simple Workflow Service Developer Guide

Table of Contents

What IS AMAzZon SWE? ..ottt et ettt e e et et et et e e e e ea s en e eneeneensenensaneanenns 1
[DICAVZ] oY 0] 1 1] o A O] o o] o LS PPN 1
AWS SDKS ottt e ettt e et a e et e e e e 2

AWS FLOW FrameEWOrKoenieiiiiii ettt et ettt et e et e e s ene e s e en e enens 2
HTTP SEIVICE AP ..ot ettt et e st e e et e et e ae e ea e e eaaenees 3
Development ENVIFONMENTSiinieiiiiii ittt et e e e et et e e e e et eae e aneaneneanenaans 3
INtroduction t0 AMAzOoN SWF ... ettt ettt et ettt et et et et et et et et eaneaneaneaaeanaanns 4
(@] aTelT o) &3 PP PP PPPPPPPIt 4
WOTKFLOW EXECULION «.eutiietiiiiiii ittt ettt ettt et e et e et e et e et e et e e et s et s et s aaneatneanneanaansesneen 5
GEtEING SO U et ettt ettt et e ettt et e e e e 7
AWS ACCOUNt AN ACCESS KBYS ...eneiieiniieieiei et ettt ettt et et ettt et et et et et et e e ea et eansaneaneaneanns 7
[a0 1 -3 PPN 8
Subscription WOrkflow TULEOMALcvnieeiiii e e et e e et e it et et et et et eanesneanesnaanns 9
ADOUL the WOIKFLOWeeeiiiii ittt et e e et e et e et e et e aae e e s et s eanseaneanna 10
=] = To [BT =T TP 10
DowWNLoad the SOUMCE COE ...uniiniiiiiiii ettt et e et ete e e ea e eneenseneenseneeneneenenns 10
BT Lo T4 = BT =T o 1PN 10
Part 1: Using Amazon SWF with the SDK for RUDYooviiiiiiiiii e 11
Include the AWS SDK fOr RUDYvuuiiiiiiiitiit ettt et et e et e e e e et e e e e e s eaneees 11
Configuring the AWS SESSIONceuiiuiiiiie ittt ettt et et et e et e et e et e et e et eaaseanseanearneanns 11
Registering an Amazon SWF DOM@INcuiuniuiuiiiiiiiiiii ettt et et e s e e eeans 12

L Y =T o L PP PP PTPOS 13

Part 2: Implementing the WOrkflOWouuiiiiiiiii e e e e e ae e 13
Designing the WOTKFLOWceueiiniiii ittt e e s et s et s et e e e e e 13
Setting Up our WOIKFLOW COUEiuniiiiiiiie ettt eee e e e e e e e e e eaanes 14
Registering the WOrKfLOWiiiiiiii et e e e e e e e e s ean e eans 15
POLLING FOr DECISIONS .ueiuniiiiiitiitei ettt ettt et et et et et s eta s et s ean s et e et eaneanseeneeeneannaannns 16
Starting the WOrkflow EXECULIONuiiuniiiiiiii ettt e e e e e e e e e e eaneeans 18

L Y =T o L PP PP PTPOS 19

Part 3: Implementing the ACLIVITIESc.neenirnii e e e e enes 19
Defining @ BasiC ACHIVILY TYPE wuuiiuiiiiiiiii ettt et et e e et e et e e e et e e e et eaaseanseanseanaanns 19
Defining GEtCONTACTACTIVITY ...vvniiiiiiiie ettt e et e et e et e et e e e aas e e e enneenns 21
Defining SUbSCrDETOPICACTIVITY ..vuuiiniiiiiitii ettt e e e e e e aeete et e et eaineeans 22
Defining WaitForConfirmatioNACHIVITYoouuiiiniiiiiieiie e e e e e eeas 24
Defining SENARESULLACTIVITYuivuiieieiiiiie ittt e e et e et e et e et e e e et eaaeeaneeaneannas 26

L Y =T o L PP PP PTPOS 27

Part 4: Implementing the Activities Task POLLercuiiniiiiiii e 27
RUNNING the WOTKFLOW ..eeeiiii ittt e e s et s et s et e e e ae e e e et e aanaannas 29
Where DO | GO frOmM HEIME? ...ouiiiiiiiiiit ittt et e et e et e et s et e et s e e e s eane et e eaneannas 32

[1 [l o] g [«=] o) & P PPN 33
WOIKFLOWS .ottt ettt e et e et et e et et et e et s et s et e et e aaseansasnsasnsanneannaannas 33
WHat iS5 @ WOTKFLOW? ..oetiiiiiiiii et ettt et e e e e et et e et s et e et s et e e eanseaneenns 33

A Simple Workflow Example: an E-Commerce Applicationcccveiiiiiiiiiiiiiiii e, 34
Workflow Registration and EXECULIONcuuviiiiiiniiiiiriiie et e et ea e e e e e e e e eaanes 34

SO ALSO .ottt ettt et et et e e et en et et e taanaaaneas 35
WOTKFLOW HISTOTY ..einiiniiiiitei ettt et e et s et e et e e e aae et e et e et e et eeaneaaneensennanns 35
Vot o] £SO P PO POPRPPPNN 38
What is an Actor in Amazon SWE? ...ttt ettt e e e e e eas 38
WOTKFLOW STAITEIS ..ouniiiiiiiii ittt et et e e et e et e et e et et et e et e ean e et eaaneaneansesnsennens 39

(DL Tel [[T S PP PR PPN 39
ACHIVITY WOTKEIS ..ottt ettt ettt ettt ettt et et et et et et et eaneaneaaeaneaneanaanns 40

Data EXChange BetWeEN ACLOIS ...c..euniiniiiiiiii ettt et et et et e et et et enenennennens 40
LR TP PP TP PR PPN 40
[DT0]0 1 F= 11 o EJ PP PP TP PTOTPOPRPINt 41

API Version 2012-01-25
iii

Amazon Simple Workflow Service Developer Guide

(0] oY 1=Tot gl [« [T 51} 3 11 SRR PP 42
TASK LESES ettt ettt ettt et ettt e e e et et b et et et ettt e ea et e ea et et et eaaeereehaaes 42
DECISION TASK LISES ..eeuitieiieiieiie ettt ettt et ettt et et e et e et e et e et e ebeeneeneeanaeanns 42
ACHIVITY TASK LISTS 1uuernirniiiiiiiieeie et eteee et et et e et e et et e et eteetaaneetasaeetesneetesesanesneesnrnesnnsnnenns 43

TASK ROUTING c.iuiiiiit ittt ettt et et et et et et et et et e e et aan e e aan et aaneanaeneenen 43
WOrkflow EXECULION CLOSUIEcunineiieie ettt et et ettt e e et e e e et e et e eb e et e e eeneeeneeanas 43
Life Cycle of an Amazon SWF Workflow EXeCULIONcc.oiiuiiniiiiiiiiiiie e 44
o] Lo o I Co T = 1 P PRSP 48
Managing ACCESS WITR TAM ...ttt et e ettt et et et et et et et et et asaaaateeeeteeeeernenaenns 49
2 T [l o 4T T 1 L= 49
AMAZON SWF IAM POLICIES . c.neneiiei et et ettt et et e ettt e e e e et eenseeneeens 50
AMaAzon SWF Policy EXaMIPLESc.uiuniiiiieiie ettt et ea et e e et e e e e ee 51
Service Model Limitations on IAM POLICIEScuuiuniiiiiieiee et 55

N IS H o 4 0= T 55
3 o U] T o RPN 56
PSEUAO AP .o ettt ettt et et et ettt e it et e e et et ea e eaeeaaae 59

Ji¥e V7 T [o=Te B @o] s [=] o £ TP PRPTRE 61
V=15 o] 112 [« IR P PP PO PP PP 61
1Y [e = 1 PP PP 62
Child WOTKFLOWS ...t et e e et et e e e e e e e et e ea e e eaneeans 62
[T] £ T PP UP PP PRSPPI 63
B 1L P PPN 64
USING the CONSOLEeeeii et ettt e e et et e et et et e e e eaa e eaeeaeeneannenns 65
Amazon Simple Workflow Service Dashboardcouiiiiiiiiiiii e 65
REgIStEIING @ DOMIAIN ..euitiiiii ettt et e e e e et e e et et e e et et en et en et e eaanenatnansanenennenees 67
Registering @ WoOrKflOW Ty Pe ...vuii i et e et s e e e e e e s e e e s aeanes 67
REgIStErING AN ACHIVITY Ty P .ttt ettt ettt e e e et e et e et et et saenetaneaeneananens 69
Starting @ WOrkfloOW EXECULIONcuiiuieiiiiie ettt et e e e et e e e e s ee e e ae e e e eaean 70
VIieWING PeNAING TASKS ..vuiuitiiiiiiiit ittt et e et e et e e et et e et e e e e e e e e s e e e s ae e st eaneanesnaanns 72
Managing Your WorkfloOw EXECULIONScuuiuniuiiiiiiiiie ettt e ee e e et e ee e s ee e e ee e s ane e eanaannas 72
Viewing AmAazon SWF MEtHICS c..cuniuiiiiiiii et e e e et e et eaenenenes 75
VIBWING MEBEFICS ettt ettt et e et et et et et e et e e s e ea st eneaenees 75
Y] i1 o Te AN I o 4 PRSPPI 78
USING the AWS CLI ..eeiiiii ettt et et et e e et e et et eeh e et et e et e eaa e et eeaeeneanaeeaeenaaenanes 79
USING The APL .ottt ettt ettt e e e et e et e et e eb e ta et e et e et e eaeeaeenaanaeaneanees 81
MaKING HTTP REQUESES ..vuiiniiniiiiiitie ettt ettt et et et et et et tteetsaetaauetesteesasesesesssssessessereessesnes 81
HTTP Header CONTENES ...ttt ettt ettt et e et et et e et e et e eeeeneeneeaneeannens 82
HTTP BOAY CONTENT ..vuiiniiiiiiieie et et e et et et et et et et et e e e e eaneaneaneansaneansanesnes 83
Sample JSON Request and RESPONSEcuueuuiiuneiieiiiei ettt ettt et e e e e e et e e eeneeanenns 83
Calculating the HMAC-SHA SigNatUrecuiuniuiiieiieeieiie e et e eeeteeie et e ee et eeiesneaneeneanesnsanasnnan 84

List Of AMAzZon SWEF ACLIONScuuiiieiieei ettt ettt et e e et et et et et een e eaeeaeeneeneannens 86
Actions Related t0 ACHIVITIEScuuieiii ettt et e e e eens 86
Actions Related £0 DECIAEIS ... c.uuiuuiiieiieiie ettt ettt ettt e et et et e et e eaeeraeeneennees 86
Actions Related to WOrkflow EXECULIONSc..uiuuiiniiiiii e e 86
Actions Related to AdmInNiStrationcouiiiiiiii et 87

VAT o111 VYot 4o] o PPN 87
Creating @ Basic WOIKFLOWoouiniiiiiii ettt e e e e et e e e e e e e e e aeanas 88
Modeling Your Workflow and [ts ACHIVILIESivuiiniiiiiii e 88
REgIStEIING @ DOMIAIN ..iuiuiniiii ettt et et et e e et et e e et et en et en et e et taeneanansanenennenees 89
SBE AlSO ettt ettt et et ettt et et et et et eaneeanaeaaas 89
Setting TIMEOUL VALUES ...cunieiiiiie ittt e e e e et e e e ete et et e et ete et aaeeteaaeeneanaanns 89
Limits on TiMeEOUL VALUESuieniieiie ettt et et et e et e e e e e e eneennae 90
Workflow Execution and Decision Task TiMeEOULSccuiiuuiiiiiiiiiiiiiiieieei e e e 90
ACIVItY Task TIMEOULS L.evuiiniiiiiiiie et eeee et e ee et e ete et eete et eete et eeneeneeneeneenesnsanesnsanesneanns 90

SBE AlSO ettt ettt et e et et et et et et et ean e eanaeaaae 91
Registering @ WoOrKflOW Ty Pe ...vuii i et e et s e e e e e e s e e e s aeanes 91
SBE AlSO ettt ettt ettt ettt et et e eb et et ean e eaneeaaae 91

API Version 2012-01-25
iv

Amazon Simple Workflow Service Developer Guide

REgIStErING AN ACHIVITY Ty P . ettt ettt ettt e e e et e et e et et et s e eneeneneaenenanens 91
SBE AlSO ettt ettt et et ettt et et et et et ean e eaeeaaae 92
LamBda Tasks ...cuneieiieie ettt ettt et et et et et et et e e eeans 92
ADOUL AWS Lambdaoeeiiiiii et et ea e 92
Benefits and Limitations of using Lambda Tasksccoeviiiiiiiiiiiiiiiieieeee e 92
Using Lambda tasks in your Workflowsocooiiiiiiiiiiii e 93
Developing an ACHIVITY WOTKEEcu.iuiiiiie et e e eae e e et e eie et e et e et e et anseneeneanaannas 95
POLliNG fOr ACHIVILY Tasks ..ouiiniiiiiiiii et e e e e e e e e e ee e aaas 96
Performing the Activity Taskc.iiiiiiiiiiiii e e e e e e e e e e aanas 96
Reporting Activity Task HEartbeatscouiiiiiiiiiiiiiiie et aaas 96
Completing or FAiling an ACtiVITY TasKc.uiuiiiiiiiiieie e e et et et et e e eaaaneans 97
Launching ACLiVIty WOTIKEISvniiiiiiii e et e et e e et eae et et et eaeeteeaeeaaannas 98
DEVELOPING DECIAEIS ..evuitiiiniiii ettt et e et et et et et et et et et ean et sanetnasnesntansensenssnsensensenssneen 98
Defining CoordiNation LOGICuiiuiiniiiiiit it e e e e e e e e e e e e e e aaanas 99
POLliNg fOr DECISION TASKS ..vuivniiniiiiiiii ittt e et et et et et e e ean et et eaneaneeneenaeneens 100
Applying the Coordination LOGICcuviuiiuiiiiiiiiiiir et ee e e e e e e e e e e ens 101
Responding With DECISIONSiuiiuiiiiiiiiiiie ettt ee e e e e ete e ete et ete e et aaeaanaanaans 101
Closing @ WOrKflOW EXECULION ...vuiiniiiiiiiiiii e e et e e e e e e e e e e e e e e e eaneanaas 102
=10 Tl T T B =Tl o 1= PPN 103
Starting WorkfloW EXECULIONSiuiniiiiiiiiie et e et e e e e e e e e e e e e e e eenen 103
SEEEING TASK PriOrity cuuiveiiiiii i et e et et et et e e et et ea et eaatasnetneanesnees 104
Setting Task Priority for WOrkflOWScc.iiiiiiiiiiiiii e e e e e e 105
Setting Task Priority for ACHIVITIESccuviuiiniiiii e e e eans 106
Actions that Return Task Priority INformationccooiiiiiiiiiiiiiiii e 107

[Tale | LT a e 2T o £SO PT ROt 107
ValidAtioN EFTOFS ..c.neniiieii ettt ettt et e et et et et et e et e et e et e eneeneeneeanenns 107
Errors in Enacting Actions Or DECISIONSvniniiiniiiii ettt e e e e aeaes 108
TIMEOULS ..ttt ettt ettt et eaeeneea et eaenenenenenaens 108
Errors raised DY USEr COUR ...iuniuniiiiiiii ettt e e et et et et e e et ean et eaneanaanesnaanns 108
Errors related to closing @ workflow eXecutioncouvviiiiiiiiiiiiiiii e, 108
USING AdVANCEA FEATUIESeniiieii ettt ettt et et et e et et e et et e et e eaaeebaeenaeeneaneannas 110
Logging Amazon SWF API Calls with CLoudTrailccuueiuiiiiiiiiii e 110
Amazon SWF Information in CloudTrailcouiiuiiiiii e 110
Example Amazon SWF Log File ENTresceuiiiiiiiiiiiiiee e et e e 111
Amazon SWF Metrics for CLoudWatchco.iiniiiiii e e 114
Metrics that Report @ Time INterval ..ot e 115
Metrics that REPOIrt @ COUNtiuiiiiiiiii et e e e e e e e e e e e e e e eaeaaeaaeanns 115
WOIKFLOW MEEFICS ...eneineie ettt et et et et e et e era e ebeenaees 115
ACHIVITY MEBEIICS et et et e et e et e et e e e et en et e eananees 116
Implementing EXCLUSIVE CROICEivuiieiiiiii et e et e e e e e e e e e e e e e anaanaas 117
L= PP 119
1S [e = 1 PP PRSPPI 119
Activity Task CanCeLlAtioniueiiniiii e et e et et et et et et e e et eaeaaaneanaen 120
MAEKENS .. ettt et et ettt et e et e et et e et e ea et e et e et et b e e e e et et ettt e eh e en e ean e eaneeans 122
K= Lo o |3« IR PP TP P PP PRSP 122
=TS0 T] ol =1 R 124
BT a g =Le LU A Y o =T S PP PSP PP U PPN 124
Timeouts in Workflow and DecisSion TasKsc.eeuriiuriiniiieiieiiei et e e eeneeens 124
TIMEOULS IN ACHIVILY TaSKS euvuiiniiiiiiiiitii ettt e et et e e et e e et eaeenaeneanaanns 125
RT3 3T £ PRSPPI 127
General Account Limits for Amazon SWF ..o e e 127
Limits on WOrkflow EXECULIONSceuniiiiii ittt et ei e e e e 127
Limits on Task EXECULIONSc..uieiiiiiiii et ettt e e e e e e e e e e eens 128
Amazon SWF throttling lmitscoueiiiii ettt ee e eanee 128
Requesting @ Limit INCrEASEcuiniuiii ittt et e et e e e e et e e e e eaeanenens 131
Lo o Yo)13 1 53PS P PPN 131
Additional DoOCUMENTAtIONcuniiiii ittt ettt et et e e e et e eb e ebeenaen 132

API Version 2012-01-25
\Y

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Service APl Referencec.oeeuiiiiiiiiiiiiieie e

AWS Flow Framework DOCUMENTAtIONvuininiiiiii et eaeaeaes

AWS SDK DOCUMENTAtION 1.vtiniiitiiii ettt et et e eee e enesesereseaenensesesensesenenens

P\ AR @ W o Yal U 3 g 1< g} 714 o] o H PN

V=] o (e o U (o <L
AMAZON SV FOIUM .ttt it i ittt ettt et et e et eaaesenseneensessesaaseasenseasensensensenseneens

AMAZON SV FAQ .ottt et ettt ettt ettt e e e et et e et e e aneaaetenenaaaenenaanenenannanens

AMAZON SWF VIABOS ..vvitiiiiiiiiiit ettt ettt ettt ettt e e e e e enenenenenenenens

Amazon SWF Source Code and SamPLESccuuiiuiiiiiiiii ettt

DOCUMENT HISTOIY uuiiiiiii ittt ettt et et ettt et et e e e et e et e ea et et s e aneaanesanenetneneaannes

AWS Glossary

API Version 2012-01-25
Vi

Amazon Simple Workflow Service Developer Guide
Development Options

What is Amazon Simple Workflow
Service?

The Amazon Simple Workflow Service (Amazon SWF) makes it easy to build applications that coordinate
work across distributed components. In Amazon SWF, a task represents a logical unit of work that is
performed by a component of your application. Coordinating tasks across the application involves
managing intertask dependencies, scheduling, and concurrency in accordance with the logical flow of the
application. Amazon SWF gives you full control over implementing tasks and coordinating them without
worrying about underlying complexities such as tracking their progress and maintaining their state.

When using Amazon SWF, you implement workers to perform tasks. These workers can run either on
cloud infrastructure, such as Amazon Elastic Compute Cloud (Amazon EC2), or on your own premises.
You can create tasks that are long-running, or that may fail, time out, or require restarts—or that

may complete with varying throughput and latency. Amazon SWF stores tasks and assigns them to
workers when they are ready, tracks their progress, and maintains their state, including details on

their completion. To coordinate tasks, you write a program that gets the latest state of each task from
Amazon SWF and uses it to initiate subsequent tasks. Amazon SWF maintains an application's execution
state durably so that the application is resilient to failures in individual components. With Amazon SWF,
you can implement, deploy, scale, and modify these application components independently.

Amazon SWF offers capabilities to support a variety of application requirements. It is suitable for a range
of use cases that require coordination of tasks, including media processing, web application back-ends,
business process workflows, and analytics pipelines.

Development Options

You have a number of options for implementing your workflow solutions with the Amazon Simple
Workflow Service.

Topics
o AWS SDKs (p. 2)
o AWS Flow Framework (p. 2)
o HTTP Service API (p. 3)
« Development Environments (p. 3)

API Version 2012-01-25
1

Amazon Simple Workflow Service Developer Guide
AWS SDKs

AWS SDKs

Amazon SWF is supported by the AWS SDKs for Java, .NET, Node.js, PHP, PHP version 2, Python and
Ruby, providing a convenient way to use the Amazon SWF HTTP API in the programming language of
your choice.

You can develop deciders, activities, or workflow starters using the APl exposed by these libraries.
Additionally, you can access visibility operations through these libraries so you can develop your own
Amazon SWF monitoring and reporting tools.

To download any of the AWS SDKs, go to https://aws.amazon.com/code.

For detailed information about the Amazon SWF methods in each SDK, refer to the language-specific
reference documentation for the SDK you are using.

Here is a list of the available AWS SDK documentation.

o AWS Java Developer Guide | Amazon SWF

o AWS SDK for Java API Reference

o AWS SDK for .NET API Reference

« AWS SDK for JavaScript in Node.js APl Reference
« AWS SDK for PHP API Reference

» AWS SDK for Python (Boto) API Reference

» AWS SDK for Ruby API Reference

AWS Flow Framework

The AWS Flow Framework is an enhanced SDK for writing distributed, asynchronous programs that can
run as workflows on Amazon SWF. It is available for the Java and Ruby programming languages, and it
provides classes that simplify writing complex distributed programs.

With the AWS Flow Framework, you use preconfigured types to map the definition of your workflow
directly to methods in your program.

The AWS Flow Framework supports standard object-oriented concepts, such as exception-based error
handling, which makes it easier to implement complex workflows. Programs written with the AWS Flow
Framework can be created, executed, and debugged entirely within your preferred editor or IDE. For
more information, see the AWS Flow Framework website.

Here are links to the AWS Flow Framework documentation:

« AWS Flow Framework for Java Developer Guide
o AWS Flow Framework for Java Reference

» AWS Flow Framework for Ruby Developer Guide
« AWS Flow Framework for Ruby API Reference

AWS Flow Framework Sample Code

In addition to the code snippets that appear in the AWS Flow Framework documentation, you can obtain
full, downloadable code samples at the following locations:

« AWS Flow Framework Recipes
o AWS Flow Framework Samples for Amazon SWF

API Version 2012-01-25
2

https://aws.amazon.com/code
http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/prog-services-swf.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html
http://docs.aws.amazon.com/aws-sdk-php/latest/
http://boto.readthedocs.org/en/latest/ref/
http://docs.aws.amazon.com/sdkforruby/api/
https://aws.amazon.com//swf/flow/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowguide/
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/
https://aws.amazon.com//code/2535278400103493
https://aws.amazon.com//code/3015904745387737

Amazon Simple Workflow Service Developer Guide
HTTP Service API

HTTP Service API

Amazon SWF provides service operations that are accessible through HTTP requests. You can use these
operations to communicate directly with Amazon SWF, and you can use them to develop your own
libraries in any language that can communicate with Amazon SWF through HTTP.

You can develop deciders, activity workers, or workflow starters by using the service API. You can also
access visibility operations through the API to develop your own monitoring and reporting tools.

For information about how to use the API, see Making HTTP Requests to Amazon SWF (p. 81). For
detailed information about API operations, go to the Amazon Simple Workflow Service API Reference.

Development Environments

You will need to set up a development environment appropriate to the programming language that you
will use. For example, if you intend to develop for Amazon SWF with Java, you will need to install a Java
development environment, such as the AWS SDK for Java, on each of your development workstations.
If you use the Eclipse IDE for Java development, you might consider also installing the AWS Toolkit for
Eclipse. The Toolkit is an Eclipse plug-in that adds features that are helpful for AWS development.

If your programming language requires a run-time environment, you need to set up that environment on
each computer on which these processes run.

API Version 2012-01-25
3

Amazon Simple Workflow Service Developer Guide
Concepts

Introduction to Amazon SWF

A growing number of applications are relying on asynchronous and distributed processing. The scalability
of such applications is the primary motivation for using this approach. By designing autonomous
distributed components, developers have the flexibility to deploy and scale out parts of the application
independently if the load on the application increases. Another motivation is the availability of cloud
services. As application developers start taking advantage of cloud computing, they have a need to
combine their existing on-premises assets with additional cloud-based assets. Yet another motivation

for the asynchronous and distributed approach is the inherent distributed nature of the process being
modeled by the application; for example, the automation of an order fulfillment business process may
span several systems and human tasks.

Developing such applications can be complicated. It requires that you coordinate the execution of
multiple distributed components and deal with the increased latencies and unreliability inherent in
remote communication. To accomplish this, you would typically need to write complicated infrastructure
involving message queues and databases, along with the complex logic to synchronize them.

The Amazon Simple Workflow Service (Amazon SWF) makes it easier to develop asynchronous and
distributed applications by providing a programming model and infrastructure for coordinating
distributed components and maintaining their execution state in a reliable way. By relying on Amazon
SWF, you are freed to focus on building the aspects of your application that differentiate it.

Simple Workflow Concepts

The basic concepts necessary for understanding Amazon SWF workflows are introduced below and
are explained further in the subsequent sections of this guide. The following discussion is a high-level
overview of the structure and components of a workflow.

The fundamental concept in Amazon SWF is the workflow. A workflow is a set of activities that carry
out some objective, together with logic that coordinates the activities. For example, a workflow could
receive a customer order and take whatever actions are necessary to fulfill it. Each workflow runs in an
AWS resource called a domain, which controls the workflow's scope. An AWS account can have multiple
domains, each of which can contain multiple workflows, but workflows in different domains cannot
interact.

When designing an Amazon SWF workflow, you precisely define each of the required activities. You

then register each activity with Amazon SWF as an activity type. When you register the activity, you
provide information such as a name and version, and some timeout values based on how long you expect
the activity to take. For example, a customer may have an expectation that an order will ship within

24 hours. Such expectations would inform the timeout values that you specify when registering your
activities.

API Version 2012-01-25
4

Amazon Simple Workflow Service Developer Guide
Workflow Execution

In the process of carrying out the workflow, some activities may need to be performed more than once,
perhaps with varying inputs. For example, in a customer-order workflow, you might have an activity that
handles purchased items. If the customer purchases multiple items, then this activity would have to run
multiple times. Amazon SWF has the concept of an activity task that represents one invocation of an
activity. In our example, the processing of each item would be represented by a single activity task.

An activity worker is a program that receives activity tasks, performs them, and provides results back.
Note that the task itself might actually be performed by a person, in which case the person would use
the activity worker software for the receipt and disposition of the task. An example might be a statistical
analyst, who receives sets of data, analyzes them, and then sends back the analysis.

Activity tasks—and the activity workers that perform them—can run synchronously or asynchronously.
They can be distributed across multiple computers, potentially in different geographic regions, or they
can all run on the same computer. Different activity workers can be written in different programming
languages and run on different operating systems. For example, one activity worker might be running
on a desktop computer in Asia, whereas a different activity worker might be running on a hand-held
computer device in North America.

The coordination logic in a workflow is contained in a software program called a decider. The decider
schedules activity tasks, provides input data to the activity workers, processes events that arrive while
the workflow is in progress, and ultimately ends (or closes) the workflow when the objective has been
completed.

The role of the Amazon SWF service is to function as a reliable central hub through which data is
exchanged between the decider, the activity workers, and other relevant entities such as the person
administering the workflow. Amazon SWF also maintains the state of each workflow execution, which
saves your application from having to store the state in a durable way.

The decider directs the workflow by receiving decision tasks from Amazon SWF and responding back to
Amazon SWF with decisions. A decision represents an action or set of actions which are the next steps
in the workflow. A typical decision would be to schedule an activity task. Decisions can also be used to
set timers to delay the execution of an activity task, to request cancellation of activity tasks already in
progress, and to complete or close the workflow.

The mechanism by which both the activity workers and the decider receive their tasks (activity tasks and
decision tasks respectively) is by polling the Amazon SWF service.

Amazon SWF informs the decider of the state of the workflow by including with each decision task, a
copy of the current workflow execution history. The workflow execution history is composed of events,
where an event represents a significant change in the state of the workflow execution. Examples of
events would be the completion of a task, notification that a task has timed out, or the expiration

of a timer that was set earlier in the workflow execution. The history is a complete, consistent, and
authoritative record of the workflow's progress.

A user must have authorized AWS access keys to run workflows in your account. However, access keys
provide full access to all of the resources in your account and are difficult to revoke, so they are not
appropriate for all applications. Amazon SWF access control uses AWS Identity and Access Management
(IAM), which allows you to provide access to AWS resources in a controlled and limited way that does not
expose your access keys. For example, you can allow a user to access your account, but only to run certain
workflows in a particular domain.

Bringing together the ideas discussed in the preceding sections, here is an overview of the steps to
develop and run a workflow in Amazon SWF:

1. Write activity workers that implement the processing steps in your workflow.

API Version 2012-01-25
5

Amazon Simple Workflow Service Developer Guide
Workflow Execution

. Write a decider to implement the coordination logic of your workflow.
. Register your activities and workflow with Amazon SWF.

You can do this step programmatically or by using the AWS Management Console.
. Start your activity workers and decider.

These actors can run on any computing device that can access an Amazon SWF endpoint. For example,
you could use compute instances in the cloud, such as Amazon Elastic Compute Cloud (Amazon EC2);
servers in your data center; or even a mobile device, to host a decider or activity worker. Once started,
the decider and activity workers should start polling Amazon SWF for tasks.

. Start one or more executions of your workflow.
Executions can be initiated either programmatically or via the AWS Management Console.

Each execution runs independently and you can provide each with its own set of input data. When

an execution is started, Amazon SWF schedules the initial decision task. In response, your decider
begins generating decisions which initiate activity tasks. Execution continues until your decider makes
a decision to close the execution.

. View workflow executions using the AWS Management Console.

You can filter and view complete details of running as well as completed executions. For example, you
can select an open execution to see which tasks have completed and what their results were.

API Version 2012-01-25
6

Amazon Simple Workflow Service Developer Guide
AWS Account and Access Keys

Getting Set Up with Amazon SWF

AWS

Topics
o AWS Account and Access Keys (p. 7)
» Endpoints (p. 8)

This section discusses the prerequisites for developing with the Amazon Simple Workflow Service
(Amazon SWF) and the development options that are available. The first step in using any AWS service is
to sign up for an AWS account, discussed in detail in the following section. Once your account is set up,
you have the option of developing for Amazon SWF in any of the programming languages supported by
AWS. For Java and Ruby developers, the AWS Flow Framework is also available. AWS Identity and Access
Management enables you to grant individuals other than the AWS account owner access to Amazon SWF
resources.

Account and Access Keys

To access Amazon SWF, you will need to sign up for an AWS account.
To sign up for an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

To get your access key ID and secret access key

Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them by using the AWS
Management Console. We recommend that you use IAM access keys instead of AWS root account access
keys. IAM lets you securely control access to AWS services and resources in your AWS account.

Note

To create access keys, you must have permissions to perform the required IAM actions. For more
information, see Granting IAM User Permission to Manage Password Policy and Credentials in
the IAM User Guide.

API Version 2012-01-25
7

https://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/PasswordPolicyPermission.html

Amazon Simple Workflow Service Developer Guide
Endpoints

Open the IAM console.

In the navigation pane, choose Users.

Choose your IAM user name (not the check box).

Choose the Security Credentials tab and then choose Create Access Key.

AR A

like this:

o Access Key ID: AKIAIOSFODNN7EXAMPLE
« Secret Access Key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
6. Choose Download Credentials, and store the keys in a secure location.

Your secret key will no longer be available through the AWS Management Console; you will have the
only copy. Keep it confidential in order to protect your account, and never email it. Do not share it
outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No one
who legitimately represents Amazon will ever ask you for your secret key.

Related topics

o What Is IAM? in the IAM User Guide
o AWS Security Credentials in AWS General Reference

To reduce latency and to store data in a location that meets your requirements, Amazon SWF provides
endpoints in different regions.

Each endpoint in Amazon SWF is completely independent; any domains, workflows and activities you
have registered in one region do not share any data or attributes with those in another. In other words,
when you register an Amazon SWF domain, workflow or activity, it exists only within the region you
registered it in. For example, you could register a domain named swr-Flows-1 in two different regions,
but they will share no data or attributes with each other—each acts as a completely independent
domain.

For a list of Amazon SWF endpoints, see Regions and Endpoints.

API Version 2012-01-25
8

To see your access key, choose Show User Security Credentials. Your credentials will look something

https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Workflow Service Developer Guide

Tutorial: A Subscription Workflow
with Amazon SWF and Amazon SNS

This section provides a tutorial that describes how to create an Amazon SWF workflow application that
consists of a set of four activities that operate sequentially. It also covers:

« Setting default and execution-time workflow and activity options.

« Polling Amazon SWF for decision and activity tasks.

« Passing data between the activities and the workflow with Amazon SWF.

« Waiting for human tasks and reporting heartbeats to Amazon SWF from an activity task.

« Using Amazon SNS to create a topic, subscribe a user to it, and publish messages to subscribed
endpoints.

You can use Amazon Simple Workflow Service (Amazon SWF) and Amazon Simple Notification Service
(Amazon SNS) together to emulate a "human task" workflow—one in which a human worker is required
to perform some action and then communicate with Amazon SWF to launch the next activity in the
workflow.

Because Amazon SWF is a cloud-based web service, communication with Amazon SWF can originate
from anywhere a connection to the Internet is available. In this case, we will use Amazon SNS to
communicate with the user by either email, an SMS text message, or both.

This tutorial uses the AWS SDK for Ruby to access Amazon SWF and Amazon SNS, but there are many
development options available, including the AWS Flow Framework for Ruby, which provides easier
coordination and communication with Amazon SWF.

Note
This tutorial uses version 1 of the AWS SDK for Ruby. The SDK for Ruby continues to work, but
we recommend that you use the AWS Flow Framework for Java as an alternative.

For a complete list of Amazon SWF development options, see Development Options (p. 1).
In this section:

« About the Workflow (p. 10)
 Prerequisites (p. 10)

« Download the Source Code (p. 10)
« Tutorial Steps (p. 10)

API Version 2012-01-25
9

https://aws.amazon.com//swf/
https://aws.amazon.com//sns/
https://aws.amazon.com//sns/
https://aws.amazon.com//sdkforruby/
https://github.com/aws/aws-sdk-ruby/tree/aws-sdk-v1
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

Amazon Simple Workflow Service Developer Guide
About the Workflow

About the Workflow

The workflow that we will be developing consists of four major steps:

1. Get a subscription address (email or SMS) from the user.

2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4, If the user confirms, publish a congratulatory message to the topic.

These steps include activities that are completely automated (steps 2 and 4), and others that require the
workflow to wait for a human to provide some data to the activity before the workflow can progress
(steps 1 and 3).

Because each step relies on data that is generated by the previous step (you must have an endpoint
before subscribing it to a topic, and you must have a topic subscription before you can wait for
confirmation, etc.) This tutorial will also cover how to provide activity results upon completion, and
how to pass input to a task that is being scheduled. Amazon SWF handles coordination and delivery of
information between the activities and the workflow, and vice-versa.

We're also using both keyboard input and Amazon SNS to handle communication between Amazon

SWF and the human who is providing data to the workflow. In practice, you can use many different
techniques to communicate with human users, but Amazon SNS provides a very easy way to use email or
text messages to notify the user about events in the workflow.

Prerequisites

To follow along with this tutorial, you will need the following:

« Amazon Web Services (AWS) account
e Ruby interpreter
« AWS SDK for Ruby

If you already have these set up, you're ready to continue. If you don't want to run the example, you can
still follow the tutorial—much of the content in this tutorial applies to using Amazon SWF and Amazon
SNS regardless of what development options (p. 1) you are using.

Download the Source Code

You can download the complete source code for this tutorial from: https://s3.amazonaws.com/
codesamples/ruby/swf_sns_sample.zip

Note

Even if you intend to type in (or cut and paste) the code from this tutorial directly into your own
source files, having the downloaded source code available to compare your own code with can
help identify and solve issues if you run into any along the way.

Tutorial Steps

This tutorial is divided into the following steps:

API Version 2012-01-25
10

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://www.ruby-lang.org/en/downloads/
https://aws.amazon.com//sdkforruby/
https://s3.amazonaws.com/codesamples/ruby/swf_sns_sample.zip
https://s3.amazonaws.com/codesamples/ruby/swf_sns_sample.zip

Amazon Simple Workflow Service Developer Guide
Part 1: Using Amazon SWF with the SDK for Ruby

1. Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby (p. 11)
2. Subscription Workflow Tutorial Part 2: Implementing the Workflow (p. 13)

3. Subscription Workflow Tutorial Part 3: Implementing the Activities (p. 19)

4, Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller (p. 27)

5. Subscription Workflow Tutorial: Running the Workflow (p. 29)

Subscription Workflow Tutorial Part 1: Using
Amazon SWF with the AWS SDK for Ruby

Topics
« Include the AWS SDK for Ruby (p. 11)
« Configuring the AWS Session (p. 11)
+ Registering an Amazon SWF Domain (p. 12)
o Next Steps (p. 13)

Include the AWS SDK for Ruby

Begin by creating a file called utils.rb. The code in this file will obtain, or create if necessary, the
Amazon SWF domain used by both the workflow and activities code and will provide a place to put code
that is common to all of our classes.

First, we need to include the aws-sdk-v1 library in our code, so that we can use the features provided by
the SDK for Ruby.

require 'aws-sdk-vl'

This gives us access to the AWS namespace, which provides the ability to set global session-related
values, such as your AWS credentials and region, and also provides access to the AWS service APIs.

Configuring the AWS Session

We'll configure the AWS Session by setting our AWS credentials (which are needed for accessing AWS
services) and the AWS region to use.

There are a number of ways to set AWS credentials in the AWS SDK for Ruby: by setting them in
environment variables (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) or by setting them with
AWS.config. We'll use the latter method, loading them from a YAML configuration file, called aws-
config.txt, that looks like this.

raccess_key_id: REPLACE_WITH_ACCESS_KEY_ID
:secret_access_key: REPLACE_WITH_SECRET_ACCESS_KEY

Create this file now, replacing the strings beginning with REPLACE_WITH_ with your AWS access key
ID and secret access key. For information about your AWS access keys, see How Do | Get Security
Credentials? in the Amazon Web Services General Reference.

We also need to set the AWS region to use. Because we'll be using the Short Message Service (SMS) to
send text messages to the user's phone with Amazon SNS, we need to make sure that we're using region
us-east-1. It is currently the only region that supports SMS.

API Version 2012-01-25
11

http://docs.aws.amazon.com/AWSRubySDK/latest/index.html#Basic_Configuration
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://en.wikipedia.org/wiki/Short_Message_Service

Amazon Simple Workflow Service Developer Guide
Registering an Amazon SWF Domain

Note

If you don't have access to us-east-1, or don't care about running the demo with SMS messaging
enabled, feel free to use any region you wish to. You can remove the SMS functionality from the
sample and use email as the sole endpoint to subscribe to the Amazon SNS topic.

For more information about sending SMS messages, see Sending and Receiving SMS
Notifications Using Amazon SNS in the Amazon Simple Notification Service Developer Guide.

We'll now add some code to utils.rb to load the config file, get the user's credentials, then provide both
the credentials and region to AWS.config.

require 'yaml'

Load the user's credentials from a file, if it exists.
begin
config file = File.open('aws-config.txt') { |f| f.read }
rescue
puts "No config file! Hope you set your AWS credentials in the environment..."
end

if config_file.nil?

options = { }
else

options = YAML.load(config file)
end

SMS Messaging (which can be used by Amazon SNS) is available only in the
“us-east-1" region.

$SMS_REGION = 'us-east-1'

options[:region] = $SMS_REGION

Now, set the options
AWS.config = options

Registering an Amazon SWF Domain

To use Amazon SWF, you need to set up a domain: a named entity that will hold your workflows and
activities. You can have many Amazon SWF domains registered, but they must all have unique names
within your AWS account, and workflows cannot interact across domains: All of the workflows and
activities for your application must be in the same domain to interact with one another.

Because we'll be using the same domain throughout our application, we'll create a function in utils.rb
called init_domain, that will retrieve the Amazon SWF domain named SWFSampleDomain.

Once you have registered a domain, you can reuse it for many workflow executions. However, it is an
error to try to register a domain that already exists, so our code will first check to see if the domain exists,
and will use the existing domain if it can be found. If the domain can't be found, we'll create it.

To work with Amazon SWF domains in the SDK for Ruby, use AWS::SimpleWorkflow.domains, which
returns a DomainCollection that can be used to both enumerate and register domains:

« To check to see if a domain is already registered, you can look at the list provided by
AWS::Simpleworkflow.domains.registered.

 To register a new domain, use AWS::Simpleworkflow.domains.register.

Here is the code for init_domain in utils.rb.

Registers the domain that the workflow will run in.
def init_domain
domain_name = 'SWFSampleDomain'

API Version 2012-01-25
12

http://docs.aws.amazon.com/sns/latest/dg/SMSMessages.html
http://docs.aws.amazon.com/sns/latest/dg/SMSMessages.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html#domains-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html#registered-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html#register-instance_method

Amazon Simple Workflow Service Developer Guide
Next Steps

domain = nil
swf = AWS::SimpleWorkflow.new

First, check to see if the domain already exists and is registered.
swf.domains.registered.each do | d |
if(d.name == domain_name)
domain = d
break
end
end

if domain.nil?
Register the domain for one day.
domain = swf.domains.create(
domain_name, 1, { :description => "#{domain_name} domain" })
end

return domain
end

Next Steps

That's it for utils.rb. Next, we'll create the workflow and starter code in Subscription Workflow Tutorial
Part 2: Implementing the Workflow (p. 13).

Subscription Workflow Tutorial Part 2:
Implementing the Workflow

Up until now, our code has been pretty generic. This is the part where we begin to really define what our
workflow does, and what activities we'll need to implement it.

Topics
« Designing the Workflow (p. 13)
 Setting up our Workflow Code (p. 14)
« Registering the Workflow (p. 15)
« Polling for Decisions (p. 16)
« Starting the Workflow Execution (p. 18)
« Next Steps (p. 19)

Designing the Workflow

If you recall, the initial idea for this workflow consisted of the following steps:

1. Get a subscription address (email or SMS) from the user.

2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4. If the user confirms, publish a congratulatory message to the topic.

We can think of each step in our workflow as an activity that it must perform. Our workflow is
responsible for scheduling each activity at the appropriate time, and coordinating data transfer between
activities.

API Version 2012-01-25
13

Amazon Simple Workflow Service Developer Guide
Setting up our Workflow Code

For this workflow, we'll create a separate activity for each of these steps, naming them descriptively:

1. get_contact_activity

2. subscribe_topic_activity

3. wait_for_confirmation_activity
4. send_result_activity

These activities will be executed in order, and data from each step will be used in the subsequent step.

We could design our application so that all of the code exists in one source file, but this runs contrary to
the way that Amazon SWF was designed. It is designed for workflows that can span the entire Internet in
scope, so let's at least break the application up into two separate executables:

e swf_sns_workflow.rb - Contains the workflow and workflow starter.
e swf_sns_activities.rb - Contains the activities and activities starter.

The workflow and activity implementations can be run in separate windows, separate computers, or even
different parts of the world. Because Amazon SWF is keeping track of the details of your workflows and
activities, your workflow can coordinate scheduling and data transfer of your activities no matter where
they are running.

Setting up our Workflow Code

We'll begin by creating a file called swf_sns_workflow.rb. In this file, declare a class called
SampleWorkflow. Here is the class declaration and its constructor, the initialize method.

require_relative 'utils.rb'

SampleWorkflow - the main workflow for the SWF/SNS Sample

#

See the file called "README.md~ for a description of what this file does.
class SampleWorkflow

attr_accessor :name
def initialize(task_list)

the domain to look for decision tasks in.
@domain = init_domain

the task list is used to poll for decision tasks.
@task_list = task_list

The list of activities to run, in order. These name/version hashes can be
passed directly to AWS::SimpleWorkflow: :DecisionTask#schedule_activity_task.
@activity list = [

{ :name => 'get_contact_activity', :version => 'vl1' },
{ :name => 'subscribe_topic_activity', :version => 'v1' },
{ :name => 'wait_for_ confirmation_activity', :version => 'v1' },
{ :name => 'send_result_activity', :version => 'vl1' },
].reverse! # reverse the order... we're treating this like a stack.

register_workflow
end

As you can see, we are keeping the following class instance data:

e domain - The domain name retrieved from init_domain in utils.rb.

API Version 2012-01-25
14

Amazon Simple Workflow Service Developer Guide
Registering the Workflow

o task_list - The task list passed in to initialize.
o activity_list - The activity list, which has the names and versions of the activities we'll run.

The domain name, activity name, and activity version are enough for Amazon SWF to positively identify
an activity type, so that is all of the data we need to keep about our activities in order to schedule them.

The task list will be used by the workflow's decider code to poll for decision tasks and schedule activities.

At the end of this function, we call a method we haven't yet defined: register_workflow. We'll define
this method next.

Registering the Workflow

To use a workflow type, we must first register it. Like an activity type, a workflow type is identified by its
domain, name, and version. Also, like both domains and activity types, you cannot re-register an existing
workflow type. If you need to change anything about a workflow type, you must provide it with a new
version, which essentially creates a new type.

Here is the code for register_workflow, which is used to either retrieve the existing workflow type we
registered on a previous run or to register the workflow if it has not yet been registered.

Registers the workflow

def register_workflow
workflow name = 'swf-sns-workflow'
@workflow_ type = nil

a default value...
workflow_version = '1'

Check to see if this workflow type already exists. If so, use it.
@domain.workflow types.each do | a |

if (a.name == workflow name) && (a.version == workflow_version)
@workflow_type = a
end
end

if eworkflow_type.nil?
options = {
:default_child policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

puts "registering workflow: #{workflow name}, #{workflow version},
#{options.inspect}"
@workflow_ type = @domain.workflow_types.register(workflow_name, workflow version,
options)
end

puts "** registered workflow: #{workflow name}"
end

First, we check to see if the workflow name and version is already registered by iterating through the
domain's workflow_types collection. If we find a match, we'll use the workflow type that was already
registered.

If we don't find a match, then a new workflow type is registered (by calling register on the same
workflow_types collection that we were searching for the workflow in) with the name 'swf-sns-
workflow', version '1', and the following options.

options = {

API Version 2012-01-25
15

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#workflow_types-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowTypeCollection.html#register-instance_method

Amazon Simple Workflow Service Developer Guide
Polling for Decisions

:default_child_policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

Options passed in during registration are used to set default behavior for our workflow type, so we don't
need to set these values every time we start a new workflow execution.

Here, we just set some timeout values: the maximum time it can take from the time a task starts to
when it closes (one hour), and the maximum time it can take for the workflow execution to complete (24
hours). If either of these times are exceeded, the task or workflow will timeout.

For more information about timeout values, see Amazon SWF Timeout Types (p. 124).

Polling for Decisions

At the heart of every workflow execution there is a decider. The decider's responsibility is for managing
the execution of the workflow itself. The decider receives decision tasks and responds to them, either
by scheduling new activities, cancelling and restarting activities, or by setting the state of the workflow
execution as complete, cancelled, or failed.

The decider uses the workflow execution's task list name to receive decision tasks to respond to. To poll
for decision tasks, call poll on the domain's decision_tasks collection to loop over available decision
tasks. You can then check for new events in the decision task by iterating over its new_events collection.

The returned events are AWS::SimpleWorkflow::HistoryEvent objects, and you can get the type of the
event by using the returned event's event_type member. For a list and description of history event types,
see HistoryEvent in the Amazon Simple Workflow Service APl Reference.

Here is the beginning of the decision task poller's logic. A new method in our workflow class called
poll for decisions.

def poll_for_decisions
first, poll for decision tasks...
@domain.decision_tasks.poll(etask_list) do | task |
task.new_events.each do | event |
case event.event_type

We'll now branch the execution of our decider based on the event_type that is received. The first one we
are likely to receive is WorkflowExecutionStarted. When this event is received, it means that Amazon
SWEF is signaling to your decider that it should begin the workflow execution. We'll begin by scheduling
the first activity by calling schedule_activity_task on the task we received while polling.

We'll pass it the first activity we declared in our activity list, which, because we reversed the list so we
can use it like a stack, occupies the 1ast position on the list. The "activities" we defined are just maps
consisting of a name and version number, but this is all that Amazon SWF needs to identify the activity
for scheduling, assuming that the activity has already been registered.

when 'WorkflowExecutionStarted'
schedule the last activity on the (reversed, remember?) list to
begin the workflow.
puts "** scheduling activity task: #{@activity_list.last[:name]}"

task.schedule_activity_task(@activity_list.last,
{ :task_list => "#{etask_list}-activities" })

When we schedule an activity, Amazon SWF sends an activity task to the activity task list that we pass in
while scheduling it, signaling the task to begin. We'll deal with activity tasks in Subscription Workflow
Tutorial Part 3: Implementing the Activities (p. 19), but it is worth noting that we don't execute the

task here. We only tell Amazon SWF that it should be scheduled.

API Version 2012-01-25
16

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTaskCollection.html#poll-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#decision_tasks-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#new_events-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/HistoryEvent.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/HistoryEvent.html#event_type-instance_method
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#schedule_activity_task-instance_method

Amazon Simple Workflow Service Developer Guide
Polling for Decisions

The next activity that we'll need to address is the ActivityTaskCompleted event, which occurs when
Amazon SWF has received an activity completed response from an activity task.

when 'ActivityTaskCompleted'
we are running the activities in strict sequential order, and
using the results of the previous activity as input for the next
activity.
last_activity = eactivity_list.pop

if(@activity_list.empty?)
puts "!! All activities complete! Sending complete_workflow execution..."
task.complete_workflow execution
return true;
else
schedule the next activity, passing any results from the
previous activity. Results will be received in the activity
task.
puts "** scheduling activity task: #{eactivity_list.last[:name]}"
if event.attributes.has_key?('result')
task.schedule_activity_task(
@activity_ list.last,
{ :input => event.attributes[:result],
ttask_list => "#{@task_list}-activities" })
else
task.schedule_activity_task(
@activity_list.last, { :task_list => "#{@task list}-activities" })
end
end

Since we are executing our tasks in a linear fashion, and only one activity is executing at once, we'll take
this opportunity to pop the completed task from the activity_list stack. If this results in an empty list,
then we know that our workflow is complete. In this case, we signal to Amazon SWF that our workflow is
complete by calling complete_workflow_execution on the task.

In the event that the list still has entries, we'll schedule the next activity on the list (again, in the last
position). This time, however, we'll look to see if the previous activity returned any result data to Amazon
SWF upon completion, which is provided to the workflow in the event's attributes, in the optional result
key. If the activity generated a result, we'll pass it as the input option to the next scheduled activity,
along with the activity task list.

By retrieving the result values of completed activities, and by setting the input values of scheduled
activities, we can pass data from one activity to the next, or we can use data from an activity to change
behavior in our decider based on the results from an activity.

For the purposes of this tutorial, these two event types are the most important in defining the behavior
of our workflow. However, an activity can generate events other than ActivityTaskCompleted. We'll
wrap up our decider code by providing demonstration handler code for the ActivityTaskTimedOut and
ActivityTaskFailed events, and for the WorkflowExecutionCompleted event, which will be generated
when Amazon SWF processes the complete_workflow_execution call that we make when we run out of
activities to run.

when 'ActivityTaskTimedOut'
puts "!! Failing workflow execution! (timed out activity)"
task.fail workflow_execution
return false

when 'ActivityTaskFailed'
puts "!! Failing workflow execution! (failed activity)"
task.fail workflow_execution
return false

when 'WorkflowExecutionCompleted'

API Version 2012-01-25
17

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#complete_workflow_execution-instance_method

Amazon Simple Workflow Service Developer Guide
Starting the Workflow Execution

puts "## Yesss, workflow execution completed!"
task.workflow_execution.terminate
return false
end
end
end
end

Starting the Workflow Execution

Before any decision tasks will be generated for the workflow to poll for, we need to start the workflow
execution.

To start the workflow execution, call start_execution on your registered workflow type
(AWS::SimpleWorkflow::WorkflowType). We'll define a small wrapper around this to make use of the
workflow_type instance member that we retrieved in the class constructor.

def start_execution
workflow_execution = eworkflow_type.start_execution({
:task_list => etask_list })
poll_for_decisions
end
end

Once the workflow is executing, decision events will begin to appear on the workflow's task list, which is
passed as a workflow execution option in start_execution.

Unlike options that are provided when the workflow type is registered, options that are passed to
start_execution are not considered to be part of the workflow type. You are free to change these per
workflow execution without changing the workflow's version.

Since we'd like the workflow to begin executing when we run the file, add some code that instantiates
the class and then calls the start_execution method that we just defined.

if _ FILE_ == $0
require 'securerandom'

Use a different task list name every time we start a new workflow execution.
#

This avoids issues if our pollers re-start before SWF considers them closed,
causing the pollers to get events from previously-run executions.

task_list = SecureRandom.uuid

Let the user start the activity worker first...

puts ""

puts "Amazon SWF Example"

puts "-————————————————— "

puts ""

puts "Start the activity worker, preferably in a separate command-line window, with"
puts "the following command:"

puts ""
puts "> ruby swf_sns_activities.rb #{task list}-activities"

puts ""

puts "You can copy & paste it if you like, just don't copy the '>' character."
puts ""

puts "Press return when you're ready..."
i = gets

Now, start the workflow.

API Version 2012-01-25
18

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html#start_execution-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html#start_execution-instance_method

Amazon Simple Workflow Service Developer Guide
Next Steps

puts "Starting workflow execution."
sample_workflow = SampleWorkflow.new(task list)
sample_workflow.start_execution

end

To avoid any task list naming conflicts, we'll use secureRandom.uuid to generate a random UUID that
we can use as the task list name, guaranteeing that a different task list name is used for each workflow
execution.

Note

Task lists are used to record events about a workflow execution, so if you use the same task list
for multiple executions of the same workflow type, you might get events that were generated
during a previous execution, especially if you are running them in near succession to each other,
which is often the case when trying out new code or running tests.

To avoid the issue of having to deal with artifacts from previous executions, we can use a new task list for
each execution, specifying it when we begin the workflow execution.

There is also a bit of code here to provide instructions for the person running it (probably you), and to
provide the "activity" version of the task list. The decider uses this task list name to schedule activities
for the workflow, and the activities implementation will listen for activity events on this task list name to
know when to begin the scheduled activities and to provide updates about the activity execution.

The code also waits for the user to start running the activities starter before it starts the workflow
execution, so the activities starter will be ready to respond when activity tasks begin appearing on the
provided task list.

Next Steps

We've completed the workflow implementation. Next, we'll define the activities and an activities starter,
in Subscription Workflow Tutorial Part 3: Implementing the Activities (p. 19).

Subscription Workflow Tutorial Part 3:
Implementing the Activities

We'll now implement each of the activities in our workflow, beginning with a base class that provides
some common features for the activity code.

Topics
« Defining a Basic Activity Type (p. 19)
« Defining GetContactActivity (p. 21)
» Defining SubscribeTopicActivity (p. 22)
« Defining WaitForConfirmationActivity (p. 24)
» Defining SendResultActivity (p. 26)
» Next Steps (p. 27)

Defining a Basic Activity Type
When designing the workflow, we identified the following activities:

e get_contact_activity

API Version 2012-01-25
19

Amazon Simple Workflow Service Developer Guide
Defining a Basic Activity Type

e subscribe_topic_activity
e wait_for_confirmation_activity

e send_result_activity

We'll implement each of these activities now. Since our activities will share some features, let's do a little
groundwork and create some common code they can share. We'll call it BasicActivity, and define itin a
new file called basic_activity.rb.

As with the other source files, we'll include utils.rb to access the init_domain function to set up the
sample domain.

require_relative 'utils.rb'

Next, we'll declare the basic activity class and some common data that we'll be interested in for each
activity. We'll save the activity's AWS::SimpleWorkflow::ActivityType instance, name, and results in
attributes of the class.

class BasicActivity

attr_accessor :activity_type
attr_accessor :name
attr_accessor :results

These attributes access instance data that's defined in the class' initialize method, which takes an
activity name, and an optional version and map of options to be used when registering the activity with
Amazon SWF.

def initialize(name, version = 'vl', options = nil)

@activity_type = nil
@name = name
@results = nil

get the domain to use for activity tasks.
@domain = init_domain

Check to see if this activity type already exists.
@domain.activity_types.each do | a |

if (a.name == @name) && (a.version == version)
@activity_type = a
end
end

if @activity_type.nil?
If no options were specified, use some reasonable defaults.
if options.nil?
options = {
All timeouts are in seconds.
:default_task_heartbeat_timeout => 900,
:default_task_schedule_to_start_timeout => 120,
:default_task_schedule_to_close_timeout => 3800,
:default_task_start_to_close_timeout => 3600 }
end
@activity_type = @domain.activity_types.register(@ename, version, options)
end
end

As with workflow type registration, if an activity type is already registered, we can retrieve it by looking
at the domain's activity_types collection. If the activity can't be found, it will be registered.

API Version 2012-01-25
20

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityType.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#activity_types-instance_method

Amazon Simple Workflow Service Developer Guide
Defining GetContactActivity

Also, as with workflow types, you can set default options that are stored with your activity type when you
register it.

The last thing our basic activity gets is a consistent way to run it. We'll define a do_activity method
that takes an activity task. As shown, we can use the passed-in activity task to receive data via its input
instance attribute.

def do_activity(task)
@results = task.input # may be nil
return true
end
end

That wraps up the BasicActivity class. Now we'll use it to make defining our activities simple and
consistent.

Defining GetContactActivity

The first activity that is run during a workflow execution is get_contact_activity, which retrieves the
user's Amazon SNS topic subscription information.

Create a new file called get_contact_activity.rb, and require both yaml, which we'll use to prepare
a string for passing to Amazon SWF, and basic_activity.rb, which we'll use as the basis for this
GetContactActivity class.

require 'yaml'
require_relative 'basic_activity.rb'

GetContactActivity provides a prompt for the user to enter contact
information. When the user successfully enters contact information, the
activity is complete.

class GetContactActivity < BasicActivity

Since we put the activity registration code in BasicActivity, the initialize method for
GetContactActivity is pretty simple. We simply call the base class constructor with the activity name,
get_contact_activity. This is all that is required to register our activity.

initialize the activity

def initialize
super('get_contact_activity')

end

We'll now define the do_activity method, which prompts for the user's email and/or phone number.

def do_activity(task)

puts ""

puts "Please enter either an email address or SMS message (mobile phone) number to"

puts "receive SNS notifications. You can also enter both to use both address types."

puts ""

puts "If you enter a phone number, it must be able to receive SMS messages, and
must"

puts "be 11 digits (such as 12065550101 to represent the number 1-206-555-0101)."

input_confirmed = false
while !input_confirmed

puts ""

print "Email: "

email = $stdin.gets.strip

API Version 2012-01-25
21

Amazon Simple Workflow Service Developer Guide
Defining SubscribeTopicActivity

print "Phone: "
phone = $stdin.gets.strip

puts ""
if (email == '') && (phone == '"')
print "You provided no subscription information. Quit? (y/n)"
confirmation = $stdin.gets.strip.downcase

if confirmation == 'y'
return false
end
else
puts "You entered:"
puts " email: #{email}"

puts " phone: #{phone}"
print "\nIs this correct? (y/n): "
confirmation = $stdin.gets.strip.downcase
if confirmation == 'y'
input_confirmed = true
end
end
end

make sure that eresults is a single string. YAML makes this easy.
@results = { :email => email, :sms => phone }.to_yaml
return true
end
end

At the end of do_activity, we take the email and phone number retrieved from the user, place itin a
map and then use to_yaml to convert the entire map to a YAML string. There's an important reason for
this: any results that you pass to Amazon SWF when you complete an activity must be string data only.
Ruby's ability to easily convert objects to YAML strings and then back again into objects is, thankfully,
well-suited for this purpose.

That's the end of the get_contact_activity implementation. This data will be used next in the
subscribe_topic_activity implementation.

Defining SubscribeTopicActivity

We'll now delve into Amazon SNS and create an activity that uses the information generated by
get_contact_activity to subscribe the user to an Amazon SNS topic.

Create a new file called subscribe_topic_activity.rb, add the same requirements that we used for
get_contact_activity, declare your class, and provide its initialize method.

require 'yaml'
require_relative 'basic_activity.rb'

SubscribeTopicActivity sends an SMS / email message to the user, asking for
confirmation. When this action has been taken, the activity is complete.
class SubscribeTopicActivity < BasicActivity

def initialize
super('subscribe_topic_activity')
end

Now that we have the code in place to get the activity set up and registered, we will add some code to
create an Amazon SNS topic. To do so, we'll use the AWS::SNS::Client object's create_topic method.

Add the create_topic method to your class, which takes a passed-in Amazon SNS client object.

API Version 2012-01-25
22

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Client.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Client.html#create_topic-instance_method

Amazon Simple Workflow Service Developer Guide
Defining SubscribeTopicActivity

def create_topic(sns_client)
topic_arn = sns_client.create_topic(:name => 'SWF_Sample_Topic')[:topic_arn]

if topic_arn != nil

For an SMS notification, setting “DisplayName~ is *required*. Note that
only the *first 10 characters* of the DisplayName will be shown on the
SMS message sent to the user, so choose your DisplayName wisely!
sns_client.set_topic_attributes({

:topic_arn => topic_arn,

rattribute_name => 'DisplayName’,

rattribute_value => 'SWFSample' })

else
@results = {
:reason => "Couldn't create SNS topic", :detail => "" }.to_yaml
return nil
end

return topic_arn
end

Once we have the topic's Amazon Resource Name (ARN), we can use it with the Amazon SNS client's
set_topic_attributes method to set the topic's DisplayName, which is required for sending SMS messages
with Amazon SNS.

Lastly, we'll define the do_activity method. We'll start by collecting any data that was passed via the
input option when the activity was scheduled. As previously mentioned, this must be passed as a string,
which we created using to_yaml. When retrieving it, we'll use vamr. 1oad to turn the data into Ruby
objects.

Here's the beginning of do_activity, in which we retrieve the input data.

def do_activity(task)
activity_data = {
ttopic_arn => nil,
temail => { :endpoint => nil, :subscription_arn => nil },
:sms => { :endpoint => nil, :subscription_arn => nil },

¥

if task.input != nil
input = YAML.load(task.input)
activity_data[:email][:endpoint] = input[:email]
activity_data[:sms][:endpoint] = input[:sms]

else
@results = { :reason => "Didn't receive any input!", :detail => "" }.to_yaml
puts(" #{@results.inspect}")
return false

end

Create an SNS client. This is used to interact with the service. Set the
region to $SMS_REGION, which is a region that supports SMS notifications
(defined in the file “utils.rb”).
sns_client = AWS::SNS::Client.new(

:config => AWS.config.with(:region => $SMS_REGION))

If we didn't receive any input, there isn't much to do, so we'll just fail the activity.

Assuming that everything is fine, however, we'll continue filling in our do_activity method, get an
Amazon SNS client with the AWS SDK for Ruby, and pass it to our create_topic method to create the
Amazon SNS topic.

Create the topic and get the ARN

API Version 2012-01-25
23

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Client.html#set_topic_attributes-instance_method

Amazon Simple Workflow Service Developer Guide
Defining WaitForConfirmationActivity

activity_data[:topic_arn] = create_topic(sns_client)

if activity_data[:topic_arn].nil?
return false
end

There are a couple of things worth noting here:

« We use AWS.config.with to set the region for our Amazon SNS client. Because we want to send SMS
messages, we use the SMS-enabled region that we declared in utils.rb.

« We save the topic's ARN in our activity_data map. This is part of the data that will be passed to the
next activity in our workflow.

Finally, this activity subscribes the user to the Amazon SNS topic, using the passed-in endpoints (email
and SMS). We don't require the user to enter both endpoints, but we do need at least one.

Subscribe the user to the topic, using either or both endpoints.
[:email, :sms].each do | x |
ep = activity_data[x][:endpoint]
don't try to subscribe an empty endpoint
if (ep != nil && ep != "")
response = sns_client.subscribe({
ttopic_arn => activity_data[:topic_arn],
iprotocol => x.to_s, :endpoint => ep })
activity_data[x][:subscription_arn] = response[:subscription_arn]
end
end

AWS::SNS::Client.subscribe takes the topic ARN, the protocol (which, cleverly, we disguised as the
activity_data map key for the corresponding endpoint).

Finally, we re-package the information for the next activity in YAML format, so that we can send it back
to Amazon SWF.

if at least one subscription arn is set, consider this a success.

if (activity_data[:email][:subscription_arn] != nil) or (activity_datal[:sms]
[:subscription _arn] != nil)
@results = activity_data.to_yaml
else
@results = { :reason => "Couldn't subscribe to SNS topic", :detail => "" }.to_yaml

puts(" #{@results.inspect}")
return false
end
return true
end
end

That completes the implementation of the subscribe_topic_activity. Next, we'll define
wait_for_confirmation_activity.

Defining WaitForConfirmationActivity

Once a user is subscribed to an Amazon SNS topic, he or she will still need to confirm the subscription
request. In this case, we'll be waiting for the user to confirm by either email or an SMS message.

The activity that waits for the user to confirm the subscription is called
wait_for_confirmation_activity, and we'll define it here. To begin, create a new file called
wait_for_confirmation_activity.rb and set it up as we've set up the previous activities.

API Version 2012-01-25
24

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/Configuration.html#with-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Client.html#subscribe-instance_method

Amazon Simple Workflow Service Developer Guide
Defining WaitForConfirmationActivity

require 'yaml'
require_relative 'basic_activity.rb'

WaitForConfirmationActivity waits for the user to confirm the SNS

subscription. When this action has been taken, the activity is complete. It
might also time out...

class WaitForConfirmationActivity < BasicActivity

Initialize the class

def initialize
super('wait_for_confirmation_activity')

end

Next, we'll begin defining the do_activity method and retrieve any input data into a local variable
called subscription_data

def do_activity(task)
if task.input.nil?

@results = { :reason => "Didn't receive any input!", :detail => "" }.to_yaml
return false
end

subscription_data = YAML.load(task.input)

Now that we have the topic ARN, we can retrieve the topic by creating a new instance of AWS::SNS::Topic
and pass it the ARN.

topic = AWS::SNS::Topic.new(subscription data[:topic_arn])

if topic.nil?
@results = {
treason => "Couldn't get SWF topic ARN",
:detail => "Topic ARN: #{topic.arn}" }.to_yaml
return false
end

Now, we'll check the topic to see if the user has confirmed the subscription using one of the endpoints.
We'll only require that one endpoint has been confirmed to consider the activity a success.

An Amazon SNS topic maintains a list of the subscriptions for that topic, and we can check whether or
not the user has confirmed a particular subscription by checking to see if the subscription's ARN is set to
anything other than rendingconfirmation.

loop until we get some indication that a subscription was confirmed.
subscription_confirmed = false
while(!subscription_confirmed)

topic.subscriptions.each do | sub |

if subscription_data[sub.protocol.to_sym][:endpoint] == sub.endpoint
this is one of the endpoints we're interested in. Is it subscribed?
if sub.arn != 'PendingConfirmation'

subscription_data[sub.protocol.to_sym][:subscription_arn] = sub.arn
puts "Topic subscription confirmed for (#{sub.protocol}: #{sub.endpoint})"
@results = subscription_data.to_yaml
return true

else
puts "Topic subscription still pending for (#{sub.protocol}:

#{sub.endpoint})"
end
end
end

API Version 2012-01-25
25

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Topic.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Topic.html#subscriptions-instance_method

Amazon Simple Workflow Service Developer Guide
Defining SendResultActivity

If we get an ARN for the subscription, we'll save it in the activity's result data, convert it to YAML, and
return true from do_activity, which signals that the activity completed successfully.

Since waiting for a subscription to be confirmed might take a while, we'll occasionally call
record_heartbeat on the activity task. This signals to Amazon SWF that the activity is still processing,
and can also be used to provide updates about the progress of the activity (if you are doing something,
like processing files, that you can report progress for).

task.record_heartbeat! (
{ :details => "#{topic.num_subscriptions_confirmed} confirmed,
#{topic.num_subscriptions_pending} pending" })
sleep a bit.
sleep(4.0)
end

This ends our while loop. If we somehow get out of the while loop without success, we'll report failure
and finish the do_activity method.

if (subscription_confirmed == false)
@results = {
:reason => "No subscriptions could be confirmed",
:detail => "#{topic.num subscriptions_confirmed} confirmed,
#{topic.num_subscriptions_pending} pending" }.to_yaml
return false
end
end
end

That ends the implementation of wait_for_confirmation_activity. We have only one more activity to
define: send_result_activity.

Defining SendResultActivity

If the workflow has progressed this far, we've successfully subscribed the user to an Amazon SNS topic
and the user has confirmed the subscription.

Our last activity, send_result_activity, sends the user a confirmation of the successful topic
subscription, using the topic that the user subscribed to and the endpoint that the user confirmed the
subscription with.

Create a new file called send_result_activity.rb and set it up as we've set up all the activities so far.

require 'yaml'
require_relative 'basic_activity.rb'

x*SendResultActivity** sends the result of the activity to the screen, and, if
the user successfully registered using SNS, to the user using the SNS contact
information collected.

class SendResultActivity < BasicActivity

def initialize
super('send_result_activity')
end

Our do_activity method begins similarly, as well, getting the input data from the workflow, converting
it from YAML, and then using the topic ARN to create an AWS::SNS::Topic instance.

def do_activity(task)
if task.input.nil?

API Version 2012-01-25
26

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Topic.html

Amazon Simple Workflow Service Developer Guide

Next Steps
@results = { :reason => "Didn't receive any input!", :detail => "" }
return false
end

input = YAML.load(task.input)

get the topic, so we publish a message to it.
topic = AWS::SNS::Topic.new(input[:topic_arn])

if topic.nil?
@results = {
treason => "Couldn't get SWF topic",
:detail => "Topic ARN: #{topic.arn}" }
return false
end

Once we have the topic, we'll publish a message to it (and echo it to the screen, as well).

@results = "Thanks, you've successfully confirmed registration, and your workflow is
complete!"

send the message via SNS, and also print it on the screen.
topic.publish(@eresults)
puts(@results)

return true
end
end

Publishing to an Amazon SNS topic sends the message that you supply to all of the subscribed and
confirmed endpoints that exist for that topic. So, if the user confirmed with both an email and an SMS
number, he or she will receive two confirmation messages, one at each endpoint.

Next Steps

That completes the implementation of send_result_activity. Now, we'll tie all these activities together
in an activities application that handles the activity tasks and can launch activities in response, as
described in Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller (p. 27).

Subscription Workflow Tutorial Part 4:
Implementing the Activities Task Poller

In Amazon SWF, activity tasks for a running workflow execution appear on the activity task list, which is
provided when you schedule an activity in the workflow.

We'll implement a basic activity poller to handle these tasks for our workflow, and use it to launch our
activities when Amazon SWF places a task on the activity task list to start the activity.

To begin, create a new file called swf_sns_activities.rb. We'll use it to:

« Instantiate the activity classes that we created.
 Register each activity with Amazon SWF.
« Poll for activities and call do_activity for each activity when its name appears on the activity task list.

In swf_sns_activities.rb, add the following statements to require each of the activity classes we
defined.

API Version 2012-01-25
27

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SNS/Topic.html#publish-instance_method

Amazon Simple Workflow Service Developer Guide
Part 4: Implementing the Activities Task Poller

require_relative 'get_contact_activity.rb'
require_relative 'subscribe_topic_activity.rb'
require_relative 'wait_for_confirmation_activity.rb'
require_relative 'send_result_activity.rb'

Now, we'll create the class and provide some initialization code.

class ActivitiesPoller

def initialize(domain, task_list)
@domain = domain
@task_list = task_list
@activities = {}

These are the activities we'll run

activity_list = [
GetContactActivity,
SubscribeTopicActivity,
WaitForConfirmationActivity,
SendResultActivity]

activity_list.each do | activity_class |
activity_obj = activity_class.new
puts "** initialized and registered activity: #{activity_obj.name}"
add it to the hash
@activities[activity_obj.name.to_sym] = activity_obj
end
end

In addition to saving the passed in domain and task list, this code instantiates each of the activity classes
we created. Because each class registers its associated activity (refer to basic_activity.rb if you need to
review that code), this is enough to let Amazon SWF know about all of the activities we'll be running.

For each activity instantiated, we store it on a map using the activity name (such as
get_contact_activity) as the key, so we can easily look these up in the activity poller code, which we'll
define next.

Create a new method called poll_for_activities and call poll on the activity_tasks held by the domain
to get activity tasks.

def poll for_ activities
@domain.activity_tasks.poll(etask list) do | task |
activity_name = task.activity_type.name

We can get the activity name from the task's activity_type member. Next, we'll use the activity name
associated with this task to look up the class to run do_activity on, passing it the task (which includes
any input data that should be transferred to the activity).

find the task on the activities list, and run it.
if @activities.key?(activity_name.to_sym)
activity = @activities[activity_name.to_sym]
puts "** Starting activity task: #{activity_name}"
if activity.do_activity(task)
puts "++ Activity task completed: #{activity_name}"
task.complete!({ :result => activity.results })
if this is the final activity, stop polling.
if activity_name == 'send_result_activity'
return true
end
else

API Version 2012-01-25
28

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityTaskCollection.html#poll-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#activity_tasks-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityTask.html#activity_type-instance_method

Amazon Simple Workflow Service Developer Guide
Running the Workflow

puts "-- Activity task failed: #{activity_name}"
task.fail!(
{ :reason => activity.results[:reason],
:details => activity.results[:detail] })
end
else
puts "couldn't find key in eactivities list: #{activity_name}"
puts "contents: #{@activities.keys}"
end
end
end
end

The code just waits for do_activity to complete, and then calls either complete! or fail! on the task
based on the return code.

Note

This code exits from the poller once the final activity has been launched, since it has completed
its mission and has launched all of the activities. In your own Amazon SWF code, if your
activities might be run again, you may want to keep the activity poller running indefinitely.

That's the end of the code for our ActivitiesPoller class, but we'll add a little more code at the end of the
file to allow the user to run it from the command-line.

if _ FILE_ == $0
if ARGV.count < 1
puts "You must supply a task-list name to use!"
exit
end
poller = ActivitiesPoller.new(init_domain, ARGV[O0])
poller.poll_for_activities
puts "All done!"
end

If the user runs the file from the command line (passing it an activity task list as the first argument), this
code will instantiate the poller class and start it polling for activities. Once the poller completes (after it
has launched the final activity), we just print a message and exit.

That's it for the activities poller. All that's left for you to do is to run the code and see how it works, in
Subscription Workflow Tutorial: Running the Workflow (p. 29).

Subscription Workflow Tutorial: Running the
Workflow

Now that you've completed the implementation of your workflow, activities, and the workflow and
activity pollers, you're ready to run the workflow.

If you haven't done so already, you'll need to provide your AWS access keys in the aws-config.txt file as
described in Configuring the AWS Session (p. 11) in Part 1 of the tutorial.

Now, go to your command line and change to the directory where the tutorial source files are located.
You should have the following files:

|-- aws-config.txt
|-- basic_activity.rb
|-- get_contact_activity.rb

API Version 2012-01-25
29

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityTask.html#complete!-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityTask.html#fail!-instance_method

Amazon Simple Workflow Service Developer Guide
Running the Workflow

|-- send_result_activity.rb

| -- subscribe_topic_activity.rb

|-- swf_sns_activities.rb

| --— swf_sns_workflow.rb

|-- utils.rb

-- wait_for_confirmation_activity.rb

Now, start the workflow with the following command.

ruby swf_sns_workflow.rb

This will begin the workflow, and should print out a message with a line that you can copy and paste into
a separate command-line window (or even on another computer, if you've copied the tutorial source files
onto it).

Amazon SWF Example

Start the activity worker, preferably in a separate command-line window, with
the following command:

> ruby swf_sns_activities.rb 87097e76-7c0c-41c7-817b-92527bb0ea85-activities
You can copy & paste it if you like, just don't copy the '>' character.

Press return when you're ready...

The workflow code will wait patiently for you to start the activity poller in a separate window.

Open a new command-line window, change to the directory where the source files are located again,
and then use the command provided by the swf_sns_workflow.rb file to start the activity poller. For
example, if you received the preceding output, you would type (or paste) the following.

ruby swf_sns_activities.rb 87097e76-7c0c-41c7-817b-92527bb0ea85-activities

Once you begin running your activity poller, it will start to output information about activities
registration.

** initialized and registered activity: get_contact_activity

** initialized and registered activity: subscribe_topic_activity

** initialized and registered activity: wait_for_confirmation_activity
** initialized and registered activity: send_result_activity

You can now return to your original command-line window, and press return to start your workflow
execution. It will register the workflow and schedule the first activity.

Starting workflow execution.
** registered workflow: swf-sns-workflow
** gscheduling activity task: get_contact_activity

Go back to the other window, where your activity poller is running. The result of the first running activity
is displayed, providing a prompt for you to enter your email or SMS phone number. Enter either, or both,
of these pieces of data, and then confirm your text entry.

activity task received: <AWS::SimpleWorkflow::ActivityTask>
** Starting activity task: get_contact_activity

API Version 2012-01-25
30

Amazon Simple Workflow Service Developer Guide
Running the Workflow

Please enter either an email address or SMS message (mobile phone) number to
receive Amazon SNS notifications. You can also enter both to use both address types.

If you enter a phone number, it must be able to receive SMS messages, and must
be 11 digits (such as 12065550101 to represent the number 1-206-555-0101).

Email: me@example.com
Phone: 12065550101

You entered:
email: me@example.com

phone: 12065550101

Is this correct? (y/n): y

Note
The phone number provided is fictitious, and is used only for illustrative purposes. Use your own
phone number and email address here!

Soon after entering this information, you should receive an email or text message from Amazon SNS,
asking you to confirm your topic subscription. If you entered an SMS number, you will see something like
the following appear on your phone.

Would you like to receive
messages from
SWFSAMPLE? Reply YES
SWFSAMPLE to receive
messages. Reply HELP or
STOP. Msg&data rates |
may apply.
339 PM

If you reply to this message with vEs, you'll get the response that we provided in send_result_activity.

SWFSAMPLE> Thanks,
you've successfully |
confirmed registration, |
and your workflow is
complete!

3:39 PM

API Version 2012-01-25
31

Amazon Simple Workflow Service Developer Guide
Where Do | Go from Here?

While all of this was happening, did you see what was happening in your command-line window? Both
the workflow and activity pollers have been hard at work.

Here's the output from the workflow poller.

** gscheduling activity task: subscribe_topic_activity

** gcheduling activity task: wait_for_confirmation_activity

** gscheduling activity task: send_result_activity

!l All activities complete! Sending complete_workflow_execution...

Here's the output from the activity poller, which was happening at the same time in another command-
line window.

++ Activity task completed: get_contact_activity

** Starting activity task: subscribe_topic_activity

++ Activity task completed: subscribe_topic_activity

** Starting activity task: wait_for_confirmation_activity
Topic subscription still pending for (email: me@example.com)
Topic subscription confirmed for (sms: 12065550101)

++ Activity task completed: wait_for confirmation_activity
** Starting activity task: send_result_activity

Thanks, you've successfully confirmed registration, and your workflow is complete!
++ Activity task completed: send_result_activity

All done!

Congratulations, your workflow is complete, and so is this tutorial!

You may want to re-run the workflow again to see how timeouts work, or to enter different data.

Just remember that once you subscribe to a topic, you're still subscribed until you unsubscribe. Re-
running the workflow before unsubscribing to topics will probably result in automatic success, since the
wait_for_confirmation_activity will see that your subscription is already confirmed.

To unsubscribe from the Amazon SNS topic

« Respond in the negative (send sTop) to the text message.
« Choose the unsubscribe link that you received in your email.

You're now ready to re-subscribe to the topic again.

Where Do | Go from Here?

This tutorial has covered a lot of ground, but there's still much more you can learn about the AWS SDK
for Ruby, Amazon SWF, or Amazon SNS. For more information and many more examples, see the official
documentation for each:

o AWS SDK for Ruby Documentation
» Amazon Simple Notification Service Documentation
o Amazon Simple Workflow Service Documentation

API Version 2012-01-25
32

https://aws.amazon.com//documentation/sdkforruby/
https://aws.amazon.com//documentation/sns/
https://aws.amazon.com//documentation/swf/

Amazon Simple Workflow Service Developer Guide
Workflows

Basic Concepts in Amazon SWF

The concepts in this chapter provide an overview of the Amazon Simple Workflow Service and describe
its major features. While some examples of the use of Amazon SWF are provided in the topics within this
chapter, refer to the section titled Using the Amazon SWF API (p. 81) for more concrete examples of
implementing the features described here.

Topics
o Amazon SWF Workflows (p. 33)
« Amazon SWF Workflow History (p. 35)
« Amazon SWF Actors (p. 38)
« Amazon SWF Tasks (p. 40)
« Amazon SWF Domains (p. 41)
« Amazon SWF Object Identifiers (p. 42)
o Amazon SWF Task Lists (p. 42)
« Amazon SWF Workflow Execution Closure (p. 43)
« Life Cycle of an Amazon SWF Workflow Execution (p. 44)
 Polling for Tasks in Amazon SWF (p. 48)

Amazon SWF Workflows

Topics
o What is a Workflow? (p. 33)
« A Simple Workflow Example: an E-Commerce Application (p. 34)
« Workflow Registration and Execution (p. 34)
« See Also (p. 35)

What is a Workflow?

Using the Amazon Simple Workflow Service (Amazon SWF), you can implement distributed,
asynchronous applications as workflows. Workflows coordinate and manage the execution of activities

API Version 2012-01-25
33

Amazon Simple Workflow Service Developer Guide
A Simple Workflow Example: an E-Commerce Application

that can be run asynchronously across multiple computing devices and that can feature both sequential
and parallel processing.

When designing a workflow, you analyze your application to identify its component tasks. In Amazon
SWEF, these tasks are represented by activities. The order in which activities are performed is determined
by the workflow's coordination logic.

A Simple Workflow Example: an E-Commerce
Application

For example, the following figure shows a simple e-commerce order-processing workflow involving both
people and automated processes.

— - -
I:- c«n:;::::]md!)—; verify Qrder — Charge Credit Card —»f Ship Order —{ Record Completion —P{ End)
\,

AN AN \
A A A
N AN
\, \ @
A A
N —"A'\-\-‘_\ N /ﬁh_\)’A'\-\.‘H
A AN W P
= :Q-gl. Q =
0] D 1]
'}
= = L i x
Order Verifiers Credit Card), b ‘ 9J Database
Processors] | Recorders
Warehouse
Employees

This workflow starts when a customer places an order. It includes four tasks:

1. Verify the order.

2. If the order is valid, charge the customer.

3. If the payment is made, ship the order.

4. If the order is shipped, save the order details.

The tasks in this workflow are sequential: an order must be verified before a credit card can be charged;
a credit card must be charged successfully before an order can be shipped; and an order must be shipped
before it can be recorded. Even so, because Amazon SWF supports distributed processes, these tasks can
be carried out in different locations. If the tasks are programmatic in nature, they can also be written in
different programming languages or using different tools.

In addition to sequential processing of tasks, Amazon SWF also supports workflows with parallel
processing of tasks. Parallel tasks are performed at the same time, and may be carried out independently
by different applications or human workers. Your workflow makes decisions about how to proceed once
one or more of the parallel tasks have been completed.

Workflow Registration and Execution

After the coordination logic and the activities have been designed, you register these components as
workflow and activity types with Amazon SWF. During registration, you specify for each type a name, a
version, and some default configuration values.

Only registered workflow and activity types can be used with Amazon SWF. In the e-commerce example,
you would register the CustomerOrder workflow type and the VerifyOrder, ChargeCreditCard, ShipOrder,
and RecordCompletion activity types.

API Version 2012-01-25
34

Amazon Simple Workflow Service Developer Guide
See Also

After registering your workflow type, you can run it as often you like. A workflow execution is a running
instance of a workflow. In the e-commerce example, a new workflow execution is started with each
customer order.

A workflow execution can be started by any process or application, even another workflow execution. In
the e-commerce example, what type of application initiates the workflow depends on how the customer
places the order. The workflow could be initiated by a web site or mobile application or by a customer
service representative using an internal company application.

With Amazon SWF, you can associate an identifier—called a workf1owid—with your workflow executions,
SO you can integrate your existing business identifiers into your workflow. In the e-commerce example,
each workflow execution might be identified using the customer invoice number.

In addition to the identifier that you provide, Amazon SWF associates a unique system-generated
identifier—a run1d—with each workflow execution. Amazon SWF allows only one workflow execution
with this identifier to run at any given time; although you can have multiple workflows executions of the
same workflow type, each workflow execution has a distinct runzad.

See Also

» Amazon SWF Workflow History (p. 35)

Amazon SWF Workflow History

The progress of every workflow execution is recorded in its workflow history, which Amazon SWF
maintains. The workflow history is a detailed, complete, and consistent record of every event that
occurred since the workflow execution started. An event represents a discrete change in your workflow
execution's state, such as a new activity being scheduled or a running activity being completed. The
workflow history contains every event that causes the execution state of the workflow execution to
change, such as scheduled and completed activities, task timeouts, and signals.

Operations that do not change the state of the workflow execution do not typically appear in the
workflow history. For example, the workflow history does not show poll attempts or the use of visibility
operations.

The workflow history has several key benefits:
« It enables applications to be stateless, because all information about a workflow execution is stored in

its workflow history.

« For each workflow execution, the history provides a record of which activities were scheduled, their
current status, and their results. The workflow execution uses this information to determine next steps.

« The history provides a detailed audit trail that you can use to monitor running workflow executions
and verify completed workflow executions.

The following is a conceptual view of the e-commerce workflow history:

Invoice0001
Start Workflow Execution
Schedule Verify Order

Start Verify Order Activity
Complete Verify Order Activity

API Version 2012-01-25
35

Amazon Simple Workflow Service Developer Guide
Workflow History

Schedule Charge Credit Card
Start Charge Credit Card Activity
Complete Charge Credit Card Activity

Schedule Ship Order
Start Ship Order Activity

In the preceding example, the order is waiting to ship. In the following example, the order is complete.
Because the workflow history is cumulative, the newer events are appended:

Invoice0001

Start Workflow Execution

Schedule Verify Order

Start Verify Order Activity

Complete Verify Order Activity
Schedule Charge Credit Card

Start Charge Credit Card Activity
Complete Charge Credit Card Activity

Schedule Ship Order
Start Ship Order Activity

Complete Ship Order Activity
Schedule Record Order Completion
Start Record Order Completion Activity

Complete Record Order Completion Activity

Close Workflow

Programmatically, the events in the workflow execution history are represented as JavaScript Object
Notation (JSON) objects. The history itself is a JSON array of these objects. Each event has the following:

« Atype, such as WorkflowExecutionStarted or ActivityTaskCompleted
o Atimestamp in Unix time format
« An ID that uniquely identifies the event

In addition, each type of event has a distinct set of descriptive attributes that are appropriate to that
type. For example, the ActivityTaskcompleted event has attributes that contain the IDs for the events
that correspond to the time that the activity task was scheduled and when it was started, as well as an
attribute that holds result data.

You can obtain a copy of the current state of the workflow execution history by using the
GetWorkflowExecutionHistory action. In addition, as part of the interaction between Amazon SWF and
the decider for your workflow, the decider periodically receives copies of the history.

Below is a section of an example workflow execution history in JSON format.

[

"eventId": 11,

"eventTimestamp": 1326671603.102,

"eventType": "WorkflowExecutionTimedOut",

"workflowExecutionTimedOutEventAttributes": {
"childPolicy": "TERMINATE",
"timeoutType": "START TO_ CLOSE"

}

A

API Version 2012-01-25
36

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionStartedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_GetWorkflowExecutionHistory.html

Amazon Simple Workflow Service Developer Guide
Workflow History

b

b

I

I

I

"decisionTaskScheduledEventAttributes": {

"startToCloseTimeout": "600",
"taskList": {
"name": "specialTaskList"

I
"eventId": 10,
"eventTimestamp": 1326670566.124,

"eventType": "DecisionTaskScheduled"

{

"activityTaskTimedOutEventAttributes": {
"details": "Waiting for confirmation",

"scheduledEventId": 8,
"startedEventId": O,
"timeoutType": "SCHEDULE_TO_START"
I
"eventId": 9,
"eventTimestamp": 1326670566.124,
"eventType": "ActivityTaskTimedOut"
{
"activityTaskScheduledEventAttributes": {
"activityId": "verification-27",
"activityType": {
"name": "activityvVerify",
"version": "1.0"
I
"control": "digital music",
"decisionTaskCompletedEventId": 7,
"heartbeatTimeout": "120",
"input": "5634-0056-4367-0923,12/12,437",
"scheduleToCloseTimeout": "900",
"scheduleToStartTimeout": "300",
"startToCloseTimeout": "600",
"taskList": {
"name": "specialTaskList"

I

"eventId": 8,

"eventTimestamp": 1326670266.115,

"eventType": "ActivityTaskScheduled"

{

"decisionTaskCompletedEventAttributes": {
"executionContext": "Black Friday",
"scheduledEventId": 5,
"startedEventId": 6

I

"eventId": 7,

"eventTimestamp": 1326670266.103,

"eventType": "DecisionTaskCompleted"

{

"decisionTaskStartedEventAttributes": {
"identity": "DecideroO1",

"scheduledEventId": 5

Iy

"eventId": 6,

"eventTimestamp": 1326670161.497,

"eventType": "DecisionTaskStarted"

{

"decisionTaskScheduledEventAttributes": {
"startToCloseTimeout": "600",
"taskList": {

"name": "specialTaskList"

I
"eventId": 5,
"eventTimestamp": 1326668752.66,

API Version 2012-01-25
37

Amazon Simple Workflow Service Developer Guide
Actors

"eventType": "DecisionTaskScheduled"
A
"decisionTaskTimedOutEventAttributes": {
"scheduledEventId": 2,
"startedEventId": 3,
"timeoutType": "START_ TO_CLOSE"
Iy
"eventId": 4,
"eventTimestamp": 1326668752.66,
"eventType": "DecisionTaskTimedOut"
A
"decisionTaskStartedEventAttributes": {
"identity": "DecideroO1",
"scheduledEventId": 2
Iy
"eventId": 3,
"eventTimestamp": 1326668152.648,
"eventType": "DecisionTaskStarted"
A
"decisionTaskScheduledEventAttributes": {
"startToCloseTimeout": "600",
"taskList": {
"name": "specialTaskList"
}
Iy
"eventId": 2,
"eventTimestamp": 1326668003.094,
"eventType": "DecisionTaskScheduled"

For a detailed list of the different types of events that can appear in the workflow execution history, see
the HistoryEvent data type in the Amazon Simple Workflow Service APl Reference.

Amazon SWF stores the complete history of all workflow executions for a configurable number of days
after the execution closes. This period, which is known as the workflow history retention period, is
specified when you register a Domain for your workflow. Domains are discussed in greater detail later in
this section.

Amazon SWF Actors

Topics
« What is an Actor in Amazon SWF? (p. 38)
« Workflow Starters (p. 39)
« Deciders (p. 39)
o Activity Workers (p. 40)
» Data Exchange Between Actors (p. 40)

What is an Actor in Amazon SWF?

In the course of its operations, Amazon SWF interacts with a number of different types of programmatic
actors. Actors can be workflow starters (p. 39), deciders (p. 39), or activity workers (p. 40).

These actors communicate with Amazon SWF through its API. You can develop these actors in any
programming language.

The following diagram shows the Amazon SWF architecture, including Amazon SWF and its actors.

API Version 2012-01-25
38

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html

Amazon Simple Workflow Service Developer Guide
Workflow Starters

Amazon SWF
Console

Workflow Activity 1 Activity 2

Deciders
Starters Workers Workers

Workflow Starters

A workflow starter is any application that can initiate workflow executions. In the e-commerce example,
one workflow starter could be the website at which the customer places an order. Another workflow
starter could be a mobile application or system used by a customer service representative to place the
order on behalf of the customer.

Deciders

A decider is an implementation of a workflow's coordination logic. Deciders control the flow of activity
tasks in a workflow execution. Whenever a change occurs during a workflow execution, such as the
completion of an activity task, the client polls for decision tasks and passes them to a decider using
the entire workflow history up to that point in time. When the decider receives the decision task from
Amazon SWF, it analyzes the workflow execution history to determine the next appropriate steps in
the workflow execution. The decider communicates these steps back to Amazon SWF using decisions. A
decision is an Amazon SWF data type that can represent various next actions. For a list of the possible
decisions, go to Decision in the Amazon Simple Workflow Service API Reference.

Here is an example of a decision in JSON format, the format in which it is transmitted to Amazon SWF.
This decision schedules a new activity task.

"decisionType" : "ScheduleActivityTask",
"scheduleActivityTaskDecisionAttributes" : {
"activityType" : {
"name" : "activityvVerify",
"version" : "1.0"
Iy
"activityId" : "verification-27",
"control" : "digital music",
"input" : "5634-0056-4367-0923,12/12,437",
"scheduleToCloseTimeout" : "900",
"taskList" : {
"name": "specialTaskList"
Iy
"scheduleToStartTimeout" : "300",
"startToCloseTimeout" : "600",
"heartbeatTimeout" : "120"

API Version 2012-01-25
39

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_Decision.html

Amazon Simple Workflow Service Developer Guide
Activity Workers

A decider receives a decision task when the workflow execution starts and each time a state change
occurs in the workflow execution. Deciders continue to move the workflow execution forward by
receiving decision tasks and responding to Amazon SWF with more decisions until the decider
determines that the workflow execution is complete. It then responds with a decision to close the
workflow execution. After the workflow execution closes, Amazon SWF will not schedule additional tasks
for that execution.

In the e-commerce example, the decider determines if each step was performed correctly, and then
either schedules the next step or manages any error conditions.

A decider represents a single computer process or thread. Multiple deciders can process tasks for the
same workflow type.

Activity Workers

An activity worker is a process or thread that performs the activity tasks that are part of your workflow.
The activity task represents one of the tasks that you identified in your application.

To use an activity task in your workflow, you must register it using either the Amazon SWF console or the
RegisterActivity Type action.

Each activity worker polls Amazon SWF for new tasks that are appropriate for that activity worker

to perform; certain tasks can be performed only by certain activity workers. After receiving a task,

the activity worker processes the task to completion and then reports to Amazon SWF that the task

was completed and provides the result. The activity worker then polls for a new task. The activity
workers associated with a workflow execution continue in this way, processing tasks until the workflow
execution itself is complete. In the e-commerce example, activity workers are independent processes
and applications used by people, such as credit card processors and warehouse employees, that perform
individual steps in the process.

An activity worker represents a single computer process (or thread). Multiple activity workers can process
tasks of the same activity type.

Data Exchange Between Actors

Input data can be provided to a workflow execution when it is started. Similarly, input data can be
provided to activity workers when they schedule activity tasks. When an activity task is complete,

the activity worker can return results to Amazon SWF. Similarly, a decider can report the results of a
workflow execution when the execution is complete. Each actor can send data to, and receive data from,
Amazon SWF through strings, the form of which is user-defined. Depending on the size and sensitivity of
the data, you can pass data directly or pass a pointer to data stored on another system or service (such
as Amazon S3 or DynamoDB). Both the data passed directly and the pointers to other data stores are
recorded in the workflow execution history; however, Amazon SWF does not copy or cache any of the
data from external stores as part of the history.

Because Amazon SWF maintains the complete execution state of each workflow execution, including
the inputs and the results of tasks, all actors can be stateless. As a result, workflow processing is highly
scalable. As the load on your system grows, you can simply add more actors to increase capacity.

Amazon SWF Tasks

Amazon SWF interacts with activity workers and deciders by providing them with work assignments
known as tasks. There are three types of tasks in Amazon SWF:

API Version 2012-01-25
40

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html

Amazon Simple Workflow Service Developer Guide
Domains

« Activity task. An Activity task tells an activity worker to perform its function, such as to check
inventory or charge a credit card. The activity task contains all the information that the activity worker
needs to perform its function.

« Lambda task. A Lambda task is similar to an Activity task, but executes a Lambda function instead of
a traditional Amazon SWF activity. For more information about how to define a Lambda task, see AWS
Lambda Tasks (p. 92).

« Decision task. A Decision task tells a decider that the state of the workflow execution has changed
so that the decider can determine the next activity that needs to be performed. The decision task
contains the current workflow history.

Amazon SWF schedules a decision task when the workflow starts and whenever the state of the
workflow changes, such as when an activity task completes. Each decision task contains a paginated
view of the entire workflow execution history. The decider analyzes the workflow execution history
and responds back to Amazon SWF with a set of decisions that specify what should occur next in the
workflow execution. Essentially, every decision task gives the decider an opportunity to assess the
workflow and provide direction back to Amazon SWF.

To ensure that no conflicting decisions are processed, Amazon SWF assigns each decision task to exactly
one decider and allows only one decision task at a time to be active in a workflow execution.

The following table shows the relationship between the different constructs related to workflows and
deciders.

Logical Design Registered As Performed By Receives & Generates
Performs
Workflow Workflow Type Decider Decision Tasks Decisions

When an activity worker has completed the activity task, it reports to Amazon SWF that the task was
completed, and it includes any relevant results that were generated. Amazon SWF updates the workflow
execution history with an event that indicates the task completed and then schedules a decision task to
transmit the updated history to the decider.

Amazon SWF assigns each activity task to exactly one activity worker. Once the task is assigned, no other
activity worker can claim or perform that task.

The following table shows the relationship between the different constructs related to activities.

Logical Design Registered As Performed By Receives & Generates
Performs
Activity Activity Type Activity Worker Activity Tasks Results Data

Domains provide a way of scoping Amazon SWF resources within your AWS account. All the components
of a workflow, such as the workflow type and activity types, must be specified to be in a domain. It is
possible to have more than one workflow in a domain; however, workflows in different domains cannot
interact with each other.

When setting up a new workflow, before you set up any of the other workflow components you need to
register a domain if you have not already done so.

API Version 2012-01-25
41

Amazon Simple Workflow Service Developer Guide
Object Identifiers

When you register a domain, you specify a workflow history retention period. This period is the length
of time that Amazon SWF will continue to retain information about the workflow execution after the
workflow execution is complete.

Amazon SWF Object Identifiers

The following list describes how Amazon SWF objects, such as workflow executions, are uniquely
identified.

« Workflow Type: A registered workflow type is identified by its domain, name, and version. Workflow
types are specified in the call to RegisterworkflowType.

« Activity Type: A registered activity type is identified by its domain, name, and version. Activity types
are specified in the call to RegisterActivityType.

« Decision Tasks and Activity Tasks: Each decision task and activity task is identified by a unique task
token. The task token is generated by Amazon SWF and is returned with other information about the
task in the response from Pol1ForDecisionTask Or PollForActivityTask. Although the token is most
commonly used by the process that received the task, that process could pass the token to another
process, which could then report the completion or failure of the task.

« Workflow Execution: A single execution of a workflow is identified by the domain, workflow ID, and

run ID. The first two are parameters that are passed to StartWorkflowExecution. The run ID is returned
by startWorkflowExecution.

Amazon SWF Task Lists

Task lists provide a way of organizing the various tasks associated with a workflow. You can think of task
lists as similar to dynamic queues. When a task is scheduled in Amazon SWF, you can specify a queue
(task list) to put it in. Similarly, when you poll Amazon SWF for a task you say which queue (task list) to
get the task from.

Task lists provide a flexible mechanism to route tasks to workers as your use case necessitates. Task lists
are dynamic in that you don't need to register a task list or explicitly create it through an action: simply
scheduling a task creates the task list if it doesn't already exist.

There are separate lists for activity tasks and decision tasks. A task is always scheduled on only one task
list; tasks are not shared across lists. Furthermore, like activities and workflows, task lists are scoped to a
particular AWS region and Amazon SWF domain.

Topics
« Decision Task Lists (p. 42)
o Activity Task Lists (p. 43)
« Task Routing (p. 43)

Decision Task Lists

Each workflow execution is associated with a specific decision task list. When a workflow type is
registered (RegisterWorkflowType action), you can specify a default task list for executions of that
workflow type. When the workflow starter initiates the workflow execution (startworkflowExecution
action), it has the option of specifying a different task list for that workflow execution.

When a decider polls for a new decision task (Pol1ForbDecisionTask action), the decider specifies a
decision task list to draw from. A single decider could serve multiple workflow executions by calling

API Version 2012-01-25
42

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html

Amazon Simple Workflow Service Developer Guide
Activity Task Lists

PollForDecisionTask multiple times, using a different task list in each call, where each task list is
specific to a particular workflow execution. Alternatively, the decider could poll a single decision task
list that provides decision tasks for multiple workflow executions. You could also have multiple deciders
serving a single workflow execution by having all of them poll the task list for that workflow execution.

Activity Task Lists

A single activity task list can contain tasks of different activity types. Tasks are scheduled on the task
list in order. Amazon SWF returns the tasks from the list in order on a best effort basis. Under some
circumstances, the tasks may not come off the list in order.

When an activity type is registered (RegisterActivityType action), you can specify a default task list

for that activity type. By default, activity tasks of this type will be scheduled on the specified task list;
however, when the decider schedules an activity task (ScheduleActivityTask decision), the decider can
optionally specify a different task list on which to schedule the task. If the decider does not specify a task
list, the default task list is used. As a result, you can place activity tasks on specific task lists according to
attributes of the task. For example, you could place all instances of an activity task for a given credit card
type on a particular task list.

Task Routing

When an activity worker polls for a new task (PollForActivityTask action), it can specify an activity task
list to draw from. If it does, the activity worker will accept tasks only from that list. In this way, you can
ensure that certain tasks get assigned only to particular activity workers. For example, you might create
a task list that holds tasks that require the use of a high-performance computer. Only activity workers
running on the appropriate hardware would poll that task list. Another example would be to create a
task list for a particular geographic region. You could then ensure that only workers deployed in that
region would pick up those tasks. Or you could create a task list for high-priority orders and always check
that list first.

Assigning particular tasks to particular activity workers in this way is called task routing. Task routing
is optional; if you do not specify a task list when scheduling an activity task, the task is automatically
placed on the default task list.

Amazon SWF Workflow Execution Closure

Once you start a workflow execution, it is open. An open workflow execution could be closed as
completed, canceled, failed, or timed out. It could also be continued as a new execution, or it could
be terminated. A workflow execution could be closed by the decider, by the person administering the
workflow, or by Amazon SWF.

If the decider determines that the activities of the workflow have finished, it should close the
workflow execution as completed by using the RespondDecisionTaskCompleted action and pass the
CompleteWorkflowExecution decision.

Alternatively, a decider might close the workflow execution as canceled or failed. In order to cancel
the execution, the decider should use the RespondpecisionTaskCompleted action and pass the
CancelWorkflowExecution decision.

A decider should fail the workflow execution if it enters a state outside the realm of normal completion.
In order to fail the execution, the decider should use the RespondDecisionTaskCompleted action and pass
the FailWorkflowExecution decision.

Amazon SWF monitors workflow executions to ensure that they do not exceed any user-specified
timeout settings. If a workflow execution times out, Amazon SWF automatically closes it. For more
information about timeout values, see the Amazon SWF Timeout Types (p. 124) section.

API Version 2012-01-25
43

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CompleteWorkflowExecutionDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CancelWorkflowExecutionDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_FailWorkflowExecutionDecisionAttributes.html

Amazon Simple Workflow Service Developer Guide
Life Cycle of an Amazon SWF Workflow Execution

A decider might also close the execution and logically continue it as a new execution using the
RespondDecisionTaskCompleted action and passing the ContinueAsNewWorkflowExecution decision. This
is a useful strategy for long-running workflow executions for which the history may grow too large over
time.

Finally, you could terminate workflow executions directly from the Amazon SWF console or
programmatically by using the TerminateWorkflowExecution API. Termination forces closure of the
workflow execution. Cancellation is preferred over termination, because your deciders can manage
closure of the workflow execution.

Amazon SWF would terminate a workflow execution if the execution exceeds certain service-defined
limits. Amazon SWF would also terminate a child workflow if the parent workflow has terminated and
the applicable child policy indicates that the child workflow should also be terminated.

Life Cycle of an Amazon SWF Workflow Execution

From the start of a workflow execution to its completion, Amazon SWF interacts with actors by assigning
them appropriate tasks, either activity tasks or decision tasks.

The following diagram shows the life cycle of an order-processing workflow execution from the
perspective of components that act on it.
1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Workflow Starter <

L e e () e) S N S) e (N e) e G4 S

Decider v — 7 v, v i} v il

Activity: Verify Order

Activity: Charge Credit Card

Activity: Ship Order

Activity: Record Completion

The following table explains each task in the preceding image.

Workflow Execution Life Cycle

Description Action, Decision, or Event

1) The workflow starter | StartWorkflowExecution action.
calls the appropriate

Amazon SWF action

to start the workflow

execution for an order,

providing the order

information.

2) Amazon SWF WorkflowExecutionStarted event and DecisionTaskScheduled event.
receives the start

workflow execution

request and then

schedules the first

decision task.

3) The decider receives | PollForDecisionTask action. RespondDecisionTaskCompleted action with
the task from Amazon ScheduleActivityTask decision.

SWF, reviews the

history, applies the

coordination logic to

determine that no

previous activities

API Version 2012-01-25
44

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ContinueAsNewWorkflowExecutionDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_TerminateWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionStartedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html

Amazon Simple Workflow Service Developer Guide
Life Cycle of an Amazon SWF Workflow Execution

Description

occurred, makes a
decision to schedule
the Verify Order activity
with the information
the activity worker
needs to process the
task, and returns the
decision to Amazon
SWF.

4) Amazon SWF
receives the decision,
schedules the Verify
Order activity task, and
waits for the activity
task to complete or
time out.

5) An activity worker
that can perform the
Verify Order activity
receives the task,
performs it, and returns
the results to Amazon
SWF.

6) Amazon SWF
receives the results

of the Verify Order
activity, adds them

to the workflow
history, and schedules a
decision task.

7) The decider receives
the task from Amazon
SWEF, reviews the
history, applies

the coordination

logic, makes a

decision to schedule

a ChargeCreditCard
activity task with the
information the activity
worker needs to process
the task, and returns
the decision to Amazon
SWF.

8) Amazon SWF
receives the decision,
schedules the
ChargeCreditCard
activity task, and waits
for it to complete or
time out.

Action, Decision, or Event

ActivityTaskScheduled event.

PollForActivityTask action and RespondActivityTaskCompleted action.

ActivityTaskCompleted event and DecisionTaskScheduled event.

PollForDecisionTask action. RespondDecisionTaskCompleted action with
ScheduleActivityTask decision.

DecisionTaskCompleted event and ActivityTaskScheduled event.

API Version 2012-01-25
45

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskScheduledEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Life Cycle of an Amazon SWF Workflow Execution

Description Action, Decision, or Event

9) An activity worker PollForActivityTask and RespondActivityTaskCompleted action.
that can perform the

ChargeCreditCard

activity receives the
task, performs it, and
returns the results to
Amazon SWF.

10) Amazon SWF ActivityTaskCompleted event and DecisionTaskScheduled event.
receives the results of

the ChargeCreditCard

activity task, adds

them to the workflow

history, and schedules a

decision task.

11) The decider receives | PollForDecisionTask action. RespondDecisionTaskCompleted with
the task from Amazon ScheduleActivityTask decision.
SWEF, reviews the

history, applies the

coordination logic,

makes a decision to

schedule a ShipOrder

activity task with

the information the

activity worker needs to

perform the task, and

returns the decision to

Amazon SWF.

12) Amazon SWF DecisionTaskCompleted event and ActivityTaskScheduled event.
receives the decision,

schedules a ShipOrder

activity task, and waits

for it to complete or

time out.

13) An activity worker PollForActivityTask action and RespondActivityTaskCompleted action.
that can perform the

ShipOrder activity

receives the task,

performs it, and returns

the results to Amazon

SWF.

14) Amazon SWF ActivityTaskCompleted event and DecisionTaskScheduled event.
receives the results of

the ShipOrder activity

task, adds them to the

workflow history, and

schedules a decision

task.

API Version 2012-01-25
46

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskScheduledEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Life Cycle of an Amazon SWF Workflow Execution

Description Action, Decision, or Event

15) The decider PollForDecisionTask action. RespondDecisionTaskCompleted action with
receives the task from ScheduleActivityTask decision.
Amazon SWF, reviews

the history, applies

the coordination

logic, makes a

decision to schedule

a RecordCompletion

activity task with

the information the

activity worker needs to

perform the task, and

returns the decision to

Amazon SWF.

16) Amazon DecisionTaskCompleted event and ActivityTaskScheduled event.
SWEF receives the

decision, schedules

a RecordCompletion

activity task, and waits

for it to complete or

time out.

17) An activity worker PollForActivityTask action and RespondActivityTaskCompleted action.
that can perform the

RecordCompletion

activity receives the

task, performs it, and

returns the results to

Amazon SWF.

18) Amazon SWF ActivityTaskCompleted event and DecisionTaskScheduled event.
receives the results of

the RecordCompletion

activity task, adds

them to the workflow

history, and schedules a

decision task.

19) The decider receives | PollForDecisionTask action. RespondDecisionTaskCompleted action with
the task from Amazon CompleteWorkflowExecution decision
SWEF, reviews the

history, applies the

coordination logic,

makes a decision to

close the workflow

execution and returns

the decision along with

any results to Amazon

SWF.

20) Amazon SWF closes | WorkflowExecutionCompleted event.
the workflow execution

and archives the history

for future reference.

API Version 2012-01-25
47

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskCompletedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskScheduledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CompleteWorkflowExecutionDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionCompletedEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Polling for Tasks

Polling for Tasks in Amazon SWF

Deciders and activity workers communicate with Amazon SWF using long polling. The decider or activity
worker periodically initiates communication with Amazon SWF, notifying Amazon SWF of its availability
to accept a task, and then specifies a task list to get tasks from.

If a task is available on the specified task list, Amazon SWF returns it immediately in the response. If

no task is available, Amazon SWF holds the TCP connection open for up to 60 seconds so that, if a task
becomes available during that time, it can be returned in the same connection. If no task becomes
available within 60 seconds, it returns an empty response and closes the connection. (An empty response
is a Task structure in which the value of taskToken is an empty string.) If this happens, the decider or
activity worker should poll again.

Long polling works well for high-volume task processing. Deciders and activity workers can manage their
own capacity, and is easy to use when the deciders and activity workers are behind a firewall.

For more information, see Polling for Decision Tasks (p. 100) and Polling for Activity Tasks (p. 96).

API Version 2012-01-25
48

Amazon Simple Workflow Service Developer Guide
Basic Principles

Using IAM to Manage Access to
Amazon SWF Resources

Every actor that accesses an Amazon SWF resource—deciders, activity workers, workflow administrators
—must have authorized AWS access keys. An actor can access resources by using the account's access
keys. However, access keys provide unrestricted access to all of the account's resources and are difficult to
revoke, so they are not appropriate for all applications.

Amazon SWF uses AWS ldentity and Access Management (IAM) to provide controlled access to resources.
IAM provides a flexible way to manage access to an account's AWS resources without exposing the access
keys. With 1AM, you create one or more users that are associated with the AWS account. Each user has a
separate set of IAM access keys that provide access to the account's resources. You then attach an IAM
policy to the user—or a group that includes the user—to specify which resources the user can access. The
policy can be much more granular than simply specifying whether to allow or deny account access. You
could, for example, create a policy that allows a user to access an account, but only for a specified set of
domains.

A further advantage of IAM is that you can revoke IAM access without affecting your access keys. In fact,
periodically rotating access keys—revoking users' IAM access keys and issuing new ones—is a security
best practice.

This topic discusses the details of how to use IAM to provide controlled access to Amazon SWF resources.
It assumes that you are generally familiar with IAM, which is described in detail in the following
documents.

o AWS Identity and Access Management (IAM)
» Using Identity and Access Management

Basic Principles

Amazon SWF access control is based primarily on two types of permissions:
« Resource permissions: Which Amazon SWF resources a user can access.

You can express resource permissions only for domains.
« API permissions: Which Amazon SWF actions a user can call.

API Version 2012-01-25
49

https://aws.amazon.com//iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Welcome.html

Amazon Simple Workflow Service Developer Guide
Amazon SWF IAM Policies

The simplest approach is to grant full account access—call any Amazon SWF action in any domain—or
deny access entirely. However, IAM supports a more granular approach to access control that is often
more useful. For example, you could:

« Allow a user to call any Amazon SWF action without restrictions, but only in a specified domain. You
could use such a policy to allow workflow applications that are under development to use any action,
but only a "sandbox" domain.

« Allow a user to access any domain, but constrain how they use the API. You could use such a policy to
allow an "auditor" application to call the APl in any domain, but allow only read access.

« Allow a user to call only a limited set of actions in certain domains. You could use such a policy to
allow a workflow starter to call only the startworkflowExecution action in a specified domain.

Amazon SWF access control is based on the following principles:

« Access control decisions are based only on IAM policies; all policy auditing and manipulation is done
through IAM.

« The access control model uses a deny-by-default policy; any access that is not explicitly allowed is
denied.

« You control access to Amazon SWF resources by attaching appropriate IAM policies to the workflow's
actors.

« Resource permissions can be expressed only for domains.

 You can further constrain the usage of some actions by applying conditions to one or more
parameters.

« If you grant permission to use RespondDecisionTaskCompleted, you can express permissions for the
list of decisions included in that action.

Each of the decisions has one or more parameters, much like a regular API call. To allow for policies to
be as readable as possible, you can express permissions on decisions as if they were actual API calls,
including applying conditions to some parameters. These types of permissions are called pseudo API
permissions.

For a summary of which regular and pseudo API parameters can be constrained by using conditions, see
APl Summary (p. 55).

An IAM policy contains one or more Statement elements, each of which contains a set of elements that
define the policy. For a complete list of elements and a general discussion of how to construct policies,
see The Access Policy Language. Amazon SWF access control is based on the following elements:

Effect

[Required] The effect of the statement: deny or allow.
Note
You must explicitly allow access; IAM denies access by default.
Resource

[Required] The resource—an entity in an AWS service that a user can interact with—that the
statement applies to.

You can express resource permissions only for domains. For example, a policy can allow access to
only certain domains in your account. To express permissions for a domain, set Resource to the

API Version 2012-01-25
50

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage.html

Amazon Simple Workflow Service Developer Guide
Amazon SWF Policy Examples

domain's Amazon Resource Name (ARN), which has the format "arn:aws:swf:region:aAccountip:/
domain/pomainname". Region is the AWS region, account1p is the account ID with no dashes, and
DomainName is the domain name.

Action

[Required] The action that the statement applies to, which you refer to by using the

following format: servicerd:action. For Amazon SWF, set serviceID to swf. For example,
swf:StartWorkflowExecution refers to the StartWorkflowExecution action, and is used to control
which users are allowed to start workflows.

If you grant permission to use RespondDecisionTaskCompleted, you can also control access to the
included list of decisions by using Action to express permissions for the pseudo API. Because IAM
denies access by default, a decider's decision must be explicitly allowed or it will not be accepted.
You can use a "*' value to allow all decisions.

Condition

[Optional] Expresses a constraint on one or more of an action's parameters, which restricts the
allowed values.

Amazon SWF actions often have a wide scope, which you can reduce by using IAM conditions. For
example, to limit which task lists the PollForActivityTask action is allowed to access, you include a
Condition and use the swf:taskList.name key to specify the allowable lists.

You can express constraints for the following entities.

« The workflow type. The name and version have separate keys.

« The activity type. The name and version have separate keys.

« Task lists.

« Tags. You can specify multiple tags for some actions. In that case, each tag has a separate key.

Note

For Amazon SWF, the values are all strings so you constrain a parameter by using a string
operator such as stringEquals, Which restricts the parameter to a specified string. However,
the regular string comparison operators such as stringEquals require all requests to
include the parameter. If you do not include the parameter explicitly, and there is no default
value such as the default task list provided during type registration, access will be denied.

It is often useful to treat conditions as optional, so that you can call an action without
necessarily including the associated parameter. For example, you might want to allow

a decider to specify a set of RespondDecisionTaskCompleted decisions, but also allow

it to specify only one of them for any particular call. In that case, you constrain the
appropriate parameters by using a stringEqualsIfExists operator, which allows access if
the parameter satisfies the condition, but does not deny access if the parameter is absent.

For a complete list of constrainable parameters and the associated keys, see APl Summary (p. 55).

The following section provides examples of how to construct Amazon SWF policies. For details, see
String Conditions.

Amazon SWF Policy Examples

A workflow consists of multiple actors—activities, deciders, and so on. You can control access for each
actor by attaching an appropriate IAM policy. This section provides some examples. The following shows
the simplest case:

"Version": "2012-10-17",

API Version 2012-01-25
51

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#AccessPolicyLanguage_ConditionType

Amazon Simple Workflow Service Developer Guide
Amazon SWF Policy Examples

"Statement" : [{

"Effect" : "Allow",

"Action" : "swf:*",

"Resource" : "arn:aws:swf:*:123456789012:/domain/*"
1

If you attach this policy to an actor, it has full account access across all regions. You can use wildcards to
have a single value represent multiple resources, actions, or regions.

« The first "*" wildcard in the Resource value (...:swf:*:123...) indicates that the resource permissions apply
to all regions. To restrict permissions to a single region, replace the *' with the appropriate region
string, such as us-east-1.

« The second "' wildcard in the Resource value (/domain/*) allows the actor to access any of the
account's domains in the specified regions.

o The "™ wildcard in the Action value allows the actor to call any Amazon SWF action.
For details on how to use wildcards, see Element Descriptions
The following sections show examples of policies that grant permissions in a more granular way.

Domain Permissions

If you want to restrict a department's workflows to a particular domain, you can use something like:

{
"Version": "2012-10-17",
"Statement": [{
"Effect" : "Allow",
"Action" : "swf:*",
"Resource" : "arn:aws:swf:*:123456789012:/domain/departmentl"
1
}

If you attach this policy to an actor, it can call any action, but only for the department1 domain.

If you want an actor to have access to more than one domain, you can express permission for each
domain separately, as follows:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect" : "Allow",
"Action" : "swf:*",
"Resource" : "arn:aws:swf:*:123456789012:/domain/departmentl"
e A
"Effect" : "Allow",
"Action" : "swf:*",
"Resource" : "arn:aws:swf:*:123456789012:/domain/department2"
}
]
}

If you attach this policy to an actor, it can use any Amazon SWF action in the "department1" and
"department2" domains. You can also sometimes use wildcards to represent multiple domains.

API Version 2012-01-25
52

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html

Amazon Simple Workflow Service Developer Guide
Amazon SWF Policy Examples

API Permissions and Constraints

You control which actions an actor can use with the Action element. Optionally, you can constrain the
action's allowable parameter values by using a Condition element.

If you want to restrict an actor to only certain actions, you can use something like the following:

{
"Version": "2012-10-17",
"Statement": [{
"Effect" : "Allow",
"Action" : "swf:StartWorkflowExecution",
"Resource" : "arn:aws:swf:*:123456789012:/domain/department2"
1
}

If you attach this policy to an actor, it can call startWorkflowExecution to start workflows in the
"department2" domain. It cannot use any other actions or start workflows in any other domains.

You can further restrict which workflows an actor can start by constraining one or more of the
StartWorkflowExecution parameter values, as follows:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect" : "Allow",
"Action" : "swf:StartWorkflowExecution",
"Resource" : "arn:aws:swf:*:123456789012:/domain/departmentl",
"Condition" : {
"StringEquals" : {
"swf:workflowType.name" : "workflowl",
"swf:workflowType.version" : "version2"
}
}
}
]
}

This policy constrains the startWorkflowExecution action's name and version parameters. If you attach
the policy to an actor, it can run only "version2" of "workflow1" in the "department1" domain and both
parameters must be included in the request.

You can constrain a parameter without requiring it to be included in a request by using a
StringEqualsIfExists operator, as follows:

{
"Version": "2012-10-17",
"Statement" : [{
"Effect" : "Allow",
"Action" : "swf:StartWorkflowExecution",
"Resource" : "arn:aws:swf:*:123456789012:/domain/some_domain",
"Condition" : {
"StringEqualsIfExists" : { "swf:taskList.name" : "task_list_name" }
}
]
}

API Version 2012-01-25
53

Amazon Simple Workflow Service Developer Guide
Amazon SWF Policy Examples

This policy allows an actor to optionally specify a task list when starting a workflow execution.

You can constrain a list of tags for some actions. In that case, each tag has a separate key, so you use
swf:tagList.member.0 to constrain the first tag in the list, swf:tagList.member.1 to constrain the
second tag in the list, and so on, up to a maximum of 5. However, you must be careful how you constrain
tag lists. For instance, here is an example of a policy that is not recommended:

"Version": "2012-10-17",
"Statement" : [{
"Effect" : "Allow",
"Action" : "swf:StartWorkflowExecution",
"Resource" : "arn:aws:swf:*:123456789012:/domain/some_domain",
"Condition" : {
"StringEqualsIfExists" : {
"swf:tagList.member.0" : "some_ok tag", "another_ ok_tag"

}
Y]

This policy allows you to optionally specify either "some_ok_tag" or "another_ok_tag". However,
this policy constrains only the first element of the tag list. The list could have additional elements
with arbitrary values that would all be allowed because this policy does not apply any conditions to
swf:tagList.member.1, swf:tagList.member.2, and soon.

One way to address this issue is to disallow the use of tag lists. The following policy ensures that only
"some_ok_tag" or "another_ok_tag" are allowed by requiring the list to have only one element.

{
"Version": "2012-10-17",
"Statement" : [{
"Effect" : "Allow",
"Action" : "swf:StartWorkflowExecution",
"Resource" : "arn:aws:swf:*:123456789012:/domain/some_domain",
"Condition" : {
"StringEqualsIfExists" : {
"swf:tagList.member.0" : "some_ok_ tag", "another_ok_tag"
}I
"Null" : { "swf:tagList.member.1l" : "true" }
}
]
}

Pseudo API Permissions and Constraints

If you want to restrict the decisions available to RespondpDecisionTaskcompleted, you must first allow
the actor to call RespondDecisionTaskCompleted. You can then express permissions for the appropriate
pseudo APl members by using the same syntax as for the regular API, as follows:

{
"Version": "2012-10-17",
"Statement" : [
{
"Resource" : "arn:aws:swf:*:123456789012:/domain/*",
"Action" : "swf:RespondDecisionTaskCompleted",
"Effect" : "Allow"

API Version 2012-01-25
54

Amazon Simple Workflow Service Developer Guide
Service Model Limitations on IAM Policies

A
"Resource" : "*x",
"Action" : "swf:ScheduleActivityTask",
"Effect" : "Allow",
"Condition" : {

"StringEquals" : { "swf:activityType.name" : "SomeActivityType" }

}

}

]
}

If you attach this policy to an actor, the first statement element allows the actor to call
RespondDecisionTaskCompleted. The second element allows the actor to use the scheduleActivityTask
decision to direct Amazon SWF to schedule an activity task. To allow all decisions, replace
"swf:ScheduleActivityTask" with "swf:*".

You can use Condition operators to constrain parameters just as with the regular API. The

StringEquals operator in this Condition allows RespondbecisionTaskCompleted to schedule an

activity task for the "SomeActivityType" activity, and it must schedule that task. If you want to allow
RespondDecisionTaskCompleted to use a parameter value but not require it to do so, you can instead use
the stringEqualsIfExists operator.

Service Model Limitations on IAM Policies

You must consider service model constraints when creating IAM policies. It is possible to create a
syntactically valid IAM policy that represents an invalid Amazon SWF request; a request that is allowed in
terms of access control can still fail because it is an invalid request.

For instance, the following policy for ListOpenWorkflowExecutions is not recommended:

{
"Version": "2012-10-17",
"Statement" : [{
"Effect" : "Allow",
"Action" : "swf:ListOpenWorkflowExecutions",
"Resource" : "arn:aws:swf:*:123456789012:/domain/domain_name",
"Condition" : {
"StringEquals" : {
"swf:typeFilter.name" : "workflow_ name",
"swf:typeFilter.version" : "workflow_version",
"swf:tagFilter.tag" : "some_tag"
}
}
]
}

The Amazon SWF service model does not allow the typeFilter and tagFilter parameters to be used
in the same ListopenWorkflowExecutions request. The policy therefore allows calls that the service will
reject—by throwing validationException—as an invalid request.

APl Summary

This section briefly describes how you can use IAM policies to control how an actor can use each APl and
pseudo API to access Amazon SWF resources.

« For all actions except RegisterDomain and ListDomains, you can allow or deny access to any or all of
an account's domains by expressing permissions for the domain resource.

API Version 2012-01-25
55

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListOpenWorkflowExecutions.html

Amazon Simple Workflow Service Developer Guide
Regular API

 You can allow or deny permission for any member of the regular APl and, if you grant permission to
call RespondDecisionTaskCompleted, any member of the pseudo API.

« You can use a Condition to constrain some parameters' allowable values.

The following sections list the parameters that can be constrained for each member of the regular and
pseudo APl and provide the associated key, and note any limitations on how you can control domain
access.

Regular API

This section lists the regular APl members, and briefly describes the parameters that can be constrained
and the associated keys. It also notes any limitations on how you can control domain access.

CountClosedWorkflowExecutions

« tagFilter.tag: String constraint. The key is swf:tagFilter.tag
« typeFilter.name: String constraint. The key is swf:typeFilter.name.
« typeFilter.version: String constraint. The key is swf: typeFilter.version.

Note
CountClosedWorkflowExecutions requires typeFilter and tagFilter to be mutually exclusive.
CountOpenWorkflowExecutions

« tagFilter.tag: String constraint. The key is swf:tagFilter.tag
« typeFilter.name: String constraint. The key is swf:typeFilter.name.
« typeFilter.version: String constraint. The key is swf: typeFilter.version.

Note
CountOpenWorkflowExecutions requires typeFilter and tagFilter to be mutually exclusive.
CountPendingActivityTasks

« taskList.name: String constraint. The key is swf: taskList.name.

CountPendingDecisionTasks

« taskList.name: String constraint. The key is swf:taskList.name.

DeprecateActivityType

« activityType.name: string constraint. The key is swf:activityType.name.
« activityType.version: String constraint. The key is swf:activityType.version.

DeprecateDomain

« You cannot constrain this action's parameters.

DeprecateWorkflowType

« workflowType.name: String constraint. The key is swf :workflowType.name.
« workflowType.version: String constraint. The key is swf :workflowType.version.

API Version 2012-01-25
56

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountClosedWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountOpenWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountPendingActivityTasks.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountPendingDecisionTasks.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateWorkflowType.html

Amazon Simple Workflow Service Developer Guide
Regular API

DescribeActivityType

« activityType.name: string constraint. The key is swf:activityType.name.
« activityType.version: String constraint. The key is swf:activityType.version.

DescribeDomain

« You cannot constrain this action's parameters.

DescribeWorkflowExecution

« You cannot constrain this action's parameters.

DescribeWorkflowType

« workflowType.name: String constraint. The key is swf :workflowType .name.
« workflowType.version: String constraint. The key is swf :workflowType.version.

GetWorkflowExecutionHistory

« You cannot constrain this action's parameters.

ListActivityTypes

« You cannot constrain this action's parameters.

ListClosedWorkflowExecutions

« tagFilter.tag: String constraint. The key is swf:tagFilter.tag
« typeFilter.name: String constraint. The key is swf: typeFilter.name.
« typeFilter.version: String constraint. The key is swf:typeFilter.version.

Note
ListClosedWorkflowExecutions requires typeFilter and tagFilter to be mutually exclusive.
ListDomains

« You cannot constrain this action's parameters.

ListOpenWorkflowExecutions

« tagFilter.tag: String constraint. The key is swf:tagFilter.tag
« typeFilter.name: String constraint. The key is swf:typeFilter.name.
« typeFilter.version: String constraint. The key is swf:typeFilter.version.

Note
ListOpenWorkflowExecutions requires typeFilter and tagFilter to be mutually exclusive.

ListWorkflowTypes

« You cannot constrain this action's parameters.

API Version 2012-01-25
57

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_GetWorkflowExecutionHistory.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListActivityTypes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListClosedWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListDomains.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListOpenWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListWorkflowTypes.html

Amazon Simple Workflow Service Developer Guide
Regular API

PollForActivityTask

« taskList.name: String constraint. The key is swf: taskList.name.

PollForDecisionTask

« taskList.name: String constraint. The key is swf: taskList.name.

RecordActivityTaskHeartbeat

« You cannot constrain this action's parameters.

RegisterActivityType

« defaultTaskList.name: String constraint. The key is swf:defaultTaskList.name.
« name: String constraint. The key is swf : name.

« version: String constraint. The key is swf:version.

RegisterDomain

« name: The name of the domain being registered is available as the resource of this action.

RegisterWorkflowType

« defaultTaskList.name: String constraint. The key is swf:defaultTaskList.name.
« name: String constraint. The key is swf : name.

« version: String constraint. The key is swf:version.

RequestCancelWorkflowExecution

« You cannot constrain this action's parameters.

RespondActivityTaskCanceled

« You cannot constrain this action's parameters.

RespondActivityTaskCompleted

« You cannot constrain this action's parameters.

RespondActivityTaskFailed

« You cannot constrain this action's parameters.

RespondDecisionTaskCompleted

« decisions.member.N: Restricted indirectly through pseudo API permissions. For details, see Pseudo
API (p. 59).

SignalWorkflowExecution

API Version 2012-01-25
58

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RecordActivityTaskHeartbeat.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RequestCancelWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_SignalWorkflowExecution.html

Amazon Simple Workflow Service Developer Guide
Pseudo API

« You cannot constrain this action's parameters.

StartWorkflowExecution

« tagList.member.0: String constraint. The key is swf: tagList.member.
« tagList.member.1: String constraint. The key is swf:tagList.member.
« tagList.member.2: String constraint. The key is swf: tagList.member.
« tagList.member.3: String constraint. The key is swf:tagList.member.

s W N B O

« tagList.member.4: String constraint. The key is swf: tagList.member.
« taskList.name: String constraint. The key is swf: taskList.name.
« workflowType.name: String constraint. The key is swf :workflowType.name.
« workflowType.version: String constraint. The key is swf :workflowType.version.

Note
You cannot constrain more than five tags.

TerminateWorkflowExecution

« You cannot constrain this action's parameters.

Pseudo API

This section lists the members of the pseudo API, which represent the decisions included in
RespondDecisionTaskCompleted. If you have granted permission to use RespondDecisionTaskCompleted,
your policy can express permissions for the members of this APl in the same way as the regular API. You
can further restrict some members of the pseudo-API by setting conditions on one or more parameters.
This section lists the pseudo APl members, and briefly describes the parameters that can be constrained
and the associated keys.

Note

The aws:SourceIP,aws:UserAgent,and aws:SecureTransport keysare not available for the
pseudo API. If your intended security policy requires these keys to control access to the pseudo
API, you can use them with the RespondbecisionTaskCompleted action.

CancelTimer

« You cannot constrain this action's parameters.

CancelWorkflowExecution

« You cannot constrain this action's parameters.

CompleteWorkflowExecution

« You cannot constrain this action's parameters.

ContinueAsNewWorkflowExecution

« tagList.member.0: String constraint. The key is swf:tagList.member.
« tagList.member.1: String constraint. The key is swf: tagList.member.
« tagList.member.2: String constraint. The key is swf:tagList.member.

w N B O

« tagList.member.3: String constraint. The key is swf: tagList.member.

API Version 2012-01-25
59

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_TerminateWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html

Amazon Simple Workflow Service Developer Guide
Pseudo API

« tagList.member.4: String constraint. The key is swf: tagList.member. 4
« taskList.name: String constraint. The key is swf: taskList.name.
« workflowTypeVersion: String constraint. The key is swf :workflowTypeVersion.

Note
You cannot constrain more than five tags.
FailWorkflowExecution

« You cannot constrain this action's parameters.

RecordMarker

« You cannot constrain this action's parameters.

RequestCancelActivityTask

« You cannot constrain this action's parameters.

RequestCancelExternalWorkflowExecution

« You cannot constrain this action's parameters.

ScheduleActivityTask

« activityType.name: String constraint. The key is swf:activityType.name.
« activityType.version: String constraint. The key is swf:activityType.version.
« taskList.name: String constraint. The key is swf:taskList.name.

SignalExternalWorkflowExecution

« You cannot constrain this action's parameters.

StartChildWorkflowExecution

« tagList.member.0: String constraint. The key is swf:tagList.member.
« tagList.member.1: String constraint. The key is swf:tagList.member.
« tagList.member.2: String constraint. The key is swf:tagList.member.
« tagList.member.3: String constraint. The key is swf:tagList.member.
« tagList.member.4: String constraint. The key is swf:tagList.member.

B W N B O

« taskList.name:String constraint. The key is swf:taskList.name.
« workflowType.name: String constraint. The key is swf :workflowType.name.
« workflowType.version: String constraint. The key is swf:workflowType.version.

Note
You cannot constrain more than five tags.
StartTimer

« You cannot constrain this action's parameters.

API Version 2012-01-25
60

Amazon Simple Workflow Service Developer Guide
Versioning

Advanced Concepts in Amazon SWF

Topics
» Versioning (p. 61)
« Signals (p. 62)
« Child Workflows (p. 62)
« Markers (p. 63)
« Tags (p. 64)

The e-commerce example in the Basic Concepts in Amazon SWF (p. 33) section represents a simplified
workflow scenario. In reality, you are likely to want your workflow to do concurrent tasks (send an
order confirmation email while authorizing a credit card), record major events (all items are packed),
update the order with changes (add or remove an item), and make other more advanced decisions as
part of your workflow execution. This section describes advanced workflow features that you can use to
construct robust and sophisticated workflows.

Versioning

Business needs often require you to have different implementations or variations of the same workflow
or activity running simultaneously. For example, you might want to test a new implementation of a
workflow while another one is in production. You might also want to run two different implementations
with two different feature sets, such as a basic and premium implementation. Versioning enables you to
run multiple implementations of workflows and activities concurrently, for any purpose that meets your
requirements.

Workflow and activity types have a version associated with them which is specified at registration time.
Version is a free-form string and you can choose your own versioning scheme. In order to create a new
version of a registered type, you should register it with the same name and a different version. Amazon
SWEF Task Lists (p. 42), described earlier, can further help you to implement versioning. Consider a
situation in which you have long-running workflow executions of a given type already in progress, and
circumstances require that you revise the workflow, such as to add a new feature. You could implement
the new feature by creating new versions of activity types and workers, and a new decider. Then you
could launch executions of the new workflow version using a different set of task lists. This way, you
could have executions of workflows of different versions running simultaneously without affecting each
other.

API Version 2012-01-25
61

Amazon Simple Workflow Service Developer Guide
Signals

Signals enable you to inject information into a running workflow execution. In some scenarios, you might
want to add information to a running workflow execution to let it know that something has changed

or to inform it of an external event. Any process can send a signal to an open workflow execution. For
example, one workflow execution might signal another.

To use signals, define the signal name and data to be passed to the signal—if any. Then, program

the decider to recognize the signal event (WorkflowExecutionSignaled) in the history and

process it appropriately. When a process wants to signal a workflow execution, it makes a call to
Amazon SWF (using the SignalWorkflowExecution action or, in the case of a decider, using the
SignalExternalWorkflowExecution decision) that specifies the identifier for the target workflow
execution, the signal name, and the signal data. Amazon SWF then receives the signal, records it in the
history of the target workflow execution, and schedules a decision task for it. When the decider receives
the decision task, it also receives the signal inside the workflow execution history. The decider can then
take appropriate actions based on the signal and its data.

Some applications for signals include the following:

« Pausing workflow executions from progressing until a signal is received (e.g., waiting for an inventory
shipment).

« Providing information to a workflow execution that might affect the logic of how deciders make
decisions. This is useful for workflows affected by external events (e.g., trying to finish the sale of a
stock after the market closes).

« Updating a workflow execution when you anticipate that changes might occur (e.g., changing order
quantities after an order is placed and before it ships).

For cases in which a workflow should be canceled—for example, the order itself was canceled by the
customer—the RequestCancelWorkflowExecution action should be used rather than sending a signal to
the workflow.

Complicated workflows can be broken into smaller, more manageable, and potentially reusable
components by using child workflows. A child workflow is a workflow execution that is initiated by
another (parent) workflow execution. To initiate a child workflow, the decider for the parent workflow
uses the startChildworkflowExecution decision. Input data specified with this decision is made
available to the child workflow through its history.

The attributes for the startchildworkflowExecution decision also specify the child policy, that is, how
Amazon SWF should handle the situation in which the parent workflow execution terminates before the
child workflow execution. There are three possible values:

o TERMINATE: Amazon SWF will terminate the child executions.

o REQUEST_CANCEL: Amazon SWF will attempt to cancel the child execution by placing a
WorkflowExecutionCancelRequested event in the child's workflow execution history.

o ABANDON: Amazon SWF will take no action; the child executions will continue to run.

After the child workflow execution starts, it runs like a regular execution. When it completes, Amazon
SWEF records the completion, along with its results, in the parent workflow execution's workflow history.
Examples of child workflows include the following:

« Credit card processing child workflow used by workflows in different websites

API Version 2012-01-25
62

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionSignaledEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_SignalWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_SignalExternalWorkflowExecutionInitiatedEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Markers

« Email child workflow that verifies the customer email address, checks the opt-out list, sends the email,
and verifies that it didn't bounce or fail.

« Database storage and retrieval child workflow that combines connection, setup, transaction, and
verification.

« Source code compilation child workflow that combines building, packaging, and verification.

In the e-commerce example, you might want to make the Charge Credit Card activity a child
workflow. To do this, you could register a new Verify Customer workflow, register the Verify Customer
Address and Check Fraud DB activities, and define coordination logic for the tasks. Then, a decider

in the Customer Order workflow can initiate a Verify Customer child workflow by scheduling the
StartChildWorkflowExecution decision that specifies this workflow type.

The following figure shows a customer order workflow that includes a new Verify Customer child
workflow, which checks the customer address, checks the fraud database, and charges the credit card.

Customer Order
Workflow

Customer Order | . ‘ Verify Customer | .
| (Start) —-| Verify Order ‘ Child Workflow | Ship Order d End

Verify Customer
Workflow
/ i | ‘
Start —I—‘ Verlfy Customer Check Fraud DB Charge Credit Card End
‘ Address | ‘

Multiple workflows could create child workflow executions using the same workflow type. For example,
the Verify Customer child workflow could also be used in other parts of an organization. The events for
a child workflow are contained in its own workflow history and are not included in the parent's workflow
history.

Because child workflows are simply workflow executions that are initiated by a decider, they could also
be started as normal stand-alone workflows executions.

Markers

At times, you might want to record information in the workflow history of a workflow execution that is
specific to your use case. Markers enable you to record information in the workflow execution history
that you can use for any custom or scenario-specific purpose.

To use markers, a decider uses the RecordMarker decision, names the marker, attaches desired data to

the decision, and notifies Amazon SWF using the RespondDecisionTaskCompleted action. Amazon SWF
receives the request, records the marker in the workflow history, and enacts any other decisions in the

request. From that point on, deciders can see the marker in the workflow history and use it in any way

that you program.

Examples of markers include the following:

« A counter that counts the number of loops in a recursive workflow.
« Progress of the workflow execution based on the results of activities.
« Information summarized from earlier workflow history events.

API Version 2012-01-25
63

Amazon Simple Workflow Service Developer Guide
Tags

In the e-commerce example, you might add an activity that checks the inventory every day and
increments the count in a marker each time. Then, you could add decision logic that emails the customer
or notifies a manager when the count exceeds five, without having to review the entire history.

Amazon SWF enables you to associate tags with workflow executions and later query for workflow
executions based on these tags. Tagging enables you to filter the listing of the executions when you use
the visibility operations. By carefully selecting the tags you assign to an execution, you can use them to
help provide meaningful listings.

For example, suppose you run several fulfillment centers. Proper tagging could enable you to list

the processes occurring in a specific fulfillment center. Or, to take another example, if a customer is
converting different types of media files, tagging could enable you to show the processing differences
used for converting video, audio, and image files.

Amazon SWF supports tagging a workflow execution with up to five tags. Each tag is a free-form string
and may be up to 256 characters in length. If you want to use tags, you must assign them when you start
a workflow execution. You cannot add tags to a workflow execution after it has been started, nor may
you edit or remove tags that have been assigned to a workflow execution.

API Version 2012-01-25
64

Amazon Simple Workflow Service Developer Guide
Amazon Simple Workflow Service Dashboard

Using the Amazon SWF Console

The Amazon Simple Workflow Service (Amazon SWF) console provides an alternative way to configure,
initiate, and manage workflow executions.

With the Amazon SWF console, you can:

Register workflow domains.

Register workflow types.

Register activity types.

Initiate workflow executions.

View information about pending tasks.

View running workflow executions.

Cancel, terminate, and send signals to running workflow executions.
Restart closed workflow executions.

The Amazon SWF console is part of the larger AWS Console experience, which you can access by signing
in at https://aws.amazon.com/. The sign-in link is located in the upper-right corner of the page.

Topics

« Amazon Simple Workflow Service Dashboard (p. 65)

+ Registering an Amazon SWF Domain (p. 67)

+ Registering a Workflow Type (p. 67)

« Registering an Activity Type (p. 69)

« Starting a Workflow Execution (p. 70)

« Viewing Pending Tasks (p. 72)

« Managing Your Workflow Executions (p. 72)

« Viewing Amazon SWF Metrics for CloudWatch using the AWS Management Console (p. 75)

Amazon Simple Workflow Service Dashboard

The following image shows the Amazon Simple Workflow Service Dashboard area of the Amazon SWF
console as it looks when no domains are registered.

API Version 2012-01-25
65

https://aws.amazon.com/

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Ser

vice Dashboard

Amazon Simple Workflow Service Dashboard

Welcome to Amazon Simple Workflow Service (Amazon SWF)

Amazon SWF is an orchestration service for building scalable applications. With Amazon SWF, you can build
many kinds of application as workflows. Amazon SWF maintains the execution state of the workflow consistently
and reliably so that you can focus on building and running your application. For more details on Amazon SWF,

click here.

T DECIDER
T “The decider implements
the application's
[business logic

Return

Gets
Decaion Decsians

Tasks

Amazon SWF

Maintains distributed appication state
Tracks workfiow executions

Ensures consistency of execution history
Prowides visibiity Into executions

Holds and dispatches tasks,

Provides control over task distribution
fetains workfiow execution history

Get Reurn et Return Get Return
Tasks Results Tasks Resufts Tasks Results

On premise Infrastructure

@ Refresh | @ Help

Manage Domains

Run a Sample Workflow

The sample workflow introduce you
to basic concepts in Amazon SWF.
Running this sample will introduce
you to basic concepts of Amazon
SWF and also create resources such
as a domain and types that you can
reuse.

Launch sample walkthrough o

Create your own domain

You can create a domain and
register your own workflows and
activities. Click below to get started.

eate a new Domai

When at least one domain is registered, the Amazon Simple Workflow Service Dashboard displays full

functionality.

» Dashboard

» Workflow Executions
» Workflow Types

> Activity Types

Navigation

Amazon Simple Workflow Service Dashboard

Domain: | 857530801 |~

Find Execution(s)

< Refresh || @ Help

Manage Domains

Aggregated Workflow Execution Metrics

Enter the Workflow [D:

This Domain currently has No Active

Find Execution(s) id

Getting Started with Amazon SWF

Executions and
No Closed Executions over the

Run a sample workflow that will introduce you to
Amazon SWF concepts.

Launch Sample Walkthrough iLd

last hour -
Completed: 0 Canceled: 0
g Continued as New: 0 Timed Out: 0
basic
Failed: 0 Terminated: 0
View Task List Backlog

MNote: Your workflow and activity types will be registered in the

US East (Virginia) region in the selected domain

Quick Links

Enter the Task List Name:

@ Decider Task List © Activity Task List

View Backlog

Task List Name

» Start a new Workflow Execution
» Register a new Workflow Type
+ Register a new Activity Type

Service Health

Related Service Links

» Service Details

> Documentation

Current Status Details

Sernvice is operating

o Amazon DynamoDB (M.
normally.

Virginia)
» View complete service he

RSS » Forums
» Feedback
alth details » Report an lssue

API Version 2012-01-25

66

Amazon Simple Workflow Service Developer Guide
Registering a Domain

Registering an Amazon SWF Domain

Until at least one domain is registered, domain registration is the only functionality available from the
console.

To register an Amazon SWF domain using the console
1. If no domains have been registered, in the center of the main pane, choose Register a New Domain.

If at least one domain is registered, in the dashboard view, choose the Manage Domains button, and
then in the Manage Domains dialog box, choose Register New.

2. Inthe Register Domain dialog box, enter a Name, Retention Period, and Description. These values
correspond to the similarly-named parameters in the RegisterDomain action.

Register Domain Cancel [X

Provide the details of your new Domain below, then click Register
Name:* 867530901

workflow Execution Retention Period:* 60 Days

Description: pyusic catalog

Register

3. Choose Register.
4. After the domain is registered, the console displays the Manage Domains dialog box.

Manage Domains Cancel [%

Viewing: © Registered © Deprecated Domains
Domain Actions: | Register New Domains 1 o 1

R : D

4 Name

[[1 867530901 60 Days music catalog

Close

Registering a Workflow Type

You can register workflow types using the Amazon Simple Workflow console. You are not able to register
a workflow type until at least one domain is registered.

To register an Amazon SWF workflow type using the console

1. Inthe Amazon Simple Workflow Service Dashboard, under Quick Links, choose Register New
Workflow Type.

API Version 2012-01-25
67

Amazon Simple Workflow Service Developer Guide
Registering a Workflow Type

In the Workflow Details dialog box, enter the following information.

e Domain

« Workflow Name

« Workflow Version

« Default Task List

« Default Execution Run Time
o Default Task Run Time

Fields marked with an asterisk ("*") are required.
Register New Workflow Cancel (%

WORKFLOW DETAILS
Provide the details of your new Workflow below
Domain*: 867530901
Workflow Name*: customerOrderWorkflow
Workflow Version*: 1.0
Default Task List*: mainTaskList
Default Execution Run Time*: 3600 seconds ~

Default Task Run Time*: 600| seconds -

Continue

Choose Continue.

In the Additional Options dialog box, enter a Description and specify a Default Child Policy.
Choose Review.

Register New Workflow Cancel [X

ADDITIONAL OPTIONS

Provide additional options for your new Workflow below

Description: gandle customer orders

Default Child Policy: Terminate -

¢ Back Review

In the Review dialog box, review the information that you entered in the previous dialog boxes.
If the information is correct, choose Register Workflow. Otherwise, choose Back to change the
information.

API Version 2012-01-25
68

Amazon Simple Workflow Service Developer Guide
Registering an Activity Type

Register New Workflow Canesl [x
O
REVIEW
Please review the information below, then click Register Workflow

Domain: 867520001
Weorkflow Name: customerOrderWorkflow
Workflow Version: 1.0
Default Task List: mainTaskList
Default Child Policy: TERMINATE
Default Execution Run Time: 1 hour

Default Task Run Time: 10 minutes

Description:

¢ Back Register Workflow

Registering an Activity Type

You can register activity types using the Amazon Simple Workflow Service console. You are not able to

register an activity type until at least one domain is registered.

To register an Amazon SWF activity type using the console

1. In the Amazon Simple Workflow Service Dashboard, under Quick Links, choose Register New

Activity Type.
In the Activity Details dialog box, enter the following information.

e Domain

« Activity Name

o Activity Version

 Default Task List

o Task Schedule to Start Timeout
« Task Start to Close Timeout

Fields marked with an asterisk ("*") are required.

Register New Activity Cancel (X

ACTIVITY DETAILS
Provide the details of your new Activity below

Domain*: 567530901

Activity Name*: activityVerify

Activity Version*: 1.0
Task List: mainTaskList

Task Schedule to Start Timeout: 5 minutes ~

Task Start to Close Timeout: |15 minutes i

Continue

Choose Continue.

API Version 2012-01-25
69

Amazon Simple Workflow Service Developer Guide
Starting a Workflow Execution

2. Inthe Additional Options dialog box, enter a Description and specify a Heartbeat Timeout and a
Task Schedule to Close Timeout. Choose Review.

Register New Activity Cancel (%
o}
ADDITIONAL OPTIONS

Provide additional options for your new Activity below

Description: verify the customer credit

Heartbeat Timeout: 2 minutes -

Task Schedule to Close Timeout: 15 ; minutes -

« Back Review

3. Inthe Review dialog box, review the information that you entered in the previous dialog boxes.
If the information is correct, choose Register Activity. Otherwise, choose Back to change the
information.

Register New Activity Cancel [x
O
REVIEW
Please review the information below. and then click Register

Domain: 867530901
Activity Name: activityVerify
Activity Version: 1.0
Task List: mainTaskList
Task Schedule to Close Timeout: 15 minutes
Task Schedule to Start Timeout: 5 minutes
Task Start to Close Timeout: 10 minutes
Task Heartheat Timeout: 2 minutes

Description: ;_.:5., cne customer credic

¢ Back Register Activity

Starting a Workflow Execution

You can start a workflow execution from the Amazon Simple Workflow Service console. You are not able
to start a workflow execution until you have registered at least one workflow type.

To start a workflow execution using the console

1. Inthe Amazon Simple Workflow Service Dashboard, under Quick Links, choose Start a New
Workflow Execution.

In the Execution Details dialog box, enter the following information.

« Domain
Workflow Name

Workflow Version
« Workflow ID

API Version 2012-01-25
70

Amazon Simple Workflow Service Developer Guide
Starting a Workflow Execution

e Task List
« Maximum Execution Run Time

« Task Start to Close Timeout

Fields marked with an asterisk ("*") are required.
Start New Execution Cancel X
O

EXECUTION DETAILS
Provide the details of your Execution below

Domain*: 867530901

Workflow Name*: customerOrderWorkflow
Weorkflow Version*: 1.0
Workflow ID*: 20110927-T-1
Task List: specialTaskList
Max. Execution Run Time: 1800 seconds -

Task Start to Close Timeout: 600 seconds ~

Continue

Choose Continue.

In the Additional Options dialog box, specify:

« A set of Tags to associate with the workflow execution. You can use these tags to query
information about your workflow executions.

« An Input string that is meaningful to the execution. This string is not interpreted by Amazon SWF.
« A Child Policy.

Start New Execution Cancel (X
O

ADDITIONAL OPTIONS

Provide additional options for your Execution below

Tags: music purchase, digital, ricoh-the-dog

Input: arpitrary-string-that-is-meaningful-to-the-
workilow
Child Policy: Terminate -
« Back

Review

In the Review dialog box, review the information that you entered in the previous dialog boxes.

If the information is correct, choose Start Execution. Otherwise, choose Back to change the
information.

API Version 2012-01-25
71

Amazon Simple Workflow Service Developer Guide
Viewing Pending Tasks

Start New Execution Caneal %

O

REVIEW

Please review the information below, then click Start

Domain: 867530301 i
Workflow Name: customerOrderWarkflow
Weorkflow Version: 1.0
Workflow 1D: 20110927-T-1
Max. Execution Run Time: 20 minutes

Task Start to Close Timeout: 10 minutes

m

Task List: specialTaskList
Child Policy: TERMINATE

Ta05: nusic purchase, digital, ricon-the—dog

t Back Start Execution

Viewing Pending Tasks

From the Amazon Simple Workflow Service Dashboard, you can view the number of pending tasks that
are associated with a particular task list.

1. Select whether the task list is a Decider Task List or Activity Task List.

2. Enter the task list name in the text box.

3. Choose View Backlog.

Enter the Task List Nama:

@ Decider Task List © Activity Task List

specialTaskList View Backlog

Task List "specialTaskList” has a backlog of 3 fasks.

Managing Your Workflow Executions

The My Workflow Executions view in the Amazon SWF console provides functionality for managing your
workflow executions both those that are currently running, and those that are closed. To access this view,
choose the Find Execution(s) button in the Amazon SWF Dashboard.

Enter the Workflow ID:

20110927-T-1 Find Execution(s)

If you first enter a workflow ID, the console will display executions with that workflow ID. Otherwise, if
you choose Find Execution(s), the My Workflow Executions view will enable you to query for workflow
executions based on when they were started, whether they are still running, and their associated
metadata. For a given query, you can select from any one of the following types of metadata:

« Workflow ID

API Version 2012-01-25
72

Amazon Simple Workflow Service Developer Guide
Managing Your Workflow Executions

« Workflow Type
« Tags
« Close Status

If the workflow execution is closed, the close status is one of the following values, which indicate the
circumstance in which the workflow execution closed:

o Completed
« Failed
» Canceled

e Timed Out
o Continued as New

Note
You must select a domain from the Domain drop-down list before you can enumerate workflow
executions.

E> utions

Domain:| 867530901 | = Manage Domains | i Refresh | @ Help

¥ Workflow Execution List Parameters

Filter by: ;Workﬂow Id h]
Workflow 1D*:
ordiow Workflow Type
Close Status
Tag
No Filter

Execution Status: List Active and Closed
Started between ~ 2011 Jan 21 21:50:49 and 2012 Jan 21 23:59:59

List Executions

Execution Actions: | Signal | | Try-Cancel | Terminate 1to 3 of 3 items

[workflow 1D Run ID Name (Version) Tags Execution Status Start Time Close Time
Sat Jan 21
§17e8eb0-353b-
20110927-T1 customerOrderWorkflow (1.0) ricoh-the-dog Active 21:25:20
47de-90b0-5f6754bf278a GMT-800 2012
Fri Dec 23
music Fri Dec 23
c4f8bB00-f3a7-4cba-) 14:55:14
[20110927-T-1 be2b-440f92bTafe0 customerOrderWarkflow (1.0) {:J#r:hase,mgnal.rlcnh- Timed Out 14:25:14 GMT-800
e-dog GMT-800 2011 2011
6c585049-82ca- music Tue Dec 20 ;;i?ezﬁ 2
[20110927-T-1 4b3e-adch- customerQrderWorkflow (1.0) purchase,digital ricoh- = Timed Qut 22:13:21 GMT:BOO
$52768dabfcd the-dog GMT-800 2011 2011

After enumerating a list of workflow executions, you can perform the following operations.

« Signal a workflow execution—that is, send a running workflow execution additional data.

Signal Execution Cancel [%

Provide the details of Signal action

Name*: Order Update

Input: Quanticy changed to: 2

Continue

API Version 2012-01-25
73

Amazon Simple Workflow Service Developer Guide
Managing Your Workflow Executions

« Try to cancel a workflow execution. It is preferable to cancel a workflow execution rather than
terminate it. Canceling provides the workflow execution an opportunity to perform any clean-up tasks
and then close properly.

Try-Cancel Execution Cancel [X

Please confirm that you want to request cancellation for the following execution

Workflow ID: 20110927-T-1

Yes, Try-Cancel

« Terminate a workflow execution. Note that it is preferable to cancel a workflow execution rather than
terminate it.

Terminate Execution Cancel (X

Provide the details of Terminate action

Child Policy: Terminate -

Reason: Cancellation Unsuccess

Details: prrempred cancellation of workflow appears to
have been unsuccessful

Continue

» Re-run a closed workflow execution.

» Dashboard Domain: 867530901 | ~ Manage Domains | (2 Refresh | @ Help
» Workflow Executions
> Workflow Types ¥ Workflow Execution List Parameters
> Activity Types
Filter by: Tag -
Tag™ ricoh-the-dog

Execution Status: © Active @ Closed

Started between ~ 2011 Dec 15 12:00:00 and 2011Dec23235959

List Executions

Execution Actions: Re-Run | <ff—on— Tto 1of1items
Workflow ID ~ Run ID Name (Version) Tags Execution Sta' Start Time Close Time
6c585d49-82ca- i .
20110927-T-1 | 4b3e-adchb- customerOrderWorkflow (1.0) = music purchase digital ricoh-the-dog Timed Out jiocibl=c oo g 2l jiocitleciin 2l 2
852768dabicd GMT-800 2011 GMT-800 2011

To re-run a closed workflow execution

1. In the list of workflow executions, select the closed execution to re-run. When you select a closed
execution, the Re-Run button becomes enabled. Choose Re-Run.

The Re-Run Execution sequence of dialog boxes appears.

2. Inthe Execution Details dialog box, specify the following information. The dialog box has the
information from the original execution already filled in.

« Domain
« Workflow Name

API Version 2012-01-25
74

Amazon Simple Workflow Service Developer Guide
Viewing Amazon SWF Metrics

« Workflow Version
« Workflow ID

By choosing the Advanced Options link, you can specify the following additional options.

e Task List
« Maximum Execution Run Time

o Task Start to Close Timeout

Choose Continue

In the Additional Options dialog box, specify an input string for the execution. By choosing the
Advanced Options link, you can specify Tags to associate with this run or the workflow execution as
well as change the executions Child Policy. As with the previous dialog box, the information from
the original execution is already filled in.

Choose Review.

In the Review dialog box, verify that all the information is correct. If the information is correct,
choose Re-Run Execution. Otherwise, choose Back to change the information.

Viewing Amazon SWF Metrics for CloudWatch
using the AWS Management Console

Amazon CloudWatch provides a number of viewable metrics for Amazon SWF workflows and activities.
You can view the metrics and set alarms for your Amazon SWF workflow executions using the AWS
Management Console. You must be logged in to the console to proceed.

For a description of each of the available metrics, see Amazon SWF Metrics for CloudWatch (p. 114).

Topics

« Viewing Metrics (p. 75)
« Setting Alarms (p. 78)

Viewing Metrics

To view your metrics for Amazon SWF

1.

Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

In the navigation pane, under Metrics, choose SWF.

API Version 2012-01-25
75

https://console.aws.amazon.com//
https://console.aws.amazon.com//
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Workflow Service Developer Guide
Viewing Metrics

| Dashboard Metric Surnmary

Slarms
Amazon CIoudWaich momnn

4 currenty have 61 Clowdal

Browse of Search your medr

Biling Browse Metrice

Metncs

Alarm Summary
LW

You do naf have any alams

If you have run any workflow executions recently, you will see two lists of metrics presented: Workflow
Type Metrics and Activity Type Metrics.

Browse Metrice O Search Metrics ¥ SWF Metrics

Fl Showang all reslts (61) for ST Metrics.,

Sedact Al | Clear

SWF > Workiflow Type Metrics

Dromain = Waorkflow Ty peNume = WorkflowTypeVersion = Metric Name
HeloWdard HeloWoridWaorktios hello workibog 1.0 Whorkilow S
Helovearkd HelBowvorkdworkims hebo_workiow L0 WorkflowsCo

SWF = Activily Type Metrics

D oaisadi = Activily Ty peblame = Aslivity Ty peVersion = Melric Name
[t hding Bodkond] A Thaly reserie_aaling 10 AciinyTaskSoh
[iekiing BookmdAcTraty. rosenie asling i AcieyTas kS

Note
Initially you might only see the Workflow Type Metrics; Activity Type Metrics are presented in
the same view, but you may need to scroll down to see them.

Up to 50 of the most recent metrics will be shown at a time, divided among workflow and activity
metrics.

You can use the interactive headings above each column in the list to sort your metrics using any

of the provided dimensions. For workflows, the dimensions are Domain, WorkflowTypeName,
WorkflowTypeVersion, and Metric Name. For activities, the dimensions are Domain, ActivityTypeName,
ActivityTypeVersion, and Metric Name.

The various types of metrics are described in Amazon SWF Metrics for CloudWatch (p. 114).

API Version 2012-01-25
76

Amazon Simple Workflow Service Developer Guide
Viewing Metrics

You can view graphs for metrics by choosing the boxes next to the metric row in the list, and change the
graph parameters using the Time Range controls to the right of the graph view.

Browse Metrics O} WorkflowsFailed w

{4 | Showing al results (2) for WorkifowsFafked

",

Salect ARl | Clear
SWF = Woarkflow Type Metrics

Domain - WorkilowTypeNarme - WarkflowTypeVersion
= Cron CronWarkiow.nm 1.0
4 I'||ET"H]EE5‘5-I!_| FleProcess ngWorkiow process_ile 1.0
WorkflowsF ailed (Count) Average 15 Minutes ~ LR
] L] L]
Ll s Lt

-':I o Coroavtoe b ool run -Fl = roc essing FieFrocesingWorkiow process_ Tk

For details about any point on the graph, place your cursor over the graph point. A detail of the point's
dimensions will be shown.

L w
Value; 1 {Coumt]
. Time: 2014NANS 2203 UTC
- Meirsc: B Workioess Feil ed
T Mamespace: AINSISWE
Daimain: FilaProcessing
reerdi ol

Warlilow TypeMame: FiloProcossingWorkiiow process_fil
Waorkflow TypeVersion: 1.0

S—— Left [swich]

For more information about working with CloudWatch metrics, see Viewing, Graphing, and Publishing
Metrics in the Amazon CloudWatch User Guide.

API Version 2012-01-25
77

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html

Amazon Simple Workflow Service Developer Guide

Setting Alarms

Setting Alarms

You can use CloudWatch alarms to perform actions such as notifying you when an alarm threshold is
reached. For example, you can set an alarm to send a notification to an SNS topic or to send an email
when the WorkflowsFailed metric rises above a certain threshold.

To set an alarm on any of your metrics

1. Choose a single metric by choosing its box.
2. To the right of the graph, in the Tools controls, choose Create Alarm.
3. Onthe Define Alarm screen, enter the alarm threshold value, period parameters, and actions to

take.

1. Swloct Metnic

&, Define Alarm
Bach
Coeae]

Plaasa sat the slerm
trreshokl, sctiones and
click Create Alarm
Lredina

Creale Alarm

Alarm Threshold

Frovide T detaik and reshal] for o 3ams, Liss e graph an 16 e 16 Bl o8 fe
S ra Al MresTab

Mame:
Description:

Whanever: WorkowsFaded

i |>= =[]

lar: & CcoEecuhg pemnod{E)

Actions
Dredine wingl SCEonel e LEED When aur slamn changes sinbs.

rERRCEDON I

whenever this slanm: Swee s AL

|5

Send notllcation te: Sa_Barpe T o s

Ermail Ret: e D e, cOim

» Naotification # AutoScaling Action

For more information about setting and using CloudWatch alarms, see Creating Amazon CloudWatch
Alarms in the Amazon CloudWatch User Guide.

API Version 2012-01-25
78

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html

Amazon Simple Workflow Service Developer Guide

Using the AWS CLI with Amazon
Simple Workflow Service

Many of the features of Amazon Simple Workflow Service can be accessed from the AWS CLI. The AWS
CLI provides an alternative to using Amazon SWF with the AWS Management Console or in some cases,
to programming with the Amazon SWF APl and the AWS Flow Framework.

For example, you can use the AWS CLI to register a new workflow type:

aws swf register-workflow-type --domain MyDomain --name "MySimpleWorkflow"” --workflow-
version "v1"
You can also list your registered workflow types:
aws swf list-workflow-types --domain MyDomain --registration-status REGISTERED
The following shows an example of the default output in JSON:
{
"typeInfos": [
{
"status": "REGISTERED",
"creationDate": 1377471607.752,
"workflowType": {
"version": "v1",
"name": "MySimpleWorkflow"
}
T
{
"status": "REGISTERED",
"creationDate": 1371454149.598,
"description": "MyDomain subscribe workflow",
"workflowType": {
"version": "v3",
"name": "subscribe"
}
}
]
}

API Version 2012-01-25
79

Amazon Simple Workflow Service Developer Guide

The Amazon SWF commands in AWS CLI provide the ability to start and manage workflow executions,
poll for activity tasks, record task heartbeats, and more! For a complete list of Amazon SWF commands,
with descriptions of the available arguments and examples showing their use, see Amazon SWF
commands in the AWS Command Line Interface Reference.

The AWS CLI commands follow the Amazon SWF API closely, so you can use the AWS CLI to learn about
the underlying Amazon SWF API. You can also use your existing APl knowledge to prototype code or
perform Amazon SWF actions on the command line.

To learn more about the AWS CLI, see the AWS Command Line Interface User Guide.

API Version 2012-01-25
80

http://docs.aws.amazon.com/cli/latest/reference/swf/index.html
http://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Workflow Service Developer Guide
Making HTTP Requests

Using the Amazon SWF API

In addition to using the AWS SDKs that are described in Development Options (p. 1), you can use the
HTTP API directly.

To use the API, you send HTTP requests to the SWF endpoint that matches the region that you want to
use for your domains, workflows and activities. For more information about making HTTP requests for
Amazon SWF, see Making HTTP Requests to Amazon SWF (p. 81).

This section provides basic information about using the HTTP API to develop your workflows with
Amazon SWF. More advanced features, such as using timers, logging with CloudTrail and tagging your
workflows are provided in the section, Using Advanced Features of Amazon SWF (p. 110).

Topics
» Making HTTP Requests to Amazon SWF (p. 81)
« List of Amazon SWF Actions by Category (p. 86)
» Creating a Basic Workflow in Amazon SWF (p. 88)
» Registering a Domain with Amazon SWF (p. 89)
« Setting Timeout Values in Amazon SWF (p. 89)
« Registering a Workflow Type with Amazon SWF (p. 91)
« Registering an Activity Type with Amazon SWF (p. 91)
o AWS Lambda Tasks (p. 92)
« Developing an Activity Worker in Amazon SWF (p. 95)
» Developing Deciders in Amazon SWF (p. 98)
« Starting Workflow Executions with Amazon SWF (p. 103)
 Setting Task Priority (p. 104)
» Handling Errors in Amazon SWF (p. 107)

Making HTTP Requests to Amazon SWF

If you don't use one of the AWS SDKs, you can perform Amazon Simple Workflow Service (Amazon SWF)
operations over HTTP using the POST request method. The POST method requires that you specify the

API Version 2012-01-25
81

http://docs.aws.amazon.com//general/latest/gr/rande.html#swf_region

Amazon Simple Workflow Service Developer Guide
HTTP Header Contents

operation in the header of the request and provide the data for the operation in JSON format in the
body of the request.

HTTP Header Contents

Amazon SWF requires the following information in the header of an HTTP request:

« host The Amazon SWF endpoint.

» x-amz-date You must provide the time stamp in either the HTTP pate header or the AWS x-amz-date
header (some HTTP client libraries don't let you set the pate header). When an x-amz-date header is
present, the system ignores any pate header when authenticating the request.

The date must be specified in one of the following three formats, as specified in the HTTP/1.1 RFC:
« Sun, 06 Nov 1994 08:49:37 GMT (RFC 822, updated by RFC 1123)
« Sunday, 06-Nov-94 08:49:37 GMT (RFC 850, obsoleted by RFC 1036)
« Sun Nov 6 08:49:37 1994 (ANSI C's asctime() format)
o x-amzn-authorization The signed request parameters in the format:

AWS3 AWSAccessKeyId=####,Algorithm=HmacSHA256, [,SignedHeaders=Headerl;Header2;...]
Signature=S(StringToSign)

AWS3 - This is an AWS implementation-specific tag that denotes the authentication version used to
sign the request (currently, for Amazon SWF this value is always aws3).

AWSAccessKeyld - Your AWS Access Key ID.

Algorithm - The algorithm used to create the HMAC-SHA value of the string-to-sign, such as
HmacSHA256 OF HmacSHAL.

Signature - Base64(Algorithm(StringToSign, SigningKey)). For details see Calculating the HMAC-SHA
Signature for Amazon SWF (p. 84)

SignedHeaders - Optional. If present, must contain a list of all the HTTP Headers used in the
Canonicalized HttpHeaders calculation. A single semicolon character (;) (ASCII character 59) must be
used as the delimiter for list values.

« x-amz-target The destination service of the request and the operation for the data, in the format
com.amazonaws.swf.service.model.SimpleWorkflowService. + <action>

For example, com. amazonaws . swf.service.model.SimpleWorkflowService.RegisterDomain

o content-type The type needs to specify JSON and the character set, as application/json;
charset=UTF-8

The following is an example header for an HTTP request to create a domain.

POST http://swf.us-east-1.amazonaws.com/ HTTP/1.1
Host: swf.us-east-1.amazonaws.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.25) Gecko/20111212
Firefox/3.6.25 (.NET CLR 3.5.30729; .NET4.0E)

Accept: application/json, text/javascript, */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9g=0.7,%*;g=0.7
Keep-Alive: 115

Connection: keep-alive

Content-Type: application/json; charset=UTF-8

API Version 2012-01-25
82

Amazon Simple Workflow Service Developer Guide
HTTP Body Content

X-Requested-With: XMLHttpRequest

X-Amz-Date: Fri, 13 Jan 2012 18:42:12 GMT

X-Amz-Target: com.amazonaws.swf.service.model.SimpleWorkflowService.RegisterDomain
Content-Encoding: amz-1.0

X-Amzn-Authorization: AWS3
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE,Algorithm=HmacSHA256, SignedHeaders=Host; X-Amz-Date;X-
Amz-Target;Content-Encoding, Signature=tzjkF551xAxPhzp/BRGFYQRQRq6CqrM254dTDE/EncI=
Referer: http://swf.us-east-1.amazonaws.com/explorer/index.html

Content-Length: 91

Pragma: no-cache

Cache-Control: no-cache

{"name": "867530902",
"description": "music",
"workflowExecutionRetentionPeriodInDays": "60"}

Here is an example of the corresponding HTTP response.

HTTP/1.1 200 OK

Content-Length: 0

Content-Type: application/json

x-amzn-RequestId: 4ec4ac3f-3el6-11e1-9b11-7182192d0b57

HTTP Body Content

The body of an HTTP request contains the data for the operation specified in the header of the HTTP
request. Use the JSON data format to convey data values and data structure, simultaneously. Elements
can be nested within other elements using bracket notation. For example, the following shows a request
to list all workflow executions that started between two specified points in time—using Unix Time
notation.

{
"domain": "867530901",

"startTimeFilter":
{
"oldestDate": 1325376070,
"latestDate": 1356998399
}l
"tagFilter":
{
"tag": "music purchase"
}
}

Sample Amazon SWF JSON Request and Response

The following example shows a request to Amazon SWF for a description of the domain that we created
previously. Then it shows the Amazon SWF response.

HTTP POST Request:

POST http://swf.us-east-1.amazonaws.com/ HTTP/1.1

Host: swf.us-east-1.amazonaws.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.25) Gecko/20111212
Firefox/3.6.25 (.NET CLR 3.5.30729; .NET4.0E)

Accept: application/json, text/javascript, */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

API Version 2012-01-25
83

Amazon Simple Workflow Service Developer Guide
Calculating the HMAC-SHA Signature

Accept-Charset: ISO-8859-1,utf-8;9g=0.7,%*;g=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/json; charset=UTF-8

X-Requested-With: XMLHttpRequest

X-Amz-Date: Sun, 15 Jan 2012 03:13:33 GMT

X-Amz-Target: com.amazonaws.swf.service.model.SimpleWorkflowService.DescribeDomain
Content-Encoding: amz-1.0

X-Amzn-Authorization: AWS3
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE,Algorithm=HmacSHA256, SignedHeaders=Host; X-Amz-Date;X-
Amz-Target;Content-Encoding, Signature=IFJtq3M366CHOM1TpyqYqd9z0ChCoKDC5SCIBsLifu4=
Referer: http://swf.us-east-1.amazonaws.com/explorer/index.html

Content-Length: 21

Pragma: no-cache

Cache-Control: no-cache

{"name": "867530901"}

Amazon SWF Response:

HTTP/1.1 200 OK

Content-Length: 137

Content-Type: application/json

x-amzn-RequestId: e86a6779-3f26-11el-9a27-0760db01a4a8

{"configuration":
{"workflowExecutionRetentionPeriodInDays": "60"},
"domainInfo":
{"description": "music",
"name": "867530901",
"status": "REGISTERED"}

Notice the protocol (urTP/1.1) is followed by a status code (200). A code value of 200 indicates a
successful operation.

Amazon SWF does not serialize null values. If your JSON parser is set to serialize null values for requests,
Amazon SWF ignores them.

Calculating the HMAC-SHA Signature for Amazon
SWF

Every request to Amazon SWF must be authenticated. The AWS SDKs automatically sign your requests
and manage your token-based authentication. However, if you want to write your own HTTP posT
requests, you need to create an x-amzn-authorization value for the HTTP posT Header content as part
of your request authentication.

For more information about formatting headers, see HTTP Header Contents (p. 82). For the AWS SDK
for Java implementation of AWS Version 3 signing, see the AWSSigner.java class.

Creating a Request Signature

Before you create an HMAC-SHA request signature, you must get your AWS credentials (the Access Key ID
and the Secret Key).

Important

You can use either SHA1 or SHA256 to sign your requests. However, make sure that you use the
same method throughout the signing process. The method you choose must match the value of
the Algorithm name in the HTTP header.

API Version 2012-01-25
84

https://github.com/aws/aws-sdk-java/blob/master/aws-java-sdk-core/src/main/java/com/amazonaws/auth/AWS3Signer.java

Amazon Simple Workflow Service Developer Guide
Calculating the HMAC-SHA Signature

To create the request signature

1.

Create a canonical form of the HTTP request headers. The canonical form of the HTTP header
includes the following:

e host

« Any header element starting with x-amz-

For more information about the included headers, see HTTP Header Contents (p. 82).

1. For each header name-value pair, convert the header name (but not the header value) to
lowercase.

2. Build a map of the header name to comma-separated header values.

x-amz-example: valuel
x-amz-example: value2 => x-amz-example:valuel,value2

For more information, see Section 4.2 of RFC 2616.

3. For each header name-value pair, convert the name-value pair into a string in the format
headerName:headervalue. Trim any whitespace from the beginning and end of both headerName
and headerValue, with no spaces on each side of the colon.

x-amz-examplel:valuel,value2
x-amz-example2:value3

4. Insert a new line (u+oooa) after each converted string, including the last string.
5. Sort the collection of converted strings alphabetically, by header name.

Create a string-to-sign value that includes the following items:

« Line 1: The HTTP method (rost), followed by a newline.
« Line 2: The request URI (/), followed by a newline.

« Line 3: An empty string followed by a newline.

Note
Typically, the query string appears here, but Amazon SWF doesn't use a query string.

« Lines 4-n: The string representing the canonicalized request headers that you computed in Step 1,
followed by a newline. This newline creates a blank line between the headers and the body of the
HTTP request. For more information, see RFC 2616.

« The request body, not followed by a newline.

Compute the SHA256 or SHA1 digest of the string-to-sign value. Use the same SHA method
throughout the process.

Compute and Base64-encode the HMAC-SHA using either a SHA256 or a SHA1 digest (depending on
the method you used) of the value resulting from the previous step and the temporary secret access
key from the AWS Security Token Service using the cetsessionToken APl action.

Note

Amazon SWF expects an equals sign (=) at the end of the Base64-encoded HMAC-SHA value.
If your Base64 encoding routine doesn't include the appended equals sign, append one to
the end of the value.

For more information about using temporary security credentials with Amazon SWF and other AWS
services, see AWS Services That Work with IAM in the IAM User Guide.

Place the resulting value as the value for the signature name in the x-amzn-authorization header

of the HTTP request to AmazoABMWfersion 2012-01-25
85

http://tools.ietf.org/html/rfc2616
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingSessionTokens.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/UsingTokens.html

Amazon Simple Workflow Service Developer Guide
List of Amazon SWF Actions

6. Amazon SWF verifies the request and performs the specified operation.

List of Amazon SWF Actions by Category

This section lists the reference topics for Amazon SWF actions in the Amazon SWF application
programming interface (API). These are listed by functional category.

For an alphabetic list of actions, see the Amazon Simple Workflow Service API Reference.

Topics
« Actions Related to Activities (p. 86)
« Actions Related to Deciders (p. 86)
« Actions Related to Workflow Executions (p. 86)
 Actions Related to Administration (p. 87)
« Visibility Actions (p. 87)

Actions Related to Activities

Activity workers use PollForActivityTask to get new activity tasks. After a worker receives an activity
task from Amazon SWF, it performs the task and responds using RespondActivityTaskCompleted if
successful or RespondActivityTaskFailed if unsuccessful.

The following are actions that are performed by activity workers.

« PollForActivityTask

» RespondActivityTaskCompleted
» RespondActivityTaskFailed

» RespondActivityTaskCanceled
o RecordActivityTaskHeartbeat

Actions Related to Deciders

Deciders use PollForDecisionTask to get decision tasks. After a decider receives a decision task
from Amazon SWF, it examines its workflow execution history and decides what to do next. It calls
RespondDecisionTaskCompleted to complete the decision task and provides zero or more next
decisions.

The following are actions that are performed by deciders.

» PollForDecisionTask
» RespondDecisionTaskCompleted

Actions Related to Workflow Executions

The following actions operate on a workflow execution.

» RequestCancelWorkflowExecution

API Version 2012-01-25
86

http://docs.aws.amazon.com/amazonswf/latest/apireference/
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForActivityTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RecordActivityTaskHeartbeat.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RequestCancelWorkflowExecution.html

Amazon Simple Workflow Service Developer Guide
Actions Related to Administration

» StartWorkflowExecution
« SignalWorkflowExecution
« TerminateWorkflowExecution

Actions Related to Administration

Although you can perform administrative tasks from the Amazon SWF console, you can use the actions
in this section to automate functions or build your own administrative tools.

Activity Management
« RegisterActivityType
« DeprecateActivityType

Workflow Management

o RegisterWorkflowType
» DeprecateWorkflowType

Domain Management

These actions allow you to register and deprecate Amazon SWF domains.

» RegisterDomain
o DeprecateDomain

For more information and examples of these domain management actions, see Registering a Domain
with Amazon SWF (p. 89).

Workflow Execution Management

» RequestCancelWorkflowExecution
o TerminateWorkflowExecution

Visibility Actions

Although you can perform visibility actions from the Amazon SWF console, you can use the actions in
this section to build your own console or administrative tools.

Activity Visibility
o ListActivityTypes
« DescribeActivityType

Workflow Visibility

o ListWorkflowTypes

API Version 2012-01-25
87

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_SignalWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_TerminateWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DeprecateDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RequestCancelWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_TerminateWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListActivityTypes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListWorkflowTypes.html

Amazon Simple Workflow Service Developer Guide
Creating a Basic Workflow

o DescribeWorkflowType

Workflow Execution Visibility

« DescribeWorkflowExecution

« ListOpenWorkflowExecutions

« ListClosedWorkflowExecutions

« CountOpenWorkflowExecutions
o CountClosedWorkflowExecutions

o GetWorkflowExecutionHistory

Domain Visibility
« ListDomains

« DescribeDomain

Task List Visibility

o CountPendingActivityTasks

« CountPendingDecisionTasks

Creating a Basic Workflow in Amazon SWF

Creating a basic sequential workflow involves the following stages.

« Modeling a workflow, registering its type, and registering its activity types
« Developing and launching activity workers that perform activity tasks
« Developing and launching deciders that use the workflow history to determine what to do next

« Developing and launching workflow starters, that is, applications that start workflow executions

Modeling Your Workflow and Its Activities

To use Amazon SWF, model the logical steps in your application as activities. An activity represents a
single logical step or task in your workflow. For example, authorizing a credit card is an activity that
involves providing a credit card number and other information, and receiving an approval code or a
message that the card was declined.

In addition to defining activities, you also need to define the coordination logic that handles decision
points. For example, the coordination logic might schedule a different follow-up activity depending on
whether the credit card was approved or declined.

The following figure shows an example of a sequential customer order workflow with four activities
(Verify Order, Charge Credit Card, Ship Order, and Record Completion).

API Version 2012-01-25
88

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListOpenWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListClosedWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountOpenWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountClosedWorkflowExecutions.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_GetWorkflowExecutionHistory.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ListDomains.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountPendingActivityTasks.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CountPendingDecisionTasks.html

Amazon Simple Workflow Service Developer Guide
Registering a Domain

CE”“E-“SI:I;] " Verify Order — Charge Credit Card —» Ship Order — Record Completion 4’(End >

/‘/‘

Order Verifiers Credit Card Database
Processors Recorders

Warehouse
Employees

Registering a Domain with Amazon SWF

Your workflow and activity types and the workflow execution itself are all scoped to a domain. Domains
isolate a set of types, executions, and task lists from others within the same account.

You can register a domain by using the AWS Management Console or by using the RegisterDomain
action in the Amazon SWF API. The following example uses the API.

https://swf.us-east-1.amazonaws.com
RegisterDomain
{
"name" : "867530901",
"description" : "music",
"workflowExecutionRetentionPeriodInDays" : "60"

}

The parameters are specified in JavaScript Object Notation (JSON) format. Here, the retention period
is set to 60 days. During the retention period, all information about the workflow execution is available
through visibility operations using either the AWS Management Console or the Amazon SWF API.

After registering the domain, you should register the workflow type and the activity types used by the
workflow. You need to register the domain first because a registered domain name is part of the required
information for registering workflow and activity types.

See Also

« RegisterDomain in the Amazon Simple Workflow Service APl Reference

Setting Timeout Values in Amazon SWF

Topics
« Limits on Timeout Values (p. 90)
« Workflow Execution and Decision Task Timeouts (p. 90)
o Activity Task Timeouts (p. 90)
« See Also (p. 91)

API Version 2012-01-25
89

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

Amazon Simple Workflow Service Developer Guide
Limits on Timeout Values

Limits on Timeout Values

Timeout values are always declared in seconds, and can be set to any number of seconds up to a year
(31536000 seconds)—the maximum execution limit for any workflow or activity. The special value
"NONE" is used to set a timeout parameter to "no timeout", or infinite, but the maximum limit of a year
still applies.

Workflow Execution and Decision Task Timeouts

You can set timeout values for your Workflow and Decision tasks when registering the workflow type.
For example:

https://swf.us-east-1.amazonaws.com

RegisterWorkflowType

{
"domain": "867530901",
"name": "customerOrderWorkflow",
"version": "1.0",
"description": "Handle customer orders",
"defaultTaskStartToCloseTimeout": "600",
"defaultExecutionStartToCloseTimeout": "3600",
"defaultTaskList": { "name": "mainTaskList" },
"defaultChildPolicy": "TERMINATE"

This workflow type registration sets the defaultTaskStartToCLoseTimeout to 600 seconds (10 minutes),
and defaultExecutionStartToCloseTimeout to 3600 seconds (1 hour).

For more information about workflow type registration, see Registering a Workflow Type with Amazon
SWF (p. 91), and RegisterWorkflowType in the Amazon Simple Workflow Service API Reference.

You can override the value set for defaultExecutionStartToCloseTimeout by specifying
executionStartToCloseTimeout in StartWorkflowExecution.

Activity Task Timeouts

You can set timeout values for your activity tasks when registering the activity type. For example:

https://swf.us-east-1.amazonaws.com

RegisterActivityType
{
"domain": "867530901",
"name": "activityVerify",
"version": "1.0",
"description": "Verify the customer credit",
"defaultTaskStartToCloseTimeout": "600",
"defaultTaskHeartbeatTimeout": "120",
"defaultTaskList": { "name": "mainTaskList" },
"defaultTaskScheduleToStartTimeout": "1800",
"defaultTaskScheduleToCloseTimeout": "5400"
}

This activity type registration sets the defaultTaskStartToCloseTimeout to 600 seconds (10 minutes), the
defaultTaskHeartbeatTimeout to 120 seconds (2 minutes), the defaultTaskScheduleToStartTimeout to
1800 seconds (30 minutes) and defaultTaskScheduleToCloseTimeout to 5400 seconds (1.5 hours).

API Version 2012-01-25
90

http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterWorkflowType.html#SWF-RegisterWorkflowType-request-defaultTaskStartToCloseTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterWorkflowType.html#SWF-RegisterWorkflowType-request-defaultExecutionStartToCloseTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_StartWorkflowExecution.html#SWF-StartWorkflowExecution-request-executionStartToCloseTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterActivityType.html#SWF-RegisterActivityType-request-defaultTaskStartToCloseTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterActivityType.html#SWF-RegisterActivityType-request-defaultTaskHeartbeatTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterActivityType.html#SWF-RegisterActivityType-request-defaultTaskScheduleToStartTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterActivityType.html#SWF-RegisterActivityType-request-defaultTaskScheduleToCloseTimeout

Amazon Simple Workflow Service Developer Guide
See Also

For more information about activity type registration, see Registering an Activity Type with Amazon
SWF (p. 91), and RegisterActivityType in the Amazon Simple Workflow Service API Reference.

You can override the value set for defaultTaskStartToCloseTimeout by specifying
taskStartToCloseTimeout in StartWorkflowExecution.

See Also

« Amazon SWF Timeout Types (p. 124)

Registering a Workflow Type with Amazon SWF

The example discussed in this section registers a workflow type using the Amazon SWF API. The name
and version that you specify during registration form a unique identifier for the workflow type. The
specified domain must have already been registered using the RegisterDomain API.

The timeout parameters in the following example are duration values specified in seconds. For the
defaultTaskStartToCloseTimeout parameter, you can use the duration specifier "NONE" to indicate no
timeout. However, you cannot specify a value of "NONE" for defaultExecutionStartToCloseTimeout;
there is a one-year maximum limit on the time that a workflow execution can run. Exceeding

this limit always causes the workflow execution to time out. If you specify a value for
defaultExecutionStartToCloseTimeout that is greater than one year, the registration will fail.

https://swf.us-east-1.amazonaws.com
RegisterWorkflowType
{
"domain" : "867530901",
"name" : "customerOrderWorkflow",
"version" : "1.0",
"description" : "Handle customer orders",
"defaultTaskStartToCloseTimeout" : "600",
"defaultExecutionStartToCloseTimeout" : "3600",
"defaultTaskList" : { "name": "mainTaskList" },
"defaultChildPolicy" : "TERMINATE"
}
See Also

o RegisterWorkflowType in the Amazon Simple Workflow Service APl Reference

Registering an Activity Type with Amazon SWF

The following example registers an activity type by using the Amazon SWF API. The name and version
that you specify during registration form a unique identifier for the activity type within the domain. The
specified domain must have already been registered using the RegisterDomain action.

The timeout parameters in this example are duration values specified in seconds. You can use the
duration specifier "NONE" to indicate no timeout.

https://swf.us-east-1.amazonaws.com
RegisterActivityType
{

"domain" : "867530901",

API Version 2012-01-25
91

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_StartWorkflowExecution.html#SWF-StartWorkflowExecution-request-taskStartToCloseTimeout
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference//API_RegisterDomain.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html

Amazon Simple Workflow Service Developer Guide

See Also
"name" : "activityVerify",
"version" : "1.0",
"description" : "Verify the customer credit",
"defaultTaskStartToCloseTimeout" : "600",
"defaultTaskHeartbeatTimeout" : "120",
"defaultTaskList" : { "name" : "mainTaskList" },
"defaultTaskScheduleToStartTimeout" : "1800",
"defaultTaskScheduleToCloseTimeout" : "5400"
}
See Also

« RegisterActivityType in the Amazon Simple Workflow Service API Reference

AWS Lambda Tasks

Topics
o About AWS Lambda (p. 92)
« Benefits and Limitations of using Lambda Tasks (p. 92)
« Using Lambda tasks in your workflows (p. 93)

About AWS Lambda

AWS Lambda is a fully managed compute service that runs your code in response to events generated
by custom code or from various AWS services such as Amazon S3, DynamoDB, Amazon Kinesis, Amazon
SNS, and Amazon Cognito. For more information about Lambda, see the AWS Lambda Developer Guide.

Amazon Simple Workflow Service provides a Lambda task so that you can run Lambda functions in place
of, or alongside traditional Amazon SWF activities.

Important
Your AWS account will be charged for Lambda executions (requests) executed by Amazon SWF
on your behalf. For details about Lambda pricing, see http://aws.amazon.com/lambda/pricing/.

Benefits and Limitations of using Lambda Tasks

There are a number of benefits of using Lambda tasks in place of a traditional Amazon SWF activity:

« Lambda tasks don't need to be registered or versioned like Amazon SWF activity types.
« You can use any existing Lambda functions that you've already defined in your workflows.

« Lambda functions are called directly by Amazon SWF; there is no need for you to implement a worker
program to execute them as you must do with traditional activities.

« Lambda provides you with metrics and logs for tracking and analyzing your function executions.

There are also a number of limitations regarding Lambda tasks that you should be aware of:

« Lambda tasks can only be run in AWS regions that provide support for Lambda. See Lambda Regions
and Endpoints in the Amazon Web Services General Reference for details about the currently-supported
regions for Lambda.

« Lambda tasks are currently supported only by the base SWF HTTP API and in the AWS Flow Framework
for Java. There is currently no support for Lambda tasks in the AWS Flow Framework for Ruby.

API Version 2012-01-25
92

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/lambda/latest/dg/
http://aws.amazon.com/lambda/pricing/
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon Simple Workflow Service Developer Guide
Using Lambda tasks in your workflows

Using Lambda tasks in your workflows

To use Lambda tasks in your Amazon SWF workflows, you will need to:

1. Set up IAM roles to provide Amazon SWF with permission to invoke Lambda functions.
2. Attach the IAM roles to your workflows.
3. Call your Lambda function during a workflow execution.

Set up an IAM role

Before you can invoke Lambda functions from Amazon SWF you must provide an IAM role that provides
access to Lambda from Amazon SWF. You can either:

 choose a pre-defined role, AWSLambdaRole, to give your workflows permission to invoke any Lambda
function associated with your account.

« define your own policy and associated role to give workflows permission to invoke particular Lambda
functions, specified by their Amazon Resource Names (ARNSs).

Providing Amazon SWF with access to invoke any Lambda role

You can use the pre-defined role, AWSLambdaRole, to give your Amazon SWF workflows the ability to
invoke any Lambda function associated with your account.

To use AWSLambdaRole to give Amazon SWF access to invoke Lambda functions

Open the Amazon IAM console.

Choose Roles, then Create New Role.

Give your role a name, such as swf-lambda and choose Next Step.
Under AWS Service Roles, choose Amazon SWF, and choose Next Step.
On the Attach Policy screen, choose AWSLambdaRole from the list.
Choose Next Step and then Create Role once you've reviewed the role.

o khwWDN =

Defining an IAM role to provide access to invoke a specific Lambda function

If you want to provide access to invoke a specific Lambda function from your workflow, you will need to
define your own 1AM policy.

To create an IAM policy to provide access to a particular Lambda function

Open the Amazon IAM console.
Choose Policies, then Create Policy.

Choose Copy an AWS Managed Policy and select AWSLambdaRole from the list. A policy will be
generated for you. Optionally edit its name and description to suit your needs.

4. Inthe Resource field of the Policy Document, add the ARN of your Lambda function(s). For example:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

API Version 2012-01-25
93

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Simple Workflow Service Developer Guide
Using Lambda tasks in your workflows

"lambda:InvokeFunction"

1,

"Resource": [
"arn:aws:lambda:us-east-1:111111000000: function:hello_lambda_function"

1

b
]
}

Note
For a complete description of how to specify resources in an IAM role, see Overview of IAM
Policies in Using IAM.

5. Choose Create Policy to finish creating your policy.

You can then select this policy when creating a new IAM role, and use that role to give invoke access to
your Amazon SWF workflows. This procedure is very similar to creating a role with the AWSLambdaRole
policy. instead, choose your own policy when creating the role.

To create a Amazon SWF role using your Lambda policy

Open the Amazon IAM console.

Choose Roles, then Create New Role.

Give your role a name, such as swf-lambda-function and choose Next Step.

Under AWS Service Roles, choose Amazon SWF, and choose Next Step.

On the Attach Policy screen, choose your Lambda function-specific policy from the list.

A A

Choose Next Step and then Create Role once you've reviewed the role.

Attach the IAM role to your workflow

Once you've defined your IAM role, you will need to attach it to the workflow that will be using it to call
the Lambda functions you provided Amazon SWF with access to.

There are two places where you can attach the role to your workflow:

« During workflow type registration. This role then may be used as the default Lambda role for every
execution of that workflow type.

« When starting a workflow execution. This role will be used only during this workflow's execution (and
throughout the entire execution).
To provide a default Lambda role for a workflow type
« When calling RegisterWorkflowType, set the defaultLambdaRole field to the ARN of the role that
you defined.
To provide a Lambda role to be used during a workflow execution
« When calling StartWorkflowExecution, set the lambdaRole field to the ARN of the role that you

defined.

Note
if the account calling RegisterWorkflowType or StartWorkflowExecution doesn't have permission
to use the given role, then the call will fail with an OperationNotPermittedFault.

API Version 2012-01-25
94

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://console.aws.amazon.com/iam/

Amazon Simple Workflow Service Developer Guide
Developing an Activity Worker

Call your Lambda function from a Amazon SWF workflow

You can use the ScheduleLambdaFunctionDecisionAttributes data type to identify the Lambda function
to call during a workflow execution.

During a call to RespondDecisionTaskCompleted, provide a ScheduleLambdaFunctionDecisionAttributes
to your decisions list. For example:

{
"decisions": [{
"ScheduleLambdaFunctionDecisionAttributes": {
"id": "lambdaTaskId",
"name": "myLambdaFunctionName",
"input": "inputToLambdaFunction",
"startToCloseTimeout": "30"
Iy
1
}

Set the following parameters:

« id with an identifier for the Lambda task. This must be a string from 1-256 characters and must not
contain the characters : (colon), / (slash), | (vertical bar), nor any control characters (\u0000 - \u001f
and \u007f - \u009f), nor the literal string arn.

« name with the name of your Lambda function. Your Amazon SWF workflow must be provided with
an IAM role that gives it access to call the Lambda function. The name provided must follow the
constraints for the FunctionName parameter as described in the Lambda Invoke action.

« input with optional input data for the function. If set, this must follow the constraints for the
ClientContext parameter as described in the Lambda Invoke action.

o startToCloseTimeout with an optional maximum period, in seconds, that the function can take to
execute before the task fails with a timeout exception. The value NONE can be used to specify
unlimited duration.

For more information, see Implementing AWS Lambda Tasks

Developing an Activity Worker in Amazon SWF

An activity worker provides the implementation of one or more activity types. An activity worker
communicates with Amazon SWF to receive activity tasks and perform them. You can have a fleet of
multiple activity workers performing activity tasks of the same activity type.

Amazon SWF makes an activity task available to activity workers when the decider schedules the activity
task. When a decider schedules an activity task, it provides the data (which you determine) that the
activity worker needs to perform the activity task. Amazon SWF inserts this data into the activity task
before sending it to the activity worker.

Activity workers are managed by you. They can be written in any language. A worker can be run
anywhere, as long as it can communicate with Amazon SWF through the API. Because Amazon SWF
provides all the information needed to perform an activity task, all activity workers can be stateless.
Statelessness enables your workflows to be highly scalable; to handle increased capacity requirements,
simply add more activity workers.

This section explains how to implement an activity worker. The activity workers should repeatedly do the
following.

1. Poll Amazon SWF for an activity task.

API Version 2012-01-25
95

http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/lambda-task.html

Amazon Simple Workflow Service Developer Guide
Polling for Activity Tasks

2. Begin performing the task.
3. Periodically report a heartbeat to Amazon SWF if the task is long-lived.
4. Report that the task completed or failed and return the results to Amazon SWF.

Topics
« Polling for Activity Tasks (p. 96)
o Performing the Activity Task (p. 96)
» Reporting Activity Task Heartbeats (p. 96)
« Completing or Failing an Activity Task (p. 97)
« Launching Activity Workers (p. 98)

Polling for Activity Tasks

To perform activity tasks, each activity worker must poll Amazon SWF by periodically calling the
PollForActivityTask action.

In the following example, the activity worker chargecreditcardworkero1 polls for a task on the task list,
ChargeCreditCard-vo.1. If no activity tasks are available, after 60 seconds, Amazon SWF sends back an

empty response. An empty response is a Task structure in which the value of the taskToken is an empty
string.

https://swf.us-east-1.amazonaws.com

PollForActivityTask

{
"domain" : "867530901",
"taskList" : { "name": "ChargeCreditCard-v0.1" },
"identity" : "ChargeCreditCardWorkerOl1l"

}

If an activity task becomes available, Amazon SWF returns it to the activity worker. The task contains the
data that the decider specifies when it schedules the activity.

After an activity worker receives an activity task, it is ready to perform the work. The next section
provides information about performing an activity task.

Performing the Activity Task

After receiving an activity task, the activity worker is ready to perform it.

To perform an activity task

1. Program your activity worker to interpret the content in the input field of the task. This field
contains the data specified by the decider when the task was scheduled.

2. Program the activity worker to begin processing the data and executing your logic.

The next section describes how to program your activity workers to provide status updates to Amazon
SWF for long running activities.

Reporting Activity Task Heartbeats

If a heartbeat timeout was registered with the activity type, then the activity worker must record a
heartbeat before the heartbeat timeout is exceeded. If an activity task does not provide a heartbeat

API Version 2012-01-25
96

Amazon Simple Workflow Service Developer Guide
Completing or Failing an Activity Task

within the timeout, the task times out, Amazon SWF closes it and schedules a new decision task to
inform a decider of the timeout. The decider can then reschedule the activity task or take another action.

If, after timing out, the activity worker attempts to contact Amazon SWF, such as by calling
RespondActivityTaskCompleted, Amazon SWF will return an UnknownResource fault.

This section describes how to provide an activity heartbeat.

To record an activity task heartbeat, program your activity worker to call the
RecordActivityTaskHeartbeat action. This action also provides a string field that you can use to store
free-form data to quantify progress in whatever way works for your application.

In this example, the activity worker reports heartbeat to Amazon SWF and uses the details field to report
that the activity task is 40 percent complete. To report heartbeat, the activity worker must specify the
task token of the activity task.

https://swf.us-east-1.amazonaws.com
RecordActivityTaskHeartbeat
{
"taskToken" : "12342el17-80f6-FAKE-TASK-TOKEN32f0223",
"details" : "40"

}

This action does not in itself create an event in the workflow execution history; however, if the task
times out, the workflow execution history will contain a ActivityTaskTimedout event that contains the
information from the last heartbeat generated by the activity worker.

Completing or Failing an Activity Task

After executing a task, the activity worker should report whether the activity task completed or failed.

Completing an Activity Task

To complete an activity task, program the activity worker to call the RespondactivityTaskCompleted
action after it successfully completes an activity task, specifying the task token.

In this example, the activity worker indicates that the task completed successfully.

https://swf.us-east-1.amazonaws.com
RespondActivityTaskCompleted
{
"taskToken": "12342e17-80f6-FAKE-TASK-TOKEN32f0223",
"results": "40"

When the activity completes, Amazon SWF schedules a new decision task for the workflow execution
with which the activity is associated.

Program the activity worker to poll for another activity task after it has completed the task at hand. This
creates a loop where the activity worker continuously polls for and completes tasks.

If the activity does not respond within the StartToCloseTimeout period, or if ScheduleToCloseTimeout has
been exceeded, Amazon SWF times out the activity task and schedules a decision task. This enables a
decider to take an appropriate action, such as rescheduling the task.

For example, if an Amazon EC2 instance is executing an activity task and the instance fails before the
task is complete, the decider receives a timeout event in the workflow execution history. If the activity

API Version 2012-01-25
97

Amazon Simple Workflow Service Developer Guide
Launching Activity Workers

task is using a heartbeat, the decider receives the event when the task fails to deliver the next heartbeat
after the Amazon EC2 instance fails. If not, the decider eventually receives the event when the activity
task fails to complete before it hits one of its overall timeout values. It is then up to the decider to re-
assign the task or take some other action.

Failing an Activity Task

If an activity worker cannot perform an activity task for some reason, but it can still communicate with
Amazon SWF, you can program it to fail the task.

To program an activity worker to fail an activity task, program the activity worker to call the
RespondActivityTaskFailed action that specifies the task token of the task.

https://swf.us-east-1.amazonaws.com
RespondActivityTaskFailed

{
"taskToken" : "12342el17-80f6-FAKE-TASK-TOKEN32f0223",
"reason" : "CC-Invalid",
"details" : "Credit Card Number Checksum Failed"

}

As the developer, you define the values that are stored in the reason and details fields. These are free-
form strings; you can use any error code conventions that serve your application. Amazon SWF does not
process these values. However, Amazon SWF may display these values in the console.

When an activity task is failed, Amazon SWF schedules a decision task for the workflow execution with
which the activity task is associated to inform the decider of the failure. Program your decider to handle
failed activities, such as by rescheduling the activity or failing the workflow execution, depending on the
nature of the failure.

Launching Activity Workers

To launch activity workers, package your logic into an executable that you can use on your activity
worker platform. For example, you might package your activity code as a Java executable that you can
run on both Linux and Windows servers.

Once launched, your workers start polling for tasks. Until the decider schedules activity tasks, though,
these polls time out with no tasks and your workers just continue polling.

Because polls are outbound requests, activity worker can run on any network that has access to the
Amazon SWF endpoint.

You can launch as many activity workers as you like. As the decider schedules activity tasks, Amazon SWF
automatically distributes the activity tasks to the polling activity workers.

Developing Deciders in Amazon SWF

A decider is an implementation of the coordination logic of your workflow type that runs during the
execution of your workflow. You can run multiple deciders for a single workflow type.

Because the execution state for a workflow execution is stored in its workflow history, deciders can be
stateless. Amazon SWF maintains the workflow execution history and provides it to a decider with each
decision task. This enables you to dynamically add and remove deciders as necessary, which makes the
processing of your workflows highly scalable. As the load on your system grows, you simply add more
deciders to handle the increased capacity. Note, however, that there can be only one decision task open
at any time for a given workflow execution.

API Version 2012-01-25
98

Amazon Simple Workflow Service Developer Guide
Defining Coordination Logic

Every time a state change occurs for a workflow execution, Amazon SWF schedules a decision task. Each
time a decider receives a decision task, it does the following:

« Interprets the workflow execution history provided with the decision task

« Applies the coordination logic based on the workflow execution history and makes decisions on what
to do next. Each decision is represented by a Decision structure

« Completes the decision task and provides a list of decisions to Amazon SWF.

This section describes how to develop a decider, which involves:

« Programming your decider to poll for decision tasks
« Programming your decider to interpret the workflow execution history and make decisions
« Programming your decider to respond to a decision task.

The examples in this section show how you might program a decider for the e-commerce example
workflow.

You can implement the decider in any language that you like and run it anywhere, as long as it can
communicate with Amazon SWF through its service API.

Topics
» Defining Coordination Logic (p. 99)
« Polling for Decision Tasks (p. 100)
« Applying the Coordination Logic (p. 101)
» Responding with Decisions (p. 101)
« Closing a Workflow Execution (p. 102)
« Launching Deciders (p. 103)

Defining Coordination Logic

The first thing to do when developing a decider is to define the coordination logic. In the e-commerce
example, coordination logic that schedules each activity after the previous activity completes might look
similar to the following:

IF lastEvent = "StartWorkflowInstance"
addToDecisions ScheduleVerifyOrderActivity

ELSIF lastEvent = "CompleteVerifyOrderActivity"
addToDecisions ScheduleChargeCreditCardActivity

ELSIF lastEvent = "CompleteChargeCreditCardActivity"
addToDecisions ScheduleCompleteShipOrderActivity

ELSIF lastEvent = "CompleteShipOrderActivity"
addToDecisions ScheduleRecordOrderCompletion

ELSIF lastEvent = "CompleteRecordOrderCompletion"
addToDecisions CloseWorkflow

ENDIF

The decider applies the coordination logic to the workflow execution history, and creates a list of
decisions when completing the decision task using the RespondpecisionTaskCompleted action.

API Version 2012-01-25
99

Amazon Simple Workflow Service Developer Guide
Polling for Decision Tasks

Polling for Decision Tasks

Each decider polls for decision tasks. The decision tasks contain the information that the decider uses
to generate decisions such as scheduling activity tasks. To poll for decision tasks, the decider uses the
PollForDecisionTask action.

In this example, the decider polls for a decision task, specifying the customerorderWorkflow-o0.1 tasklist.

https://swf.us-east-1.amazonaws.com
PollForDecisionTask

{
"domain": "867530901",
"taskList": {"name": "customerOrderWorkflow-v0.1"},
"identity": "DecideroO1",
"maximumPageSize": 50,
"reverseOrder": true
}

If a decision task is available from the task list specified, Amazon SWF returns it immediately. If no
decision task is available, Amazon SWF holds the connection open for up to 60 seconds, and returns
a task as soon as it becomes available. If no task becomes available, Amazon SWF returns an empty
response. An empty response is a Task structure in which the value of taskToken is an empty string.
Make sure to program your decider to poll for another task if it receives an empty response.

If a decision task is available, Amazon SWF returns a response that contains the decision task as well as a
paginated view of the workflow execution history.

In this example, the type of the most recent event indicates the workflow execution started and the
input element contains the information needed to perform the first task.

"events": [
{

"decisionTaskStartedEventAttributes": {
"identity": "DecideroO1",
"scheduledEventId": 2

Iy

"eventId": 3,

"eventTimestamp": 1326593394.566,

"eventType": "DecisionTaskStarted"

}l {

"decisionTaskScheduledEventAttributes": {
"startToCloseTimeout": "600",
"taskList": { "name": "specialTaskList" }

Iy

"eventId": 2,

"eventTimestamp": 1326592619.474,

"eventType": "DecisionTaskScheduled"

}l {
"eventId": 1,
"eventTimestamp": 1326592619.474,

"eventType": "WorkflowExecutionStarted",
"workflowExecutionStartedEventAttributes": {
"childPolicy" : "TERMINATE",
"executionStartToCloseTimeout" : "3600",
"input" : "data-used-decider-for-first-task",
"parentInitiatedEventId": O,
"tagList" : ["music purchase", "digital", "ricoh-the-dog"],
"taskList": { "name": "specialTaskList" },
"taskStartToCloseTimeout": "600",

"workflowType": {

API Version 2012-01-25
100

Amazon Simple Workflow Service Developer Guide
Applying the Coordination Logic

"name": "customerOrderWorkflow",
"version": "1.0"

1,

After receiving the workflow execution history, the decider interprets history and makes decisions based
on its coordination logic.

Because the number of workflow history events for a single workflow execution might be large,
the result returned might be split up across a number of pages. To retrieve subsequent pages,
make additional calls to Pol1ForDecisionTask using the nextPageToken returned by the initial call.
Note that you do not call cetWworkflowExecutionHistory With this nextPageToken. Instead, call
PollForDecisionTask again.

Applying the Coordination Logic

After the decider receives a decision task, program it to interpret the workflow execution history to
determine what has happened so far. Based on this, it should generate a list of decisions.

In the e-commerce example, we are concerned only with the last event in the workflow history, so we
define the following logic.

IF lastEvent = "StartWorkflowInstance"
addToDecisions ScheduleVerifyOrderActivity

ELSIF lastEvent = "CompleteVerifyOrderActivity"
addToDecisions ScheduleChargeCreditCardActivity

ELSIF lastEvent = "CompleteChargeCreditCardActivity"
addToDecisions ScheduleCompleteShipOrderActivity

ELSIF lastEvent = "CompleteShipOrderActivity"
addToDecisions ScheduleRecordOrderCompletion

ELSIF lastEvent = "CompleteRecordOrderCompletion"
addToDecisions CloseWorkflow

ENDIF

If the lastEvent is completeverifyorderActivity, you would add the
ScheduleChargeCreditCardActivity activity to the list of decisions.

After the decider determines the decision(s) to make, it can respond to Amazon SWF with appropriate
decisions.

Responding with Decisions

After interpreting the workflow history and generating a list of decisions, the decider is ready to respond
back to Amazon SWF with those decisions.

Program your decider to extract the data that it needs from the workflow execution history, then create
decisions that specify the next appropriate actions for the workflow. The decider transmits these decision
back to Amazon SWF using the RespondDecisionTaskCompleted action. See the Amazon Simple Workflow
Service API Reference for a list of the available decision types.

API Version 2012-01-25
101

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_Decision.html

Amazon Simple Workflow Service Developer Guide
Closing a Workflow Execution

In the e-commerce example, when the decider responds with the set of decisions that it generated, it
also includes the credit card input from the workflow execution history. The activity worker then has the
information it needs to perform the activity task.

When all activities in the workflow execution are complete, the decider closes the workflow execution.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted

{
"taskToken" : "12342el17-80f6-FAKE-TASK-TOKEN32£f0223",
"decisions" : [
{

"decisionType" :"ScheduleActivityTask",
"scheduleActivityTaskDecisionAttributes" : {
"control" :"OPTIONAL_DATA_FOR_DECIDER",

"activityType" : {
"name" :"ScheduleChargeCreditCardActivity",
"version" :"1.1"

Iy

"activityId" :"3e2e6e55-e7c4-beef-feed-aa815722b7be",

"scheduleToCloseTimeout" :"360",

"taskList" : { "name" :"CC_TASKS" },

"scheduleToStartTimeout" :"60",

"startToCloseTimeout" :"300",

"heartbeatTimeout" :"60",

"input" : "4321-0001-0002-1234: 0212 : 234"

}
}
]
}

Closing a Workflow Execution

When the decider determines that the business process is complete, that is, that there are no more
activities to perform, the decider generates a decision to close the workflow execution.

To close a workflow execution, program your decider to interpret the events in the workflow history
to determine what has happened in the execution so far and see if the workflow execution should be
closed.

If the workflow has completed successfully, then close the workflow execution by calling
RespondDecisionTaskCompleted With the completeworkflowExecution decision. Alternatively, you can
fail an erroneous execution using the FailworkflowExecution decision.

In the e-commerce example, the decider reviews the history and based on the coordination
logic adds a decision to close the workflow execution to its list of decisions, and initiates a
RespondDecisionTaskCompleted action with a close workflow decision.

Note

There are some cases where closing a workflow execution fails. For example, if a signal is
received while the decider is closing the workflow execution, the close decision will fail. To
handle this possibility, ensure that the decider continues polling for decision tasks. Also, ensure
that the decider that receives the next decision task responds to the event—in this case, a signal
—that prevented the execution from closing.

You might also support cancellation of workflow executions. This could be especially

useful for long running workflows. To support cancellation, your decider should handle the
WorkflowExecutionCancelRequested event in the history. This event indicates that cancellation of

the execution has been requested. Your decider should perform appropriate clean-up actions, such as
canceling ongoing activity tasks, and closing the workflow calling the RespondbecisionTaskCompleted
action with the cancelworkflowExecution decision.

API Version 2012-01-25
102

Amazon Simple Workflow Service Developer Guide
Launching Deciders

The following example calls RespondpecisionTaskCompleted to specify that the current workflow
execution is canceled.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted
{
"taskToken" : "12342el17-80f6-FAKE-TASK-TOKEN32f0223",
"decisions" : [
{
"decisionType":"CancelWorkflowExecution",
"CancelWorkflowExecutionAttributes":{
"Details": "Customer canceled order"
}
}
]
}

Amazon SWF checks to ensure that the decision to close or cancel the workflow execution is the last
decision sent by the decider. That is, it isn't valid to have a set of decisions in which there are decisions
after the one that closes the workflow.

Launching Deciders

After completing decider development, you are ready to launch one or more deciders.

To launch deciders, package your coordination logic into an executable that you can use on your decider
platform. For example, you might package your decider code as a Java executable that you can run on
both Linux and Windows computers.

Once launched, your deciders should start polling Amazon SWF for tasks. Until you start workflow
executions and Amazon SWF schedules decision tasks, these polls will time out and get empty responses.
An empty response is a Task structure in which the value of taskToken is an empty string. Your deciders
should simply continue to poll.

Amazon SWF ensures that only one decision task can be active for a workflow execution at any time. This
prevents issues such as conflicting decisions. Additionally, Amazon SWF ensures that a single decision
task is assigned to a single decider, regardless of the number of deciders that are running.

If something occurs that generates a decision task while a decider is processing another decision task,
Amazon SWF queues the new task until the current task completes. After the current task completes,
Amazon SWF makes the new decision task available. Also, decision tasks are batched in the sense that,
if multiple activities complete while a decider is processing a decision task, Amazon SWF will create only
a single new decision task to account for the multiple task completions. However, each task completion
will receive an individual event in the workflow execution history.

Because polls are outbound requests, deciders can run on any network that has access to the Amazon
SWF endpoint.

In order for workflow executions to progress, one or more deciders must be running. You can launch as
many deciders as you like. Amazon SWF supports multiple deciders polling on the same task list.

Starting Workflow Executions with Amazon SWF

You can start a workflow execution of a registered workflow type from any application using the
StartWorkflowExecution action. When you start the execution you associate an identifier, called the
workflowld, with it. The workflowId can be any string that is appropriate for your application, such as
the order number in an order processing application. You cannot use the same workflowid for multiple

API Version 2012-01-25
103

Amazon Simple Workflow Service Developer Guide
Setting Task Priority

open workflow executions within the same domain. For example, if you start two workflow executions
with the workflowId customer order o1, the second workflow execution will not start and the request
will fail. You can, however, reuse the workflowid of a closed execution. Amazon SWF also associates a
unique system generated identifier, called the runig, with each workflow execution.

After the workflow and activity types are registered, start the workflow by calling the
StartWorkflowExecution action. The value of the input parameter can be any string specified by the
application that is starting the workflow. The executionstartToCloseTimeout is the length of time in
seconds that the workflow execution can consume from start to close. Exceeding this limit causes the
workflow execution to time out. Unlike some of the other timeout parameters in Amazon SWF, you
cannot specify a value of "NONE" for this timeout; there is a one-year maximum limit on the time that a
workflow execution can run. Similarly, the taskStartToCloseTimeout is the length of time in seconds that
a decision task associated with this workflow execution can take before timing out.

https://swf.us-east-1.amazonaws.com
StartWorkflowExecution
{
"domain" : "867530901",
"workflowId" : "20110927-T-1",
"workflowType" : {
"name" : "customerOrderWorkflow", "version" : "1.1"
}l
"taskList" : { "name" : "specialTaskList" },
"input" : "arbitrary-string-that-is-meaningful-to-the-workflow",
"executionStartToCloseTimeout" : "1800",
"tagList" : ["music purchase", "digital", "ricoh-the-dog" 1],
"taskStartToCloseTimeout" : "1800",
"childPolicy" : "TERMINATE"

If the startworkflowExecution action is successful, Amazon SWF returns the runid for the workflow
execution. The runid uniquely identifies this workflow execution from any other workflow executions
currently running under Amazon SWF. Save the runid in case you later need to specify this workflow
execution in a call to Amazon SWF. For example, you would use the runid if you later needed to send a
signal to the workflow execution.

{"runId": "9ba33198-4b18-4792-9¢c15-7181fb3a8852"}

Setting Task Priority

By default, tasks on a task list are delivered based upon their arrival time: tasks that are scheduled first
are generally run first, as far as possible. By setting an optional task priority, you can give priority to
certain tasks: Amazon SWF will attempt to deliver higher-priority tasks on a task list before those with
lower priority.

You can set task priorities for both workflows and activities. A workflow's task priority does not affect
the priority of any activity tasks it schedules, nor does it affect any child workflows it starts. The default
priority for an activity or workflow is set (either by you or by Amazon SWF) during registration, and the
registered task priority is always used unless it is overridden while scheduling the activity or starting a
workflow execution.

Task priority values can range from "-2147483648" to "2147483647", with higher numbers indicating
higher priority. If you don't set the task priority for an activity or workflow, it will be assigned a priority
of zero ("0").

Topics

API Version 2012-01-25
104

Amazon Simple Workflow Service Developer Guide
Setting Task Priority for Workflows

 Setting Task Priority for Workflows (p. 105)
« Setting Task Priority for Activities (p. 106)
« Actions that Return Task Priority Information (p. 107)

Setting Task Priority for Workflows

You can set the task priority for a workflow when you register it or start it. The task priority that is set
when the workflow type is registered is used as the default for any workflow executions of that type,
unless it is overridden when starting the workflow execution.

To register a workflow type with a default task priority, set the defaultTaskPriority option when using the

RegisterWorkflowType action:

"domain": "867530901",

"name": "expeditedOrderWorkflow",

"version": "1.0",

"description": "Expedited customer orders workflow",
"defaultTaskStartToCloseTimeout": "600",
"defaultExecutionStartToCloseTimeout": "3600",
"defaultTaskList": {"name": "mainTaskList"},
"defaultTaskPriority": "10",

"defaultChildPolicy": "TERMINATE"

You can override a workflow type's registered task priority when you start a workflow execution with
StartWorkflowExecution:

{
"childPolicy": "TERMINATE",
"domain": "867530901",
"executionStartToCloseTimeout": "1800",
"input": "arbitrary-string-that-is-meaningful-to-the-workflow",
"tagList": ["music purchase", "digital", "ricoh-the-dog"],
"taskList": {"name": "specialTaskList"},
"taskPriority": "-20",
"taskStartToCloseTimeout": "600",
"workflowId": "20110927-T-1",
"workflowType": {"name": "customerOrderWorkflow", "version": "1.0"},
}

You can also override the registered task priority when starting a child workflow or when continuing a
workflow as new, such as when responding to a decision with RespondDecisionTaskCompleted.

To set a child workflow's task priority, provide the value in
startChildWorkflowExecutionDecisionAttributes

"taskToken": "AAAAKgAAAAEAAAAAAAAAA...",
"decisions": [
{
"decisionType": "StartChildWorkflowExecution",
"startChildWorkflowExecutionDecisionAttributes": {
"childPolicy": "TERMINATE",

"control": "digital music",
"executionStartToCloseTimeout": "900",
"input": "201412-Smith-011x",
"taskList": {"name": "specialTaskList"},

API Version 2012-01-25
105

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html

Amazon Simple Workflow Service Developer Guide
Setting Task Priority for Activities

"taskPriority": "5",
"taskStartToCloseTimeout": "600",
"workflowId": "verification-workflow",

"workflowType": {
"name": "MyChildWorkflow",
"version": "1.0"

When continuing a workflow as new, set the task priority in
continueAsNewWorkflowExecutionDecisionAttributes

{
"taskToken": "AAAAKgAAAAEAAAAAAAAAA...",
"decisions": [
{
"decisionType": "ContinueAsNewWorkflowExecution",
"continueAsNewWorkflowExecutionDecisionAttributes": {
"childPolicy": "TERMINATE",
"executionStartToCloseTimeout": "1800",
"input": "5634-0056-4367-0923,12/12,437",
"taskList": {"name": "specialTaskList"},
"taskStartToCloseTimeout": "600",
"taskPriority": "100",
"workflowTypeVersion": "1.0"
}
}
]
}

Setting Task Priority for Activities

You can set the task priority for an activity either when registering it or when scheduling it. The task
priority that is set when registering an activity type is used as the default priority when the activity is

run, unless it is overridden when scheduling the activity.

To set task priority when registering an activity type, set the defaultTaskPriority option when using the

RegisterActivity Type action:

"defaultTaskHeartbeatTimeout": "120",
"defaultTaskList": {"name": "mainTaskList"},
"defaultTaskPriority": "10",
"defaultTaskScheduleToCloseTimeout": "900",
"defaultTaskScheduleToStartTimeout": "300",
"defaultTaskStartToCloseTimeout": "600",
"description": "Verify the customer credit card",
"domain": "867530901",

"name": "activityVerify",

"version": "1.0"

To schedule a task with a task priority, use the taskPriority option when scheduling the activity with the

RespondDecisionTaskCompleted action:

{

API Version 2012-01-25
106

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html

Amazon Simple Workflow Service Developer Guide
Actions that Return Task Priority Information

"taskToken": "AAAAKgAAAAEAAAAAAAAAA...",
"decisions": [
{
"decisionType": "ScheduleActivityTask",
"scheduleActivityTaskDecisionAttributes": {
"activityId": "verify-account",
"activityType": {
"name": "activityVerify",
"version": "1.0"
Iy
"control": "digital music",
"input": "abab-101",
"taskList": {"name": "mainTaskList"},
"taskPriority": "15"

Actions that Return Task Priority Information

Yo

u can get information about the set task priority (or set default task priority) from the following

Amazon SWF actions:

DescribeActivityType returns the defaultTaskPriority of the activity type in the configuration section

of the response.

DescribeWorkflowExecution returns the taskPriority of the workflow execution in the

executionConfiguration section of the response

DescribeWorkflowType returns the defaultTaskPriority of the workflow type in the configuration

section of the response.

o GetWorkflowExecutionHistory and PollForDecisionTask provide task
priority information in the activityTaskScheduledEventAttributes,

decisionTaskScheduledEventAttributes, workflowExecutionContinuedAsNewEventAttributes, and

workflowExecutionStartedEventAttributes sections of the response.

Handling Errors in Amazon SWF

Th

ere are a number of different types of errors that can occur during the course of a workflow execution.

Topics

Validation Errors (p. 107)

Errors in Enacting Actions or Decisions (p. 108)
Timeouts (p. 108)

Errors raised by user code (p. 108)

Errors related to closing a workflow execution (p. 108)

Validation Errors

Va

be

lidation errors occur when a request to Amazon SWF fails because it is not properly formed or it
contains invalid data. In this context, a request could be an action such as pescribeDomain or it could
a decision such as startTimer. If the request is an action, Amazon SWF returns an error code in the
response. Check this error code as it may provide information about what aspect of the request caused
the failure. For example, one or more of the arguments passed with the request might be invalid. For

API Version 2012-01-25
107

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowExecution.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DescribeWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_GetWorkflowExecutionHistory.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_PollForDecisionTask.html

Amazon Simple Workflow Service Developer Guide
Errors in Enacting Actions or Decisions

a list of common error codes, go to the topic for the action in the Amazon Simple Workflow Service APl
Reference.

If the request that failed is a decision, an appropriate event will be listed in the workflow execution
history. For example, if the startTimer decision failed, you would see a startTimerFailed event in

the history. The decider should check for these events when it receives the history in response to
PollForDecisionTask OF GetWorkflowExecutionHistory. Below is a list of possible decision failure events
that can occur when the decision is not correctly formed or contains invalid data.

Errors in Enacting Actions or Decisions

Even if the request is properly formed, errors may occur when Amazon SWF attempts to carry out the
request. In these cases, one of the following events in the history will indicate that an error occurred.
Look at the reason field of the event to determine the cause of failure.

» CancelTimerFailed

» RequestCancelActivityTaskFailed

« RequestCancelExternalWorkflowExecutionFailed
o ScheduleActivityTaskFailed

« SignalExternalWorkflowExecutionFailed

« StartChildWorkflowExecutionFailed

» StartTimerFailed

Timeouts

Deciders, activity workers, and workflow executions all operate within the constraints of timeout periods.
In this type of error, a task or a child workflow times out. An event will appear in the history that
describes the timeout. The decider should handle this event by, for example, rescheduling the task or
restarting the child workflow. For more information about timeouts, see Amazon SWF Timeout Types

(p. 124)

o ActivityTaskTimedOut

o ChildWorkflowExecutionTimedOut
« DecisionTaskTimedOut

» WorkflowExecutionTimedOut

Errors raised by user code

Examples of this type of error condition are activity task failures and child-workflow failures. As with
timeout errors, Amazon SWF adds an appropriate event to the workflow execution history. The decider
should handle this event, possibly by rescheduling the task or restarting the child workflow.

 ActivityTaskFailed
o ChildWorkflowExecutionFailed

Errors related to closing a workflow execution

Deciders may also see the following events if they attempt to close a workflow that has a pending
decision task.

» FailWorkflowExecutionFailed

API Version 2012-01-25
108

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CancelTimerFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RequestCancelActivityTaskFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RequestCancelExternalWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_SignalExternalWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartChildWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_StartTimerFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ChildWorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ChildWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_FailWorkflowExecutionFailedEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Errors related to closing a workflow execution

o CompleteWorkFlowExecutionFailed
o ContinueAsNewWorkflowExecutionFailed
» CancelWorkflowExecutionFailed

For more information about any of the events listed above, see History Event in the Amazon SWF API
Reference.

API Version 2012-01-25
109

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CompleteWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ContinueAsNewWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_CancelWorkflowExecutionFailedEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html

Amazon Simple Workflow Service Developer Guide
Logging Amazon SWF API Calls with CloudTrail

Using Advanced Features of Amazon
SWF

Topics
» Logging Amazon Simple Workflow Service API Calls with AWS CloudTrail (p. 110)
« Amazon SWF Metrics for CloudWatch (p. 114)
« Implementing Exclusive Choice with Amazon Simple Workflow Service (p. 117)
o Amazon Simple Workflow Service Timers (p. 119)
o Amazon Simple Workflow Service Signals (p. 119)
« Amazon Simple Workflow Service Activity Task Cancellation (p. 120)
« Amazon Simple Workflow Service Markers (p. 122)
« Amazon Simple Workflow Service Tagging (p. 122)

Logging Amazon Simple Workflow Service API
Calls with AWS CloudTrail

Amazon SWF is integrated with AWS CloudTrail, a service that captures API calls made by or on behalf
of Amazon SWF and delivers the log files to an Amazon S3 bucket that you specify. The API calls can be
made indirectly by using the Amazon SWF console or directly by using the Amazon SWF API. Using the
information collected by CloudTrail, you can determine what request was made to Amazon SWF, the
source IP address from which the request was made, who made the request, when it was made, and so
on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon SWF Information in CloudTrail

When CloudTrail logging is enabled, calls made to Amazon SWF actions are tracked in log files. Amazon
SWF records are written together with any other AWS service records in a log file. CloudTrail determines
when to create and write to a new file based on a specified time period and file size.

API Version 2012-01-25
110

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Simple Workflow Service Developer Guide
Example Amazon SWF Log File Entries

The following actions are supported:

» DeprecateActivityType
o DeprecateDomain

« DeprecateWorkflowType
« RegisterActivityType

» RegisterDomain

» RegisterWorkflowType

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials,

with temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userldentity element in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted using
Amazon S3 server-side encryption.

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered if
you want to take quick action upon log file delivery. For more information, see Configuring Amazon SNS
Notifications.

You can also aggregate log files from multiple AWS regions and multiple AWS accounts into a single
Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single Amazon S3
Bucket.

Example Amazon SWF Log File Entries

CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

DeprecateActivityType

Here is an example of a CloudTrail log for DeprecateActivityType:

{
"eventVersion": "1.01",
"eventID": "0f65b038-58ff-4d26-blc7-eedff8db994b",
"eventTime": "2014-05-07T22:45:36Z",
"requestParameters": {
"domain": "swf-example-domain",
"activityType": {
"version": "1.0",
"name": "swf-example-activityType"
}
T
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "DeprecateActivityType",

"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",

"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",

API Version 2012-01-25
111

http://docs.aws.amazon.com//amazonswf/latest/apireference/API_DeprecateActivityType.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_DeprecateDomain.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_DeprecateWorkflowType.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_RegisterActivityType.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_RegisterDomain.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_RegisterWorkflowType.html
http://docs.aws.amazon.com//awscloudtrail/latest/userguide/event_reference_user_identity.html
http://docs.aws.amazon.com//AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon Simple Workflow Service Developer Guide
Example Amazon SWF Log File Entries

"accountId": "244806523816"

Iy

"eventSource": "swf.amazonaws.com",

"requestID": "4ela8e94-d639-11le3-9alc-4dbc5d9f1a49",

"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5 Java_HotSpot(TM)_64-
Bit_Server_VM/24.45-b08",

"sourceIPAddress": "10.61.88.189"
}
DeprecateDomain

Here is an example of a CloudTrail log for DeprecateDomain:

"eventVersion": "1.01",
"eventID": "a2be5766-3d3a-4bd3-8b88-4f3582cb52bc",
"eventTime": "2014-05-07T22:46:00Z",
"requestParameters": {
"name": "swf-example-domain"
}
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "DeprecateDomain",
"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",
"accountId": "244806523816"
}
"eventSource": "swf.amazonaws.com",
"requestID": "5c95ae06-d639-11e3-8836-a37995ed01ed",
"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5
Bit_Server_VM/24.45-b08",
"sourceIPAddress": "10.61.88.189"
}

Java_HotSpot(TM)_64-

DeprecateWorkflowType

Here is an example of a CloudTrail log for DeprecateWorkflowType:

"eventVersion": "1.01",
"eventID": "ffé6f4e8e-2401-4cla-956a-f36dab55b22b",
"eventTime": "2014-05-07T22:45:36Z",
"requestParameters": {
"domain": "swf-example-domain",
"workflowType": {
"version": "1.0",
"name": "swf-example-workflowType"
}
Iy
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "DeprecateWorkflowType",
"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",
"accountId": "244806523816"

API Version 2012-01-25
112

Amazon Simple Workflow Service Developer Guide
Example Amazon SWF Log File Entries

"eventSource": "swf.amazonaws.com",

"requestID": "4df29420-d639-11e3-8836-a37995ed01led",

"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5 Java_HotSpot(TM)_64-
Bit_Server_VM/24.45-b08",

"sourceIPAddress": "10.61.88.189"
}

RegisterActivityType

Here is an example of a CloudTrail log for RegisterActivityType:

"eventVersion": "1.01",
"eventID": "d4a99e9e-a980-4e7a-9d84-7b00806ab70f",
"eventTime": "2014-05-07T22:03:38z",
"requestParameters": {
"domain": "swf-example-domain",
"defaultTaskScheduleToStartTimeout": "60",
"name": "swf-example-activityType",
"defaultTaskStartToCloseTimeout": "120",
"defaultTaskScheduleToCloseTimeout": "180",
"version": "1.0",
"defaultTaskList": {
"name": "swf-tasklist"
T
"description": "integration test"
Iy
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "RegisterActivityType",
"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",
"accountId": "244806523816"
Iy
"eventSource": "swf.amazonaws.com",
"requestID": "71811de3-d633-1le3-accd-9dbdf860ac2b",
"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5 Java_HotSpot(TM)_64-
Bit_Server_VM/24.45-b08",
"sourceIPAddress": "10.61.88.189"
}

RegisterDomain

Here is an example of a CloudTrail log for RegisterDomain:

"eventVersion": "1.01",
"eventID": "e7e3cl04-e748-4eda-90b5-827d44f4e459",
"eventTime": "2014-05-07T22:03:382",
"requestParameters": {
"name": "swf-example-domain",
"workflowExecutionRetentionPeriodInDays": "7",
"description": "integration test domain"
T
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "RegisterDomain",
"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",

API Version 2012-01-25
113

Amazon Simple Workflow Service Developer Guide
Amazon SWF Metrics for CloudWatch

"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",
"accountId": "244806523816"
Iy
"eventSource": "swf.amazonaws.com",
"requestID": "7133729f-d633-11e3-860e-45859b92f1b2",
"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5 Java_HotSpot(TM)_64-
Bit_Server_VM/24.45-b08",
"sourceIPAddress": "10.61.88.189"

}

RegisterWorkflowType

Here is an example of a CloudTrail log for RegisterWorkflowType:

"eventVersion": "1.01",
"eventID": "31d2b900-alcl-41a9-a09b-d5c8a57087eb",
"eventTime": "2014-05-07T22:03:382",
"requestParameters": {
"defaultExecutionStartToCloseTimeout": "180",
"domain": "swf-example-domain",
"name": "swf-example-workflowType",
"defaultChildPolicy": "TERMINATE",
"defaultTaskStartToCloseTimeout": "NONE",
"version": "1.0",
"defaultTaskList": {
"name": "swf-tasklist"
}
Iy
"responseElements": null,
"awsRegion": "us-east-1",
"eventName": "RegisterWorkflowType",
"userIdentity": {
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"type": "Root",
"arn": "arn:aws:iam::244806523816:root",
"principalId": "244806523816",
"accountId": "244806523816"
Iy
"eventSource": "swf.amazonaws.com",
"requestID": "71577518-d633-11e3-842e-67638fa0222f",
"userAgent": "aws-sdk-java/unknown-version Linux/2.6.18-164.el5 Java_HotSpot(TM)_64-
Bit_Server_VM/24.45-b08",
"sourceIPAddress": "10.61.88.189"

}

Amazon SWF Metrics for CloudWatch

Amazon SWF now provides metrics for CloudWatch that you can use to track your workflows and
activities and set alarms on threshold values that you choose. You can view metrics using the AWS
Management Console. For more information, see Viewing Amazon SWF Metrics for CloudWatch using the
AWS Management Console (p. 75).

Topics
« Metrics that Report a Time Interval (p. 115)
« Metrics that Report a Count (p. 115)

API Version 2012-01-25
114

Amazon Simple Workflow Service Developer Guide
Metrics that Report a Time Interval

o Workflow Metrics (p. 115)
o Activity Metrics (p. 116)

Metrics that Report a Time Interval

Some of the Amazon SWF metrics for CloudWatch are time intervals, always measured in milliseconds.
These metrics generally correspond to stages of your workflow execution for which you can set workflow
and activity timeouts, and have similar names.

For example, the DecisionTaskStartToCloseTime metric measures the time it took for the decision
task to complete after it began executing, which is the same time period for which you can set a
DecisionTaskStartToCloseTimeout value.

For a diagram of each of these workflow stages and to learn when they occur over the workflow and
activity lifecycles, see Amazon SWF Timeout Types (p. 124).

Metrics that Report a Count

Some of the Amazon SWF metrics for CloudWatch report results as a count. For example,
WorkflowsCanceled, records a result as either one or zero, indicating whether or not the workflow was
canceled. A value of zero does not indicate that the metric was not reported, only that the condition
described by the metric did not occur.

For count metrics, minimum and maximum will always be either zero or one, but average will be a value
ranging from zero to one.

Workflow Metrics

The aws/swr namespace includes the following metrics for Amazon SWF workflows:

Metric Description

DecisionTaskScheduleToStartTime The time interval, in milliseconds, between the time that the
decision task was scheduled and the time it was picked up
by a worker and started.

DecisionTaskStartToCloseTime The time interval, in milliseconds, between the time that the
decision task was started and the time it was closed.

DecisionTasksCompleted The count of decision tasks that have been completed.

StartedDecisionTasksTimedOutOnClose @ The count of decision tasks that started but timed out on
closing.

WorkflowStartToCloseTime The time, in milliseconds, between the time the workflow
started and the time it closed.

WorkflowsCanceled The count of workflows that were canceled.
WorkflowsCompleted The count of workflows that completed.
WorkflowsContinuedAsNew The count of workflows that continued as new.
WorkflowsFailed the count of workflows that failed.
WorkflowsTerminated the count of workflows that were terminated.

API Version 2012-01-25
115

Amazon Simple Workflow Service Developer Guide
Activity Metrics

Metric Description

WorkflowsTimedOut The count of workflows that timed out, for any reason.

Dimensions for Amazon SWF Workflow Metrics

Dimension Description

Domain The Amazon SWF domain that the workflow is running in.
WorkflowTypeName The name of the workflow type for this workflow execution.
WorkflowTypeVersion The version of the workflow type for this workflow execution.

Activity Metrics

The aws/swr namespace includes the following metrics for Amazon SWF activities:

Metric Description

ActivityTaskScheduleToCloseTime The time interval, in milliseconds, between the time when
the activity was scheduled to when it closed.

ActivityTaskScheduleToStartTime The time interval, in milliseconds, between the time when
the activity task was scheduled and when it started.

ActivityTaskStartToCloseTime The time interval, in milliseconds, between the time when
the activity task started and when it was closed.

ActivityTasksCanceled The count of activity tasks that were canceled.
ActivityTasksCompleted The count of activity tasks that completed.
ActivityTasksFailed The count of activity tasks that failed.

ScheduledActivityTasksTimedOutOnClose @ The count of activity tasks that were scheduled but timed
out on close.

ScheduledActivityTasksTimedOutOnStart | The count of activity tasks that were scheduled but timed
out on start.

StartedActivityTasksTimedOutOnClose The count of activity tasks that were started but timed out
on close.

StartedActivityTasksTimedOutOnHeartbeatThe count of activity tasks that were started but timed out
due to a heartbeat timeout.

Dimensions for Amazon SWF Activity Metrics

Dimension Description

Domain The Amazon SWF domain that the activity is running in.

API Version 2012-01-25
116

Amazon Simple Workflow Service Developer Guide
Implementing Exclusive Choice

Dimension Description
ActivityTypeName The name of the activity type.
ActivityTypeVersion The version of the activity type

Implementing Exclusive Choice with Amazon
Simple Workflow Service

In some scenarios, you might want to schedule a different set of activities based on the outcome of a
previous activity. The exclusive choice pattern enables you to create flexible workflows that meet the
complex requirements of your application.

The Amazon Simple Workflow Service (Amazon SWF) does not have a specific exclusive choice action. To
use exclusive choice, you simply write your decider logic to make different decisions based on the results
of the previous activity. Some applications for exclusive choice include the following:

« Performing cleanup activities if the results of a previous activity were unsuccessful
« Scheduling different activities based on whether the customer purchased a basic or advanced plan
« Performing different customer authentication activities based on the customer's ordering history

In the e-commerce example, you might use exclusive choice to either ship or cancel an order based on
the outcome of charging the credit card. In the following figure, the decider schedules the Ship Order
and Record Completion activity tasks if the credit card is successfully charged. Otherwise, it schedules
the Cancel Order and Email Customer activity tasks.

[Customer Grder —p‘ Verify Order }—» Charge Credit Card }—Ck—b‘ Ship Order }—>
tm;n ngp‘ Cancel Order }_. Ermail Customer

The decider schedules the shiporder activity if the credit card is successfully charged. Otherwise, the
decider schedules the cancelorder activity.

In this case, program the decider to interpret the history and determine whether the credit card was
successfully charged. To do this, you might have logic similar to the following

IF lastEvent = "WorkflowExecutionStarted"
addToDecisions ScheduleActivityTask(ActivityType = "VerifyOrderActivity")
ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "VerifyOrderActivity"
addToDecisions ScheduleActivityTask(ActivityType = "ChargeCreditCardActivity")

#Successful Credit Card Charge Activities
ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "ChargeCreditCardActivity"
addToDecisions ScheduleActivityTask(ActivityType = "ShipOrderActivity")

ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "ShipOrderActivity"
addToDecisions ScheduleActivityTask(ActivityType = "RecordOrderCompletionActivity")

ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "RecordOrderCompletionActivity"

API Version 2012-01-25
117

Amazon Simple Workflow Service Developer Guide
Implementing Exclusive Choice

addToDecisions CompleteWorkflowExecution

#Unsuccessful Credit Card Charge Activities
ELSIF lastEvent = "ActivityTaskFailed"
AND ActivityType = "ChargeCreditCardActivity"
addToDecisions ScheduleActivityTask(ActivityType = "CancelOrderActivity")

ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "CancelOrderActivity"
addToDecisions ScheduleActivityTask(ActivityType = "EmailCustomerActivity")

ELSIF lastEvent = "ActivityTaskCompleted"
AND ActivityType = "EmailCustomerActivity"

addToDecisions CompleteWorkflowExecution

ENDIF

If the credit card was successfully charged, the decider should respond with
RespondDecisionTaskCompleted to schedule the shiporder activity.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted

{
"taskToken": "12342el17-80f6-FAKE-TASK-TOKEN32f0223",
"decisions":[
{
"decisionType":"ScheduleActivityTask",
"scheduleActivityTaskDecisionAttributes":{
"control":"OPTIONAL_DATA_ FOR_DECIDER",
"activityType":{
"name" :"ShipOrder",
"version":"2.4"
Iy
"activityId":"3e2e6e55-e7c4-fee-deed-aa815722b7be",
"scheduleToCloseTimeout":"3600",
"taskList":{
"name" : "SHIPPING"
Iy
"scheduleToStartTimeout":"600",
"startToCloseTimeout":"3600",
"heartbeatTimeout":"300",
"input": "123 Main Street, Anytown, United States"
}
}
1
}

If the credit card was not successfully charged, the decider should respond with
RespondDecisionTaskCompleted to schedule the cancelorder activity.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted
{
"taskToken": "12342e17-80f6-FAKE-TASK-TOKEN32f0223",
"decisions":[
{
"decisionType":"ScheduleActivityTask",
"scheduleActivityTaskDecisionAttributes":{
"control":"OPTIONAL_DATA_ FOR_DECIDER",
"activityType":{
"name" : "CancelOrder",

API Version 2012-01-25
118

Amazon Simple Workflow Service Developer Guide
Timers

"version":"2.4"
Iy
"activityId":"3e2e6e55-e7c4-fee-deed-aa815722b7be",
"scheduleToCloseTimeout":"3600",
"taskList":{
"name" : "CANCELLATIONS"
Iy
"scheduleToStartTimeout":"600",
"startToCloseTimeout":"3600",
"heartbeatTimeout":"300",
"input": "Out of Stock"

If Amazon SWF is able to validate the data in the RespondbecisionTaskCompleted action, Amazon SWF
returns a successful HTTP response similar to the following.

HTTP/1.1 200 OK

Content-Length: 11

Content-Type: application/json

x-amzn-RequestId: 93cec6f7-0747-11e1-b533-79b402604df1

Amazon Simple Workflow Service Timers

A timer enables you to notify your decider when a certain amount of time has elapsed. When responding
to a decision task, the decider has the option to respond with a startTimer decision. This decision
specifies an amount of time after which the timer should fire. After the specified time has elapsed,
Amazon SWF will add a TimerFired event to the workflow execution history and schedule a decision
task. The decider can then use this information to inform further decisions. One common application for
a timer is to delay the execution of an activity task. For example, a customer might want to take delayed
delivery of an item.

Amazon Simple Workflow Service Signals

Signals enable you to inform a workflow execution of external events and inject information into a
workflow execution while it is running. Any program can send a signal to a running workflow execution
by calling the signalworkflowExecution APl. When a signal is received, Amazon SWF records it in the
workflow execution's history as workflowExecutionSignaled event and alerts the decider by scheduling
a decision task.

Note
An attempt to send a signal to a workflow execution that is not open results in
SignalWorkflowExecution failing with UnknownResourceFault.

In this example, the workflow execution is sent a signal to cancel an order.

https://swf.us-east-1.amazonaws.com
SignalWorkflowExecution
{"domain": "867530901",
"workflowId": "20110927-T-1",
"runId": "f5ebbac6-941c-4342-ad69-dfd2f8be6689",
"signalName": "CancelOrder",
"input": "order 3553"}

API Version 2012-01-25
119

Amazon Simple Workflow Service Developer Guide
Activity Task Cancellation

If the workflow execution receives the signal, Amazon SWF returns a successful HTTP response similar to
the following. Amazon SWF will generate a decision task to inform the decider to process the signal.

HTTP/1.1 200 OK

Content-Length: 0

Content-Type: application/json

x-amzn-RequestId: bf78ael5-3f0c-11e1-9914-a356b6ea8bdf

Sometimes you might want to wait for a signal. For example, a user could cancel an order by sending a
signal, but only within one hour of placing the order. Amazon SWF does not have a primitive to enable a
decider to wait for a signal from the service. Pause functionality needs to be implemented in the decider
itself. In order to pause, the decider should start a timer, using the startTimer decision, which specifies
the duration for which the decider will wait for the signal while continuing to poll for decision tasks.
When the decider receives a decision task, it should check the history to see if either the signal has been
received or the timer has fired. If the signal has been received, then the decider should cancel the timer.
However, if instead, the timer has fired, then it means that the signal did not arrive within the specified
time. To summarize, in order to wait for a specific signal, do the following.

1. Create a timer for the amount of time the decider should wait.

2. When a decision task is received, check the history to see if the signal has arrived or if the timer has
fired.

3. If a signal has arrived, cancel the timer using a cancelTimer decision and process the signal.
Depending on the timing, the history may contain both TimerFired and workflowExecutionSignaled
events. In such cases, you can rely on the relative order of the events in the history to determine which
occurred first.

4. If the timer has fired, before a signal is received, then the decider has timed out waiting for the signal.
You can fail the execution or do whatever other logic is appropriate to your use case.

Amazon Simple Workflow Service Activity Task
Cancellation

Activity task cancellation enables the decider to end activities that no longer need to be performed.
Amazon SWF uses a cooperative cancellation mechanism and does not forcibly interrupt running activity
tasks. You must program your activity workers to handle cancellation requests.

The decider can decide to cancel an activity task while it is processing a decision task. To
cancel an activity task, the decider uses the RespondbecisionTaskCompleted action with the
RequestCancelActivityTask decision.

If the activity task has not yet been acquired by an activity worker, the service will cancel the task. Note
that there is a potential race condition in that an activity worker could acquire the task at any time. If the
task has already been assigned to an activity worker, then the activity worker will be requested to cancel
the task.

In this example, the workflow execution is sent a signal to cancel the order.

https://swf.us-east-1.amazonaws.com
SignalWorkflowExecution
{"domain": "867530901",
"workflowId": "20110927-T-1",
"runId": "9ba33198-4b18-4792-9¢c15-7181fb3a8852",
"signalName": "CancelOrder",
"input": "order 3553"}

API Version 2012-01-25
120

Amazon Simple Workflow Service Developer Guide
Activity Task Cancellation

If the workflow execution receives the signal, Amazon SWF returns a successful HTTP response similar to
the following. Amazon SWF will generate a decision task to inform the decider to process the signal.

HTTP/1.1 200 OK

Content-Length: 0

Content-Type: application/json

x-amzn-RequestId: 6c0373ce-074c-11e1-9083-8318c48dee96

When the decider processes the decision task and sees the signal in the history, the decider attempts
to cancel the outstanding activity that has the shiporderactivityo0001 activity ID. The activity ID is
provided in the workflow history from the schedule activity task event.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted

{
"taskToken":"12342e17-80£f6-FAKE-TASK-TOKEN32£0223",
"decisions":[{
"decisionType":"RequestCancelActivityTask",
"RequestCancelActivityTaskDecisionAttributes":{
"ActivityID":"ShipOrderActivity0001"
}
}
]
}

If Amazon SWF successfully receives the cancellation request, it returns a successful HTTP response
similar to the following:

HTTP/1.1 200 OK

Content-Length: 0

Content-Type: application/json

x-amzn-RequestId: 6c0373ce-074c-11e1-9083-8318c48dee96

The cancellation attempt is recorded in the history as the ActivityTaskCcancelRequested event.

If the task is successfully canceled—as indicated by an ActivityTaskCanceled event—program your
decider to take the appropriate steps that should follow task cancellation such as closing the workflow
execution.

If the activity task could not be canceled—for example, if the task completes, fails, or times out instead
of canceling—your decider should accept the results of the activity or perform any cleanup or mitigation
necessitated by your use case.

If the activity task has already been acquired by an activity worker, then the request to cancel
is transmitted through the task-heartbeat mechanism. Activity workers can periodically use
RecordActivityTaskHeartbeat to report to Amazon SWF that the task is still in progress.

Note that activity workers are not required to heartbeat, although it is recommended for long-running
tasks. Task cancellation requires periodic heartbeat to be recorded; if the worker does not heartbeat, the
task cannot be canceled.

If the decider requests a cancellation of the task, Amazon SWF sets the value of the cancelrRequest
object to true. The cancelRequest object is part of the ActivityTaskstatus object which is returned by
the service in response to RecordActivityTaskHeartbeat.

Amazon SWF does not prevent the successful completion of an activity task whose cancellation has
been requested; it is up to the activity to determine how to handle the cancellation request. Depending

API Version 2012-01-25
121

Amazon Simple Workflow Service Developer Guide
Markers

on your requirements, program the activity worker to either cancel the activity task or ignore the
cancellation request.

If you want the activity worker to indicate that the work for the activity task was canceled, program it
to respond with a RespondactivityTaskcanceled. If you want the activity worker to complete the task,
program it to respond with a standard RespondactivityTaskCompleted.

When Amazon SWF receives the RespondActivityTaskCompleted OF RespondActivityTaskCanceled
request, it updates the workflow execution history and schedules a decision task to inform the decider.

Program the decider to process the decision task and return any additional decisions. If the activity
task is successfully canceled, program the decider to perform the tasks needed to continue or close the
workflow execution. If the activity task is not successfully canceled, program the decider to accept the
results, ignore the results, or schedule any required cleanup.

Amazon Simple Workflow Service Markers

You can use markers to record events in the workflow execution history for application specific purposes.
Markers are useful when you want to record custom information to help implement decider logic. For
example, you could use a marker to count the number of loops in a recursive workflow.

In the following example, the decider completes a decision task and responds with a
RespondDecisionTaskCompleted action that contains a RecordMarker decision.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted
{
"taskToken":"12342e17-80f6-FAKE-TASK-TOKEN32£f0223",
"decisions":[{
"decisionType":"RecordMarker",
"recordMarkerDecisionAttributes":{
"markerName" :"customer elected special shipping offer"
}
}!
]
}

If Amazon SWF successfully records the marker, it returns a successful HTTP response similar to the
following.

HTTP/1.1 200 OK

Content-Length: 0

Content-Type: application/json

x-amzn-RequestId: 6c0373ce-074c-11e1-9083-8318c48dee96

Recording a marker does not, by itself, initiate a decision task. To prevent the workflow execution from
becoming stuck, something must occur that continues the execution of the workflow. For example, this
might include the decider scheduling another activity task, the workflow execution receiving a signal, or
a previously scheduled activity task completing.

Amazon Simple Workflow Service Tagging

As described in the section Tags (p. 64), you can associate up to five tags with a workflow execution
when you start the execution using the startworkflowExecution action, startchildworkflowExecution

API Version 2012-01-25
122

Amazon Simple Workflow Service Developer Guide
Tagging

decision, or continueAsNewWorkflowExecution decision. Tagging enables you to filter your results when
you use visibility actions to list or count workflow executions.

To use tagging

1. Devise a tagging strategy. Think about your business requirements and create a list of tags that are
meaningful to you. Determine which executions will get which tags. Even though an execution can
be assigned a maximum of five tags, your tag library can have any number of tags. Because each
tag can be any string value up to 256 characters in length, a tag can describe almost any business
concept.

2. Tag an execution with up to five tags when you create it.

3. List or count the executions that are tagged with a particular tag by specifying the tagFilter
parameter with the ListopenWorkflowExecutions, ListClosedWorkflowExecutions,
CountOpenWorkflowExecutions, and CountClosedWorkflowExecutions actions. The action will filter
the executions based on the tags specified.

When you associate a tag with a workflow execution, it is permanently associated with that execution,
and cannot be removed.

You can specify only one tag in the tagfFilter parameter with ListWorkflowExecutions. Also, tag
matching is case sensitive, and only exact matches return results.

Assume you have already set up two executions that are tagged as follows.

Execution Name Assigned Tags
Execution-One Consumer, 2011-February
Execution-Two Wholesale, 2011-March

You can filter the list of executions returned by ListopenWorkflowExecutions on the Consumer tag. The
oldestDate and latestDate values are specified as Unix Time values.

https://swf.us-east-1.amazonaws.com
RespondDecisionTaskCompleted
{
"domain":"867530901",
"startTimeFilter":{
"oldestDate":1262332800,
"latestDate":1325348400
T
"tagFilter":{
"tag":"Consumer"

}

API Version 2012-01-25
123

https://en.wikipedia.org/wiki/Unix_time

Amazon Simple Workflow Service Developer Guide
Timeout Types

Amazon Simple Workflow Service
Resources

This chapter provides additional resources and reference information that is useful when developing
workflows with Amazon SWF.

Topics
» Amazon SWF Timeout Types (p. 124)
o Amazon SWF Limits (p. 127)
« Amazon Simple Workflow Service Endpoints (p. 131)
« Additional Documentation for the Amazon Simple Workflow Service (p. 132)
« Web Resources for the Amazon Simple Workflow Service (p. 134)

Amazon SWF Timeout Types

To ensure that workflow executions run correctly, Amazon SWF enables you to set different types

of timeouts. Some timeouts specify how long the workflow can run in its entirety. Other timeouts
specify how long activity tasks can take before being assigned to a worker and how long they can take
to complete from the time they are scheduled. All timeouts in the Amazon SWF API are specified in
seconds. Amazon SWF also supports the string "NONE" as a timeout value, which indicates no timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the workflow
execution history. The attributes of the event provide information about what type of timeout occurred
and which decision task or activity task was affected. Amazon SWF also schedules a decision task.
When the decider receives the new decision task, it will see the timeout event in the history and take an
appropriate action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task is reported
as open while a worker is processing it. A task is closed when a worker reports it as completed, canceled,
or failed. A task may also be closed by Amazon SWF as the result of a timeout.

Timeouts in Workflow and Decision Tasks

The following diagram shows how workflow and decision timeouts are related to the lifetime of a
workflow:

API Version 2012-01-25
124

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

Amazon Simple Workflow Service Developer Guide
Timeouts in Activity Tasks

Execution Start to Close timeout

Task 5tart to Close Task Start to Close
timeout _ timeout
Workflow Execution | Decision Task Decision Task | Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled (completed, failed, terminated,

canceled or timed out)

There are two timeout types that are relevant to workflow and decision tasks:

« Workflow Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum time
that a workflow execution can take to complete. It is set as a default during workflow registration, but
it can be overridden with a different value when the workflow is started. If this timeout is exceeded,
Amazon SWF closes the workflow execution and adds an event of type WorkflowExecutionTimedOut
to the workflow execution history. In addition to the timeoutType, the event attributes specify the
childpolicy that is in effect for this workflow execution. The child policy specifies how child workflow
executions are handled if the parent workflow execution times out or otherwise terminates. For
example, if the childpolicy is set to TERMINATE, then child workflow executions will be terminated.
Once a workflow execution has timed out, you cannot take any action on it other than visibility calls.

« Decision Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum
time that the corresponding decider can take to complete a decision task. It is set during workflow
type registration. If this timeout is exceeded, the task is marked as timed out in the workflow execution
history, and Amazon SWF adds an event of type DecisionTaskTimedOut to the workflow history.

The event attributes will include the IDs for the events that correspond to when this decision task
was scheduled (scheduledEvent1d) and when it was started (startedEvent1d). In addition to adding
the event, Amazon SWF also schedules a new decision task to alert the decider that this decision
task timed out. After this timeout occurs, an attempt to complete the timed-out decision task using
RespondDecisionTaskCompleted Will fail.

Timeouts in Activity Tasks

The following diagram shows how timeouts are related to the lifetime of an activity task:

API Version 2012-01-25
125

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Timeouts in Activity Tasks

Schedule to Close timeout

Schedule to Start timeout

1
¢ Start to Close timeout

: Heartbeat timeout

i |

Task Task started Heartbeat Heartbeat
scheduled (dispatched recorded recorded
ScheduleActivityTask to worker)

decision received

There are four timeout types that are relevant to activity tasks:

« Activity Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum
time that an activity worker can take to process a task after the worker has received the task. Attempts
to close a timed out activity task using RespondActivityTaskCanceled, RespondActivityTaskCompleted,
and RespondActivityTaskFailed will fail.

« Activity Task Heartbeat (timeoutType: HEARTBEAT): This timeout specifies the maximum time that a
task can run before providing its progress through the RecordactivityTaskHeartbeat action.

o Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START): This timeout specifies how
long Amazon SWF waits before timing out the activity task if no workers are available to perform the
task. Once timed out, the expired task will not be assigned to another worker.

« Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE): This timeout specifies how
long the task can take from the time it is scheduled to the time it is complete. As a best practice, this
value should not be greater than the sum of the task schedule-to-start timeout and the task start-to-
close timeout.

Note
Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

You set default values for these during activity type registration, but you can override them with new
values when you schedule the activity task. When one of these timeouts occurs, Amazon SWF will add
an event of type ActivityTaskTimedOut to the workflow history. The timeoutType value attribute of this
event will specify which of these timeouts occurred. For each of the timeouts, the value of timeoutType
is shown in parentheses. The event attributes will also include the IDs for the events that correspond to
when the activity task was scheduled (scheduledEvent1d) and when it was started (startedEvent1d). In
addition to adding the event, Amazon SWF also schedules a new decision task to alert the decider that
the timeout occurred.

Heartbeat
recorded

API Version 2012-01-25
126

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

Amazon Simple Workflow Service Developer Guide
Limits

Amazon SWF Limits

Amazon SWF places limits on the sizes of certain workflow parameters, such as on the number of
domains per account and on the size of the workflow execution history. These limits are designed to
prevent erroneous workflows from consuming all of the resources of the system, but are not hard limits.
If you find that your application is frequently exceeding these limits, you can request a service limit
increase (p. 131).

Topics
« General Account Limits for Amazon SWF (p. 127)
« Limits on Workflow Executions (p. 127)
« Limits on Task Executions (p. 128)
« Amazon SWF throttling limits (p. 128)
« Requesting a Limit Increase (p. 131)

General Account Limits for Amazon SWF

« Maximum registered domains — 100

This limit includes both registered and deprecated domains.
« Maximum workflow and activity types - 10,000 each per domain

This limit includes both registered and deprecated types.

« API call limit - Beyond infrequent spikes, applications may be throttled if they make a large number
of API calls in a very short period of time.

« Maximum request size — 1 MB per request

This is the total data size per Amazon SWF API request, including the request header and all other
associated request data.

Limits on Workflow Executions

« Maximum open workflow executions — 100,000 per domain

This count includes child workflow executions.
« Maximum workflow execution time - 1 year
« Maximum workflow execution history size — 25,000 events
« Maximum child workflow executions — 1,000 per workflow execution.
« Workflow execution idle time limit — 1 year (constrained by workflow execution time limit)

You can configure workflow timeouts (p. 124) to cause a timeout event to occur if a particular stage
of your workflow takes too long.

« Workflow retention time limit — 90 days

After this time, the workflow history can no longer be retrieved or viewed. There is no further limit to
the number of closed workflow executions that are retained by Amazon SWF.

If your use case requires you to go beyond these limits, you can use features Amazon SWF provides to
continue executions and structure your applications using child workflow (p. 62) executions. If you find
that you still need a limits increase, see Requesting a Limit Increase (p. 131).

API Version 2012-01-25
127

Amazon Simple Workflow Service Developer Guide
Limits on Task Executions

Limits on Task Executions

Maximum pollers per task list — 100 per host, per tasklist

There are 10 hosts available, so the limit of pollers per task list is 1000 total. However, if a single host
receives 101 pollers on a particular task list, a LimitExceededException will result.

Maximum task execution time - 1 year (constrained by workflow execution time limit)

You can configure activity timeouts (p. 124) to cause a timeout event to occur if a particular stage of
your activity task (p. 40) execution takes too long.

Maximum time SWF will keep a task in the queue - 1 year (constrained by workflow execution time
limit)

You can configure default activity timeouts (p. 124) during activity registration that will cause a
timeout event to occur if a particular stage of your activity task (p. 40) execution takes too long. You
can also override the default activity timeouts when you schedule an activity task in your decider code.

Maximum open activity tasks — 1,000 per workflow execution.

This limit includes both activity tasks that have been scheduled and those being processed by workers.
Maximum open timers — 1,000 per workflow execution
Maximum input/result data size — 32,000 characters

This limit affects activity or workflow execution result data, input data when scheduling activity tasks
or workflow executions, and input sent with a workflow execution signal (p. 62).

Maximum decisions in a decision task response - varies

Due to the 1 MB limit on the maximum API request size (p. 127), the number of decisions returned
in a single call to RespondDecisionTaskCompleted will be limited according to the size of the data
used by each decision, including the size of any input data provided to scheduled activity tasks or to
workflow executions.

Amazon SWF throttling limits

In addition to the service limits described previously, certain Amazon SWF API calls and decision events
are throttled to maintain service bandwidth, using a token bucket scheme. If your rate of requests
consistently exceeds the rates that are listed here, you can request a throttle limit increase (p. 131).

Throttling limits are per account / region. Limits in us-east-1 are slightly different than in other regions;
refer to the section that corresponds to your region:

o Throttling limits for us-east-1 (p. 128)
« Throttling limits for other regions (p. 130)

Throttling limits for us-east-1

API limits
APl name Bucket size Refill rate / s
CountClosedWorkflowExecutions 1000 1
CountOpenWorkflowExecutions 1000 1
CountPendingActivityTasks 100 1

API Version 2012-01-25
128

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://en.wikipedia.org/wiki/Token_bucket

Amazon Simple Workflow Service Developer Guide

Amazon SWF throttling limits

APl name
CountPendingDecisionTasks
DeprecateActivityType
DeprecateDomain
DeprecateWorkflowType
DescribeActivityType
DescribeDomain
DescribeWorkflowExecution
DescribeWorkflowType
GetWorkflowExecutionHistory
ListActivityTypes
ListClosedWorkflowExecutions
ListDomains
ListOpenWorkflowExecutions
ListWorkflowTypes
PollForActivityTask
PollForDecisionTask
RecordActivityTaskHeartbeat
RegisterActivityType
RegisterDomain
RegisterWorkflowType
RequestCancelWorkflowExecution
RespondActivityTaskCanceled
RespondActivityTaskCompleted
RespondActivityTaskFailed
RespondDecisionTaskCompleted
SignalWorkflowExecution
StartWorkflowExecution

TerminateWorkflowExecution

Bucket size
100
100
50
100
1000
100
1000
1000
1000
100
100
50
100
100
1000
1000
1000
100
50
100
1000
1000
1000
1000
1000
1000
1000
1000

Refill rate / s
1

1

100

142

100
100
100
142

25
10

API Version 2012-01-25
129

Amazon Simple Workflow Service Developer Guide

Amazon SWF throttling limits

Decision limits

Decision Bucket size
RequestCancelExternalWorkflowExecution 100
ScheduleActivityTask 500
SignalExternalWorkflowExecution 100
StartChildWorkflowExecution 500
StartTimer 1000

Throttling limits for other regions

API limits
APl name Bucket size
CountClosedWorkflowExecutions 1000
CountOpenWorkflowExecutions 1000
CountPendingActivityTasks 100
CountPendingDecisionTasks 100
DeprecateActivityType 100
DeprecateDomain 50
DeprecateWorkflowType 100
DescribeActivityType 1000
DescribeDomain 100
DescribeWorkflowExecution 1000
DescribeWorkflowType 1000
GetWorkflowExecutionHistory 1000
ListActivityTypes 100
ListClosedWorkflowExecutions 100
ListDomains 50
ListOpenWorkflowExecutions 100
ListWorkflowTypes 100
PollForActivityTask 1000
PollForDecisionTask 1000
RecordActivityTaskHeartbeat 1000
RegisterActivityType 100

Refill rate / s
10

100

10

2

142

Refill rate / s
1

1

10

12

API Version 2012-01-25
130

Amazon Simple Workflow Service Developer Guide
Requesting a Limit Increase

APl name Bucket size Refill rate / s
RegisterDomain 50 1
RegisterWorkflowType 100 1
RequestCancelWorkflowExecution 1000 5
RespondActivityTaskCanceled 1000 10
RespondActivityTaskCompleted 1000 10
RespondActivityTaskFailed 1000 10
RespondDecisionTaskCompleted 1000 12
SignalWorkflowExecution 1000 5
StartWorkflowExecution 1000 2
TerminateWorkflowExecution 1000 10

Decision limits

Decision Bucket size Refill rate / s
RequestCancelExternalWorkflowExecution 100 10
ScheduleActivityTask 100 10
SignalExternalWorkflowExecution 100 10
StartChildWorkflowExecution 100 2

StartTimer 500 25

Requesting a Limit Increase

Use the Support Center page in the AWS Management Console to request a limit increase for resources
provided by AWS Step Functions on a per-region basis. For more information, see To Request a Limit
Increase in the AWS General Reference.

Amazon Simple Workflow Service Endpoints

A list of the current Amazon SWF Regions and Endpoints are provided in the Amazon Web Services
General Reference, along with the endpoints for other services.

Amazon SWF domains and all related workflows and activities must exist within the same region to
communicate with each other. Furthermore, any registered domains, workflows and activities within
a region don't exist in other regions. For example, if you create a domain named "MySampleDomain"
in both us-east-1 and in us-west-2, they exist as separate domains: none of the workflows, task lists,
activities, or data associated with your domains are shared across regions.

If you use other AWS resources in your workflows, such as Amazon EC2 instances, these must also exist
in the same region as your Amazon SWF resources. The only exceptions to this are services that span
regions, such as Amazon S3 and IAM. You can access these services from workflows that exist in any
region that supports them.

API Version 2012-01-25
131

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#swf_region

Amazon Simple Workflow Service Developer Guide
Additional Documentation

Additional Documentation for the Amazon Simple
Workflow Service

In addition to this Developer Guide, you may find the following documentation useful.

Topics
« Amazon Simple Workflow Service API Reference (p. 132)
o AWS Flow Framework Documentation (p. 132)
« AWS SDK Documentation (p. 132)
o AWS CLI Documentation (p. 134)

Amazon Simple Workflow Service APl Reference

The Amazon Simple Workflow Service API Reference provides detailed information about the Amazon
SWF HTTP AP, including actions, request and response structures and error codes.

AWS Flow Framework Documentation

The AWS Flow Framework is a programming framework that simplifies the process of implementing
distributed asynchronous applications that use Amazon SWF to manage their workflows and activities, so
you can focus on implementing your workflow logic.

Each AWS Flow Framework is designed to work idiomatically in the language for which it is designed, so
you can work naturally with your language of choice to implement workflows with all of the benefits of
Amazon SWF.

There are AWS Flow Frameworks for the following languages:
Java

The AWS Flow Framework for Java Developer Guide provides information about how to obtain, set
up and use the AWS Flow Framework for Java.

For a list of the classes, methods, and annotations used by the framework, refer to the AWS Flow
Framework for Java API Reference.

Ruby

The AWS Flow Framework for Ruby Developer Guide provides information about how to obtain, set
up and use the AWS Flow Framework for Ruby.

For a list of the classes and methods used by the framework, refer to the AWS Flow Framework for
Ruby API Reference.

The aws-flow-ruby-samples project on GitHub provides code examples that demonstrate many of

the features of the AWS Flow Framework for Ruby. You can use this code to learn more about the
framework and as an aid for designing and implementing your own workflows.

AWS SDK Documentation

The AWS Software Development Kits (SDKs) provide access to Amazon SWF in many different
programming languages. The SDKs follow the HTTP API closely, but also provide language-specific

API Version 2012-01-25
132

http://docs.aws.amazon.com/amazonswf/latest/apireference/
https://aws.amazon.com/swf/details/flow/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-frame.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-frame.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowguide/
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/
https://github.com/awslabs/aws-flow-ruby-samples

Amazon Simple Workflow Service Developer Guide
AWS SDK Documentation

programming interfaces for some Amazon SWF features. You can find out more information about each
SDK by visiting the following links.

Note
Only SDKs that have support for Amazon SWF at the time of writing are listed here. For a full list
of the available AWS SDKs, visit the Tools for Amazon Web Services page.

Java
The AWS SDK for Java provides a Java APl for AWS infrastructure services.

To view the available documentation, see the AWS SDK for Java Documentation page. You can also
go directly to the Amazon SWF sections in the SDK reference by following these links:

o Class: AmazonSimpleWorkflowClient

« Class: AmazonSimpleWorkflowAsyncClient

o Interface: AmazonSimpleWorkflow

« Interface: AmazonSimpleWorkflowAsync
JavaScript

The AWS SDK for JavaScript allows developers to build libraries or applications that make use of
AWS services using a simple and easy-to-use API available both in the browser or inside of Node.js
applications on the server.

To view the available documentation, see the AWS SDK for JavaScript Documentation page. You can
also go directly to the Amazon SWF section in the SDK reference by following this link:

» Class: AWS.SimpleWorkflow
.NET

The AWS SDK for .NET is a single, downloadable package that includes Visual Studio project
templates, the AWS .NET library, C# code samples, and documentation. The AWS SDK for .NET
makes it easier for Windows developers to build .NET applications for Amazon SWF and other
services.

To view the available documentation, see the AWS SDK for .NET Documentation page. You can also
go directly to the Amazon SWF sections in the SDK reference by following these links:

« Namespace: Amazon.SimpleWorkflow
» Namespace: Amazon.SimpleWorkflow.Model
PHP

The AWS SDK for PHP provides a PHP programming interface to Amazon SWF.

To view the available documentation, see the AWS SDK for PHP Documentation page. You can also
go directly to the Amazon SWF section in the SDK reference by following this link:

o Class: SwfClient
Python

The AWS SDK for Python (Boto) provides a Python programming interface to Amazon SWF.

To view the available documentation, see the boto: A Python interface to Amazon Web Services
page. You can also go directly to the Amazon SWF sections in the documentation by following these
links:

« Amazon SWF Tutorial
« Amazon SWF Reference
Ruby

The AWS SDK for Ruby provides a Ruby programming interface to Amazon SWF.

API Version 2012-01-25
133

https://aws.amazon.com/tools/
https://aws.amazon.com/documentation/sdkforjava/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflow.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsync.html
https://aws.amazon.com/documentation/sdkforjavascript/
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SWF.html
https://aws.amazon.com/documentation/sdkfornet/
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SimpleWorkflow/NSimpleWorkflow.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SimpleWorkflow/NSimpleWorkflowModel.html
https://aws.amazon.com/documentation/sdkforphp/
http://docs.aws.amazon.com/aws-sdk-php/latest/class-Aws.Swf.SwfClient.html
http://docs.pythonboto.org/en/latest/
http://docs.pythonboto.org/en/latest/swf_tut.html
http://docs.pythonboto.org/en/latest/ref/swf.html

Amazon Simple Workflow Service Developer Guide
AWS CLI Documentation

To view the available documentation, see the AWS SDK for Ruby Documentation page. You can also
go directly to the Amazon SWF section in the SDK reference by following this link:

o Class: AWS::SimpleWorkflow

AWS CLI Documentation

The AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS services. With just
one tool to download and configure, you can control multiple AWS services from the command line and
automate them through scripts.

For more information about the AWS CLI, see the AWS Command Line Interface page.

For an overview of the available commands for Amazon SWF, see swf in the AWS Command Line Interface
Reference.

Web Resources for the Amazon Simple Workflow
Service

There are a number of Web resources that you can use to learn more about Amazon SWF or to get help
with using the service and developing workflows.

Topics
o Amazon SWF Forum (p. 134)
o Amazon SWF FAQ (p. 134)
o Amazon SWF Videos (p. 134)
« Amazon SWF Source Code and Samples (p. 135)

Amazon SWF Forum

The Amazon SWF forum provides a place for you to communicate with other Amazon SWF developers
and members of the Amazon SWF development team at Amazon to ask questions and to get answers.

You can visit the forum at: Forum: Amazon Simple Workflow Service. You must be signed in to your AWS
account to view the forum.

Amazon SWF FAQ

The Amazon SWF FAQ provide answers to frequently-asked questions about Amazon SWF, including an
overview of common use cases, differences between Amazon SWF and other services, and more.

You can access the FAQ here: Amazon SWF FAQ.

Amazon SWF Videos

The Amazon Web Services channel on YouTube provides video training for all of Amazon's Web Services,
including Amazon SWF.

Videos are updated frequently; for a full list of Amazon SWF-related videos, you can use the following
query: Simple Workflow in Amazon Web Services

API Version 2012-01-25
134

https://aws.amazon.com/documentation/sdkforruby/
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/reference/swf/index.html
https://forums.aws.amazon.com/forum.jspa?forumID=133
https://aws.amazon.com//swf/faqs/
http://www.youtube.com/user/AmazonWebServices
http://www.youtube.com/user/AmazonWebServices/search?query=simple+workflow

Amazon Simple Workflow Service Developer Guide
Amazon SWF Source Code and Samples

Amazon SWF Source Code and Samples

The source code for the AWS Flow Framework for Ruby is available on GitHub. You can use the following
links to access it and its associated samples and recipes.

o AWS Flow Framework for Ruby
o AWS Flow Framework for Ruby Samples and Recipes

API Version 2012-01-25
135

https://github.com/aws/aws-flow-ruby
https://github.com/awslabs/aws-flow-ruby-samples

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Service
Developer Guide History

The following table describes the important changes to the documentation since the last release of the
Amazon Simple Workflow Service Developer Guide.

« APl version: 2012-01-25
o Latest documentation update: June 5, 2017

Change

Update
Update

Update

Update

Lambda task support

Support for setting
task priority

Update

Description

Cleaned up the code examples throughout this guide.

Simplified and improved the organization and contents of this
guide.

Updates and link fixes.

Updates and link fixes.

You can specify Lambda tasks in addition to traditional
Activity tasks in your workflows. For more information, see
AWS Lambda Tasks (p. 92).

Amazon SWF now includes support for setting the priority
of tasks on a task list, and will attempt to deliver those with
higher priority before tasks with lower priority. Information
about how to set the task priority for workflows and for
activities is provided in Setting Task Priority (p. 104).

Added a new topic that describes how to log Amazon SWF
API calls using CloudTrail: Logging Amazon Simple Workflow
Service API Calls with AWS CloudTrail (p. 110).

Date
Changed

June 5, 2017

May 19, 2017

May 16, 2017

October 1,
2016

July 21, 2015

December 17,
2014

May 8, 2014

API Version 2012-01-25
136

Amazon Simple Workflow Service Developer Guide

Change Description Date
Changed
Update Two new topics related to CloudWatch metrics for April 28,
Amazon SWF have been added: Amazon SWF Metrics for 2014

CloudWatch (p. 114), which provides a list and descriptions

of the supported metrics, and Viewing Amazon SWF Metrics
for CloudWatch using the AWS Management Console (p. 75),
which provides information about how to view metrics and set
alarms with the AWS Management Console.

Update Added a new section: Amazon Simple Workflow Service March 19,
Resources (p. 124). This section provides some service 2014
reference information and provides information about
additional documentation, samples, code and other web
resources for Amazon SWF developers.

Update Added a workflow tutorial. See Tutorial: A Subscription October 25,
Workflow with Amazon SWF and Amazon SNS (p. 9). 2013
Update Added AWS CLI information and example (p. 79). August 26,
2013
Update Updates and fixes. August 1,
2013
Update Updated the document to describe how to use IAM for access | February 22,
control. 2013
Initial Release This is the first release of the Amazon Simple Workflow Service | October 16,
Developer Guide. 2012

API Version 2012-01-25
137

Amazon Simple Workflow Service Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2012-01-25
138

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Simple Workflow Service
	Table of Contents
	What is Amazon Simple Workflow Service?
	Development Options
	AWS SDKs
	AWS Flow Framework
	AWS Flow Framework Sample Code

	HTTP Service API
	Development Environments

	Introduction to Amazon SWF
	Simple Workflow Concepts
	Workflow Execution

	Getting Set Up with Amazon SWF
	AWS Account and Access Keys
	Endpoints

	Tutorial: A Subscription Workflow with Amazon SWF and Amazon SNS
	About the Workflow
	Prerequisites
	Download the Source Code
	Tutorial Steps
	Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby
	Include the AWS SDK for Ruby
	Configuring the AWS Session
	Registering an Amazon SWF Domain
	Next Steps

	Subscription Workflow Tutorial Part 2: Implementing the Workflow
	Designing the Workflow
	Setting up our Workflow Code
	Registering the Workflow
	Polling for Decisions
	Starting the Workflow Execution
	Next Steps

	Subscription Workflow Tutorial Part 3: Implementing the Activities
	Defining a Basic Activity Type
	Defining GetContactActivity
	Defining SubscribeTopicActivity
	Defining WaitForConfirmationActivity
	Defining SendResultActivity
	Next Steps

	Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller
	Subscription Workflow Tutorial: Running the Workflow
	Where Do I Go from Here?

	Basic Concepts in Amazon SWF
	Amazon SWF Workflows
	What is a Workflow?
	A Simple Workflow Example: an E-Commerce Application
	Workflow Registration and Execution
	See Also

	Amazon SWF Workflow History
	Amazon SWF Actors
	What is an Actor in Amazon SWF?
	Workflow Starters
	Deciders
	Activity Workers
	Data Exchange Between Actors

	Amazon SWF Tasks
	Amazon SWF Domains
	Amazon SWF Object Identifiers
	Amazon SWF Task Lists
	Decision Task Lists
	Activity Task Lists
	Task Routing

	Amazon SWF Workflow Execution Closure
	Life Cycle of an Amazon SWF Workflow Execution
	Polling for Tasks in Amazon SWF

	Using IAM to Manage Access to Amazon SWF Resources
	Basic Principles
	Amazon SWF IAM Policies
	Amazon SWF Policy Examples
	Domain Permissions
	API Permissions and Constraints
	Pseudo API Permissions and Constraints

	Service Model Limitations on IAM Policies

	API Summary
	Regular API
	Pseudo API

	Advanced Concepts in Amazon SWF
	Versioning
	Signals
	Child Workflows
	Markers
	Tags

	Using the Amazon SWF Console
	Amazon Simple Workflow Service Dashboard
	Registering an Amazon SWF Domain
	Registering a Workflow Type
	Registering an Activity Type
	Starting a Workflow Execution
	Viewing Pending Tasks
	Managing Your Workflow Executions
	Viewing Amazon SWF Metrics for CloudWatch using the AWS Management Console
	Viewing Metrics
	Setting Alarms

	Using the AWS CLI with Amazon Simple Workflow Service
	Using the Amazon SWF API
	Making HTTP Requests to Amazon SWF
	HTTP Header Contents
	HTTP Body Content
	Sample Amazon SWF JSON Request and Response
	Calculating the HMAC-SHA Signature for Amazon SWF
	Creating a Request Signature
	To create the request signature

	List of Amazon SWF Actions by Category
	Actions Related to Activities
	Actions Related to Deciders
	Actions Related to Workflow Executions
	Actions Related to Administration
	Activity Management
	Workflow Management
	Domain Management
	Workflow Execution Management

	Visibility Actions
	Activity Visibility
	Workflow Visibility
	Workflow Execution Visibility
	Domain Visibility
	Task List Visibility

	Creating a Basic Workflow in Amazon SWF
	Modeling Your Workflow and Its Activities

	Registering a Domain with Amazon SWF
	See Also

	Setting Timeout Values in Amazon SWF
	Limits on Timeout Values
	Workflow Execution and Decision Task Timeouts
	Activity Task Timeouts
	See Also

	Registering a Workflow Type with Amazon SWF
	See Also

	Registering an Activity Type with Amazon SWF
	See Also

	AWS Lambda Tasks
	About AWS Lambda
	Benefits and Limitations of using Lambda Tasks
	Using Lambda tasks in your workflows
	Set up an IAM role
	Providing Amazon SWF with access to invoke any Lambda role
	Defining an IAM role to provide access to invoke a specific Lambda function

	Attach the IAM role to your workflow
	Call your Lambda function from a Amazon SWF workflow

	Developing an Activity Worker in Amazon SWF
	Polling for Activity Tasks
	Performing the Activity Task
	Reporting Activity Task Heartbeats
	Completing or Failing an Activity Task
	Completing an Activity Task
	Failing an Activity Task

	Launching Activity Workers

	Developing Deciders in Amazon SWF
	Defining Coordination Logic
	Polling for Decision Tasks
	Applying the Coordination Logic
	Responding with Decisions
	Closing a Workflow Execution
	Launching Deciders

	Starting Workflow Executions with Amazon SWF
	Setting Task Priority
	Setting Task Priority for Workflows
	Setting Task Priority for Activities
	Actions that Return Task Priority Information

	Handling Errors in Amazon SWF
	Validation Errors
	Errors in Enacting Actions or Decisions
	Timeouts
	Errors raised by user code
	Errors related to closing a workflow execution

	Using Advanced Features of Amazon SWF
	Logging Amazon Simple Workflow Service API Calls with AWS CloudTrail
	Amazon SWF Information in CloudTrail
	Example Amazon SWF Log File Entries
	DeprecateActivityType
	DeprecateDomain
	DeprecateWorkflowType
	RegisterActivityType
	RegisterDomain
	RegisterWorkflowType

	Amazon SWF Metrics for CloudWatch
	Metrics that Report a Time Interval
	Metrics that Report a Count
	Workflow Metrics
	Dimensions for Amazon SWF Workflow Metrics

	Activity Metrics
	Dimensions for Amazon SWF Activity Metrics

	Implementing Exclusive Choice with Amazon Simple Workflow Service
	Amazon Simple Workflow Service Timers
	Amazon Simple Workflow Service Signals
	Amazon Simple Workflow Service Activity Task Cancellation
	Amazon Simple Workflow Service Markers
	Amazon Simple Workflow Service Tagging

	Amazon Simple Workflow Service Resources
	Amazon SWF Timeout Types
	Timeouts in Workflow and Decision Tasks
	Timeouts in Activity Tasks

	Amazon SWF Limits
	General Account Limits for Amazon SWF
	Limits on Workflow Executions
	Limits on Task Executions
	Amazon SWF throttling limits
	Throttling limits for us-east-1
	Throttling limits for other regions

	Requesting a Limit Increase

	Amazon Simple Workflow Service Endpoints
	Additional Documentation for the Amazon Simple Workflow Service
	Amazon Simple Workflow Service API Reference
	AWS Flow Framework Documentation
	AWS SDK Documentation
	AWS CLI Documentation

	Web Resources for the Amazon Simple Workflow Service
	Amazon SWF Forum
	Amazon SWF FAQ
	Amazon SWF Videos
	Amazon SWF Source Code and Samples

	Amazon Simple Workflow Service Developer Guide History
	AWS Glossary

