
Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 1 of 14    

 

 

 

 

 

 

 

Web Application Hosting in the AWS Cloud 
Best Practices 

 
September 2012 

 

Matt Tavis, Philip Fitzsimons 

 

 

 

 

  



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 2 of 14    

Abstract 

Highly available and scalable web hosting can be a complex and expensive proposition. Traditional scalable web 

architectures have not only needed to implement complex solutions to ensure high levels of reliability, but they have 

also required an accurate forecast of traffic to provide a high level of customer service.  Dense peak traffic periods and 

wild swings in traffic patterns result in low utilization rates of expensive hardware, yielding high operating costs to 

maintain idle hardware, as well as an inefficient use of capital for underutilized hardware.   

Amazon Web Services provides a reliable, scalable, secure, and highly performing infrastructure for the most demanding 

web applications, an infrastructure that matches IT costs with customer traffic patterns in real time. 

Audience 

This whitepaper is for IT managers and system architects who are looking to the cloud to help them achieve the 

scalability that they need to meet their on-demand computing needs. 

  



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 3 of 14    

An Overview of Traditional Web Hosting 

Scalable web hosting is a well-known problem space, so the following figure, which depicts a conventional web hosting 

model, should not contain any surprises. We present it for comparison with a similar architecture that is implemented in 

the cloud. It is the cloud deployment that is the subject of this paper. 

 

Load Balancer

www.example.com

Backups on Tapes
Periodic backups stored 
on Tapes usually managed 
by 3rd party at their site

Tapes

Load Balancer

Web Servers

App Servers

MySQL Database

Exterior Firewall
Hardware or Software Solution to 
open standard ports (80, 443)

Web Load Balancer
Hardware or Software solution to 
distribute traffic over web servers

Web Tier
Fleet of machines handling HTTP 
requests

Backend Firewall limits access to 
application tied from web tier

App Load Balancer
Hardware or Software solution to 
spread traffic over app servers

App Server Tier
Fleet of machines handling 
Application specific workloads 
Caching server machines can be 
implemented at this layer

Data Tier
Database Server machines with 
master and local running separately, 
Network storage for static objects MySQL Database

M S

 

Figure 1 A traditional web application architecture 

 

This traditional web hosting architecture is implements a common three-tier web application model that separates the 

architecture into presentation, application, and persistence layers.  Scalability is provided by adding additional hosts at 

the presentation, persistence, or application layers. The architecture also has built-in performance, failover, and 

availability features. The following sections will look at why and how such an architecture should be and could be 

deployed in the Amazon Web Services cloud. 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 4 of 14    

Web Application Hosting in the Cloud using Amazon Web Services 

The traditional web hosting architecture (Figure 1) is easily portable to the cloud services provided by the AWS products 

with only a small number of modifications, but the first question that should be asked concerns the value of moving a 

classic web application hosting solution into the AWS cloud. If you decide that the cloud is right for you, you’ll need a 

suitable architecture. This section helps you evaluate an AWS cloud solution. It compares deploying your web 

application in the cloud to an on-premises deployment, presents an AWS cloud architecture for hosting your application, 

and discusses the key components of this solution.  

How AWS Can Solve Common Web Application Hosting Issues 

If you are responsible for running a web application, you face a variety of infrastructure and architectural issues for 

which AWS can provide seamless and cost-effective solutions. The following are just some of the benefits of using AWS 

over a traditional hosting model: 

A Cost-Effective Alternative to Oversized Fleets Needed to Handle Peaks 

In the traditional hosting model, servers need to be provisioned to handle peak capacity, and unused cycles are wasted 

outside of peak periods. AWS-hosted web applications can leverage on-demand provisioning of additional servers, so 

you can constantly adjust capacity and costs to actual traffic patterns. 

For example, the following graph shows a web application with a usage peak from 9 AM to 3 PM and less usage for the 

remainder of the day.  An auto-scaling approach based on actual traffic trends, which provisions resources only when 

needed, would result in less wasted capacity and a cost reduction of greater than 50%. 

Figure 2 - An Example of Wasted Capacity in a Classic Hosting Model 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 5 of 14    

A Scalable Solution to Handling Unexpected Traffic Peaks 

An even more dire consequence of the slow provisioning associated with a traditional hosting model is the inability to 

respond in time to unexpected traffic spikes.  There are many stories about web applications going down because of an 

unexpected spike in traffic after the site is mentioned in the popular media. The same on-demand capability that helps 

web applications scale to match regular traffic spikes can also handle an unexpected load. New hosts can be launched 

and ready in a matter of minutes, and they can be taken offline just as quickly when traffic returns to normal. 

An On-Demand Solution for Test, Load, Beta and Pre-Production Environments 

The hardware costs of building out a traditional hosting environment for a production web application don’t stop with 

the production fleet. Quite often pre-production, beta, and testing fleets also need to be created to ensure the quality of 

the web application at each stage of the development lifecycle. While various optimizations can be made to ensure the 

highest possible utilization of this testing hardware, these parallel fleets are not always utilized optimally: a lot of 

expensive hardware sits unused for long periods of time. In the AWS cloud, you can provision testing fleets only when 

you need them. Additionally, you can simulate user traffic on the AWS cloud during load testing. You can also use these 

parallel fleets as a staging environment for a new production release, which allows for quick switchover from current 

production to a new application version with little or no service outages. 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 6 of 14    

An AWS Cloud Architecture for Web Hosting 

Below is another look at that classic web application architecture and how it could leverage the AWS cloud computing 

infrastructure: 

www.example.com

Backups
Amazon S3 
used for 
storing Static 
Object and 
Backups

Route 53
Provides DNS services to simplify 
domain management and zone APEX 
support (http://example.com)

Elastic Load Balancer
ELB to spread traffic to Web Server 
Autoscaling groups

Exterior Firewall moved to every 
Web Server instance via Security 
Groups
Auto Scaling Web Tier
Group of EC2 instances handling 
HTTP requests.
Backend Firewall moved to every 
back-end instance

App Server Load Balancer
Software LB (e.g. HAProxy) on EC2 
instances to spread traffic over app 
server cluster

Auto-scaling App Tier
Group of EC2 instances running the 
actual app. Instances belong to Auto 
Scaling group

ElastiCache
Provides caching services for app, 
removing load from database tier

DB Tier
MySQL RDS DB creates a highly 
available architecture with multi-AZ 
deployments. Read-only replicas can 
also be used to scale read intensive 
applications

Elastic Load Balancer

S3 Bucket

Route 53 Hosted Zone

Region

Standby

S

Availability Zone #1

Load Balancer

EC2 Instance: Web Server

Auto Scaling Group: Web Tier

EC2 Instance: App Server

Auto Scaling Group: App Tier

RDS Master

Availability Zone #2

Load Balancer

EC2 Instance: Web Server

Auto Scaling Group: Web Tier

EC2 Instance: App Server

Auto Scaling Group: App Tier

CloudFront

media.example.com

ElastiCache

Edge Caching
High Volume 
Content is edge 
cached using 
CloudFront

Dynamic

Static

 

Figure 3 - An Example of a Web Hosting Architecture on AWS 

  



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 7 of 14    

Key Components of an AWS Web Hosting Architecture 

The following sections outline some of the key components of a web hosting architecture deployed in the AWS cloud 

and explain how they differ from a traditional web hosting architecture. 

Content Delivery  

Edge caching is still relevant in the Amazon Web Service cloud computing infrastructure. Any existing solutions in your 

web application infrastructure should work just fine in the AWS cloud. One additional option, however, is made available 

when using AWS, which is to utilize the Amazon CloudFront service1 for edge caching your website.  

Amazon CloudFront can be used to deliver your website, including dynamic, static and streaming content using a global 

network of edge locations. Requests for your content are automatically routed to the nearest edge location, so content 

is delivered with the best possible performance. Amazon CloudFront is optimized to work with other Amazon Web 

Services, like Amazon Simple Storage Service2 (Amazon S3) and Amazon Elastic Compute Cloud3 (Amazon EC2). Amazon 

CloudFront also works seamlessly with any non-AWS origin server, which stores the original, definitive versions of your 

files. 

Like other Amazon Web Services, there are no contracts or monthly commitments for using Amazon CloudFront – you 

pay only for as much or as little content as you actually deliver through the service. 

Managing Public DNS  

Moving a web application to the AWS cloud requires some DNS changes to take advantage of the multiple availability 

zones that AWS provides. To help you manage DNS routing, AWS provides Amazon Route 534, a highly available and 

scalable DNS web service. Queries for your domain are automatically routed to the nearest DNS server and thus are 

answered with the best possible performance. Route 53 resolves requests for your domain name (for example, 

www.example.com) to your Elastic Load Balancer, as well as your zone apex record (example.com). 

Host Security 

Unlike a traditional web hosting model, inbound network traffic filtering should not be confined to the edge; it should 

also be applied at the host level. Amazon Elastic Compute Cloud (EC2) provides a feature called security groups. A 

security group is analogous to an inbound network firewall, for which you to specify the protocols, ports, and source IPs 

ranges that are allowed to reach your EC2 instances.  Each EC2 instance can be assigned one or more security groups, 

each of which routes the appropriate traffic to each instance. Security groups can be configured so that only specific 

subnets or IP addresses have access to an EC2 instance, or they can reference other security groups to limit access to 

EC2 instances that are in specific groups. 

                                                           
1
 Amazon CloudFront - http://aws.amazon.com/cloudfront/  

2
 Amazon S3 – http://aws.amazon.com/s3  

3
 Amazon EC2 – http://aws.amazon.com/ec2/  

4
 Amazon Route 53 – http://aws.amazon.com/route53/  

http://aws.amazon.com/cloudfront/
http://aws.amazon.com/s3
http://aws.amazon.com/ec2/
http://aws.amazon.com/route53/


Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 8 of 14    

 

Figure 4: Security Groups in a Web Application 

For instance, in the example AWS web hosting architecture above, the security group for the web server cluster might 

allow access for any host only over TCP on ports 80 and 443 (HTTP and HTTPS) and from instances in the application 

server security group on port 22 (SSH) for direct host management. The security group of the application server cluster, 

on the other hand, might allow access from the Web Server security group for handling web requests and from your 

organization’s subnet over TCP on port 22 (SSH) for direct host management. In this model, shown above, your support 

engineers could log in directly to the application servers from the corporate network and then access the other clusters 

from the application server boxes. For a deeper discussion on security, go to the AWS Security Center5.  The center 

contains security bulletins, certification information, and security whitepapers that explain the security capabilities of 

AWS. 

Load balancing across clusters 

Hardware load balancers are a common network appliance used in traditional web application architectures. AWS 

provides this capability through the Elastic Load Balancing6 service, a configurable load-balancing solution that supports 

health checks on hosts, distribution of traffic to EC2 instances across multiple availability zones, and dynamic addition 

and removal of Amazon EC2 hosts from the load-balancing rotation. Elastic Load Balancing can also dynamically grow 

and shrink the load-balancing capacity to adjust to traffic demands while providing a predictable entry point by using a 

persistent CNAME. The Elastic Load Balancing service also supports sticky sessions to address more advanced routing 

needs. If your application requires more advanced load-balancing capabilities you could run a software load-balancing 

                                                           
5
 AWS Security Center – http://aws.amazon.com/security 

6
 Amazon Elastic Load Balancing - http://aws.amazon.com/elasticloadbalancing   

http://aws.amazon.com/security
http://aws.amazon.com/elasticloadbalancing


Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 9 of 14    

package (e.g., Zeus, HAProxy, or nginx) on EC2 instances . You could then assign Elastic IP7 addresses to those load-

balancing EC2 instances in order to minimize DNS changes.   

Finding other hosts and services 

In the traditional web hosting architecture, most of your hosts have static IP addresses; in the cloud, most of your hosts 

will have dynamic IP addresses. Although every EC2 instance can have both public and private DNS entries and will be 

addressable over the Internet, the DNS entries and the IP addresses are assigned dynamically when you launch the 

instance, and they cannot be manually assigned.  Static IP addresses (Elastic IP addresses in AWS terminology) can be 

assigned to running instances after they are launched. You should use Elastic IP addresses for instances and services that 

require consistent endpoints, such as, master databases, central file servers, and EC2-hosted load balancers.  

Server roles that can easily scale out and in, such as web servers, should be made discoverable at their dynamic 

endpoints by registering their IP address with a central repository. Because most web application architectures have a 

database server that is always on, the database server is a common repository for discovery information. For situations 

where consistent addressing is needed instances can be allocated an Elastic IP addresses from a pool of addresses by a 

bootstrapping script when the instance is launched.   

Using this model, newly added hosts can request the list of necessary endpoints for communications from the database 

as part of a bootstrapping phase.  The location of the database can be provided as user data 8 that is passed into each 

instance as it is launched.  Alternatively, you can use the Amazon SimpleDB service to store and maintain configuration 

information. Amazon SimpleDB is a highly-available service that is available at a well-known endpoint. 

Caching within the web application 

In-memory application caches can reduce load on services and improve performance and scalability on the database tier 

by caching frequently used information. Amazon ElastiCache9 is a web service that makes it easy to deploy, operate, and 

scale an in-memory cache in the cloud. The in-memory cache that you create can be configured to automatically scale 

with load and to automatically replace failed nodes. Amazon ElastiCache is protocol-compliant with Memcached, which 

simplifies migration from your current on-premises solution.  

                                                           
7
 Elastic IP addresses are static IP addresses designed for dynamic cloud computing, that you can move from one instance to another 

8
 User Data - http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/index.html?ApiReference-ItemType-

RunInstancesType.html  
9
 Amazon ElastiCache – http://aws.amazon.com/elasticache 

http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/index.html?ApiReference-ItemType-RunInstancesType.html
http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/index.html?ApiReference-ItemType-RunInstancesType.html
http://aws.amazon.com/elasticache


Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 10 of 14    

Database configuration, backup and failover 

Many web applications contain some form of persistence, usually in the form of a relational or NoSQL database. AWS 

offers both relational and NoSQL database infrastructure. Alternatively, you can deploy your own database software on 

an Amazon EC2 instance. The following table summarizes these options, which are then discussed in greater detail.  

 Relational Database Solutions NoSQL Solutions 

Managed Database Service Amazon Relational Database Service (RDS) – 
MySQL, Oracle, SQL Server  

Amazon DynamoDB 

Self-Managed  Hosting a relational DBMS on an Amazon EC2 
instance 

Hosting a NoSQL solution on an Amazon 
EC2 instance 

Amazon Relational Database Service (RDS) 

Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle, or Microsoft SQL Server database engine. 

The code, applications, and tools that you are already using can be used with Amazon RDS. Amazon RDS automatically 

patches the database software and backs up your database, and it stores backups for a user-defined retention period. It 

also supports point-in-time recovery. You benefit from the flexibility of being able to scale the compute resources or 

storage capacity associated with your relational database instance by making a single API call.  

In addition, Amazon RDS Multi-AZ deployments increase your database availability and protect your database against 

unplanned outages. Amazon RDS Read Replicas provide read-only replicas of your database, so you can scale out beyond 

the capacity of a single database deployment for read-heavy database workloads. As with all Amazon Web Services, 

there are no up-front investments required, and you pay only for the resources you use. 

Hosting a relational database (RDBMS) on an Amazon EC2 instance 

In addition to the managed Amazon RDS offering, you can install your choice of RDBMS (such as MySQL, Oracle, SQL 

Server, or DB2) on an EC2 instance and manage it yourself. AWS customers hosting a database on Amazon EC2 have 

successfully used a variety of master/slave and replication models, including mirroring for read-only copies and log 

shipping for always-ready passive slaves.   

An additional consideration when managing your own database software directly on Amazon EC2 is the availability of 

fault-tolerant and persistent storage.  For this purpose, we recommend that databases running on Amazon EC2 utilize 

Amazon Elastic Block Storage (Amazon EBS) volumes, which are similar to network-attached storage.  For EC2 instances 

running a database, all database data and logs should be placed on Amazon EBS volumes, which will remain available 

even if the database host fails.  This configuration allows for a simple failover scenario, in which a new EC2 instance can 

be launched if a host fails, and the existing Amazon EBS volumes can be attached to the new instance. The database can 

then pick up where it left off.   

Amazon EBS volumes automatically provide redundancy within the Availability Zone, which increases their availability 

over simple disks.  If the performance of a single Amazon EBS volume is not sufficient for your databases needs, volumes 

can be striped to increase IOPS performance for your database. For demanding workloads you can also use EBS 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 11 of 14    

Provisioned IOPS, where you specify the IOPS required.  If you use Amazon RDS, the service manages its own storage so 

you can focus on managing your data.  

NoSQL solutions 

In addition to support for relational databases, AWS also offers Amazon DynamoDB, a fully managed NoSQL database 

service that provides fast and predictable performance with seamless scalability. Using the AWS Management Console 

or the Amazon DynamoDB API, you can scale capacity up or down without downtime or performance degradation. 

Because Amazon DynamoDB handles the administrative burdens of operating and scaling distributed databases to AWS, 

you don’t have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster 

scaling. 

Amazon SimpleDB provides a lightweight, highly available, and fault-tolerant core non-relational database service that 

offers querying and indexing of data without the requirement of a fixed schema.  SimpleDB can be a very effective 

replacement for databases in data access scenarios that require one big, highly-indexed and flexible schema table.   

Additionally, Amazon EC2 can be used to host many other emerging technologies in the NoSQL movement, such as 

Cassandra, CouchDB, and MemcacheDB. 

Storage and backup of data and assets 

There are numerous options within the AWS cloud for storing, accessing, and backing up your web application data and 

assets.  The Amazon Simple Storage Service (Amazon S3) provides a highly available and redundant object store.  

Amazon S3 is a great storage solution for somewhat static or slow-changing objects, such as images, videos, and other 

static media.  Amazon S3 also supports edge caching and streaming of these assets by interacting with the Amazon 

CloudFront service.  

For attached file system like storage, EC2 instances can have Amazon Elastic Block Storage volumes attached, which can 

act like mountable disks for running EC2 instances.  Amazon EBS is great for data that needs to be accessed as block 

storage and that requires persistence beyond the life of the running instance, such as database partitions and 

application logs.  

In addition to having a lifetime that is independent of the EC2 instance, snapshots of Amazon EBS volumes can be taken 

and stored in Amazon S3. Because EBS snapshots back up only changes since the previous snapshot, more frequent 

snapshots can reduce snapshot times. You can also use an Amazon EBS snapshot as a baseline for replicating data across 

multiple Amazon EBS volumes and attaching those volumes to other running instances. 

Amazon EBS volumes can be as large as 1 TB, and multiple Amazon EBS volumes can be striped for even larger volumes 

or for increased I/O performance.  To maximize the performance of your I/O-intensive applications, you can use 

Provisioned IOPS volumes. Provisioned IOPS volumes are designed to meet the needs of I/O-intensive workloads, 

particularly database workloads that are sensitive to storage performance and consistency in random access I/O 

throughput. You specify an IOPS rate when you create the volume and Amazon EBS provisions that rate for the lifetime 

of the volume. Amazon EBS currently supports up to 1,000 IOPS per volume. You can stripe multiple volumes together to 

deliver thousands of IOPS per instance to your application. 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 12 of 14    

Auto Scaling the fleet 

One of the key differences between the AWS cloud architecture and the traditional hosting model is that AWS can 

dynamically scale the web application fleet on demand to handle changes in traffic.  In the traditional hosting model, 

traffic forecasting models are generally used to provision hosts ahead of projected traffic.  In AWS, instances can be 

provisioned on the fly according to a set of triggers for scaling the fleet out and back in.  Amazon Auto Scaling can create 

capacity groups of servers that can grow or shrink on demand.  Auto Scaling also works directly with Amazon 

CloudWatch for metrics data and with the Elastic Load Balancing service to add and remove hosts for load distribution.  

For example, if the web servers are reporting greater than 80% CPU utilization over a period of time, an additional web 

server could be quickly deployed and then automatically added to the Elastic Load Balancer for immediate inclusion in 

the load-balancing rotation.   

As shown in the AWS web hosting architecture model, multiple auto-scaling groups can be created for different layers of 

the architecture so that each layer can scale independently.  For example, the web server auto-scaling group might 

trigger scaling out and in in response to changes in network I/O, whereas the application server auto-scaling group might 

scale out and in according to CPU utilization.  You can set minimums and maximums to help ensure 24/7 availability and 

to cap to usage within a group.   

Auto Scaling triggers can be set both to grow and to shrink the total fleet at a given layer to match resource utilization to 

actual demand.  In addition to the Auto Scaling service, Amazon EC2 fleets can be scaled directly through the Amazon 

EC2 API, which allows for launching, terminating, and inspecting instances.   

Failover with AWS 

Another key advantage of AWS over traditional web hosting is the Availability Zones that give you easy access to 

redundant deployment locations.  Availability Zones are physically distinct locations that are engineered to be insulated 

from failures in other Availability Zones. They provide inexpensive, low-latency network connectivity to other Availability 

Zones in the same Region.  As the AWS web hosting architecture diagram in this paper shows, we recommend that you 

deploy EC2 hosts across multiple Availability Zones to make your web application more fault-tolerant.  It’s important to 

ensure that there are provisions for migrating single points of access across Availability Zones in the case of failure.  For 

example, a database slave should be set up in a second Availability Zone so that the persistence of data remains 

consistent and highly available even during an unlikely failure scenario.   

While some architectural changes are often required while moving an existing web application to the AWS cloud, there 

are significant improvements to scalability, reliability, and cost-effectiveness that make using the AWS cloud well worth 

the effort. In the next section, we’ll discuss those improvements. 

 

  



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 13 of 14    

Key Considerations when Using AWS for Web Hosting 

There are some key differences between the AWS cloud and a traditional web application hosting model.  The previous 

section highlighted many of the key areas that you should consider when deploying a web application to the cloud.  This 

section points out some of the key architectural shifts that you need to consider when you bring any application into the 

cloud. 

No more physical network appliances 

You cannot deploy physical network appliances in AWS.  For example, firewalls, routers, and load-balancers for your 

AWS applications can no longer reside on physical devices but must be replaced with software solutions.  There is a wide 

variety of enterprise quality software solutions, whether for load balancing (e.g., Zeus, HAProxy, nginx, and Pound) or 

establishing a VPN connection (e.g., OpenVPN, OpenSwan, and Vyatta).  This is not a limitation of what can be run on 

the AWS cloud, but it is an architectural change to your application if you use these devices today.  

Firewalls everywhere 

Where you once had a simple DMZ and then open communications among your hosts in a traditional hosting model, 

AWS enforces a more secure model, in which every host is locked down.  One of the steps in planning an AWS 

deployment will be the analysis of traffic between hosts. This analysis will guide decisions on exactly what ports need to 

be opened.  Security Groups within Amazon EC2 can be created for each type of host in your architecture, and a large 

variety of simple and tiered security models can be created to enable the minimum access among hosts within your 

architecture. 

Multiple data centers available 

Availability Zones within an AWS region should be thought of as multiple datacenters.  EC2 instances in different 

Availability Zones are both logically and physically separated, and they provide an easy-to-use model for deploying your 

application across data centers for both high availability and reliability. 

Treat hosts as ephemeral and dynamic 

Probably the most important shift in how you might architect your AWS application is that Amazon EC2 hosts should be 

considered ephemeral and dynamic.  Any application built for the AWS cloud should not assume that a host will always 

be available and should be designed in the knowledge that any data that is not on an Amazon EBS volume will be lost if 

an EC2 instance fails.  Additionally, when a new host is brought up, no assumptions should be made about the IP address 

or location within an Availability Zone of the host.  Your configuration model must be flexible, and your approach to 

bootstrapping a host must take the dynamic nature of the cloud into account. These techniques are critical for building 

and running a highly scalable and fault-tolerant application. 



Amazon Web Services – Web Application Hosting in the AWS Cloud: Best Practices September 2012 

 

Page 14 of 14    

Closing Thoughts 

There are numerous architectural and conceptual considerations when contemplating the migration of a web 

application into the AWS cloud, but the benefits of having a cost-effective, highly-scalable and fault-tolerant 

infrastructure that grows with your business far outstrips the efforts of migrating to the AWS cloud. 

Additional Getting Started Resources 

1. Getting started guide – AWS Web Application hosting for Linux  

http://docs.amazonwebservices.com/gettingstarted/latest/wah-linux/ 

2. Getting started guide – AWS Web Application hosting for Windows 

http://docs.amazonwebservices.com/gettingstarted/latest/wah/ 

3. Getting started Video Series: Linux Web Applications in the AWS Cloud 

http://aws.amazon.com/web-applications/gsg-webapps-linux/ 

4. Getting started Video Series: .NET Web Applications in the AWS Cloud  

http://aws.amazon.com/web-applications/gsg-webapps-windows/ 

Changes since last version (May 2010) 

 Multiple sections updated to improve clarity 

 Updated diagrams to use AWS icons 

 Addition of Managing Public DNS section for detail on Route 53 

 Finding other hosts and services section updated for clarity 

 Database configuration, backup and failover updated for clarity and DynamoDB 

 Storage and backup of data and assets expanded to cover EBS Provisioned IOPS volumes 

http://docs.amazonwebservices.com/gettingstarted/latest/wah-linux/
http://docs.amazonwebservices.com/gettingstarted/latest/wah/
http://aws.amazon.com/web-applications/gsg-webapps-linux/
http://aws.amazon.com/web-applications/gsg-webapps-windows/

