
AWS Step Functions
Developer Guide

AWS Step Functions Developer Guide

AWS Step Functions: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS Step Functions Developer Guide

Table of Contents
What is AWS Step Functions? 1

Overview of Step Functions 1
Supported Regions 1

About Amazon Web Services 2
Getting Started 3

Step 1: Creating the State Machine 3
To create the state machine 3

Step 2: Starting a new execution 4
To start a new execution 5

Next Steps 5
Tutorials ... 7

Development Options 7
Step Functions Console 7
AWS SDKs 7
HTTPS Service API ... 8
Development Environments 8
Endpoints ... 8
AWS CLI ... 8

Creating a Lambda State Machine 9
Step 1: Creating an IAM Role for Lambda 9
Step 2: Creating a Lambda Function 9
Step 3: Testing the Lambda Function 11
Step 4: Creating a State Machine 11
Step 5: Starting a New Execution 13

Creating a Lambda State Machine Using AWS CloudFormation 15
Step 1: Setting Up Your AWS CloudFormation Template 15
Step 2: Using the AWS CloudFormation Template to Create a Lambda State Machine 17
Step 3: Starting a State Machine Execution 19

Creating an Activity State Machine 20
Step 1: Creating a New Activity ... 21
Step 2: Creating a State Machine 21
Step 3: Implementing a Worker 22
Step 4: Starting an Execution 24
Step 5: Running and Stopping the Worker 24

Starting a State Machine Execution Using CloudWatch Events 25
Step 1: Creating a State Machine 25
Step 2: Creating a CloudWatch Events Rule 25

Handling Error Conditions Using a State Machine 27
Step 1: Creating an IAM Role for Lambda 28
Step 2: Creating a Lambda Function That Fails ... 28
Step 3: Testing the Lambda Function 29
Step 4: Creating a State Machine with a Catch Field 30
Step 5: Starting a New Execution 32

Creating a Step Functions API Using API Gateway 33
Step 1: Creating an IAM Role for API Gateway 34
Step 2: Creating your API Gateway API ... 34
Step 3: Testing and Deploying the API Gateway API ... 37

How Step Functions Works 39
Blueprints ... 39
States 40
Tasks 40
Activities ... 41

Creating an Activity ... 41
Writing a Worker 41

iii

AWS Step Functions Developer Guide

Transitions 42
State Machine Data 42

Data Format 43
State Machine Input/Output 43
State Input/Output 43

Executions 45
Error Handling 45

Error Names 46
Retrying After an Error ... 46
Fallback States 48
Examples Using Retry and Using Catch 49

Amazon States Language 53
Example Amazon States Language Specification 53
State Machine Structure 54
States 55

Common State Fields 56
Pass 56
Task 57
Choice 60
Wait ... 62
Succeed 63
Fail .. 63
Parallel ... 64

Input and Output Processing 66
Paths 66
Reference Paths 66

Errors ... 68
Error Representation 69
Retrying After an Error ... 69
Fallback States 71

Limits ... 73
General Limits ... 73
Limits Related to Accounts 74
Limits Related to State Machine Executions 74
Limits Related to Task Executions 74
Limits Related to API Action Throttling 75

Monitoring and Logging 76
Monitoring Step Functions Using CloudWatch 76

Metrics that Report a Time Interval ... 77
Metrics that Report a Count 77
State Machine Metrics ... 77
Viewing Metrics for Step Functions 79
Setting Alarms for Step Functions 80

Logging Step Functions using AWS CloudTrail .. 82
Step Functions Information in CloudTrail .. 82
Understanding Step Functions Log File Entries ... 83

Security ... 87
Creating IAM Roles for Use with AWS Step Functions 87

Steps to Create a Role for Use with Step Functions 87
Document History 89

iv

AWS Step Functions Developer Guide
Overview of Step Functions

What is AWS Step Functions?

AWS Step Functions is a web service that enables you to coordinate the components of distributed
applications and microservices using visual workflows. You build applications from individual
components that each perform a discrete function, or task, allowing you to scale and change
applications quickly. Step Functions provides a reliable way to coordinate components and step
through the functions of your application. Step Functions provides a graphical console to visualize
the components of your application as a series of steps. It automatically triggers and tracks each step,
and retries when there are errors, so your application executes in order and as expected, every time.
Step Functions logs the state of each step, so when things do go wrong, you can diagnose and debug
problems quickly.

Step Functions manages the operations and underlying infrastructure for you to ensure your application
is available at any scale.

You can run your tasks on the AWS cloud, on your own servers, or on any system that has access to AWS.
Step Functions can be accessed and used with the Step Functions console, the AWS SDKs or an HTTP
API. This guide shows you how to develop, test and troubleshoot your own state machine using these
methods.

Overview of Step Functions
Here are some of the key features of AWS Step Functions:

• Step Functions is based on the concepts of tasks (p. 40) and state machines (p. 40).
• You define state machines using the JSON-based Amazon States Language (p. 53).
• The Step Functions console displays a graphical view of your state machine's structure, which provides

you with a way to visually check your state machine's logic and monitor executions.

Supported Regions
Currently, Step Functions is supported only in the following regions:

• US East (Ohio)
• US East (N. Virginia)
• US West (Oregon)

1

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
About Amazon Web Services

• Asia Pacific (Sydney)
• Asia Pacific (Tokyo)
• EU (Frankfurt)
• EU (Ireland)

About Amazon Web Services
Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model: you are charged
only for the services that you—or your applications—use. For new AWS users, a free usage tier is
available. On this tier, services are free below a certain level of usage. For more information about AWS
costs and the Free Tier, see Use the AWS Free Tier. To obtain an AWS account, visit the AWS home page
and choose Create a Free Account.

2

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html
https://aws.amazon.com/

AWS Step Functions Developer Guide
Step 1: Creating the State Machine

Getting Started

This tutorial introduces you to the basics of working with AWS Step Functions. In this tutorial you'll
create a simple, independently-running state machine using a Pass state. The Pass state is the simplest
state which represents a no-op (an instruction with no operation).

Topics

• Step 1: Creating the State Machine (p. 3)

• Step 2: Starting a new execution (p. 4)

• Next Steps (p. 5)

Step 1: Creating the State Machine
Step Functions offers various predefined state machines in the form of blueprints. Create your first state
machine using the Hello World blueprint.

To create the state machine
1. Log in to the Step Functions console and choose Get Started.

The Create a state machine page is displayed.

2. Choose the Hello world blueprint.

Step Functions fills in the name of the state machine automatically and populates the Code pane with
the Amazon States Language description of the state machine.

{
 "Comment": "A Hello World example of the Amazon States Language using a Pass state",
 "StartAt": "HelloWorld",
 "States": {

3

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide
Step 2: Starting a new execution

 "HelloWorld": {
 "Type": "Pass",
 "Result": "Hello World!",
 "End": true
 }
 }
}

This JSON text defines a single Pass state named HelloWorld. For more information, see State
Machine Structure (p. 54).

3. Verify that the Visual Workflow pane displays the following graph of your state machine structure.
The graph helps you verify that your Amazon States Language code describes the state machine
correctly.

If you don't see the graph, choose in the Visual Workflow pane.
4. Choose Create State Machine.

The IAM role for your state machine executions dialog box is displayed. Step Functions creates and
selects an IAM role automatically.

Note
If you delete the IAM role that Step Functions creates, Step Functions can't re-create it
later. Similarly, if you modify the role (for example, by removing Step Functions from the
principals in the IAM policy), Step Functions can't restore its original settings later. For more
information about creating an IAM role manually, see Creating IAM Roles for Use with AWS
Step Functions (p. 87).

5. Choose OK.

The state machine is created and an acknowledgement page is displayed.

Step 2: Starting a new execution
After you create your state machine, you can start an execution.

4

AWS Step Functions Developer Guide
To start a new execution

To start a new execution
1. On the acknowledgement page, choose New execution.

The New execution page is displayed.

2. (Optional) To help identify your execution, you can enter an ID for it. To specify the ID, use the Enter
your execution id here text box. If you don't enter an ID, Step Functions generates a unique ID
automatically.

3. Choose Start Execution.

A new execution of your state machine starts, and a new page showing your running execution is
displayed.

4. In the Execution Details section, choose the Info tab to view the Execution Status and the Started
and Closed timestamps.

5. To view the results of your execution, choose the Output tab.

Next Steps
Now that you've created a simple state machine using a Pass state, you might want to try the following:

5

AWS Step Functions Developer Guide
Next Steps

• Create a Lambda state machine. (p. 9)
• Create a Lambda state machine using AWS CloudFormation. (p. 15)
• Create an activity state machine. (p. 20)
• Start a state machine using Amazon CloudWatch Events. (p. 25)
• Handle error conditions using a state machine. (p. 27)
• Create a Step Functions API using Amazon API Gateway. (p. 33)

6

AWS Step Functions Developer Guide
Development Options

Tutorials

The following tutorials will help you get started working with AWS Step Functions. To complete
these tutorials, you'll need an AWS account. If you haven't yet signed up for AWS, navigate to http://
aws.amazon.com/ and choose Sign In to the Console.

Topics
• Development Options (p. 7)
• Creating a Lambda State Machine (p. 9)
• Creating a Lambda State Machine Using AWS CloudFormation (p. 15)
• Creating an Activity State Machine (p. 20)
• Starting a State Machine Execution Using CloudWatch Events (p. 25)
• Handling Error Conditions Using a State Machine (p. 27)
• Creating a Step Functions API Using API Gateway (p. 33)

Development Options
You can implement your Step Functions state machines in a number of ways.

Step Functions Console
You can define a state machine using the Step Functions console. You can write complex state machines
in the cloud without using a local development enviroment by taking advantage of Lambda to supply
code for your tasks and the Step Functions console to define your state machine using Amazon States
Language.

The Creating a Lambda State Machine (p. 9) tutorial uses this technique to create a simple state
machine, execute it, and view its results.

AWS SDKs
Step Functions is supported by SDKs for Java, .NET, Ruby, PHP, Python (boto 3), JavaScript, Go, and C
++, providing a convenient way to use the Step Functions HTTPS API actions in various programming
languages.

7

http://aws.amazon.com/
http://aws.amazon.com/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
HTTPS Service API

You can develop state machines, activities, or state machine starters using the API actions exposed by
these libraries. You can also access visibility operations using these libraries to develop your own Step
Functions monitoring and reporting tools.

To use Step Functions with other AWS services, see the reference documentation for the current AWS
SDKs and Tools for Amazon Web Services.

Note
Step Functions supports only an HTTPS endpoint.

HTTPS Service API
Step Functions provides service operations accessible through HTTPS requests. You can use these
operations to communicate directly with Step Functions and to develop your own libraries in any
language that can communicate with Step Functions through HTTPS.

You can develop state machines, workers, or state machine starters using the service API actions. You can
also access visibility operations through the API actions to develop your own monitoring and reporting
tools. For detailed information on API actions, see the AWS Step Functions API Reference.

Development Environments
You must set up a development environment appropriate to the programming language that you plan
to use. For example, if you intend to develop for Step Functions with Java, you should install a Java
development environmen (such as the AWS SDK for Java) on each of your development workstations. If
you use Eclipse IDE for Java Development, you should also install the AWS Toolkit for Eclipse. This Eclipse
plug-in adds features useful for AWS development.

If your programming language requires a run-time environment, you must set up the environment on
each computer where these processes run.

Endpoints
To reduce latency and to store data in a location that meets your requirements, Step Functions provides
endpoints in different regions.

Each endpoint in Step Functions is completely independent: A state machine or activity exists only within
the region where it was created. Any state machines and activities that you create in one region don't
share any data or attributes with those created in another region. For example, you can register a state
machine named STATES-Flows-1 in two different regions, but the two state machines won't share data or
attributes with each other, being completely independent from each other.

For a list of Step Functions endpoints, see Regions and Endpoints: AWS Step Functions in the Amazon
Web Services General Reference.

AWS CLI
You can access many Step Functions features from the AWS CLI. The AWS CLI provides an alternative
to using the Step Functions console or, in some cases, to program using the AWS Step Functions API
actions. For example, you can use the AWS CLI to create a new state machine and then list your state
machines.

The Step Functions commands in AWS CLI allow you to start and manage executions, poll for activities,
record task heartbeats, and so on. For a complete list of Step Functions commands and the descriptions
of the available arguments and examples showing their use, see the AWS Command Line Interface
Reference.

8

http://aws.amazon.com/tools/
http://docs.aws.amazon.com/step-functions/latest/apireference/
http://docs.aws.amazon.com/general/latest/gr/rande.html#step-functions_region
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Creating a Lambda State Machine

The AWS CLI commands follow the Amazon States Language closely, so you can use the AWS CLI to learn
about the Step Functions API actions. You can also use your existing API knowledge to prototype code or
perform Step Functions actions from the command line.

Creating a Lambda State Machine
In this tutorial you'll create an AWS Step Functions state machine that uses a AWS Lambda function to
implement a Task state. A Task state is a simple state that performs a single unit of work.

Lambda is well-suited for implementing Task states, because Lambda functions are stateless (they have
a predicable input-output relationship), easy to write, and don't require deploying code to a server
instance. You can write code in the AWS Management Console or your favorite editor, and AWS handles
the details of providing a computing environment for your function and running it.

Topics

• Step 1: Creating an IAM Role for Lambda (p. 9)

• Step 2: Creating a Lambda Function (p. 9)

• Step 3: Testing the Lambda Function (p. 11)

• Step 4: Creating a State Machine (p. 11)

• Step 5: Starting a New Execution (p. 13)

Step 1: Creating an IAM Role for Lambda
Both Lambda and Step Functions can execute code and access AWS resources (for example, data stored
in Amazon S3 buckets). To maintain security, you must grant Lambda and Step Functions access to these
resources.

In the Getting Started (p. 3) tutorial, this was done automatically for Step Functions: an IAM role was
created when you created the state machine. However, Lambda requires you to assign an IAM role when
you create a Lambda function in the same way Step Functions required you to assign an IAM role when
you create a state machine.

To create a role for use with Lambda
1. Log in to the IAM console and choose Roles, Create New Role.

2. On the Set Role Name page, type the Role Name and then choose Next Step.

3. On the Select Role Type page, select AWS Lambda from the list.

Note
The role is automatically provided with a trust relationship that allows Lambda to use the
role.

4. On the Attach Policy page, choose Next Step.

5. On the Review page, choose Create Role.

The role appears in the list of roles in the IAM console.

Step 2: Creating a Lambda Function
Your Lambda function receives input (a name) and returns a greeting that includes the input value.

9

https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide
Step 2: Creating a Lambda Function

To create the Lambda function
1. Log in to the Lambda console.

2. If this is your first Lambda function, choose Get Started Now. Otherwise, choose Create a Lambda
function.

3. On the Select blueprint page, choose the Blank Function blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, configure your Lambda function:

a. For Name, type HelloFunction.

b. For Description, type Say "Hello" to someone.

c. From the Runtime list, select Node.js 6.10.

6. In the Lambda function code section, copy the following code for the Lambda function:

exports.handler = (event, context, callback) => {
 callback(null, "Hello, " + event.who + "!");
};

This code assembles a greeting using the who field of the input data, which is provided by the event
object passed into your function. You will add input data for this function later, when you start a new
execution (p. 13). The callback method returns the assembled greeting from your function.

7. In the Lambda function handler and role section, select Choose an existing role from the Role list
and then select the Lambda role that you have created earlier from the Existing role list.

Note
If the IAM role that you created doesn't appear in the list, the role might still need a few
minutes to propagate to Lambda. In the meanwhile, verify that lambda.amazonaws.com has
access to the role. To verify or edit the trust relationship for your role, revisit Step 1: Creating
an IAM Role for Lambda (p. 9).
You can use the Timeout value in the Advanced settings to specify how long your function
can take to execute before failing.

8. Choose Next, review your function, and then choose Create function.

9. When your Lambda function is created, note its Amazon Resource Name (ARN), displayed in the
upper-right corner of the page. For example:

arn:aws:lambda:us-east-1:123456789012:function:HelloFunction

10

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide
Step 3: Testing the Lambda Function

Step 3: Testing the Lambda Function
Test your Lambda function to see it in operation.

To test the Lambda function
1. On your Lambda function page, choose Test.

The Input test event dialog box is displayed.

2. Replace the example data with the following:

{
 "who": "AWS Step Functions"
}

The "who" entry corresponds to the event.who field in your Lambda function, completing the greeting.
You will use the same input data when running the function as a Step Functions task.

3. Choose Save and test to test your Lambda function using the new data.

The results of the test are displayed at the bottom of the page.

Step 4: Creating a State Machine
Use the Step Functions console to create a state machine with a single Task state. Add a reference to
your Lambda function in the Task state. The Lambda function is invoked when an execution of the state
machine reaches the Task state.

To create the state machine
1. Log in to the Step Functions console and choose Get Started.

The Create a state machine page is displayed.

2. Choose the Hello World blueprint.

11

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide
Step 4: Creating a State Machine

3. In the box below Name your state machine, type a name, for example LambdaStateMachine.

Note
State machine names must be 1-80 characters in length, must be unique for your account
and region, and must not contain any of the following:

• Whitespace

• Whitespace characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

4. In the Code pane, replace the example JSON text with the following, using a Task state and the ARN
of the Lambda function that you have created earlier in the Resource field, for example:

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "End": true
 }
 }
}

This is a description of your state machine using the Amazon States Language. It defines a single Task
state named HelloWorld. For more information, see State Machine Structure (p. 54).

5. Verify that the Visual Workflow pane displays the following graph of your state machine structure.
The graph helps you verify that your Amazon States Language code describes your state machine
correctly.

If you don't see the graph, choose in the Visual Workflow pane.

6. Choose Create State Machine.

The IAM role for your state machine executions dialog box is displayed. Step Functions creates and
selects an IAM role automatically.

12

AWS Step Functions Developer Guide
Step 5: Starting a New Execution

Note
If you delete the IAM role that Step Functions creates, Step Functions can't re-create it
later. Similarly, if you modify the role (for example, by removing Step Functions from the
principals in the IAM policy), Step Functions can't restore its original settings later. For more
information about creating an IAM role manually, see Creating IAM Roles for Use with AWS
Step Functions (p. 87).

7. Choose OK.

The state machine is created and an acknowledgement page is displayed.

Step 5: Starting a New Execution
After you create your state machine, you can start an execution.

To start a new execution
1. In the Step Functions console, choose Dashboard and then choose the name of the state machine that

you have created earlier.

2. On the state machine's detail page, choose New execution.

13

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Step 5: Starting a New Execution

The New execution page is displayed.

3. (Optional) To help identify your execution, you can enter an ID for it. To specify the ID, use the Enter
your execution id here text box. If you don't enter an ID, Step Functions generates a unique ID
automatically.

4. In the execution input area, replace the example data with the following:

{
 "who" : "AWS Step Functions"
}

"who" is the key name that your Lambda function uses to get the name of the person to greet.

5. Choose Start Execution.

A new execution of your state machine starts, and a new page showing your running execution is
displayed.

6. In the Execution Details section, choose the Info tab to view the Execution Status and the Started
and Closed timestamps.

7. To view the results of your execution, choose the Output tab.

14

AWS Step Functions Developer Guide
Creating a Lambda State Machine

Using AWS CloudFormation

Creating a Lambda State Machine Using AWS
CloudFormation

This tutorial shows you how to create a basic AWS Lambda function and start a state machine execution
automatically. You will use the AWS CloudFormation console and a YAML template to create the stack
(IAM roles, the Lambda function, and the state machine). You will then use the AWS Step Functions
console to start the state machine execution. For more information, see Working with CloudFormation
Templates and the AWS::StepFunctions::StateMachine resource in the AWS CloudFormation User Guide.

Topics

• Step 1: Setting Up Your AWS CloudFormation Template (p. 15)

• Step 2: Using the AWS CloudFormation Template to Create a Lambda State Machine (p. 17)

• Step 3: Starting a State Machine Execution (p. 19)

Step 1: Setting Up Your AWS CloudFormation
Template
Before you use the example YAML template (p. 17), you should understand its separate parts.

To create an IAM role for Lambda
Define the trust policy associated with the IAM role for the Lambda function.

LambdaExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: "sts:AssumeRole"

15

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide
Step 1: Setting Up Your AWS CloudFormation Template

To create a Lambda function
Define the following properties of the Lambda function which prints the message Hello World.

MyLambdaFunction:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role: !GetAtt [LambdaExecutionRole, Arn]
 Code:
 ZipFile: |
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 Runtime: "nodejs4.3"
 Timeout: "25"

To create an IAM role for the state machine execution
Define the trust policy associated with the IAM role for the state machine execution.

StatesExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - !Sub states.${AWS::Region}.amazonaws.com
 Action: "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: StatesExecutionPolicy
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - "lambda:InvokeFunction"
 Resource: "*"

To create a Lambda state machine
Define the Lambda state machine.

MyStateMachine:
 Type: "AWS::StepFunctions::StateMachine"
 Properties:
 DefinitionString:
 !Sub
 - |-
 {
 "Comment": "A Hello World AWL example using an AWS Lambda Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "${lambdaArn}",
 "End": true

16

AWS Step Functions Developer Guide
Step 2: Using the AWS CloudFormation

Template to Create a Lambda State Machine

 }
 }
 }
 - {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}
 RoleArn: !GetAtt [StatesExecutionRole, Arn]

Step 2: Using the AWS CloudFormation Template to
Create a Lambda State Machine
After you understand the different parts of the AWS CloudFormation template, you can put them
together and use the template to create a AWS CloudFormation stack.

To create the Lambda state machine
1. Copy the following example YAML data to a file named MyStateMachine.yaml.

AWSTemplateFormatVersion: "2010-09-09"
Description: "An example template with an IAM role for a Lambda state machine."
Resources:
 LambdaExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: "sts:AssumeRole"

 MyLambdaFunction:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role: !GetAtt [LambdaExecutionRole, Arn]
 Code:
 ZipFile: |
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 Runtime: "nodejs4.3"
 Timeout: "25"

 StatesExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - !Sub states.${AWS::Region}.amazonaws.com
 Action: "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: StatesExecutionPolicy
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow

17

AWS Step Functions Developer Guide
Step 2: Using the AWS CloudFormation

Template to Create a Lambda State Machine

 Action:
 - "lambda:InvokeFunction"
 Resource: "*"

 MyStateMachine:
 Type: "AWS::StepFunctions::StateMachine"
 Properties:
 DefinitionString:
 !Sub
 - |-
 {
 "Comment": "A Hello World AWL example using an AWS Lambda Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "${lambdaArn}",
 "End": true
 }
 }
 }
 - {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}
 RoleArn: !GetAtt [StatesExecutionRole, Arn]

2. Log in to the AWS CloudFormation console and choose Create Stack.

3. On the Select Template page, select Upload a template to Amazon S3. Choose your
MyStateMachine.yaml file, and then choose Next.

4. On the Specify Details page, for Stack name, type MyStateMachine, and then choose Next.

18

https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide
Step 3: Starting a State Machine Execution

5. On the Options page, choose Next.
6. On the Review page, choose I acknowledge that AWS CloudFormation might create IAM resources.

and then choose Create.

AWS CloudFormation begins to create the MyStateMachine stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, AWS CloudFormation displays the
CREATE_COMPLETE status.

7. (Optional) To display the resources in your stack, select the stack and choose the Resources tab.

Step 3: Starting a State Machine Execution
After you create your Lambda state machine, you can start an execution.

To start the state machine execution
1. Log in to the Step Functions console.

On the Dashboard page, the MyStateMachine state machine and its ARN are displayed.

19

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide
Creating an Activity State Machine

2. Choose the name of the state machine that you have created using AWS CloudFormation.

3. On the MyStateMachine-ABCDEFGHIJ1K page, choose New execution.

4. At the bottom of the New execution page, choose Start Execution.

The state machine is executed and Step Functions displays the Succeeded status.

Creating an Activity State Machine
You can run task code on a state machine. This tutorial introduces you to creating an activity-based state
machine using Java and AWS Step Functions.

To complete this tutorial you'll need the following:

• The AWS SDK for Java. The example activity in this tutorial is a Java application that uses the AWS SDK
for Java to communicate with AWS.

• AWS credentials in the environment or in the standard AWS configuration file. For more information,
see Set up Your AWS credentials in the AWS SDK for Java Developer Guide.

Topics

• Step 1: Creating a New Activity (p. 21)

• Step 2: Creating a State Machine (p. 21)

• Step 3: Implementing a Worker (p. 22)

• Step 4: Starting an Execution (p. 24)

• Step 5: Running and Stopping the Worker (p. 24)

20

https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html

AWS Step Functions Developer Guide
Step 1: Creating a New Activity

Step 1: Creating a New Activity
You must make Step Functions aware of the activity whose worker (a program) you want to create.
Step Functions responds with an ARN that establishes an identity for the activity. Use this identity to
coordinate the information passed between your state machine and worker.

To create the new activity task
1. Log in to the Step Functions console and choose Tasks.
2. Choose Create new activity.
3. On the Tasks page, type an Activity Name, for example get-greeting, and choose Create Activity.
4. When your activity task is created, note its Amazon Resource Name (ARN), displayed on the right-hand

side of the page, for example:

arn:aws:states:us-east-1:123456789012:activity:get-greeting

Step 2: Creating a State Machine
Create a state machine that will determine when your activity is invoked and when your worker should
perform its primary work, collect its results, and return them.

To create the state machine
1. Log in to the Step Functions console and choose Get Started.

The Create a state machine page is displayed.
2. Choose the Custom blueprint.

3. In the box below Name your state machine type a name, for example ActivityStateMachine.

Note
State machine names must be 1-80 characters in length, must be unique for your account
and region, and must not contain any of the following:
• Whitespace
• Whitespace characters (? *)
• Bracket characters (< > { } [])
• Special characters (: ; , \ | ^ ~ $ # % & ` ")
• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

4. In the Code pane, add the following JSON text, using a Task state and the ARN of the activity task
that you have created earlier in the Resource field, for example:

{
 "Comment": "An example using a Task state.",
 "StartAt": "getGreeting",
 "Version": "1.0",
 "TimeoutSeconds": 300,
 "States":
 {
 "getGreeting": {

21

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide
Step 3: Implementing a Worker

 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:get-greeting",
 "End": true
 }
 }
}

This is a description of your state machine using the Amazon States Language. It defines a single Task
state named getGreeting. For more information, see State Machine Structure (p. 54).

5. Choose Create State Machine.

The IAM role for your state machine executions dialog box is displayed. Step Functions creates and
selects an IAM role automatically.

Note
If you delete the IAM role that Step Functions creates, Step Functions can't re-create it
later. Similarly, if you modify the role (for example, by removing Step Functions from the
principals in the IAM policy), Step Functions can't restore its original settings later. For more
information about creating an IAM role manually, see Creating IAM Roles for Use with AWS
Step Functions (p. 87).

6. Choose OK.

The state machine is created and an acknowledgement page is displayed.

Step 3: Implementing a Worker
Create a worker, a program which is responsible for the following:

• Polling Step Functions for activities using the GetActivityTask API action.

• Performing the work of the activity using your code, (for example, the getGreeting() method in the
code below).

• Returning the results using the SendTask* API actions.

To implement the worker
1. Create a new file named GreeterActivities.java.

2. Add the following code to it:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.EnvironmentVariableCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.stepfunctions.AWSStepFunctions;

22

AWS Step Functions Developer Guide
Step 3: Implementing a Worker

import com.amazonaws.services.stepfunctions.AWSStepFunctionsClientBuilder;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskRequest;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskResult;
import com.amazonaws.services.stepfunctions.model.SendTaskFailureRequest;
import com.amazonaws.services.stepfunctions.model.SendTaskSuccessRequest;
import com.amazonaws.util.json.Jackson;
import com.fasterxml.jackson.databind.JsonNode;
import java.util.concurrent.TimeUnit;

public class GreeterActivities {

 public String getGreeting(String who) throws Exception {
 return "{\"Hello\": \"" + who + "\"}";
 }

 public static void main(final String[] args) throws Exception {
 GreeterActivities greeterActivities = new GreeterActivities();
 ClientConfiguration clientConfiguration = new ClientConfiguration();
 clientConfiguration.setSocketTimeout((int)TimeUnit.SECONDS.toMillis(70));

 AWSStepFunctions client = AWSStepFunctionsClientBuilder.standard()
 .withRegion(Regions.US_EAST_1)
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .withClientConfiguration(clientConfiguration)
 .build();

 while (true) {
 GetActivityTaskResult getActivityTaskResult =
 client.getActivityTask(
 new GetActivityTaskRequest().withActivityArn(ACTIVITY_ARN));

 if (getActivityTaskResult.getTaskToken() != null) {
 try {
 JsonNode json = Jackson.jsonNodeOf(getActivityTaskResult.getInput());
 String greetingResult =
 greeterActivities.getGreeting(json.get("who").textValue());
 client.sendTaskSuccess(
 new SendTaskSuccessRequest().withOutput(

 greetingResult).withTaskToken(getActivityTaskResult.getTaskToken()));
 } catch (Exception e) {
 client.sendTaskFailure(new SendTaskFailureRequest().withTaskToken(
 getActivityTaskResult.getTaskToken()));
 }
 } else {
 Thread.sleep(1000);
 }
 }
 }
}

Note
The EnvironmentVariableCredentialsProvider class in this example assumes that the
AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or AWS_SECRET_ACCESS_KEY)
environment variables are set. For more information about providing the required credentials
to the factory, see AWSCredentialsProvider in the AWS SDK for Java API Reference and Set up
AWS Credentials and Region for Development in the AWS SDK for Java Developer Guide.
To give Step Functions sufficient time to process the request, setSocketTimeout is set to 70
seconds.

3. In the parameter list of the GetActivityTaskRequest().withActivityArn() constructor, replace the
ACTIVITY_ARN value with the ARN of the activity task that you have created earlier.

23

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Step Functions Developer Guide
Step 4: Starting an Execution

Step 4: Starting an Execution
When you start the execution of the state machine, your worker polls Step Functions for activities,
performs its work (using the input that you provide), and returns its results.

To start the execution
1. In the Step Functions console, choose Dashboard and then choose the name of the state machine that

you have created earlier.

2. On the state machine's detail page, choose New execution.

The New execution page is displayed.
3. (Optional) To help identify your execution, you can enter an ID for it. To specify the ID, use the Enter

your execution id here text box. If you don't enter an ID, Step Functions generates a unique ID
automatically.

4. In the execution input area, replace the example data with the following:

{
 "who" : "AWS Step Functions"
}

5. Choose Start Execution.

A new execution of your state machine starts, and a new page showing your running execution is
displayed.

Step 5: Running and Stopping the Worker
To have the worker poll your state machine for activities, you must run the worker.

24

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Starting a State Machine Execution

Using CloudWatch Events

After the execution completes, you should stop your worker. If you don't stop the worker, it will continue
to run and poll for activities. When the execution is stopped, your worker has no source of tasks and
generates a SocketTimeoutException during each poll.

To run and stop the worker
1. On the command line, navigate to the directory in which you created GreeterActivities.java.
2. To use the AWS SDK, add the full path of the lib and third-party directories to the dependencies of

your build file and to your Java CLASSPATH. For more information, see Downloading and Extracting the
SDK in the AWS SDK for Java Developer Guide.

3. Compile the file:

$ javac GreeterActivities.java

4. Run the file:

$ java GreeterActivities

5. In the Step Functions console, navigate to the Execution Details page.
6. When the execution completes, choose Output to see the results of your execution.
7. Stop the worker.

Starting a State Machine Execution Using
CloudWatch Events

You can execute a Step Functions state machine in response to an event pattern or on a schedule using
Amazon CloudWatch Events. This tutorial shows how to set a state machine as a target for a CloudWatch
Events rule that starts the execution of a state machine every 5 minutes.

For more information about setting a Step Functions state machine as a target using the PutTarget
Amazon CloudWatch Events API action, see Add a Step Functions state machine as a target.

Topics
• Step 1: Creating a State Machine (p. 25)
• Step 2: Creating a CloudWatch Events Rule (p. 25)

Step 1: Creating a State Machine
Before you can set a CloudWatch Events target, you must create a state machine.

• To create a basic state machine, use the Getting Started (p. 3) tutorial.
• If you already have a state machine, proceed to the next step.

Step 2: Creating a CloudWatch Events Rule
After you create your state machine, you can create your CloudWatch Events rule.

To create the rule
1. Navigate to the CloudWatch Events console, choose Events, and then choose Create Rule.

25

http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html#download-and-extract-sdk
http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html#download-and-extract-sdk
https://console.aws.amazon.com/states/home?region=us-east-1#/
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html#API_PutTargets_Example_Adds_a_Step_Functions_state_machine_as_a_target
https://console.aws.amazon.com/cloudwatch/

AWS Step Functions Developer Guide
Step 2: Creating a CloudWatch Events Rule

The Step 1: Create rule page is displayed.

2. In the Event source section, select Schedule and type 5 for Fixed rate of.

3. In the Targets section, choose Add target and from the list choose Step Functions state machine.

4. CloudWatch Events can create the IAM role needed for your event to run:

• To create an IAM role automatically, select Create a new role for this specific resource.

• To use an IAM role that you created before, choose Use existing role.

5. Choose Configure details.

The Step 2: Configure rule details page is displayed.

6. Type a Name for your rule, choose Enabled for State, and then choose Create rule.

26

AWS Step Functions Developer Guide
Handling Error Conditions Using a State Machine

The rule is created and the Rules page is displayed, listing all your CloudWatch Events rules.

A new execution of your state machine starts every 5 minutes.

Handling Error Conditions Using a State Machine
This tutorial introduces you to handling error conditions using an AWS Step Functions state machine
with a Catch field. In this tutorial, you'll use an AWS Lambda function to respond with conditional
logic based on error message type, a method called function error handling. For more information, see
Function Error Handling in the AWS Lambda Developer Guide.

Note
You can also create state machines that Retry on timeouts or those that use Catch to transition
to a specific state when an error or timeout occurs. For examples of these error handling
techniques, see Examples Using Retry and Using Catch (p. 49).

Topics

• Step 1: Creating an IAM Role for Lambda (p. 28)

• Step 2: Creating a Lambda Function That Fails (p. 28)

• Step 3: Testing the Lambda Function (p. 29)

• Step 4: Creating a State Machine with a Catch Field (p. 30)

• Step 5: Starting a New Execution (p. 32)

27

http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html#nodejs-prog-model-custom-exceptions

AWS Step Functions Developer Guide
Step 1: Creating an IAM Role for Lambda

Step 1: Creating an IAM Role for Lambda
Both Lambda and Step Functions can execute code and access AWS resources (for example, data stored
in Amazon S3 buckets). To maintain security, you must grant Lambda and Step Functions access to these
resources.

In the Getting Started (p. 3) tutorial, this is done automatically for Step Functions: an IAM role is created
when you create the state machine. However, Lambda requires you to assign an IAM role when you
create a Lambda function in the same way Step Functions requires you to assign an IAM role when you
create a state machine.

To create a role for use with Lambda
1. Log in to the IAM console and choose Roles, Create New Role.

2. On the Set Role Name page, type the Role Name and then choose Next Step.

3. On the Select Role Type page, select AWS Lambda from the list.

Note
The role is automatically provided with a trust relationship that allows Lambda to use the
role.

4. On the Attach Policy page, choose Next Step.

5. On the Review page, choose Create Role.

The role appears in the list of roles in the IAM console.

Step 2: Creating a Lambda Function That Fails
Use a Lambda function to simulate an error condition.

To simulate a failing Lambda function
1. Log in to the Lambda console.

2. If this is your first Lambda function, choose Get Started Now. Otherwise, choose Create a Lambda
function.

3. On the Select blueprint page, type step functions into the Filter, and then choose the step-
functions-error blueprint.

28

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide
Step 3: Testing the Lambda Function

4. On the Configure triggers page, choose Next.

5. On the Configure function page, type FailFunction for the Name.

The following code is displayed in the Lambda function code pane:

'use strict';

exports.handler = (event, context, callback) => {
 function CustomError(message) {
 this.name = 'CustomError';
 this.message = message;
 }
 CustomError.prototype = new Error();

 const error = new CustomError('This is a custom error!');
 callback(error);
};

The context object returns the error message This is a custom error!.

6. In the Lambda function handler and role section, select Choose an existing role from the Role list.
Then select the Lambda role that you have created earlier from the Existing role list.

Note
If the IAM role that you created doesn't appear in the list, the role might still need a few
minutes to propagate to Lambda. In the meanwhile, verify that lambda.amazonaws.com has
access to the role. To verify or edit the trust relationship for your role, revisit Step 1: Creating
an IAM Role for Lambda (p. 28).
You can use the Timeout value in the Advanced settings to specify how long your function
can take to execute before failing.

7. Choose Next, review your function, and then choose Create function.

8. When your Lambda function is created, note its Amazon Resource Name (ARN), displayed in the
upper-right corner of the page. For example:

arn:aws:lambda:us-east-1:123456789012:function:FailFunction

Step 3: Testing the Lambda Function
Test your Lambda function to see it in operation.

To test your Lambda function
1. On your Lambda function page, choose Test.

The Input test event dialog box is displayed.

2. Choose Save and test.

The results of the test (the simulated error) are displayed at the bottom of the page.

29

AWS Step Functions Developer Guide
Step 4: Creating a State Machine with a Catch Field

Step 4: Creating a State Machine with a Catch Field
Use the Step Functions console to create a state machine that uses a Task with a Catch field. Add a
reference to your Lambda function in the Task state. The Lambda function is invoked and fails during
execution. Step Functions retries the function twice using exponential backoff between retries.

To create the state machine
1. Log in to the Step Functions console and choose Get Started.

The Create a state machine page is displayed.

2. Choose the Catch Failure blueprint.

3. In the box under Name your State Machine, type a name, for example CatchStateMachine.

Note
State machine names must be 1-80 characters in length, must be unique for your account
and region, and must not contain any of the following:

• Whitespace

• Whitespace characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

4. In the Code pane, replace the example JSON text with the following, using a Task state and the ARN
of the Lambda function that you have created earlier in the Resource field, for example:

{

30

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide
Step 4: Creating a State Machine with a Catch Field

 "Comment": "A Catch example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "CreateAccount",
 "States": {
 "CreateAccount": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["CustomError"],
 "Next": "CustomErrorFallback"
 }, {
 "ErrorEquals": ["States.TaskFailed"],
 "Next": "ReservedTypeFallback"
 }, {
 "ErrorEquals": ["States.ALL"],
 "Next": "CatchAllFallback"
 }],
 "End": true
 },
 "CustomErrorFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from a custom Lambda function exception",
 "End": true
 },
 "ReservedTypeFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from a reserved error code",
 "End": true
 },
 "CatchAllFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from any error code",
 "End": true
 }
 }
}

This is a description of your state machine using the Amazon States Language. It defines a single Task
state named CreateAccount. For more information, see State Machine Structure (p. 54).

Note
For more information about the syntax of the Retry field, see Retrying After an
Error (p. 69).

5. Choose Create State Machine.

The IAM role for your state machine executions dialog box is displayed. Step Functions creates and
selects an IAM role automatically.

31

AWS Step Functions Developer Guide
Step 5: Starting a New Execution

Note
If you delete the IAM role that Step Functions creates, Step Functions can't re-create it
later. Similarly, if you modify the role (for example, by removing Step Functions from the
principals in the IAM policy), Step Functions can't restore its original settings later. For more
information about creating an IAM role manually, see Creating IAM Roles for Use with AWS
Step Functions (p. 87).

6. Choose OK.

Step 5: Starting a New Execution
After you create your state machine, you can start an execution.

To start a new execution
1. In the Step Functions console, choose Dashboard, and then choose the name of the state machine

that you have created earlier.

2. On the state machine's detail page, choose New execution.

The New execution page is displayed.

3. (Optional) To help identify your execution, you can enter an ID for it. To specify the ID, use the Enter
your execution id here text box. If you don't enter an ID, Step Functions generates a unique ID
automatically.

4. Choose Start Execution.

32

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Creating a Step Functions API Using API Gateway

A new execution of your state machine starts, and a new page showing your running execution is
displayed.

5. In the Execution Details section, choose the Info tab to view the Execution Status and the Started
and Closed timestamps.

6. To view the results of your execution, choose the Output tab.

Creating a Step Functions API Using API Gateway
You can use Amazon API Gateway to associate your AWS Step Functions APIs with methods in an API
Gateway API, so that, when an HTTPS request is sent to an API method, API Gateway invokes your Step
Functions API actions.

This tutorial shows you how to create an API that uses one resource and the POST method to
communicate with the StartExecution API action. You'll use the IAM console to create a role for API
Gateway. Then, you'll use the API Gateway console to create an API Gateway API, create a resource and
method, and map the method to the StartExecution API action. Finally, you'll deploy and test your API.
For more information about this API action, see StartExecution in the AWS Step Functions API Reference.

Topics

33

http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide
Step 1: Creating an IAM Role for API Gateway

• Step 1: Creating an IAM Role for API Gateway (p. 34)

• Step 2: Creating your API Gateway API (p. 34)

• Step 3: Testing and Deploying the API Gateway API (p. 37)

Step 1: Creating an IAM Role for API Gateway
Before you create your API Gateway API, you need to give API Gateway permission to call Step Functions
API actions.

To create the IAM role
1. Log in to the AWS Identity and Access Management console.

2. On the Roles page, choose Create New Role.

3. On the Set Role Name page, type APIGatewayToStepFunctions for Role Name, and then choose Next
Step.

4. On the Select Role Type page, under Select Role Type, select Amazon API Gateway.

5. On the Attach Policy page, choose Next Step.

6. On the Review page, note the Role ARN, for example:

arn:aws:iam::123456789012:role/APIGatewayToStepFunctions

7. Choose Create Role.

To attach a policy to the IAM role
1. On the Roles page, search for your role by name (APIGatewayToStepFunctions) and then choose the

role.

2. On the Permissions tab, choose Attach Policy.

3. On the Attach Policy page, search for AWSStepFunctionsFullAccess, choose the policy, and then
choose Attach Policy.

Step 2: Creating your API Gateway API
After you create your IAM role, you can create your custom API Gateway API.

To create the API
1. Navigate to the Amazon API Gateway console.

2. On the APIs page, choose Create API.

3. On the Create new API page, type StartExecutionAPI for the API name, and then choose Create API.

To create a resource
1. On the Resources page of StartExecutionAPI, choose Actions, Create Resource.

2. On the New Child Resource page, type execution for Resource Name, and then choose Create
Resource.

34

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide
Step 2: Creating your API Gateway API

To create a POST Method
1. On the /execution Methods page, choose Actions, Create Method.

2. From the list, choose POST, and then select the checkmark.

To configure the method

On the /execution - POST - Setup page, configure the integration point for your method.

1. For Integration Type, choose AWS Service.

2. For AWS Region, choose a region from the list.

Note
For regions that currently support Step Functions, see the Supported Regions (p. 1).

3. For AWS Service, choose Step Functions from the list.

4. For HTTP Method, choose POST from the list.

Note
All Step Functions API actions use the HTTP POST method.

5. For Action Type, choose Use action name.

6. For Action, type StartExecution.

7. For Execution Role, type the role ARN of the IAM role (p. 34) that you have created earlier, for
example:

arn:aws:iam::123456789012:role/APIGatewayToStepFunctions

35

AWS Step Functions Developer Guide
Step 2: Creating your API Gateway API

8. Choose Save.

The visual mapping between API Gateway and Step Functions is displayed on the /execution - POST -
Method Execution page.

36

AWS Step Functions Developer Guide
Step 3: Testing and Deploying the API Gateway API

Step 3: Testing and Deploying the API Gateway API

To test the communication between API Gateway and Step
Functions
1. On the /execution - POST - Method Execution page, choose Test.

2. On the /execution - POST - Method Test page, copy the following request parameters into
the Request Body section using the ARN of an existing state machine (or create a new state
machine (p. 3)), and then choose Test.

{
 "input": "{}",
 "name": "MyExecution",
 "stateMachineArn": "arn:aws:states:ap-
northeast-1:123456789012:stateMachine:HelloWorld"
}

Note
For more information, see the StartExecution Request Syntax in the AWS Step Functions API
Reference.

3. The execution starts and the execution ARN and its epoch date are displayed under Response Body.

{
 "executionArn": "arn:aws:states:ap-
northeast-1:123456789012:execution:HelloWorld:MyExecution",
 "startDate": 1486768956.878
}

Note
You can view the execution by choosing your state machine on the AWS Step Functions
console.

To deploy your API
1. On the Resources page of StartExecutionAPI, choose Actions, Deploy API.

2. In the Deploy API dialog box, select [New Stage] from the Deployment stage list, type alpha for
Stage name, and then choose Deploy.

To test your deployment
1. On the Stages page of StartExecutionAPI, expand alpha, /, /execution, POST.

2. On the alpha - POST - /execution page, note the Invoke URL, for example:

https://a1b2c3d4e5.execute-api.ap-northeast-1.amazonaws.com/alpha/execution

3. From the command line, run the curl command using the ARN of your state machine, and then invoke
the URL of your deployment, for example:

curl -X POST -d '{"input": "{}","name": "MyExecution","stateMachineArn":
 "arn:aws:states:ap-northeast-1:123456789012:stateMachine:HelloWorld"}' https://
a1b2c3d4e5.execute-api.ap-northeast-1.amazonaws.com/alpha/execution

37

http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide
Step 3: Testing and Deploying the API Gateway API

The execution ARN and its epoch date are returned, for example:

{"executionArn":"arn:aws:states:ap-
northeast-1:123456789012:execution:HelloWorld:MyExecution","startDate":1.486772644911E9}

38

AWS Step Functions Developer Guide
Blueprints

How Step Functions Works

To understand AWS Step Functions, you will need to be familiar with a number of important concepts.
This section describes how Step Functions works.

Topics
• Blueprints (p. 39)
• States (p. 40)
• Tasks (p. 40)
• Activities (p. 41)
• Transitions (p. 42)
• State Machine Data (p. 42)
• Executions (p. 45)
• Error Handling (p. 45)

Blueprints
In the Step Functions console, you can choose one of the following state machine blueprints to
automatically fill the Code pane. Each of the blueprints is fully functional and you can use any blueprint
as the template for your own state machine.

Important
Choosing any of the blueprints overwrites the contents of the Code pane.

• Wait State – A state machine that demonstrates different ways of injecting a wait state into a running
state machine:
• By waiting for a number of seconds.
• By waiting for an absolute time (timestamp).
• By specifying the Wait state's definition.
• By using the state's input data.

• Hello World – A state machine with a single task.
• Retry Failure – A state machine that retries a task after the task fails. This blueprint demonstrates how

to handle multiple retries and various failure types.
• Parallel – A state machine that demonstrates how to execute two branches at the same time.
• Catch Failure – A state machine that performs a different task after its primary task fails. This

blueprint demonstrates how to call different tasks depending on the failure type.

39

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
States

• Choice State – A state machine that makes a choice, running a Task state from a set of Task states or
running a Fail state after the initial state is complete.

States
States are elements in your state machine. A state is referred to by its name, which can be any string, but
which must be unique within the scope of the entire state machine.

Note
An instance of a state exists until the end of its execution.

States can perform a variety of functions in your state machine:

• Do some work in your state machine (a Task (p. 40) state).
• Make a choice between branches of execution (a Choice (p. 60) state)
• Stop an execution with a failure or success (a Fail (p. 63) or Succeed (p. 63) state)
• Simply pass its input to its output or inject some fixed data (a Pass (p. 56) state)
• Provide a delay for a certain amount of time or until a specified time/date (a Wait (p. 62) state)
• Begin parallel branches of execution (a Parallel (p. 64) state)

For example, here is a example state named HelloWorld which performs a Lambda function:

"HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "Next": "AfterHelloWorldState",
 "Comment": "Run the HelloWorld Lambda function"
}

States share a number of common features:

• Each state must have a Type field indicating what type of state it is.
• Each state can have an optional Comment field to hold a human-readable comment about, or

description of, the state.
• Each state (except a Succeed or Fail state) requires a Next field or, alternatively, can become a

terminal state by specifying an End field.

Note
A Choice state may have more than one Next but only one within each Choice Rule. A Choice
state cannot use End.

Certain state types require additional fields, or may redefine common field usage.

For more information regarding the various states that you can define using Amazon States Language,
see States (p. 55).

Once you have created a state machine and executed it, you can access information about each state,
its input and output, when it was active and for how long, by viewing the Execution Details page in the
Step Functions console.

Tasks
All work in your state machine is done by tasks. A task can be:

40

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Activities

• An Activity, which can consist of any code in any language. Activities can be hosted on EC2, ECS,
mobile devices—basically anywhere. Activities must poll AWS Step Functions using the GetActivityTask
and SendTask* API calls. Ultimately, an activity can even be a human task—a task that waits for a
human to perform some action and then continues.

• A Lambda function (p. 9), which is a completely cloud-based task that runs on Λ. You can write
Lambda functions in JavaScript (using the AWS Management Console or by uploading code to
Lambda), in Java, or in Python (by uploading code to Lambda).

Tasks are represented in Amazon States Language by setting a state's type to Task and providing it with
the ARN of the created activity or Lambda function. For details about how to specify different task types,
see Task (p. 57) in the Amazon States Language (p. 53).

To see a list of your tasks, you can access the Tasks page in the Step Functions console.

Activities
Activities are an AWS Step Functions concept that refers to a task to be performed by a worker that can
be hosted on EC2, ECS, mobile devices—basically anywhere.

Topics
• Creating an Activity (p. 41)
• Writing a Worker (p. 41)

Creating an Activity
Activities are referred to by name. An activity's name can be any string that adheres to the following
rules:

• It must be between 0 – 80 characters in length.
• It must be unique within your AWS account and region.

Activities can be created with Step Functions in any of the following ways:

• Call CreateActivity with the activity name.
• Using the Step Functions console.

Note
Activities are not versioned and are expected to always be backwards compatible. If you must
make a backwards-incompatible change to an activity definition, then a new activity should be
created with Step Functions using a unique name.

Writing a Worker
Workers can be implemented in any language that can make AWS Step Functions API calls. Workers
should repeatedly poll for work by implementing the following pseudo-code algorithm:

[taskToken, jsonInput] = GetActivityTask();
try {
 // Do some work...
 SendTaskSuccess(taskToken, jsonOutput);
 } catch (Exception e) {

41

https://console.aws.amazon.com/states/home?region=us-east-1#/
http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Transitions

 SendTaskFailure(taskToken, reason, errorCode);
}

Sending Heartbeat Notifications
States that have long-running activities should provide a heartbeat timeout value to verify that the
activity is still running successfully.

If your activity has a heartbeat timeout value, the worker which implements it must send heartbeat
updates to Step Functions. To send a heartbeat notification from a worker, use the SendTaskHeartbeat
action.

Transitions
When an execution of a state machine is launched, the system begins with the state referenced in the
top-level StartAt field. This field (a string) must exactly match, including case, the name of one of the
states.

After executing a state, AWS Step Functions uses the value of the Next field to determine the next state
to advance to.

Next fields also specify state names as strings, and must match the name of a state specified in the state
machine description exactly (case-sensitive).

For example, the following state includes a transition to NextState:

"SomeState" : {
 ...,
 "Next" : "NextState"
}

Most states permit only a single transition rule via the Next field. However, certain flow-control states
(for example, a Choice state) allow you to specify multiple transition rules, each with its own Next field.
The Amazon States Language (p. 53) provides details about each of the state types you can specify,
including information about how to specify transitions.

States can have multiple incoming transitions from other states.

The process repeats until it reaches a terminal state (a state with "Type": Succeed, "Type": Fail, or
"End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

• States can occur in any order within the enclosing block, but the order in which they're listed doesn't
affect the order in which they're run, which is determined by the contents of the states themselves.

• Within a state machine, there can be only one state designated as the start state, which is designated
by the value of the StartAt field in the top-level structure.

• Depending on your state machine logic—for example, if your state machine has multiple branches of
execution—you may have more than one end state.

• If your state machine consists of only one state, it can be both the start state and the end state.

State Machine Data
State Machine data takes the following forms:

42

http://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide
Data Format

• The initial input to a state machine
• Data passed between states
• The output from a state machine.

This topic describes how state machine data is formatted and used in AWS Step Functions.

Topics
• Data Format (p. 43)
• State Machine Input/Output (p. 43)
• State Input/Output (p. 43)

Data Format
State machine data is represented by JSON text, so values can be provided using any data type
supported by JSON: objects, arrays, numbers, strings, boolean values, and null.

Note that:

• Numbers in JSON text format conform to JavaScript semantics, typically corresponding to double-
precision IEEE-854 values.

• Stand-alone quote-delimited strings, booleans, and numbers are valid JSON text.
• The output of a state becomes the input to the next state. However, states can be restricted to working

on a subset of the input data by using Input and Output Processing (p. 66).

State Machine Input/Output
AWS Step Functions can be given initial input data when you start an execution, by passing it to
StartExecution or by passing initial data using the Step Functions console. Initial data is passed to the
state machine's StartAt state. If no input is provided, the default is an empty object {}.

The output of the execution is returned by the terminal (last) state that is reached, and is provided as
JSON text in the execution's result. Execution results can be retrieved from the execution history by
external callers (for example, in DescribeExecution) and can be viewed in the Step Functions console.

State Input/Output
Each state's input consists of JSON text received from the preceding state or, in the case of the StartAt
state, the input to the execution.

A state's output must be given as JSON text. Certain flow-control states simply echo their input to their
output.

For example, here is a state machine that adds two numbers together:

{
 "Comment": "An example that adds two numbers.",
 "StartAt": "Add",
 "Version": "1.0",
 "TimeoutSeconds": 10,
 "States":
 {
 "Add": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Add",

43

https://standards.ieee.org/findstds/standard/854-1987.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
State Input/Output

 "End": true
 }
 }
}

which uses this lambda function:

function Add(input) {
 var numbers = JSON.parse(input).numbers;
 var total = numbers.reduce(
 function(previousValue, currentValue, index, array) {
 return previousValue + currentValue; });
 return JSON.stringify({ result: total });
}

If an execution is started with the JSON text:

{ "numbers": [3, 4] }

The Add state receives the JSON text and passes it to the lambda function, which returns the result of the
calculation to the state. The state then returns this value in its output:

{ "result": 7 }

Since Add is also the final state in the state machine, this value is returned as the state machine's output.
If the final state returns no output, then the state machine returns an empty object ({}).

Filters
Some states, such as Task (p. 57), have InputPath, ResultPath, and OutputPath fields. The values of
these fields are path (p. 66).

The InputPath field selects a portion of the state's input to be passed to the state's processing logic (an
Activity, Lambda function, or so on). If the InputPath field is omitted, the entire state input is selected by
default ($). If it is null, an empty object {} is passed.

The ResultPath field selects a portion of the state's input to be overwritten by, or added to, with result
data from the state's processing logic. The ResultPath field is optional and, if omitted, defaults to $,
which overwrites the entire input. However, before the input is sent as the state's output, a portion can
be selected with the OutputPath field.

The OutputPath field is also optional and, if omitted, defaults to $, which selects the entire input (as
modified by the ResultPath), sending it as the state's output.

The ResultPath field's value can be null, which causes any output from your state's processing logic to
be discarded instead of being added to the state's input. In this scenario, the state's output is identical to
the state's input, given the default value for the OutputPath field.

If the OutputPath field's value is null, and empty object {} is sent as the state's output.

Here is an example. Given the following ResultPath field in a state that outputs the sum of its input
values:

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$"

With the following state input data:

44

AWS Step Functions Developer Guide
Executions

{
 "numbers": [3, 4]
}

The state output data will have the following structure and values:

{
 "numbers": [3, 4],
 "sum": 7
}

Let's change the OutputPath in our example slightly...

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$.sum"

As before, with the following state input data:

{
 "numbers": [3, 4]
}

However, now the state output data is 7:

{
 7
}

By using the InputPath and ResultPath fields in this way, you can design separation between the names
of data members in your state machine data, and the functions that process it.

Executions
A state machine execution occurs when a Step Functions state machine runs and performs its tasks. Each
Step Functions state machine can have multiple simultaneous executions which you can initiate from
the Step Functions console, or using the AWS SDKs, the Step Functions API actions, or the AWS CLI. An
execution receives JSON input and produces JSON output.

For more information about the different ways of working with Step Functions, see Development
Options (p. 7). For more information about initiating an execution from the Step Functions console, see
To start a new execution (p. 5).

Note
The Step Functions console displays a maximum of 1,000 executions per state machine. If you
have more than 1,000 executions, use the Step Functions API actions, or the AWS CLI to display
all of your executions.

Error Handling
Any state can encounter runtime errors. Errors can happen for various reasons:

• State machine definition issues (for example, no matching rule in a Choice state).

45

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Error Names

• Task failures (for example, an exception in a Lambda function).
• Transient issues (for example, network partition events).

By default, when a state reports an error, Step Functions causes the execution to fail entirely.

Error Names
Step Functions identifies errors in Amazon States Language using case-sensitive strings, known as
error names. Amazon States Language defines a set of built-in strings that name well-known errors, all
beginning with the States. prefix.

States.ALL

A wildcard that matches any error name.
States.Timeout

A Task state either ran longer than the TimeoutSeconds value, or failed to send a heartbeat for a
period longer than the HeartbeatSeconds value.

States.TaskFailed

A Task state failed during the execution.
States.Permissions

A Task state failed because it had insufficient privileges to execute the specified code.

Note
States can report errors with other names. However, these must not begin with the States.
prefix.

Retrying After an Error
Task and Parallel states can have a field named Retry, whose value must be an array of objects
known as retriers. An individual retrier represents a certain number of retries, usually at increasing time
intervals.

A retrier contains the following fields:

ErrorEquals (Required)

A non-empty array of strings that match error names. When a state reports an error, Step Functions
scans through the retriers. When the error name appears in this array, it implements the retry policy
described in this retrier.

IntervalSeconds (Optional)

An integer that represents the number of seconds before the first retry attempt (1 by default).
MaxAttempts (Optional)

A positive integer that represents the maximum number of retry attempts (3 by default). If the error
recurs more times than specified, retries cease and normal error handling resumes. A value of 0
specifies that the error or errors are never retried.

BackoffRate (Optional)

The multiplier by which the retry interval increases during each attempt (2.0 by default).

This example of a Retry makes 2 retry attempts after waiting for 3 and 4.5 seconds.

46

AWS Step Functions Developer Guide
Retrying After an Error

"Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 3,
 "MaxAttempts": 2,
 "BackoffRate": 1.5
}]

The reserved name States.ALL that appears in a Retrier's ErrorEquals field is a wildcard that matches
any error name. It must appear alone in the ErrorEquals array and must appear in the last retrier in the
Retry array.

This example of a Retry field retries any error except States.Timeout.

"Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "MaxAttempts": 0
}, {
 "ErrorEquals": ["States.ALL"]
}]

Complex Retry Scenarios
A retrier's parameters apply across all visits to the retrier in the context of a single-state execution.
Consider the following Task state:

"X": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-states-1:123456789012:task:X",
 "Next": "Y",
 "Retry": [{
 "ErrorEquals": ["ErrorA", "ErrorB"],
 "IntervalSeconds": 1,
 "BackoffRate": 2.0,
 "MaxAttempts": 2
 }, {
 "ErrorEquals": ["ErrorC"],
 "IntervalSeconds": 5
 }],
 "Catch": [{
 "ErrorEquals": ["States.ALL"],
 "Next": "Z"
 }]
}

This task fails five times in succession, outputting these error names: ErrorA, ErrorB, ErrorC, ErrorA, and
ErrorB. The following occurs as a result:

• The first two errors match the first retrier and cause waits of 1 and 2 seconds.
• The third error matches the second retrier and causes a wait of 5 seconds.
• The fourth error matches the first retrier and causes a wait of 4 seconds.
• The fifth error also matches the first retrier. However, it has already reached its limit of two retries

(MaxAttempts) for that particular error (ErrorB), so it fails and execution is redirected to the Z state via
the Catch field.

Note
When the system transitions to another state, all retrier parameters are reset, regardless of how
the transition happens.

47

AWS Step Functions Developer Guide
Fallback States

You can generate custom error names such as (ErrorA, ErrorB) using an Activity (p. 59), but
not using Lambda Functions (p. 59). For more information, see the response syntax for the
Invoke API action in the AWS Lambda Developer Guide.

Fallback States
Task and Parallel states can have a field named Catch. This field's value must be an array of objects,
known as catchers.

A catcher contains the following fields:

ErrorEquals (Required)

A non-empty array of Strings that match error names, specified exactly as they are with the retrier
field of the same name.

Next (Required)

A string that must exactly match one of the state machine's state names.

ResultPath (Optional)

A path (p. 66) that determines what input is sent to the state specified in the Next field.

When a state reports an error and either there is no Retry field, or if retries fail to resolve the error, Step
Functions scans through the catchers in the order listed in the array. When the error name appears in the
value of a catcher's ErrorEquals field, the state machine transitions to the state named in the Next field.

The reserved name States.ALL that appears in a catcher's ErrorEquals field is a wildcard that matches
any error name. It must appear alone in the ErrorEquals array and must appear in the last catcher in the
Catch array.

The following example of a Catch field transitions to the state named RecoveryState when a Lambda
function outputs an unhandled Java exception. Otherwise, the field transitions to the EndState state:

"Catch": [{
 "ErrorEquals": ["java.lang.Exception"],
 "ResultPath": "$.error-info",
 "Next": "RecoveryState"
}, {
 "ErrorEquals": ["States.ALL"],
 "Next": "EndState"
}]

Note
Each catcher can specify multiple errors to handle.

Error Output
When Step Functions transitions to the state specified in a catch name, the object usually contains the
field Cause. This field's value is a human-readable description of the error. This object is known as the
error output.

In this example, the first catcher contains a ResultPath field. This works similarly to a ResultPath field in
a state's top level, resulting in two possibilities:

• It takes the results of executing the state and overwrites a portion of the state's input (or all of the
state's input).

48

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseSyntax

AWS Step Functions Developer Guide
Examples Using Retry and Using Catch

• It takes the results and adds them to the input. In the case of an error handled by a catcher, the result
of executing the state is the error output.

Thus, in this example, for the first catcher the error output is added to the input as a field named
error-info (if there isn't already a field with this name in the input). Then, the entire input is sent to
RecoveryState. For the second catcher, the error output overwrites the input and only the error output is
sent to EndState.

Note
If you don't specify the ResultPath field, it defaults to $, which selects and overwrites the entire
input.

When a state has both Retry and Catch fields, Step Functions uses any appropriate retriers first, and only
afterward applies the matching catcher transition if the retry policy fails to resolve the error.

Examples Using Retry and Using Catch
The state machines defined in the following examples assume the existence of two Lambda functions:
one that always fails and one that waits long enough to allow a timeout defined in the state machine to
occur.

This is a definition of a Lambda function that always fails, returning the message error. In the state
machine examples that follow, this Lambda function is named FailFunction.

exports.handler = (event, context, callback) => {
 callback("error");
};

This is a definition of a Lambda function that sleeps for 10 seconds. In the state machine examples that
follow, this Lambda function is named sleep10.

Note
When you create this Lambda function in the Lambda console, remember to change the
Timeout value in the Advanced settings section from 3 seconds (default) to 11 seconds.

exports.handler = (event, context, callback) => {
 setTimeout(function(){
 }, 11000);
};

Handling a Failure Using Retry
This state machine uses a Retry field to retry a function that fails and outputs the error name
HandledError. The function is retried twice with an exponential backoff between retries.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Retry": [{
 "ErrorEquals": ["HandledError"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0

49

AWS Step Functions Developer Guide
Examples Using Retry and Using Catch

 }],
 "End": true
 }
 }
}

This variant uses the predefined error code States.TaskFailed, which matches any error that a Lambda
function outputs.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Retry": [{
 "ErrorEquals": ["States.TaskFailed"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0
 }],
 "End": true
 }
 }
}

Handling a Failure Using Catch
This example uses a Catch field. When a Lambda function outputs an error, the error is caught and the
state machine transitions to the fallback state.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["HandledError"],
 "Next": "fallback"
 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

This variant uses the predefined error code States.TaskFailed, which matches any error that a Lambda
function outputs.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",

50

AWS Step Functions Developer Guide
Examples Using Retry and Using Catch

 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["States.TaskFailed"],
 "Next": "fallback"
 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

Handling a Timeout Using Retry
This state machine uses a Retry field to retry a function that times out. The function is retried twice with
an exponential backoff between retries.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
 "TimeoutSeconds": 2,
 "Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0
 }],
 "End": true
 }
 }
}

Handling a Timeout Using Catch
This example uses a Catch field. When a timeout occurs, the state machine transitions to the fallback
state.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 Function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
 "TimeoutSeconds": 2,
 "Catch": [{
 "ErrorEquals": ["States.Timeout"],
 "Next": "fallback"

51

AWS Step Functions Developer Guide
Examples Using Retry and Using Catch

 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

52

AWS Step Functions Developer Guide
Example Amazon States Language Specification

Amazon States Language

Amazon States Language is a JSON-based, structured language used to define your state machine, a
collection of states (p. 40), that can do work (Task states), determine which states to transition to next
(Choice states), stop an execution with an error (Fail states), and so on. For more information, see the
Amazon States Language Specification and Statelint, a tool that validates Amazon States Language
code.

To create a state machine on the Step Functions console using Amazon States Language, see Getting
Started (p. 3).

Topics
• Example Amazon States Language Specification (p. 53)
• State Machine Structure (p. 54)
• States (p. 55)
• Input and Output Processing (p. 66)
• Errors (p. 68)

Example Amazon States Language Specification
{
 "Comment": "An Amazon States Language state machine example using a Choice state.",
 "StartAt": "FirstState",
 "States": {
 "FirstState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
 "Next": "ChoiceState"
 },
 "ChoiceState": {
 "Type" : "Choice",
 "Choices": [
 {
 "Variable": "$.foo",
 "NumericEquals": 1,
 "Next": "FirstMatchState"
 },
 {
 "Variable": "$.foo",
 "NumericEquals": 2,

53

https://states-language.net/spec.html
https://github.com/awslabs/statelint
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
State Machine Structure

 "Next": "SecondMatchState"
 }
],
 "Default": "DefaultState"
 },

 "FirstMatchState": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:OnFirstMatch",
 "Next": "NextState"
 },

 "SecondMatchState": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:OnSecondMatch",
 "Next": "NextState"
 },

 "DefaultState": {
 "Type": "Fail",
 "Cause": "No Matches!"
 },

 "NextState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
 "End": true
 }
 }
}

State Machine Structure
State machines are defined using JSON text that represents a structure containing the following fields:

Comment (Optional)

A human-readable description of the state machine.
StartAt (Required)

A string that must exactly match (case-sensitive) the name of one of the state objects.
TimeoutSeconds (Optional)

The maximum number of seconds an execution of the state machine may run; if it runs longer than
the specified time, then the execution fails with an States.Timeout Error name (p. 69).

Version (Optional)

The version of Amazon States Language used in the state machine, default is "1.0".
States (Required)

This field's value is an object containing a comma-delimited set of states.

The States field contains a number of States (p. 55):

{
 "State1" : {
 },

54

AWS Step Functions Developer Guide
States

 "State2" : {
 },
 ...
}

A state machine is defined by the states it contains and the relationships between them.

Here's an example:

{
 "Comment": "A Hello World example of the Amazon States Language using a Pass state",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Pass",
 "Result": "Hello World!",
 "End": true
 }
 }
}

When an execution of this state machine is launched, the system begins with the state referenced in the
StartAt field ("HelloWorld"). If this state has an "End": true field, the execution stops and returns a
result. Otherwise, the system looks for a "Next": field and continues with that state next. This process
repeats until the system reaches a terminal state (a state with "Type": "Succeed", "Type": "Fail", or
"End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

• States can occur in any order within the enclosing block, but the order in which they're listed doesn't
affect the order in which they're run, which is determined by the contents of the states themselves.

• Within a state machine, there can be only one state that's designated as the start state, designated
by the value of the StartAt field in the top-level structure. This state is the one that is executed first
when the execution starts.

• Any state for which the End field is true is considered to be an end (or terminal) state. Depending on
your state machine logic—for example, if your state machine has multiple branches of execution—you
may have more than one end state.

• If your state machine consists of only one state, it can be both the start state and the end state.

States
States are top-level elements within a state machine's States field, and can take a number of different
roles in your state machine depending on their type.

"FirstState" : {
 "Type" : "Task",
 ...
}

States are identified by their name, which must be unique within the state machine specification, but
otherwise can be any valid string in JSON text format. Each state also contains a number of fields with
options that vary according to the contents of the state's required Type field.

Note
State machine names must be 1-80 characters in length, must be unique for your account and
region, and must not contain any of the following:

55

AWS Step Functions Developer Guide
Common State Fields

• Whitespace

• Whitespace characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

Topics

• Common State Fields (p. 56)

• Pass (p. 56)

• Task (p. 57)

• Choice (p. 60)

• Wait (p. 62)

• Succeed (p. 63)

• Fail (p. 63)

• Parallel (p. 64)

Common State Fields
Type (Required)

The state's type.

Next

The name of the next state that will be run when the current state finishes. Some state types, such
as Choice, allow multiple transition states.

End

Designates this state as a terminal state (it ends the execution) if set to true. There can be any
number of terminal states per state machine. Only one of Next or End can be used in a state. Some
state types, such as Choice, do not support or use the End field.

Comment (Optional)

Holds a human-readable description of the state.

InputPath (Optional)

A path (p. 66) that selects a portion of the state's input to be passed to the state's task for
processing. If omitted, it has the value $ which designates the entire input. For more information, see
Input and Output Processing (p. 66)).

OutputPath (Optional)

A path (p. 66) that selects a portion of the state's input to be passed to the state's output. If
omitted, it has the value $ which designates the entire input. For more information, see Input and
Output Processing (p. 66).

Pass
A Pass state ("Type": "Pass") simply passes its input to its output, performing no work. Pass states are
useful when constructing and debugging state machines.

56

AWS Step Functions Developer Guide
Task

In addition to the common state fields (p. 56), Pass states allow the following fields:

Result (Optional)

Treated as the output of a virtual task to be passed on to the next state, and filtered as prescribed by
the ResultPath field (if present).

ResultPath (Optional)

Specifies where (in the input) to place the "output" of the virtual task specified in Result. The input
is further filtered as prescribed by the OutputPath field (if present) before being used as the state's
output. For more information, see Input and Output Processing (p. 66).

Here is an example of a Pass state that injects some fixed data into the state machine, probably for
testing purposes.

"No-op": {
 "Type": "Pass",
 "Result": {
 "x-datum": 0.381018,
 "y-datum": 622.2269926397355
 },
 "ResultPath": "$.coords",
 "Next": "End"
}

Suppose the input to this state is:

{
 "georefOf": "Home"
}

Then the output would be:

{
 "georefOf": "Home",
 "coords": {
 "x-datum": 0.381018,
 "y-datum": 622.2269926397355
 }
}

Task
A Task state ("Type": "Task") represents a single unit of work performed by a state machine.

In addition to the common state fields (p. 56), Task states have the following fields:

Resource (Required)

A URI, especially an Amazon Resource Name (ARN) that uniquely identifies the specific task to
execute.

ResultPath (Optional)

Specifies where (in the input) to place the results of executing the task specified in Resource. The
input is then filtered as prescribed by the OutputPath field (if present) before being used as the
state's output. For more information, see path (p. 66).

57

AWS Step Functions Developer Guide
Task

Retry (Optional)

An array of objects, called Retriers, that define a retry policy in case the state encounters runtime
errors. For more information, see Retrying After an Error (p. 69).

Catch (Optional)

An array of objects, called Catchers, that define a fallback state which is executed in case the state
encounters runtime errors and its retry policy has been exhausted or is not defined. For more
information, see Fallback States (p. 71).

TimeoutSeconds (Optional)

If the task runs longer than the specified seconds, then this state fails with a States.Timeout Error
Name. Must be a positive, non-zero integer. If not provided, the default value is 99999999.

HeartbeatSeconds (Optional)

If more time than the specified seconds elapses between heartbeats from the task, then this state
fails with an States.Timeout Error Name. Must be a positive, non-zero integer less than the number
of seconds specified in the TimeoutSeconds field. If not provided, the default value is 99999999.

A Task state must set either the End field to true if the state ends the execution, or must provide a state
in the Next field that will be run upon completion of the Task state.

Here is an example:

"ActivityState": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
 "TimeoutSeconds": 300,
 "HeartbeatSeconds": 60,
 "Next": "NextState"
}

In this example, ActivityState will schedule the HelloWorld activity for execution in the us-east-1
region on the caller's AWS account. When HelloWorld completes, the next state (here called NextState)
will be run.

If this task fails to complete within 300 seconds, or does not send heartbeat notifications in intervals of
60 seconds, then the task is marked as failed. It's a good practice to set a timeout value and a heartbeat
interval for long-running activities.

Specifying Resource ARNs in Tasks
The Resource field's Amazon Resource Name (ARN) is specified using the following pattern:

arn:<partition>:<service>:<region>:<account>:<task_type>:<name>

Where:

• partition is the AWS Step Functions partition to use, most commonly aws.

• service indicates the AWS service used to execute the task, and is either:

• states for an Activity (p. 59).

• lambda for a Lambda function (p. 59).

• region is the AWS region in which the Step Functions activity/state machine type or Lambda function
has been created.

58

http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Step Functions Developer Guide
Task

• account is your AWS account id.

• task_type is the type of task to run. It will be one of the following values:

• activity – an Activity (p. 59).

• function – a Lambda function (p. 59).

• name is the registered resource name (activity name or Lambda function name).

Note
Step Functions does not support referencing ARNs across partitions (For example: "aws-cn"
cannot invoke tasks in the "aws" partition, and vice versa);

Task Types
The following task types are supported:

• Activity (p. 59)

• Lambda Functions (p. 59)

The following sections will provide more detail about each type.

Activity

Activities represent workers (processes or threads), implemented and hosted by you, that perform a
specific task.

Activity resource ARNs use the following syntax:

arn:<partition>:states:<region>:<account>:activity:<name>

For details about any of these fields, see Specifying Resource ARNs in Tasks (p. 58).

Note
activities must be created with Step Functions (using a CreateActivity, API call, or the Step
Functions console) before their first use.

For more information about creating an activity and implementing workers, see Activities (p. 41).

Lambda Functions

Lambda functions execute a function using AWS Lambda. To specify a Lambda function, use the ARN of
the Lambda function in the Resource field.

Lambda function Resource ARNs use the following syntax:

arn:<partition>:lambda:<region>:<account>:function:<function_name>

For details about any of these fields, see Specifying Resource ARNs in Tasks (p. 58).

For example:

"LambdaState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloWorld",
 "Next": "NextState"

59

http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Choice

}

Once the Lambda function specified in the Resource field completes, its output is sent to the state
identified in the Next field ("NextState").

Choice
A Choice state ("Type": "Choice") adds branching logic to a state machine.

In addition to the common state fields (p. 56), Choice states introduce these additional fields:

Choices (Required)

An array of Choice Rules (p. 61) that determine which state the state machine transitions to next.
Default (Optional, Recommended)

The name of a state to transition to if none of the transitions in Choices is taken.

Important
Choice states do not support the End field. Also, they use Next only inside their Choices field.

Here is an example of a Choice state, with some other states that it transitions to:

"ChoiceStateX": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.type",
 "StringEquals": "Private"
 },
 "Next": "Public"
 },
 {
 "Variable": "$.value",
 "NumericEquals": 0,
 "Next": "ValueIsZero"
 },
 {
 "And": [
 {
 "Variable": "$.value",
 "NumericGreaterThanEquals": 20
 },
 {
 "Variable": "$.value",
 "NumericLessThan": 30
 }
],
 "Next": "ValueInTwenties"
 }
],
 "Default": "DefaultState"
},

"Public": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Foo",
 "Next": "NextState"
},

60

AWS Step Functions Developer Guide
Choice

"ValueIsZero": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Zero",
 "Next": "NextState"
},

"ValueInTwenties": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-states-1:123456789012:function:Bar",
 "Next": "NextState"
},

"DefaultState": {
 "Type": "Fail",
 "Cause": "No Matches!"
}

In the example, suppose the state machine is started with an input value of:

{
 "type": "Private",
 "value": 22
}

Then AWS Step Functions will transition to the "ValueInTwenties" state, based on the "value" field.

If there are no matches for the Choice state's Choices, then the state provided in the Default field is run
instead. If there is no Default state provided, then the execution will fail with an error.

Choice Rules
A Choice state must have a Choices field whose value is a non-empty array, each element of which
is a object called a Choice Rule. A Choice Rule contains a comparison (two fields that specify an input
variable to be compared, the type of comparison and the value with which to compare it) and a Next
field, whose value must match a state name in the state machine.

For example:

{
 "Variable": "$.foo",
 "NumericEquals": 1,
 "Next": "FirstMatchState"
}

Step Functions looks at each of the Choice Rules in the order listed in the Choices field, and transitions
to the state specified in the Next field of the first Choice Rule in which the variable matches the value
according to the comparison operator.

The following comparison operators are supported:

• StringEquals
• StringLessThan
• StringGreaterThan
• StringLessThanEquals
• StringGreaterThanEquals
• NumericEquals
• NumericLessThan

61

AWS Step Functions Developer Guide
Wait

• NumericGreaterThan

• NumericLessThanEquals

• NumericGreaterThanEquals

• BooleanEquals

• TimestampEquals

• TimestampLessThan

• TimestampGreaterThan

• TimestampLessThanEquals

• TimestampGreaterThanEquals

• And

• Or

• Not

For each of these operators, the corresponding value must be of the appropriate type: String, number,
boolean, or Timestamp (see below). Step Functions will not attempt to match a numeric field to a string
value. However, since Timestamp fields are logically strings, it is possible that a field that is thought of as
a time-stamp could be matched by a "StringEquals" comparator.

Note that for interoperability, numeric comparisons should not be assumed to work with values outside
the magnitude or precision representable using the IEEE 754-2008 "binary64" data type. In particular,
integers outside of the range [-253+1, 253-1] might fail to compare in the expected way.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions that an
uppercase T must separate the date and time portions, and an uppercase Z must denote that a numeric
time zone offset is not present, for example, 2016-08-18T17:33:00Z.

The values of the And and Or operators must be non-empty arrays of Choice Rules that must not
themselves contain Next fields. Likewise, the value of a Not operator must be a single Choice Rule that
must not itself contain Next fields. Using And, Or and Not, you can create complex, nested Choice Rules.
However, the Next field can only appear in a top-level Choice Rule.

Wait
A Wait state ("Type": "Wait") delays the state machine from continuing for a specified time. You can
choose either a relative time, specified in seconds from when the state begins, or an absolute end-time,
specified as a timestamp.

In addition to the common state fields (p. 56), Wait states have one of the following fields:

Seconds

A time, in seconds, to wait before beginning the state specified in the Next field.

Timestamp

An absolute time to wait until before beginning the state specified in the Next field.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions that
an uppercase T must separate the date and time portions, and an uppercase Z must denote that a
numeric time zone offset is not present, for example, 2016-08-18T17:33:00Z.

SecondsPath

A time, in seconds, to wait before beginning the state specified in the Next field, specified using a
path (p. 66) from the state's input data.

62

AWS Step Functions Developer Guide
Succeed

TimestampPath

An absolute time to wait until before beginning the state specified in the Next field, specified using a
path (p. 66) from the state's input data.

Note
You must specify exactly one of Seconds, Timestamp, SecondsPath, or TimestampPath.

For example, the following Wait state introduces a ten second delay into a state machine:

"wait_ten_seconds": {
 "Type": "Wait",
 "Seconds": 10,
 "Next": "NextState"
}

In the next example, the Wait state waits until an absolute time: March 14th, 2016, at 1:59 PM UTC.

"wait_until" : {
 "Type": "Wait",
 "Timestamp": "2016-03-14T01:59:00Z",
 "Next": "NextState"
}

The wait duration does not have to be hard-coded. For example, given the following input data:

{
 "expirydate": "2016-03-14T01:59:00Z"
}

You can select the value of "expirydate" from the input using a reference path (p. 66) to select it from
the input data:

"wait_until" : {
 "Type": "Wait",
 "TimestampPath": "$.expirydate",
 "Next": "NextState"
}

Succeed
A Succeed state ("Type": "Succeed") stops an execution successfully. The Succeed state is a useful target
for Choice state branches that don't do anything but stop the execution.

Because Succeed states are terminal states, they have no Next field, nor do they have need of an End
field, for example:

"SuccessState": {
 "Type": "Succeed"
}

Fail
A Fail state ("Type": "Fail") stops the execution of the state machine and marks it as a failure.

63

AWS Step Functions Developer Guide
Parallel

The Fail state only allows the use of Type and Comment fields from the set of common state
fields (p. 56). In addition, the Fail state allows the following fields:

Cause (Optional)

Provides a custom failure string that can be used for operational or diagnostic purposes.
Error (Optional)

Provides an error name that can be used for error handling (Retry/Catch), operational or diagnostic
purposes.

Because Fail states always exit the state machine, they have no Next field nor do they require an End
field.

For example:

"FailState": {
 "Type": "Fail",
 "Cause": "Invalid response.",
 "Error": "ErrorA"
}

Parallel
The Parallel state ("Type": "Parallel") can be used to create parallel branches of execution in your
state machine.

In addition to the common state fields (p. 56), Parallel states introduce these additional fields:

Branches (Required)

An array of objects that specify state machines to execute in parallel. Each such state machine object
must have fields named States and StartAt whose meanings are exactly like those in the top level
of a state machine.

ResultPath (Optional)

Specifies where (in the input) to place the output of the branches. The input is then filtered as
prescribed by the OutputPath field (if present) before being used as the state's output. For more
information, see Input and Output Processing (p. 66).

Retry (Optional)

An array of objects, called Retriers that define a retry policy in case the state encounters runtime
errors. For more information, see Retrying After an Error (p. 69).

Catch (Optional)

An array of objects, called Catchers that define a fallback state which is executed in case the state
encounters runtime errors and its retry policy has been exhausted or is not defined. For more
information, see Fallback States (p. 71).

A Parallel state causes AWS Step Functions to execute each branch, starting with the state named in
that branch's StartAt field, as concurrently as possible, and wait until all branches terminate (reach a
terminal state) before processing the Parallel state's Next field.

Here is an example:

"LookupCustomerInfo": {
 "Type": "Parallel",

64

AWS Step Functions Developer Guide
Parallel

 "Branches": [
 {
 "StartAt": "LookupAddress",
 "States": {
 "LookupAddress": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:AddressFinder",
 "End": true
 }
 }
 },
 {
 "StartAt": "LookupPhone",
 "States": {
 "LookupPhone": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:PhoneFinder",
 "End": true
 }
 }
 }
],
 "Next": "NextState"
}

In this example, the LookupAddress and LookupPhone branches are executed in parallel.

Each branch must be self-contained. A state in one branch of a Parallel state must not have a Next field
that targets a field outside of that branch, nor can any other state outside the branch transition into that
branch.

Parallel State Output
A Parallel state provides each branch with a copy of its own input data (subject to modification by the
InputPath field). It generates output which is an array with one element for each branch containing the
output from that branch. There is no requirement that all elements be of the same type. The output
array can be inserted into the input data (and the whole sent as the Parallel state's output) by using a
ResultPath field in the usual way (see Input and Output Processing (p. 66)).

Here is another example:

"FunWithMath": {
 "Type": "Parallel",
 "Branches": [
 {
 "StartAt": "Add",
 "States": {
 "Add": {
 "Type": "Task",
 "Resource": "arn:aws:swf:::task:Add",
 "End": true
 }
 }
 },
 {
 "StartAt": "Subtract",
 "States": {
 "Subtract": {
 "Type": "Task",
 "Resource": "arn:aws:swf:::task:Subtract",
 "End": true

65

AWS Step Functions Developer Guide
Input and Output Processing

 }
 }
 }
],
 "Next": "NextState"
}

If the FunWithMath state was given the array [3, 2] as input, then both the Add and Subtract states
receive that array as input. The output of Add would be 5, that of Subtract would be 1, and the output of
the Parallel state would be an array:

[5, 1]

Error Handling

If any branch fails, due to either an unhandled error or by transitioning to a Fail state, the entire
Parallel state is considered to have failed and all its branches are stopped. If the error is not handled by
the Parallel state itself, Step Functions will stop the execution with an error.

Input and Output Processing
In this section you will learn how to use paths and reference paths for input and output processing.

Paths
In Amazon States Language, a path is a string beginning with $ that you can use to identify components
within a JSON text. Paths follow JsonPath syntax.

Reference Paths
A reference path is a path whose syntax is limited in such a way that it can identify only a single node in a
JSON structure:

• You can access object fields using only dot (.) and square bracket ([]) notation.
• The operators @ .. , : ? * aren't supported.

For example, state input data contains the following values:

{
 "foo": 123,
 "bar": ["a", "b", "c"],
 "car": {
 "cdr": true
 }
}

In this case, the following reference paths would return:

$.foo => 123
$.bar => ["a", "b", "c"]
$.car.cdr => true

Certain states use paths and reference paths to control the flow of a state machine or configure a states's
settings or options.

66

https://github.com/json-path/JsonPath

AWS Step Functions Developer Guide
Reference Paths

Paths in InputPath, ResultPath, and OutputPath Fields
To specify how to use part of the state's input and what to send as output to the next state, you can use
InputPath, OutputPath, and ResultPath:

• For InputPath and OutputPath, you must use a path (p. 66) that follows the JsonPath syntax.
• For ResultPath, you must use a reference path (p. 66).

InputPath

The InputPath field selects a portion of the state's input to pass to the state's task for processing. If you
omit the field, it gets the $ value, representing the entire input. If you use null, the input is discarded
(not sent to the state's task) and the task receives JSON text representing an empty object {}.

Note
A path can yield a selection of values. Consider the following example:

{ "a": [1, 2, 3, 4] }

If you apply the path $.a[0:2], the following is the result:

[1, 2]

ResultPath

Usually, if a state executes a task, the task results are sent along as the state's output (which becomes
the input for the next task).

If a state doesn't execute a task, the state's own input is sent, unmodified, as its output. However, when
you specify a path in the value of a state's ResultPath and OutputPath fields, different scenarios become
possible.

The ResultPath takes the results of executing the state's task and places them in the input. Next, the
OutputPath selects a portion of the input to send as the state's output. The ResultPath might add the
results of executing the state's task to the input, overwrite an existing part, or overwrite the entire input:

• If the ResultPath matches an item in the state's input, only that input item is overwritten with the
results of executing the state's task. The entire modified input becomes available to the state's output.

• If the ResultPath doesn't match an item in the state's input, an item is added to the input. The item
contains the results of executing the state's task. The expanded input becomes available to the state's
output.

• If the ResultPath has the default value of $, it matches the entire input. In this case, the results of the
state execution overwrite the input entirely and the input becomes available to pass along.

• If the ResultPath is null, the results of executing the state are discarded and the input is untouched.

Note
ResultPath field values must be reference paths (p. 66).

OutputPath

• If the OutputPath matches an item in the state's input, only that input item is selected. This input item
becomes the state's output.

• If the OutputPath doesn't match an item in the state's input, an exception specifies an invalid path. For
more information, see Errors (p. 68).

67

https://github.com/json-path/JsonPath

AWS Step Functions Developer Guide
Errors

• If the OutputPath has the default value of $, this matches the entire input completely. In this case, the
entire input is passed to the next state.

Note
For more information about the effect ResultPath has on the input for those states that allow
it, see ResultPath (p. 67).

• If the OutputPath is null, a JSON text representing an empty object {} is sent to the next state.

The following example demonstrates how InputPath, ResultPath, and OutputPath fields work in
practice. Consider the following input for the current state:

{
 "title": "Numbers to add",
 "numbers": { "val1": 3, "val2": 4 }
}

In addition, the state has the following InputPath, ResultPath, and OutputPath fields:

"InputPath": "$.numbers",
"ResultPath": "$.sum",
"OutputPath": "$"

The state's task receives only the numbers object from the input. In turn, if this task returns 7, the output
of this state is as follows:

{
 "title": "Numbers to add",
 "numbers": { "val1": 3, "val2": 4 }
 "sum": 7
}

You can slightly modify the OutputPath:

"InputPath": "$.numbers",
"ResultPath": "$.sum",
"OutputPath": "$.sum"

As before, you use the following state input data:

{
 "numbers": { "val1": 3, "val2": 4 }
}

However, now the state output data is 7:

{
 7
}

Errors
Any state can encounter runtime errors. Errors can arise because of state machine definition issues
(for example, no matching rule in a Choice state), task failures (for example, an exception thrown by a

68

AWS Step Functions Developer Guide
Error Representation

Lambda function) or because of transient issues, such as network partition events. When a state reports
an error, the default course of action for AWS Step Functions is to fail the execution entirely.

Error Representation
Errors are identified in Amazon States Language by case-sensitive strings, called Error Names. Amazon
States Language defines a set of built-in strings naming well-known errors, all of which begin with the
prefix "States.":

Predefined Error Codes

States.ALL

A wild-card that matches any Error Name.
States.Timeout

A Task state either ran longer than the "TimeoutSeconds" value, or failed to send a heartbeat for a
time longer than the "HeartbeatSeconds" value.

States.TaskFailed

A Task state failed during the execution.
States.Permissions

A Task state failed because it had insufficient privileges to execute the specified code.

States may report errors with other names, which must not begin with the prefix "States.".

Retrying After an Error
Task and Parallel states may have a field named Retry, whose value must be an array of objects, called
Retriers. An individual Retrier represents a certain number of retries, usually at increasing time intervals.

A Retrier contains the following fields:

ErrorEquals (Required)

A non-empty array of Strings that match Error Names. When a state reports an error, Step Functions
scans through the Retriers and, when the Error Name appears in this array, it implements the retry
policy described in this Retrier.

IntervalSeconds (Optional)

An integer that represents the number of seconds before the first retry attempt (default 1).
MaxAttempts (Optional)

A positive integer, representing the maximum number of retry attempts (default 3). If the error
recurs more times than specified, retries cease and normal error handling resumes. A value of 0 is
permitted and indicates that the error or errors should never be retried.

BackoffRate (Optional)

A number that is the multiplier by which the retry interval increases on each attempt (default 2.0).

Here is an example of a Retry field that will make 2 retry attempts after waits of 3 and 4.5 seconds:

"Retry" : [
 {

69

AWS Step Functions Developer Guide
Retrying After an Error

 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 3,
 "MaxAttempts": 2,
 "BackoffRate": 1.5
 }
]

The reserved name States.ALL appearing in a Retrier's ErrorEquals field is a wildcard that matches any
Error Name. It must appear alone in the ErrorEquals array and must appear in the last Retrier in the
Retry array.

Here is an example of a Retry field that will retry any error except for States.Timeout:

"Retry" : [
 {
 "ErrorEquals": ["States.Timeout"],
 "MaxAttempts": 0
 },
 {
 "ErrorEquals": ["States.ALL"]
 }
]

Complex Retry Scenarios
A Retrier's parameters apply across all visits to that Retrier in the context of a single state execution. This
is best illustrated by an example; consider the following Task state:

"X": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:task:X",
 "Next": "Y",
 "Retry": [
 {
 "ErrorEquals": ["ErrorA", "ErrorB"],
 "IntervalSeconds": 1,
 "BackoffRate": 2.0,
 "MaxAttempts": 2
 },
 {
 "ErrorEquals": ["ErrorC"],
 "IntervalSeconds": 5
 }
],
 "Catch": [
 {
 "ErrorEquals": ["States.ALL"],
 "Next": "Z"
 }
]
}

Suppose that this task fails five successive times, throwing Error Names "ErrorA", "ErrorB", "ErrorC",
"ErrorB" and "ErrorB". The first two errors match the first retrier and cause waits of one and two seconds.
The third error matches the second retrier and causes a wait of five seconds. The fourth error matches
the first retrier and causes a wait of four seconds. The fifth error also matches the first retrier, but it has
already reached its limit of two retries ("MaxAttempts") for that particular error ("ErrorB") so it fails and
execution is redirected to the "Z" state via the "Catch" field.

Note that once the system transitions to another state, no matter how, all Retrier parameters are reset.

70

AWS Step Functions Developer Guide
Fallback States

Note
You can generate custom error names (such as ErrorA and ErrorB above) using either an
Activity (p. 59) or Lambda Functions (p. 59). For more information, see Handling Error
Conditions Using a State Machine (p. 27).

Fallback States
Task and Parallel states may have a field named Catch, whose value must be an array of objects, called
Catchers.

A Catcher contains the following fields:

ErrorEquals (Required)

A non-empty array of Strings that match Error Names, specified exactly as with the Retrier field of
the same name.

Next (Required)

A string which must exactly match one of the state machine's state names.
ResultPath (Optional)

A path (p. 66) which determines what is sent as input to the state specified by the Next field.

When a state reports an error and either there is no Retry field, or retries have failed to resolve the error,
AWS Step Functions scans through the Catchers in the order listed in the array, and when the Error Name
appears in the value of a Catcher's ErrorEquals field, the state machine transitions to the state named in
the Next field.

The reserved name States.ALL appearing in a Catcher's ErrorEquals field is a wildcard that matches any
Error Name. It must appear alone in the ErrorEquals array and must appear in the last Catcher in the
Catch array.

Here is an example of a Catch field that will transition to the state named "RecoveryState" when a
Lambda function throws an unhandled Java Exception, and otherwise to the "EndState" state.

"Catch": [
 {
 "ErrorEquals": ["java.lang.Exception"],
 "ResultPath": "$.error-info",
 "Next": "RecoveryState"
 },
 {
 "ErrorEquals": ["States.ALL"],
 "Next": "EndState"
 }
]

Each Catcher can specify multiple errors to handle.

When AWS Step Functions transitions to the state specified in a Catcher, it sends along as input a JSON
text that is different than what it would normally send to the next state when there was no error. This
JSON text represents an object containing a field "Error" whose value is a string containing the error
name. The object will also, usually, contain a field "Cause" that has a human-readable description of the
error. We refer to this object as the Error Output.

In this example, the first Catcher contains a ResultPath field. This works in a similar fashion to a
ResultPath field in a state's top level—it takes the results of executing the state and overwrites a portion

71

AWS Step Functions Developer Guide
Fallback States

of the state's input, or all of the state's input, or it takes the results and adds them to the input. In the
case of an error handled by a Catcher, the result of executing the state is the Error Output.

So in the example, for the first Catcher the Error Output will be added to the input as a field named
error-info (assuming there is not already a field by that name in the input) and the entire input will
be sent to RecoveryState. For the second Catcher, the Error Output will overwrite the input and so just
the Error Output will be sent to EndState. When not specified, the ResultPath field defaults to $ which
selects, and so overwrites, the entire input.

When a state has both Retry and Catch fields, Step Functions uses any appropriate Retriers first and only
applies the matching Catcher transition if the retry policy fails to resolve the error.

72

AWS Step Functions Developer Guide
General Limits

Limits

AWS Step Functions places limits on the sizes of certain state machine parameters, such as the number
of API calls that you can make during a certain time period or the number of state machines that you can
define. Although these limits are designed to prevent a misconfigured state machine from consuming all
of the resources of the system, they aren't hard limits.

Note
If a particular stage of your state machine execution or activity execution takes too long, you
can configure a state machine timeout to cause a timeout event.

Topics

• General Limits (p. 73)

• Limits Related to Accounts (p. 74)

• Limits Related to State Machine Executions (p. 74)

• Limits Related to Task Executions (p. 74)

• Limits Related to API Action Throttling (p. 75)

General Limits

Limit Description

State machine name State machine names must be 1-80 characters
in length, must be unique for your account and
region, and must not contain any of the following:

• Whitespace
• Whitespace characters (? *)
• Bracket characters (< > { } [])
• Special characters (: ; , \ | ^ ~ $ # % & `
")

• Control characters (\\u0000 - \\u001f or \
\u007f - \\u009f).

73

AWS Step Functions Developer Guide
Limits Related to Accounts

Limits Related to Accounts

Limit Description

Maximum number of state machines and activities 10,000

Maximum number of API calls Beyond infrequent spikes, applications may be
throttled if they make a large number of API calls
in a very short period of time.

Maximum request size 1 MB per request. This is the total data size per
Step Functions API request, including the request
header and all other associated request data.

Limits Related to State Machine Executions

Limit Description

Maximum open executions 1,000,000

Maximum execution time 1 year

Maximum execution history size 25,000 events

Maximum execution idle time 1 year (constrained by execution time limit)

Maximum execution history retention time 90 days. After this time, you can no longer
retrieve or view the execution history.There is no
further limit to the number of closed executions
that Step Functions retains.

Maximum executions displayed in Step Functions
console

The Step Functions console displays a maximum
of 1,000 executions per state machine. If you
have more than 1,000 executions, use the Step
Functions API actions or the AWS CLI to display all
of your executions.

Limits Related to Task Executions

Limit Description

Maximum task execution time 1 year (constrained by execution time limit)

Maximum time Step Functions keeps a task in the
queue

1 year (constrained by execution time limit)

Maximum open activities 1,000 per execution. This limit includes both
activities that have been scheduled and those
being processed by workers.

74

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide
Limits Related to API Action Throttling

Limit Description

Maximum input or result data size for a task,
state, or execution

32,768 characters. This limit affects tasks (activity
or Lambda function), state or execution result
data, and input data when scheduling a task,
entering a state, or starting an execution.

Limits Related to API Action Throttling
Some Step Functions API actions are throttled using a token bucket scheme to maintain service
bandwidth.

Note
Throttling limits are per account, per region.

API Name Bucket Size Refill Rate per Second

CreateActivity 100 1

CreateStateMachine 100 1

DeleteActivity 100 1

DeleteStateMachine 100 1

DescribeActivity 200 1

DescribeExecution 200 1

DescribeStateMachine 200 1

GetActivityTask 1000 10

GetExecutionHistory 50 1

ListActivities 100 1

ListExecutions 100 1

ListStateMachines 100 1

SendTaskFailure 1000 10

SendTaskHeartbeat 1000 10

SendTaskSuccess 1000 10

StartExecution 100 2

StopExecution 100 2

75

AWS Step Functions Developer Guide
Monitoring Step Functions Using CloudWatch

Monitoring and Logging

This section provides information about monitoring and logging Step Functions.

Topics
• Monitoring Step Functions Using CloudWatch (p. 76)
• Logging Step Functions using AWS CloudTrail (p. 82)

Monitoring Step Functions Using CloudWatch
Monitoring is an important part of maintaining the reliability, availability, and performance of AWS Step
Functions and your AWS solutions. You should collect as much monitoring data from the AWS services
that you use so that you can more easily debug any multi-point failures. Before you start monitoring
Step Functions, you should create a monitoring plan that answers the following questions:

• What are your monitoring goals?
• What resources will you monitor?
• How often will you monitor these resources?
• What monitoring tools will you use?
• Who will perform the monitoring tasks?
• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Step Functions performance in your environment. To
do this, measure performance at various times and under different load conditions. As you monitor Step
Functions, you should consider storing historical monitoring data. Such data can give you a baseline to
compare against current performance data, to identify normal performance patterns and performance
anomalies, and to devise ways to address issues.

For example, with Step Functions, you can monitor how many activities or Lambda tasks fail due to a
heartbeat timeout. When performance falls outside your established baseline, you might have to change
your heartbeat interval.

To establish a baseline you should, at a minimum, monitor the following metrics:

• ActivitiesStarted

• ActivitiesTimedOut

• ExecutionsStarted

• ExecutionsTimedOut

76

AWS Step Functions Developer Guide
Metrics that Report a Time Interval

• LambdaFunctionsStarted

• LambdaFunctionsTimedOut

The following sections describe metrics that Step Functions provides to CloudWatch. You can use these
metrics to track your state machines and activities and to set alarms on threshold values. You can view
metrics using the AWS Management Console.

Topics
• Metrics that Report a Time Interval (p. 77)
• Metrics that Report a Count (p. 77)
• State Machine Metrics (p. 77)
• Viewing Metrics for Step Functions (p. 79)
• Setting Alarms for Step Functions (p. 80)

Metrics that Report a Time Interval
Some of the Step Functions CloudWatch metrics are time intervals, always measured in milliseconds.
These metrics generally correspond to stages of your execution for which you can set state machine,
activity, and Lambda function timeouts, with descriptive names.

For example, the ActivityRunTime metric measures the time it takes for an activity to complete after it
begins to execute. You can set a timeout value for the same time period.

In the CloudWatch console, you can get the best results if you choose average as the display statistic for
time interval metrics.

Metrics that Report a Count
Some of the Step Functions CloudWatch metrics report results as a count. For example,
ExecutionsFailed records the number of failed state machine executions.

In the CloudWatch console, you can get the best results if you choose sum as the display statistic for
count metrics.

State Machine Metrics
The following metrics are available for Step Functions state machines:

Execution Metrics
The AWS/States namespace includes the following metrics for Step Functions executions:

Metric Description

ExecutionsAborted The number of aborted or terminated executions.

ExecutionsFailed The number of failed executions.

ExecutionsStarted The number of started executions.

ExecutionsSucceeded The number of successfully completed executions.

ExecutionTime The interval, in milliseconds, between the time the execution starts
and the time it closes.

77

AWS Step Functions Developer Guide
State Machine Metrics

Metric Description

ExecutionsTimedOut The number of executions that time out for any reason.

Dimension for Step Functions Execution Metrics

Dimension Description

StateMachineArn The ARN of the state machine for the execution in question.

Activity Metrics
The AWS/States namespace includes the following metrics for Step Functions activities:

Metric Description

ActivityRunTime The interval, in milliseconds, between the time the activity starts
and the time it closes.

ActivityScheduleTime The interval, in milliseconds, for which the activity stays in the
schedule state.

ActivityTime The interval, in milliseconds, between the time the activity is
scheduled and the time it closes.

ActivitiesFailed The number of failed activities.

ActivitiesHeartbeatTimedOut The number of activities that time out due to a heartbeat timeout.

ActivitiesScheduled The number of scheduled activities.

ActivitiesStarted The number of started activities.

ActivitiesSucceeded The number of successfully completed activities.

ActivitiesTimedOut The number of activities that time out on close.

Dimension for Step Functions Activity Metrics

Dimension Description

ActivityArn The ARN of the activity.

Lambda Function Metrics
The AWS/States namespace includes the following metrics for Step Functions Lambda functions:

Metric Description

LambdaFunctionRunTime The interval, in milliseconds, between the time the Lambda
function starts and the time it closes.

78

AWS Step Functions Developer Guide
Viewing Metrics for Step Functions

Metric Description

LambdaFunctionScheduleTime The interval, in milliseconds, for which the Lambda function stays in
the schedule state.

LambdaFunctionTime The interval, in milliseconds, between the time the Lambda
function is scheduled and the time it closes.

LambdaFunctionsFailed The number of failed Lambda functions.

LambdaFunctionsHeartbeatTimedOutThe number of Lambda functions that time out due to a heartbeat
timeout.

LambdaFunctionsScheduled The number of scheduled Lambda functions.

LambdaFunctionsStarted The number of started Lambda functions.

LambdaFunctionsSucceeded The number of successfully completed Lambda functions.

LambdaFunctionsTimedOut The number of Lambda functions that time out on close.

Dimension for Step Functions Lambda Function Metrics

Dimension Description

LambdaFunctionArn The ARN of the Lambda function.

Viewing Metrics for Step Functions
1. Open the AWS Management Console and navigate to CloudWatch.
2. Choose Metrics and on the All Metrics tab, choose States.

If you have run any executions recently, you will see up to three types of metrics:
• Execution Metrics
• Activity Function Metrics

79

AWS Step Functions Developer Guide
Setting Alarms for Step Functions

• Lambda Function Metrics

3. Choose a metric type to see a list of metrics.

• To sort your metrics by Metric Name or StateMachineArn, use the column headings.

• To view graphs for a metric, choose the box next to the metric on the list. You can change the graph
parameters using the time range controls above the graph view.

You can choose custom time ranges using relative or absolute values (specific days and times). You
can also use the drop-down list to display values as lines, stacked areas, or numbers (values).

• To view the details about a graph, hover over the metric color code which appears below the graph.

The metric's details are displayed.

For more information about working with CloudWatch metrics, see Using Amazon CloudWatch Metrics in
the Amazon CloudWatch User Guide.

Setting Alarms for Step Functions
You can use CloudWatch alarms to perform actions. For example, if you want to know when an alarm
threshold is reached, you can set an alarm to send a notification to an Amazon SNS topic or to send an
email when the StateMachinesFailed metric rises above a certain threshold.

To set an alarm on a metric
1. Open the AWS Management Console and navigate to CloudWatch.

2. Choose Metrics and on the All Metrics tab, choose States.

80

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html

AWS Step Functions Developer Guide
Setting Alarms for Step Functions

If you have run any executions recently, you will see up to three types of metrics:

• Execution Metrics

• Activity Function Metrics

• Lambda Function Metrics

3. Choose a metric type to see a list of metrics.

4. Choose a metric and then choose Graphed metrics.

5. Choose next to a metric on the list.

The Create Alarm dialog box is displayed.

81

AWS Step Functions Developer Guide
Logging Step Functions using AWS CloudTrail

6. Enter the values for the Alarm threshold and Actions and then choose Create Alarm.

For more information about setting and using CloudWatch alarms, see Creating Amazon CloudWatch
Alarms in the Amazon CloudWatch User Guide.

Logging Step Functions using AWS CloudTrail
AWS Step Functions is integrated with AWS CloudTrail, a service that captures specific API calls and
delivers log files to an Amazon S3 bucket that you specify. With the information collected by CloudTrail,
you can determine what request was made to Step Functions, the IP address from which the request was
made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

Step Functions Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to specific Step Functions
actions are tracked in CloudTrail log files. Step Functions actions are written, together with other AWS
service records. CloudTrail determines when to create and write to a new file based on a time period and
file size.

The following actions are supported:

82

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Step Functions Developer Guide
Understanding Step Functions Log File Entries

• CreateActivity
• CreateStateMachine
• DeleteActivity
• DeleteStateMachine
• StartExecution
• StopExecution

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine the following:

• Whether the request was made with root or IAM user credentials
• Whether the request was made with temporary security credentials for a role or federated user
• Whether the request was made by another AWS service

For more information, see the userIdentity element in the AWS CloudTrail User Guide.

You can store your log files in your S3 bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted with
Amazon S3 server-side encryption.

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail.

You can also aggregate Step Functions log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Receiving CloudTrail Log Files from Multiple
Regions and Receiving CloudTrail Log Files from Multiple Accounts.

Understanding Step Functions Log File Entries
CloudTrail log files contain one or more log entries. Each entry lists multiple JSON-formatted events.
A log entry represents a single request from any source and includes information about the requested
action, the date and time of the action, request parameters, and so on. The log entries are not an
ordered stack trace of the public API calls, so they do not appear in any specific order.

CreateActivity
The following example shows a CloudTrail log entry that demonstrates the CreateActivity action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:56Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "CreateActivity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "requestParameters": {

83

http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteActivity.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachine.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StopExecution.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Step Functions Developer Guide
Understanding Step Functions Log File Entries

 "name":
 "OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-8523-376469410c25"
 },
 "responseElements": {
 "activityArn": "arn:aws:states:us-
east-1:123456789012:activity:OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-8523-376469410c25",
 "creationDate": "Oct 28, 2016 1:17:56 AM"
 },
 "requestID": "37c67602-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "dc3becef-d06d-49bf-bc93-9b76b5f00774",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

CreateStateMachine
The following example shows a CloudTrail log entry that demonstrates the CreateStateMachine action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:18:07Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "CreateStateMachine",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "requestParameters": {
 "name": "testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",
 "roleArn": "arn:aws:iam::123456789012:role/graphene/tests/graphene-execution-role",
 "definition": "{ \"StartAt\": \"SinglePass\", \"States\": { \"SinglePass
\": { \"Type\": \"Pass\", \"End\": true } }}"
 },
 "responseElements": {
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",
 "creationDate": "Oct 28, 2016 1:18:07 AM"
 },
 "requestID": "3da6370c-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "84a0441d-fa06-4691-a60a-aab9e46d689c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

DeleteActivity
The following example shows a CloudTrail log entry that demonstrates the DeleteActivity action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",

84

AWS Step Functions Developer Guide
Understanding Step Functions Log File Entries

 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:18:27Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "DeleteActivity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "requestParameters": {
 "activityArn": "arn:aws:states:us-
east-1:123456789012:activity:testUser.2016-10-27-18-11-35.f017c391-9363-481a-be2e-"
 },
 "responseElements": null,
 "requestID": "490374ea-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "e5eb9a3d-13bc-4fa1-9531-232d1914d263",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }

DeleteStateMachine
The following example shows a CloudTrail log entry that demonstrates the DeleteStateMachine action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJABK5MNKNAEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/graphene/tests/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJA2ELRVCPEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:37Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "DeleteStateMachine",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws:iam::123456789012:user/graphene/tests/test-user is
 not authorized to perform: states:DeleteStateMachine on resource: arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-16-38.ec6e261f-1323-4555-9fa",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "2cf23f3c-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "4a622d5c-e9cf-4051-90f2-4cdb69792cd8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

StartExecution
The following example shows a CloudTrail log entry that demonstrates the StartExecution action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",

85

AWS Step Functions Developer Guide
Understanding Step Functions Log File Entries

 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:25Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "StartExecution",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "requestParameters": {
 "input": "{}",
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-16-26.482bea32-560f-4a36-bd",
 "name": "testUser.2016-10-27-18-16-26.6e229586-3698-4ce5-8d"
 },
 "responseElements": {
 "startDate": "Oct 28, 2016 1:17:25 AM",
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:testUser.2016-10-27-18-16-26.482bea32-560f-4a36-
bd:testUser.2016-10-27-18-16-26.6e229586-3698-4ce5-8d"
 },
 "requestID": "264c6f08-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "30a20c8e-a3a1-4b07-9139-cd9cd73b5eb8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

StopExecution
The following example shows a CloudTrail log entry that demonstrates the StopExecution action:

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:18:20Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "StopExecution",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.61.88.189",
 "userAgent": "Coral/Netty",
 "requestParameters": {
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:testUser.2016-10-27-18-17-00.337b3344-83:testUser.2016-10-27-18-17-00.3a0801c5-37"
 },
 "responseElements": {
 "stopDate": "Oct 28, 2016 1:18:20 AM"
 },
 "requestID": "4567625b-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "e658c743-c537-459a-aea7-dafb83c18c53",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

86

AWS Step Functions Developer Guide
Creating IAM Roles for Use with AWS Step Functions

Security

This section provides information about Step Functions security.

Topics
• Creating IAM Roles for Use with AWS Step Functions (p. 87)

Creating IAM Roles for Use with AWS Step
Functions

AWS Step Functions is capable of executing code and accessing AWS resources (such as data stored in
Amazon S3 buckets), so to maintain security, you must grant Step Functions access to those resources.
You do this for Step Functions with an IAM role.

In the tutorials for Step Functions in this document, you made use of automatically generated IAM roles
that were valid for the region in which you created the state machine. If you wish to create your own IAM
role for use with your state machine, this section outlines the steps needed to do that.

Steps to Create a Role for Use with Step Functions
In this example, you will create an IAM role with permission to invoke a Lambda function.

1. Open the IAM console.
2. Choose Roles in the left pane, then choose Create New Role.
3. On Set Role Name, type a name for your role, such as states-lambda-role, and choose Next Step.
4. On Select Role Type, choose AWS SWF from the list.

Note
Currently, there is no AWS service role registered with the IAM console for the Step Functions
service. You must select one of the existing role policies and manually modify it after the role
is created.

5. On Attach Policy, choose the AWSLambdaRole policy, and then choose Next Step. If you are creating
a state machine for a different purpose, please choose the appropriate policy here.

6. On Review, choose Create Role. You always get a final chance to change the name and policy for your
role.

87

https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide
Steps to Create a Role for Use with Step Functions

Next, you will edit the trust relationship for the Step Functions role you created.
7. From the IAM console, choose the name of the role that you just created (states-lambda-role) from

the list. This will open the role's detail page.
8. Choose the Trust Relationships tab and then choose Edit Trust Relationship. You will see a trust

relationship such as:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "swf.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

9. Under the Principal section, replace swf.amazonaws.com with states.REGION.amazonaws.com (where
REGION is AWS region you are working in), resulting in the following trust relationship (for example):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "states.us-east-1.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

10.Choose Update Trust Policy.

For more information about IAM permissions and policies, see Access Management in the IAM User
Guide.

88

https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

AWS Step Functions Developer Guide

Document History

This topic lists major changes to the AWS Step Functions Developer Guide.

Latest documentation update: June 21, 2017

Change Description Date Changed

Update Corrected and clarified information in the following sections:

• Getting Started (p. 3)
• Handling Error Conditions Using a State Machine (p. 27)
• States (p. 55)
• Error Handling (p. 45)

June 21, 2017

Update Rewrote all tutorials to match the Step Functions console refresh. June 12, 2017

New feature Step Functions is available in Asia Pacific (Sydney). June 8, 2017

Update Restructured the Amazon States Language (p. 53) section. June 7, 2017

Update Corrected and clarified information in the Creating an Activity State
Machine (p. 20) section.

June 6, 2017

Update Corrected the code examples in the Examples Using Retry and
Using Catch (p. 49) section.

June 5, 2017

Update Restructured this guide using AWS documentation standards. May 31, 2017

Update Corrected and clarified information in the Parallel (p. 64) section. May 25, 2017

Update Merged the Paths and Filters sections into the Input and Output
Processing (p. 66) section.

May 24, 2017

Update Corrected and clarified information in the Blueprints (p. 39) section. May 16, 2017

Update Corrected and clarified information in the Monitoring Step
Functions Using CloudWatch (p. 76) section.

May 15, 2017

Update Updated the GreeterActivities.java worker code in the Creating
an Activity State Machine (p. 20) tutorial.

May 9, 2017

Update Added an introductory video to the What is AWS Step
Functions? (p. 1) section.

April 19, 2017

89

AWS Step Functions Developer Guide

Change Description Date Changed

Update Corrected and clarified information in the following tutorials:

• Getting Started (p. 3)
• Creating a Lambda State Machine (p. 9)
• Creating an Activity State Machine (p. 20)
• Handling Error Conditions Using a State Machine (p. 27)

April 19, 2017

Update Added information about Lambda blueprints to the Creating a
Lambda State Machine (p. 9) and Handling Error Conditions Using a
State Machine (p. 27) tutorials.

April 6, 2017

Update Changed the "Maximum input or result data size" limit
to "Maximum input or result data size for a task, state, or
execution" (32,768 characters). For more information, see Limits
Related to Task Executions (p. 74).

March 31,
2017

New feature • Step Functions supports executing state machines by setting Step
Functions as Amazon CloudWatch Events targets.

• Added the new tutorial Starting a State Machine Execution Using
CloudWatch Events (p. 25).

March 21,
2017

New feature • Step Functions allows Lambda function error handling as the
preferred error handling method.

• Updated the Handling Error Conditions Using a State
Machine (p. 27) tutorial and the Error Handling (p. 45) section.

March 16,
2017

New feature Step Functions is available in EU (Frankfurt). March 7, 2017

Update Reorganized the topics in the table of contents and updated the
following tutorials:

• Getting Started (p. 3)
• Creating a Lambda State Machine (p. 9)
• Creating an Activity State Machine (p. 20)
• Handling Error Conditions Using a State Machine (p. 27)

February 23,
2017

New feature • The State Machines page of the Step Functions console includes
the Copy to New and Delete buttons.

• Updated the screenshots to match the console changes.

February 23,
2017

New feature • Step Functions supports creating APIs using API Gateway.
• Added the new tutorial Creating a Step Functions API Using API

Gateway (p. 33).

February 14,
2017

New feature • Step Functions supports integration with AWS CloudFormation.
• Added the new tutorial Creating a Lambda State Machine Using

AWS CloudFormation (p. 15).

February 10,
2017

Update Clarified the current behavior of the ResultPath and OutputPath
fields in relation to Parallel states.

February 6,
2017

Update • Clarified state machine naming restrictions in tutorials.
• Corrected some code examples.

January 5,
2017

90

AWS Step Functions Developer Guide

Change Description Date Changed

Update Updated Lambda function examples to use the latest programming
model.

December 9,
2016

New feature The initial release of Step Functions. December 1,
2016

91

	AWS Step Functions
	Table of Contents
	What is AWS Step Functions?
	Overview of Step Functions
	Supported Regions
	About Amazon Web Services

	Getting Started
	Step 1: Creating the State Machine
	To create the state machine

	Step 2: Starting a new execution
	To start a new execution

	Next Steps

	Tutorials
	Development Options
	Step Functions Console
	AWS SDKs
	HTTPS Service API
	Development Environments
	Endpoints
	AWS CLI

	Creating a Lambda State Machine
	Step 1: Creating an IAM Role for Lambda
	To create a role for use with Lambda

	Step 2: Creating a Lambda Function
	To create the Lambda function

	Step 3: Testing the Lambda Function
	To test the Lambda function

	Step 4: Creating a State Machine
	To create the state machine

	Step 5: Starting a New Execution
	To start a new execution

	Creating a Lambda State Machine Using AWS CloudFormation
	Step 1: Setting Up Your AWS CloudFormation Template
	To create an IAM role for Lambda
	To create a Lambda function
	To create an IAM role for the state machine execution
	To create a Lambda state machine

	Step 2: Using the AWS CloudFormation Template to Create a Lambda State Machine
	To create the Lambda state machine

	Step 3: Starting a State Machine Execution
	To start the state machine execution

	Creating an Activity State Machine
	Step 1: Creating a New Activity
	To create the new activity task

	Step 2: Creating a State Machine
	To create the state machine

	Step 3: Implementing a Worker
	To implement the worker

	Step 4: Starting an Execution
	To start the execution

	Step 5: Running and Stopping the Worker
	To run and stop the worker

	Starting a State Machine Execution Using CloudWatch Events
	Step 1: Creating a State Machine
	Step 2: Creating a CloudWatch Events Rule
	To create the rule

	Handling Error Conditions Using a State Machine
	Step 1: Creating an IAM Role for Lambda
	To create a role for use with Lambda

	Step 2: Creating a Lambda Function That Fails
	To simulate a failing Lambda function

	Step 3: Testing the Lambda Function
	To test your Lambda function

	Step 4: Creating a State Machine with a Catch Field
	To create the state machine

	Step 5: Starting a New Execution
	To start a new execution

	Creating a Step Functions API Using API Gateway
	Step 1: Creating an IAM Role for API Gateway
	To create the IAM role
	To attach a policy to the IAM role

	Step 2: Creating your API Gateway API
	To create the API
	To create a resource
	To create a POST Method
	To configure the method

	Step 3: Testing and Deploying the API Gateway API
	To test the communication between API Gateway and Step Functions
	To deploy your API
	To test your deployment

	How Step Functions Works
	Blueprints
	States
	Tasks
	Activities
	Creating an Activity
	Writing a Worker
	Sending Heartbeat Notifications

	Transitions
	State Machine Data
	Data Format
	State Machine Input/Output
	State Input/Output
	Filters

	Executions
	Error Handling
	Error Names
	Retrying After an Error
	Complex Retry Scenarios

	Fallback States
	Error Output

	Examples Using Retry and Using Catch
	Handling a Failure Using Retry
	Handling a Failure Using Catch
	Handling a Timeout Using Retry
	Handling a Timeout Using Catch

	Amazon States Language
	Example Amazon States Language Specification
	State Machine Structure
	States
	Common State Fields
	Pass
	Task
	Specifying Resource ARNs in Tasks
	Task Types
	Activity
	Lambda Functions

	Choice
	Choice Rules

	Wait
	Succeed
	Fail
	Parallel
	Parallel State Output
	Error Handling

	Input and Output Processing
	Paths
	Reference Paths
	Paths in InputPath, ResultPath, and OutputPath Fields
	InputPath
	ResultPath
	OutputPath

	Errors
	Error Representation
	Retrying After an Error
	Complex Retry Scenarios

	Fallback States

	Limits
	General Limits
	Limits Related to Accounts
	Limits Related to State Machine Executions
	Limits Related to Task Executions
	Limits Related to API Action Throttling

	Monitoring and Logging
	Monitoring Step Functions Using CloudWatch
	Metrics that Report a Time Interval
	Metrics that Report a Count
	State Machine Metrics
	Execution Metrics
	Dimension for Step Functions Execution Metrics

	Activity Metrics
	Dimension for Step Functions Activity Metrics

	Lambda Function Metrics
	Dimension for Step Functions Lambda Function Metrics

	Viewing Metrics for Step Functions
	Setting Alarms for Step Functions
	To set an alarm on a metric

	Logging Step Functions using AWS CloudTrail
	Step Functions Information in CloudTrail
	Understanding Step Functions Log File Entries
	CreateActivity
	CreateStateMachine
	DeleteActivity
	DeleteStateMachine
	StartExecution
	StopExecution

	Security
	Creating IAM Roles for Use with AWS Step Functions
	Steps to Create a Role for Use with Step Functions

	Document History

