

Import Windows Server to
Amazon EC2 with

PowerShell

February 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Amazon EC2 1

Amazon EC2 Dedicated Instances 1

Amazon EC2 Dedicated Hosts 1

AWS Server Migration Service 2

VM Import/Export 2

AWS Tools for Windows PowerShell 3

AWS Config 3

Licensing Considerations 3

Preparing for the Walkthroughs 5

Overview 5

Prerequisites 5

Walkthrough: Import Your Custom Image 6

Walkthrough: Launch a Dedicated Instance 9

Walkthrough: Configure Microsoft KMS for BYOL 11

Walkthrough: Allocate a Dedicated Host and Launch an Instance 13

Conclusion 16

Contributors 16

Further Reading 16

Abstract
This whitepaper is for Microsoft Windows IT professionals who want to learn

how to use Amazon Web Services (AWS) VM Import/Export to import custom

Windows Server images into Amazon Elastic Compute Cloud (Amazon EC2).

PowerShell code is provided to demonstrate one way you could automate the

task of importing images and launching instances, but there are many other

DevOps automation techniques that could come into play in a well thought-out

cloud migration process.

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 1

Introduction

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides

resizable compute capacity in the cloud. Amazon EC2 reduces the time required

to obtain and boot new server instances. It changes the economics of computing

by allowing you to pay only for capacity that you actually use.

You have full administrator access to each EC2 instance, and you can interact

with your instances just as you do with your on-premises servers. You can stop

your instance and retain the data on your boot partition, then restart the same

instance using PowerShell or a browser interface.

Amazon EC2 Dedicated Instances

Dedicated Instances are Amazon EC2 instances that run in a virtual private

cloud (VPC) on hardware that's dedicated to a single customer. Your Dedicated

Instances are physically isolated at the host hardware level from instances that

belong to other AWS accounts. However, Dedicated Instances may share

hardware with other instances from the same AWS account that are not

Dedicated Instances. Dedicated Instances allow you to bring your own licenses

for Windows Server. For more information, see

http://aws.amazon.com/dedicated-instances.

Amazon EC2 Dedicated Hosts

An Amazon EC2 Dedicated Host is a physical server with Amazon EC2 instance

capacity fully dedicated to your use. Dedicated Hosts can help you address

compliance requirements and reduce costs by allowing you to use your existing

server-bound software licenses.

Dedicated Hosts allow you to allocate a physical server and then launch one or

more Amazon EC2 instances of a given type on it. You can target and reuse

specific physical servers and be within the terms of your existing software

licenses.

In addition to allowing you to Bring Your Own License (BYOL) to the cloud to

reduce costs, Amazon EC2 Dedicated Hosts can help you to meet stringent

http://aws.amazon.com/dedicated-instances

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 2

compliance and regulatory requirements, some of which require control and

visibility over instance placement at the physical host level. In these

environments, detailed auditing of changes is also crucial. You can use the AWS

Config service to record all changes to your Dedicated Hosts and instances.

Dedicated Hosts allow you to use your existing per-socket, per-core, or per-

virtual machine (VM) software licenses, including Microsoft Windows Server

and Microsoft SQL Server. Learn more at

https://aws.amazon.com/ec2/dedicated-hosts/.

AWS Server Migration Service

AWS Server Migration Service (AWS SMS) is an agentless service that makes it

easier and faster for you to migrate thousands of on-premises workloads to

AWS. AWS SMS allows you to automate, schedule, and track incremental

replications of live server volumes, making it easier for you to coordinate large-

scale server migrations.

Each server volume replicated is saved as a new Amazon Machine Image (AMI),

which can be launched as an EC2 instance in the AWS Cloud. AWS SMS

currently supports VMware virtual machines, and support for other physical

servers and hypervisors is coming soon.

AWS SMS supports migrating Windows Server 2003, 2008, 2012, and 2016,

and Windows 7, 8, and 10.

VM Import/Export

VM Import/Export enables you to easily import virtual machine images from

your existing environment to Amazon EC2 instances and export them back to

your on-premises environment. This allows you to use your existing virtual

machines that you have built to meet your IT security, configuration

management, and compliance requirements by bringing those virtual machines

into Amazon EC2 as ready-to-use instances. VM Import/Export is available at

no additional charge beyond standard usage charges for Amazon EC2 and

Amazon Simple Storage Service (Amazon S3).

https://aws.amazon.com/ec2/dedicated-hosts/

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 3

You can use PowerShell to import a Hyper-V or VMware image. VM Import will

convert your virtual machine (VM) into an Amazon EC2 AMI, which you can

use to run Amazon EC2 instances.

AWS Tools for Windows PowerShell

The AWS Tools for Windows PowerShell are a set of PowerShell cmdlets that

are built on top of the functionality exposed by the AWS SDK for .NET. AWS

Tools for Windows PowerShell enable you to script operations on your AWS

resources from the PowerShell command line. Although the cmdlets are

implemented using the service clients and methods from the SDK, the cmdlets

provide an idiomatic PowerShell experience for specifying parameters and

handling results. For example, the cmdlets for Tools for Windows PowerShell

support PowerShell pipelining—that is, you can pipeline PowerShell objects

both into and out of the cmdlets. Learn more at

https://aws.amazon.com/documentation/powershell/.

AWS Config

AWS Config is a fully managed service that provides you an inventory of your

AWS resources, as well as configuration history, and configuration change

notifications to enable security and governance. Config Rules enable you to

automatically check the configuration of your AWS resources. You can discover

existing and deleted AWS resources, determine your overall compliance against

rules, and dive into configuration details of a resource at any point in time.

These capabilities enable compliance auditing, security analysis, resource

change tracking, and troubleshooting. This enables you to manage your

Windows Server licenses on Dedicated Hosts as required by Microsoft.

Licensing Considerations
Organizations that own Microsoft software licenses and Software Assurance

have the option of bringing their own licenses (BYOL) to the cloud under the

terms of Microsoft’s License Mobility program (included with Software

Assurance). In many cases, software license costs can dominate the cost of the

computing, storage, and networking infrastructure in the cloud, so BYOL can be

very beneficial. However, you must evaluate BYOL carefully.

https://aws.amazon.com/documentation/powershell/

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 4

For Windows Server and SQL Server, AWS also offers License Included (LI) as

an option. It’s called License Included because the software is pre-installed in

the AMI and the complete software licenses are included when you launch an

Amazon EC2 instance with those AMIs, even Client Access Licenses (CALs). You

pay as you go for the Windows Server and SQL Server licenses, either hourly

while the instance is running or with a 1- or 3-year Reserved Instance. Reserved

Instances offer substantial discounts.

The LI model is convenient and flexible, but if you move a licensed on-premises

workload to the cloud with LI instances then you would essentially be paying for

dual software licenses. Even though that sounds expensive, it still might make

sense to do in some cases, particularly if you plan to consolidate some of your

workloads, or re-platform some application servers, or discontinue purchasing

Software Assurance. So you need to consider your options, including BYOL,

carefully.

However, don’t assume that BYOL is always more economical. It’s advisable to

create a simple spreadsheet to make a balanced comparison of BYOL vs. LI.

With BYOL, if you haven’t bought the licenses yet, you need to know your

Microsoft reseller bulk license discount. You also need to include the cost of

Software Assurance (even if it’s already a sunk cost, consider whether you plan

to renew it), and the cost of EC2 Dedicated Hosts and Instances. Don’t forget to

include the correct number of licenses for all the cores on the instances you plan

to use for Windows Server and SQL Server. With LI, you need to consider

whether you are purchasing Reserved Instances, which offer substantial

discounts.

Tip: When using the AWS Simple Monthly Calculator to determine

instance costs without licenses, select Amazon Linux even though you’ll

be importing your own Windows Server image. This avoids the license

cost that the calculator automatically assumes for Windows Server.

Also, there are considerable advantages with LI:

 The licenses are fully managed by AWS, so you don’t need to worry

about auditing.

 You can forego the cost of Software Assurance for those licenses.

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 5

 You don’t need to buy CALs.

 Each LI for Windows Server includes two Remote Desktop CALs.

 LI reduces your costs if you decide to consolidate workloads later.

 LI reduce your costs when you stop the instances.

 LI reduces your costs if you don’t need the full capacity of a Dedicated

Host.

 You retain the freedom to re-platform your workload.

Preparing for the Walkthroughs

Overview

The remainder of this paper walks you through several activities with Windows

PowerShell. You can adapt and reuse these code snippets in your own AWS

account to automate the following tasks:

 Import a Windows Server virtual machine to Amazon EC2.

 Launch and terminate a Dedicated Instance using your custom AMI.

 Configure Microsoft Key Management Services (KMS) to apply user-

supplied licensing.

 Allocate a Dedicated Host and launch an instance in the host using your

custom AMI, and then terminate the instance and the Dedicated Host.

Important: If you choose to follow along with the remaining sections in

this paper, you will be creating resources in your AWS account, which

will incur billing charges.

Prerequisites

These walkthroughs assume that you have previously exported a Windows

Server image (for example, from VMware as an Open Virtualization Archive or

OVA file) and stored it in an Amazon S3 bucket in your account. VM

Import/Export also supports Microsoft Hyper-V, but an OVA is referenced here

as an example.

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 6

You’ll need to have the AWS Tools for Windows PowerShell and grant security

rights for PowerShell to access your AWS account. The easiest way to do that is

to launch a Windows Server instance in Amazon EC2 with an AWS Identity and

Access Management (IAM) role.

You’ll also need an Amazon Virtual Private Cloud VPC, a subnet, a security

group, and a key-pair in the Region where you import the image. You certainly

can create those in PowerShell, but it’s generally more reliable to create as much

of your infrastructure as possible using AWS CloudFormation. The reason is

that you need to consider how to roll back your stack in case any errors occur

while building it. AWS CloudFormation provides a simple mechanism to

automatically roll back so that you won’t be left paying the bill for an incomplete

stack after an error occurs. To roll back in PowerShell, you would need to trap

potential errors at the point where each resource is created in your script and

then write the code to remove or deallocate every other resource that the script

had successfully created up to that point. That would get very tedious in regular

PowerShell but could be more easily handled with PowerShell Desired State

Configuration (DSC).

To comply with your Windows Server license terms and implement BYOL, you’ll

need to a have a Microsoft KMS instance running in your VPC. The walkthrough

shows you how to configure the BYOL instance for Microsoft KMS, though you

can proceed with this walkthrough without having Microsoft KMS running.

Finally, these walkthroughs assume that your own workstation is running

Windows Server 2016, though these steps should work with other versions with

minor modifications.

Walkthrough: Import Your Custom Image
1. On the Windows Start menu, choose Windows PowerShell ISE.

2. In the Windows PowerShell ISE, press Ctrl+R to show the Script

Pane (or on the View menu, choose Show Script Pane).

3. The AWS Tools for PowerShell allow you to specify the AWS Region

separately in most cmdlets, but it’s simpler to set the default Region for

your whole session. For example, run the following commands in

PowerShell to set “us-west-2” as the default Region. You’ll be using the

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 7

“lab_region” variable again later in this walkthrough, so make sure you

set it here to your preferred Region.

$lab_region = "us-west-2"

Set-DefaultAWSRegion $lab_region

4. To use the VM import service role in your own AWS account, create an

IAM policy document to grant access for the Amazon EC2 Import API

(vmie.amazonaws.com). You must name the role “vmimport”. (Note:

you could create this policy in the AWS Management Console, but this

example shows how to do it with a document in PowerShell.)

$importPolicyDocument=@"

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Sid":"",

 "Effect":"Allow",

 "Principal":{

 "Service":"vmie.amazonaws.com"

 },

 "Action":"sts:AssumeRole",

 "Condition":{

 "StringEquals":{

 "sts:ExternalId":"vmimport"

 }

 }

 }

]

}

"@

New-IAMRole -RoleName vmimport -AssumeRolePolicyDocument

$importPolicyDocument

5. Associate a policy with the “vmimport” role so that VM Import/Export

can access the VM image in your S3 bucket and create an AMI in

Amazon EC2. If you’d like to create your own restrictive policy for

security reasons, see this page for guidance:

http://docs.aws.amazon.com/vm-import/latest/userguide/import-vm-

image.html. AWS also provides a couple of managed (built-in) policies

http://docs.aws.amazon.com/vm-import/latest/userguide/import-vm-image.html
http://docs.aws.amazon.com/vm-import/latest/userguide/import-vm-image.html

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 8

that make it convenient to grant access to the VM import service role to

Amazon S3 and Amazon EC2. (Note: This code consists of two

commands that are wrapped to fit the document.)

Register-IAMRolePolicy -RoleName vmimport –PolicyArn

arn:aws:iam::aws:policy/AmazonS3FullAccess

Register-IAMRolePolicy -RoleName vmimport -PolicyArn

arn:aws:iam::aws:policy/AmazonEC2FullAccess

6. Create a userBucket object to define the location of your image file and

an ImageDiskContainer parameter, both of which are passed to the

Import-EC2Image cmdlet. However, before running these commands,

replace <UniqueBucketName> with the name of the bucket where you

stored the OVA file. If you are importing Hyper-V, change the Format

property to “VHD”.

$userBucket = New-Object Amazon.EC2.Model.UserBucket

$userBucket.S3Bucket = "<UniqueBucketName>"

$userBucket.S3Key = $file

$windowsContainer = New-Object Amazon.EC2.Model.ImageDiskContainer

$windowsContainer.Format = "OVA"

$windowsContainer.UserBucket = $userBucket

7. Now create an object for the remaining parameters for the import task.

Set the "Platform” parameter to match the imported operating system

type. The “LicenseType” parameter controls how the instance that is

imported is configured for licensing. Set it to BYOL.

$params=@{

 "ClientToken"="MyCustomWindows_" + (Get-Date)

 "Description"="My custom Windows image"

 "Platform"="Windows"

 "LicenseType"="BYOL"

}

8. Now you’re ready to start the import task. When you run this command,

the import process will take about 45 minutes, but you can proceed with

the remaining steps in this paper if you’re willing to temporarily use

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 9

other AMI IDs. This command is all one line, but wrapped here to fit the

page.

Import-EC2Image -DiskContainer $windowsContainer @params –region

$lab_region

9. You can check the progress of the import task with the following

command, which will show the Progress property and the Status

property. The Progress property reports the current percentage complete

status for the import task. The Status property indicates the migration

phase.

Get-EC2ImportImageTask -region $lab_region

Walkthrough: Launch a Dedicated Instance
1. While waiting for your own image to be imported, you can follow the rest

of the walkthroughs using an AWS AMI. All the steps will work the same

regardless of the AMI, except that you’ll need to provide a key-pair to

access an AWS AMI. When you launch an instance from your own

imported AMI, you don’t need to provide a key-pair if you already have

an Administrator password. The command below obtains the AMI ID of

the latest version of the AWS AMI for Windows Server 2016 (“base”

means without SQL Server). The my_ami variable will be used later, so

make sure you set it here. If you run this step after your import process is

complete, you can use that AMI ID instead.

$my_ami = (Get-EC2ImageByName "Windows_2016_Base").ImageId

2. Configure two variables for use when launching the instance. Setting the

instance type to "dedicated" means that you want a Dedicated Instance.

With the exception of the t2 instance type, most instance types can be

used for Dedicated Instances.

$tenancy_type = "dedicated"

$instance_type = "m4.large"

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 10

3. This step configures variables to store the networking parameters you’ll

use when you launch a new instance. Enter the Classless Inter-Domain

Routing (CIDR) address of a subnet you’ve created in your VPC where

you want to launch the new instance. If you don’t provide a private IP

address during launch, one will be assigned automatically within the

subnet. However, you may want to script it for various reasons.

The New-Ec2Instance cmdlet will use this private_IP address, and you

will log into the instance in the next walkthrough to configure Microsoft

KMS. If your workstation is not an EC2 instance in a public subnet in the

same VPC where you are launching this instance in a private subnet,

then you will need to do one of the following: (a) launch the instance in a

public subnet; (b) use Remote Desktop Protocol (RDP) to allow remote

connections into another instance in its associated public subnet; or (c)

set up a Remote Desktop Gateway in its public subnet (see Remote

Desktop Gateway on the AWS Cloud: Quick Start Reference Deployment

http://docs.aws.amazon.com/quickstart/latest/rd-

gateway/welcome.html).

$private_IP = "10.50.3.10"

$Subnet = "10.50.3.0/24"

$SubnetObj = Get-EC2Subnet -Filter @{Name="cidr"; Values=$Subnet}

4. Configure a variable to store the security group parameter you will use

when you launch the new instance. Later in this walkthrough, you’ll

login to the instance through Remote Desktop to set up KMS for BYOL,

so make sure the security group allows inbound RDP access from the

Internet.

$SecurityGroup = "MySecurityGroup"

$SGObj = Get-EC2SecurityGroup -Filter @{Name="tag-value";

Values=$SecurityGroup}

5. Create a variable for the key-pair name parameter you will use to

decrypt the administrator password for the new instance. Don’t include

the file extension .PEM. If you are launching an imported image on

which you know the administrator password, you don’t need to provide a

key-pair.

http://docs.aws.amazon.com/quickstart/latest/rd-gateway/welcome.html
http://docs.aws.amazon.com/quickstart/latest/rd-gateway/welcome.html

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 11

$key_pair = "<key-pair-name>"

6. Now you’re ready to launch your Dedicated Instance. Many other

optional parameters can be configured with this cmdlet to customize the

instance. However, the following is the minimum you need to launch an

instance with BYOL.

$my_instance = New-EC2Instance

 ` -ImageId $my_ami

 ` -Tenancy $tenancy_type

 ` -InstanceType $instance_type

 ` -SubnetId $SubnetObj.SubnetID

 ` -PrivateIpAddress $private_IP

 ` -securityGroupId $SGObj.GroupID

 ` -KeyName $key_pair

7. It’s a good idea to create a name tag for the new instance. The last two

lines are a single cmdlet, wrapped here to fit the page.

$Tag = New-Object amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = "Server2016-Imported"

New-ec2Tag -ResourceID

$my_instance.runninginstance[0].instanceID -Tag $Tag

Walkthrough: Configure Microsoft KMS for

BYOL
To comply with Microsoft licensing requirements for EC2 Dedicated Instances

using the BYOL model, you must either supply a Windows license key for the

instance, or configure it to use Microsoft KMS on a server that you manage.

In this task you will configure the Dedicated Instance to use a manually

specified Microsoft KMS. You will connect to the new instance using Windows

Remote Desktop Connection. If you used an AWS AMI to launch this instance,

you need to decrypt the password using the lab key-pair in order to connect. If

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 12

you launched this instance using your imported image, you already know the

local administrator account and password.

1. Log in to the AWS Management Console and go to the EC2 Dashboard.

2. Select only the instance you just launched with PowerShell.

3. Choose Connect.

4. In the Connect To Your Instance dialog box, choose Get Password.

You might need to retry this a couple of times to give the instance a few

minutes to initialize.

5. For Key Pair Path, choose Choose File (the button is named Browse

in some browsers).

6. Browse to the .pem file on your local machine for the key-pair you

specified when launching the instance, and choose Open.

7. Choose Decrypt Password.

8. Copy the decrypted password to your clipboard buffer.

9. Run Remote Desktop Connection.

10. In the Computer box enter the IP address of the Dedicated Instance you

launched and choose Connect.

11. When prompted for credentials, log in as Administrator and paste the

decrypted password from your clipboard buffer.

12. On the Remote Desktop Connection warning dialog box, choose Yes to

ignore the verification warning.

13. In the Remote Desktop Connection session for the Server2016-Imported

instance, when the desktop appears, choose No in the Networks dialog

box to disable discovery (this is a Windows Server 2016 feature that is

not available in earlier versions).

14. In the Remote Desktop Connection session for the Server2016-Imported

instance, launch Windows PowerShell and run the following command to

display the current configuration settings of the Microsoft KMS client.

slmgr.vbs /dlv

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 13

15. Enter the following commands to update the active Microsoft KMS

configuration and confirm the change. Replace the IP address with a

functioning KMS server that you have installed in your VPC. This

command won’t immediately fail if you don’t have a running KMS

instance at the given IP address.

slmgr.vbs /skms 10.50.3.100

slmgr.vbs /dlv

16. Close the Remote Desktop Connection to the Dedicated Instance and

return to your workstation instance where you launched the instance.

Terminate the Dedicated Instance. This cmdlet should be entered as a

single line.

Remove-EC2Instance -InstanceId

$my_instance.Instances[0].InstanceId -Force

Walkthrough: Allocate a Dedicated Host

and Launch an Instance
In this task you will launch and terminate an instance in a Dedicated Host.

1. Create variables for the Availability Zone and quantity parameters. Edit

the $AZ variable appropriately before running this command.

$AZ = 'us-west-2a'

$Qty = 1

$AutoPlace = 'On'

2. Request a Dedicated Host. This reuses the $instance_type variable you

created earlier, which was m4.large. Note that Dedicated Hosts are not

available for all instance types.

new-EC2hosts

 ` -InstanceType $instance_type

 ` -AvailabilityZone $AZ

 ` -quantity $Qty

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 14

 ` -AutoPlacement $AutoPlace

3. Query the properties of your Dedicated Host. This command may

initially return no data. Wait a moment and retry it. This command

returns the number of physical CPU cores and sockets, the total number

of virtual CPUs, and the type of instance supported on your Dedicated

Host.

(get-EC2hosts).HostProperties

4. List the instances running on your Dedicated Host. This shows that

initially there are no instances running in the host.

(get-EC2hosts).Instances

5. Specify the tenancy type "host” to launch an instance inside the

Dedicated Host.

$tenancy_type = "host"

6. Indicate the AMI ID to be deployed in the Dedicated Host. There are

Microsoft licensing restrictions for Dedicated Hosts. AWS and AWS

Marketplace AMIs for Windows cannot be used. Ordinarily, you would

specify the AMI ID of your imported image here. However, if the import

task you started earlier is still running in the background, that AMI is

not available yet. In order to demonstrate how to deploy instances to a

Dedicated Host you can use an Amazon Linux AMI as a placeholder for

the next few tasks.

$my_ami = (Get-EC2Image –Filters @{Name = "name"; Values =

"Amazon_CentOS*"}).ImageID

7. Launch the instance inside the Dedicated Host. Once again, the only

difference is the requirement to provide a key-pair when launching an

AWS AMI.

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 15

$host_instance = New-EC2Instance

 ` -ImageId $my_ami

 ` -Tenancy $tenancy_type

 ` -InstanceType $instance_type

 ` -SubnetId $SubnetObj.SubnetID

 ` -PrivateIpAddress $private_IP

 ` -securityGroupId $SGObj.GroupID

 ` -KeyName $key_pair

8. Create a name tag for the new instance. The last two lines are a single

cmdlet.

$Tag = New-Object amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.value = "DedicatedHost-Instance"

New-ec2Tag -ResourceID

$host_instance.runninginstance[0].instanceID -Tag $Tag

9. List the instances running on your Dedicated Host.

(get-EC2hosts).Instances

10. You must terminate all instances on a Dedicated Host before you can

release it.

Remove-EC2Instance –InstanceId

 ` $host_instance.Instances[0].InstanceId -Force

11. Finally, release the Dedicated Host. The command below reports

successful and unsuccessful attempts to release hosts. It doesn’t report

success until all running instances have been terminated. Repeat this

command until your host-id is listed in the Successful column.

$dedicated_host = get-EC2hosts | Select-Object -first 1

Remove-EC2Hosts -HostId $dedicated_host.HostId –Force

Amazon Web Services – Import Windows Server to Amazon EC2 with PowerShell

Page 16

12. Switch back to the EC2 Dashboard in your browser. In the navigation

pane, choose Dedicated Hosts to confirm that DedicatedHost-

Instance has been terminated. You might need to refresh the console

display.

Conclusion
This paper has demonstrated how to use Windows PowerShell and VM

Import/Export to import a custom Windows Server image into Amazon EC2.

You can adapt and reuse the PowerShell code snippets to automate the process

in your own AWS account.

In addition to VM Import/Export, consider using the AWS Server Migration

Service. It currently supports VMware vCenter, and support for additional

image formats is coming soon.

Contributors
The following individuals and organizations contributed to this document:

 Scott Zimmerman, Solutions Architect, AWS

Further Reading
For additional information, please consult the following sources:

 Getting Started with Amazon EC2 Windows Instances

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win

_GetStarted.html

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html

