

Deploying WordPress
with AWS Elastic Beanstalk

Implementation Overview for

Scalable WordPress-powered

Websites

Andreas Chatzakis

January 2015

(Please consult http://aws.amazon.com/whitepapers for the latest version of this paper.)

http://aws.amazon.com/whitepapers

Contents
Contents 2

Abstract 2

Introduction 2

Implementation Walkthrough 3

Preparation 3

Environment Creation 11

Software Installation 21

WordPress Plugin Installation 23

Application Versioning 29

Auto Scaling Configuration 30

Additional considerations 31

Abstract
WordPress is an open-source blogging tool and content management system (CMS)

based on PHP and MySQL that is used to power anything from personal blogs to high-

traffic websites. Amazon Web Services (AWS) provides a reliable, scalable, secure, and

highly performing infrastructure for the most demanding applications.

A reference architecture that addresses common scalability and high availability

requirements has been outlined in the whitepaper, “WordPress: Best Practices on AWS”.

To implement that architecture, you can leverage AWS Elastic Beanstalk—a service that

reduces complexity by automatically handling the details of capacity provisioning, load

balancing, scaling, and application health monitoring. This whitepaper provides system

administrators with an overview of the steps involved.

Introduction
The first version of WordPress was released in 2003, and as such it was not built with

modern elastic and scalable cloud-based infrastructures in mind. Through the work of

the WordPress community and the release of various WordPress modules, the

capabilities of this CMS solution are constantly expanding. Today it is possible to build a

WordPress architecture that takes advantage of many of the benefits of the AWS

platform.

http://d0.awsstatic.com/whitepapers/wordpress-best-practices-on-aws.pdf

Amazon Web Services provides a number of application management services for

developers and administrators. Provided at no additional charge, AWS Elastic

Beanstalk, AWS OpsWorks, and AWS CloudFormation help you manage your AWS

cloud applications with added convenience and control. The following example shows

how to use AWS Elastic Beanstalk to deploy a WordPress-powered website with a

highly available architecture.

AWS Elastic Beanstalk is an application management service that facilitates quick

deployment and management of cloud applications. You simply upload your application,

and AWS Elastic Beanstalk automatically handles the details of capacity provisioning,

load balancing, Auto Scaling, and application health monitoring.

Implementation Walkthrough
This section presents a walkthrough of an example installation of WordPress with AWS

Elastic Beanstalk. In this example AWS Elastic Beanstalk launches an Elastic Load

Balancing load balancer and multiple web servers in separate AWS Availability Zones. It

also launches an Amazon Relational Database Service (Amazon RDS) database

instance running MySQL. In addition to resources managed via AWS Elastic Beanstalk,

this walkthrough also sets up an Amazon Simple Storage Service (Amazon S3) Bucket

for static assets, an Amazon CloudFront distribution, and an Amazon ElastiCache

cluster running the Memcached engine. Integrating WordPress with the above

architecture is accomplished via W3 Total Cache, a third-party open source plugin.

With this plugin you can do the following:

 Store static assets (e.g., media library, theme files, etc) on Amazon S3, thus creating

a stateless web tier and offloading this workload from your web servers.

 Serve those assets via Amazon CloudFront, Amazon’s content delivery network,

thus reducing the latency for users around the globe.

 Use ElastiCache’s Memcached engine to perform database caching, thus improving

performance and reducing the load on the database.

 Implement browser and CloudFront caching using cache-control, future-expire

headers and entity tags (ETag), thus further improving the end user experience.

Unless otherwise specified, the links in the steps are to the related AWS service

documentation.

Preparation
1. First, create an AWS Identity and Access Management (IAM) user to be used by the

WordPress plugin to access Amazon S3.

https://wordpress.org/plugins/w3-total-cache/

How to: Creating an IAM User in Your AWS Account.1

Note: IAM roles provide a better way of managing access to AWS resources, but at

the time of writing the W3_Total_Cache plugin does not support IAM roles.2

2. Next, take note of the user security credentials and store them in a secure manner:

3. Now create an Amazon S3 bucket in the region of your choice.

How to: Creating a Bucket.3

1
 http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html

2
 http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

3
 http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

4. Upload an index.html page. Amazon S3 returns this index document when

requests are made to the root domain or any of the subfolders.

How to: Uploading Objects into Amazon S3.4

5. Enable static website hosting for that bucket.

How to: Configure a Bucket for Website Hosting.5

4
 http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

5
 http://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html

6. Attach an IAM policy to the IAM user created previously to allow access to the

specific bucket.

How to: Managing IAM Policies.6

{

 "Version": "2014-12-10",

 "Statement": [

 {

 "Sid": "Stmt1389783689000",

 "Effect": "Allow",

6
 http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

 "Action": [

 "s3:DeleteObject",

 "s3:GetObject",

 "s3:GetObjectAcl",

 "s3:ListBucket",

 "s3:PutObject",

 "s3:PutObjectAcl"

],

 "Resource": [

 "arn:aws:s3:::wp-demo",

 "arn:aws:s3:::wp-demo/*"

]

 }

]

}

7. Download the WordPress application code to create your initial application code

bundle (in this case wordpress-4.0.1.zip from http://wordpress.org/download/).

8. Follow the included instructions to unzip this to your local file system. Create a copy

of wp-config-sample.php and rename it wp-config.php.

http://wordpress.org/download/

9. Edit the wp-config.php file, by configuring database connectivity information with

the use of Amazon RDS environment variables7 that AWS Elastic Beanstalk

maintains automatically for you8. In addition you can add other environment variables

(e.g., for the authentication unique keys and salts). To do that, you can take

advantage of AWS Elastic Beanstalk’s ability to customize environment variables as

explained in Customizing and Configuring a PHP Environment.9

For more details on the WordPress configuration, you can visit

http://codex.wordpress.org/Editing_wp-config.php or see the example below.

<?php

/** Detect if SSL is used. This is required since we are

terminating SSL either on CloudFront or on ELB */

if (($_SERVER['HTTP_CLOUDFRONT_FORWARDED_PROTO'] ==

'https') OR ($_SERVER['HTTP_X_FORWARDED_PROTO'] ==

'https'))

 {$_SERVER['HTTPS']='on';}

/** The name of the database for WordPress */

define('DB_NAME', $_SERVER["RDS_DB_NAME"]);

/** MySQL database username */

define('DB_USER', $_SERVER["RDS_USERNAME"]);

/** MySQL database password */

define('DB_PASSWORD', $_SERVER["RDS_PASSWORD"]);

/** MySQL hostname */

define('DB_HOST', $_SERVER["RDS_HOSTNAME"]);

/** Database Charset to use in creating database tables. */

define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in

doubt. */

define('DB_COLLATE', '');

/**#@+

 * Authentication Unique Keys and Salts.

 * Change these to different unique phrases!

*/

define('AUTH_KEY', $_SERVER["AUTH_KEY"]);

define('SECURE_AUTH_KEY', $_SERVER["SECURE_AUTH_KEY"]);

define('LOGGED_IN_KEY', $_SERVER["LOGGED_IN_KEY"]);

define('NONCE_KEY', $_SERVER["NONCE_KEY"]);

define('AUTH_SALT', $_SERVER["AUTH_SALT"]);

define('SECURE_AUTH_SALT', $_SERVER["SECURE_AUTH_SALT"]);

define('LOGGED_IN_SALT', $_SERVER["LOGGED_IN_SALT"]);

define('NONCE_SALT', $_SERVER["NONCE_SALT"]);

7
 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP.rds.html

8
 This is assuming you create an RDS instance as part of the Elastic Beanstalk Environment. In step 13 we will

explain why you might prefer not to do that in a production environment.
9
 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP_custom_container.html

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP.rds.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP_custom_container.html
http://codex.wordpress.org/Editing_wp-config.php
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP.rds.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_PHP_custom_container.html

/**#@-*/

/**

 * WordPress Database Table prefix.

 */

$table_prefix = 'wp_';

/**

 * WordPress Localized Language, defaults to English.

 */

define('WPLANG', '');

/**

 * For developers: WordPress debugging mode.

 *

 * Change this to true to enable the display of notices

during development.

*/

define('WP_DEBUG', false);

/** Absolute path to the WordPress directory. */

if (!defined('ABSPATH'))

define('ABSPATH', dirname(__FILE__) . '/');

/** Sets up WordPress vars and included files. */

require_once(ABSPATH . 'wp-settings.php');

10. Now set the values for the Authentication Unique Keys and Salts environment

variables. You could do this via the AWS console but instead—in our example—we

create a folder called .ebextensions in the root folder of the local copy of the

WordPress application code.

Tip: If you are using Windows Explorer, you need to name the folder

.ebextensions. in order to create a folder with a dot prefix. The last dot will be

removed automatically.

Inside the .ebextensions folder, add a file called keys.config with the following

content. Make sure you replace the authentication unique keys and salts with

different unique phrases, as this is for illustration only.

option_settings:

 - option_name: AUTH_KEY

 value: 'AJDSAHCMEWKRSODJFIEWRJSDFMKSDMADS'

 - option_name: SECURE_AUTH_KEY

 value: 'SAJDSANCMEWKRSODJFIEWRJSDFMKSDMAD'

 - option_name: LOGGED_IN_KEY

 value: 'DSAJDSADCMEWKRSODJFIEWRJSDFMKSDMA'

 - option_name: NONCE_KEY

 value: 'ADSAJDSAKCMEWKRSODJFIEWRJSDFMKSDM'

 - option_name: SECURE_AUTH_SALT

 value: 'MADSAJDSAKCMEWKRSODJFIEWRJSDFMKSD'

 - option_name: LOGGED_IN_SALT

 value: 'DMADSAJDSAKCMEPKRSODJFIEWRJSDFMKS'

 - option_name: NONCE_SALT

 value: 'SDMADSAJDSAKCMEWKHSODJFIEWRJSDFMK'

 - option_name: AUTH_SALT

 value: 'KSDMADSAJDSAKCMEWKRSODJJIEWRJSDFM'

Environment Creation
11. Next, create an AWS Elastic Beanstalk environment. Specify a Web Server tier with

the default PHP container and of the type Load balancing, autoscaling.

How to: Launching New Environments.10

Zip the application code making sure you include the files and subfolders

themselves, rather than zipping the parent folder - e.g. there should be no top-level

directory (subdirectories are fine). Then upload the zip file as the source of the initial

application version:

12. Type a unique environment name and URL:

10
 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html

13. You can now enable the option to create an Amazon RDS MySQL instance as part

of your Elastic Beanstalk environment. You will configure this in a subsequent step.

Please note that in a production environment it is instead recommended to create the

RDS instance separately – not via AWS Elastic Beanstalk but through the Amazon

RDS console, CLI, or API. This would allow you to take advantage of Elastic

Beanstalk’s more advanced features such as zero downtime deployments11. For this

example we also did not select the ‘Create this environment inside a VPC’ option12

which is another recommended configuration for production environments.

In the next page, select an instance type for your web servers and specify an existing

Amazon Elastic Compute Cloud (Amazon EC2) key pair to be able to login to the

instances of the environment via Secure Shell (SSH). If you have no Amazon EC2

key pairs configured, you need to create one, as explained in the AWS

documentation.13 You should also set up a simple health check for the Elastic Load

Balancing load balancer by configuring an application health check URL. In our

example this will be a simple static file from the root folder of the application

11
 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html

12
 In practice if you are launching in a region where your account does not support the EC2-Classic platform and

you don’t tick the ‘Create this environment inside a VPC’ option, your resources will be deployed in your Default

VPC. You can read more at http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default -vpc.html
13

 http://docs.aws.amazon.com/gettingstarted/latest/wah/getting-started-prereq.html#create-a-key-pair

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/gettingstarted/latest/wah/getting-started-prereq.html#create-a-key-pair
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html

(HTTP:80/readme.html) that will be used to confirm Apache web server is running

and responding to HTTP requests.

14. When you create a new environment, you can also specify tags to categorize the

environment. Tags can help you identify environments in cost allocation reports,

especially if you have many to manage. For example, you could create a key-value

pair for the website name so that this appears in cost reports:

15. Use the next page to configure the Amazon RDS database. Since this is just a test

environment, opt for the Single Availability Zone deployment. For actual production

workloads, the Multiple Availability Zones option is recommended.

In a few minutes, your AWS Elastic Beanstalk environment is up and running:

Click Show All and note the security group name information from the events list:

This will be required in a subsequent step.

16. The next step involves the creation of an ElastiCache Memcached cluster. Before

launching the cluster, we first need to create a security group to control access to the

Memcached instances.

Please note that if you are running your ElastiCache nodes in Amazon VPC (including

Default VPC14 as in our example), you control access to your cache clusters with

Amazon VPC security groups. For more information on using ElastiCache in an

Amazon VPC, see ElastiCache and Amazon Virtual Private Cloud15 and Using

ElastiCache with Amazon Virtual Private Cloud (VPC)16. Instead if you are running

your ElastiCache nodes in EC2-Classic you will need to create ElastiCache security

groups.17

17. You can now authorize the security group of your web servers (from step 15) by

adding an inbound rule to the security group you created for your ElastiCache

cluster. VPC Security groups are explained in the Amazon Virtual Private Cloud User

Guide.18

18. You are now ready to launch the ElastiCache cluster with the Memcached engine,

which in this example consists of two nodes.

How to: Create a Cache Cluster.19

14
 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default -vpc.html

15
 http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ElastiCacheAndVPC.html

16
 http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingVPC.html

17
 http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSecurityGroup.html

18
 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

19
 http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.CreateCluster.html

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ElastiCacheAndVPC.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingVPC.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingVPC.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSecurityGroup.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSecurityGroup.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.CreateCluster.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ElastiCacheAndVPC.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingVPC.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSecurityGroup.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

19. In the second step, specify that you want to spread the nodes across Availability

Zones and select the security group you created earlier:

Please note that this example deploys the cluster into the Default VPC and uses the

default Cache Subnet Group20. In addition we did not specify an Amazon Simple

Notification Service (Amazon SNS) notification topic. For a production environment, it is

best to configure those.

Within a few minutes, the ElastiCache cluster is up and running. Keep a note of the

endpoints of the ElastiCache nodes as we are going to need them in a subsequent step.

20. Now create a CloudFront web distribution.

How to: Task List for Creating a Web Distribution.21

21. Set up your distribution so that by default it uses the Environment URL of the AWS

Elastic Beanstalk environment (from step 12) as its origin:

20
 http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSubnetGroups.html

21
 http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSubnetGroups.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheSubnetGroups.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html

In a production environment you might want to set the Origin Protocol Policy to

Match Viewer protocol so that if the viewer connects to CloudFront using HTTPS,

CloudFront will connect to your origin using HTTPS as well, achieving end-to-end

encryption. This requires that you install a trusted SSL certificate on the load

balancer as explained in the AWS Elastic Beanstalk Developer Guide.22

22. Because the default cache behavior associated with this origin will serve the dynamic

content of the front end, use the following configuration:

a. Allow all HTTP methods since the dynamic portions of the website require both

GET and POST requests (e.g., to support POST for the comment submission

forms).

b. Forward only the cookies that vary the WordPress output—e.g., wordpress_*,

wp-settings-* and comment_*. You will need to extend that list if you have

installed any plugins that depend on other cookies not in the list.

c. Forward only the HTTP headers that affect the output of WordPress. This

example enables the CloudFront-Forwarded-Proto header (so that the same

page is cached separately if accessed via HTTP or HTTPS) and the three

device-detection headers of CloudFront (CloudFront-Is-Desktop-Viewer,

CloudFront-Is-Mobile-Viewer, CloudFront-Is-Tablet-Viewer) that you can use

to customize the HTML output of your themes based on the end user’s device

type.

d. Forward Query Strings as WordPress relies on those.

22
 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.elb.html

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.elb.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.elb.html

23. Now create two more cache behaviors for dynamic content, one for the login page

(path pattern: wp-login.php) and one for the admin folder (path pattern: wp-

admin/*). Those two behaviors have the same exact settings. For example, for both

behaviors you enforce the use of HTTPS and whitelist all cookies and HTTP

headers. The reason is that this section of the website is highly personalized and

typically has just a few users; caching efficiency is not a primary concern here. You

can keep configuration simple and ensure maximum compatibility with any installed

plugins by just passing all cookies and headers back to the origin.

Software Installation
24. Once the CloudFront changes are deployed, point your browser to the host name of

the CloudFront distribution,23 and follow the installation process:

25. Submit this form to initialize the database content. The website is now functional.

23
 In a real environment, you would instead use Amazon Route 53 to point to the actual domain name of the website

you are about to install.

26. The WordPress installation script sets the WordPress Address (URL) and Site

Address (URL) settings to the host name of the Elastic Load Balancing load

balancer. To correct this, visit the WordPress General Settings tab and set it to the

right domain name for your web site (in this example simply the host name of the

CloudFront distribution).

WordPress Plugin Installation
27. Now log in to the WordPress admin panel and install the W3 Total Cache plugin via

the user interface:

After the plugin is installed you will need to activate it:

28. Next, start enabling the W3 Total Cache plugin features. A detailed description of all

settings of the plugin is beyond the scope of this article. Please refer to the W3 Total

Cache plugin page at wordpress.org. In this example you first enable the Database

Cache feature from the Plugin’s General Settings.

29. Then go to the Database Caching section of the plugin configuration to define the

ElastiCache nodes host names (from step 19).

30. Now visit the Browser Cache section of the plugin's configuration and enable the

expires, cache control, and entity tag headers. Also activate the Prevent caching of

objects after settings change option so that a new query string will be generated

and appended to objects when the policy changes.

Next, visit the CDN settings section of the plugin’s General Configuration. Enable

CDN and select CloudFront as an Origin Push CDN configuration (this will have

Amazon S3 as its origin). Then visit the CDN section to define the details24:

24
 Please note that W3 Total Cache has a 'Test S3 upload & CloudFront distribution' button. That test will fail unless

you also add the s3:ListAllMyBuckets action access right to the IAM user. Since this privilege is not requi red for

the plugin to function correctly, we have not included it in our example.

31. You then need to export the media library and upload the wp-includes, theme files,

and custom files to Amazon S3 via the plugin’s functions:

32. Now that the static files are stored on Amazon S3, go back to the Amazon

CloudFront configuration in the CloudFront console and configure Amazon S3 as the

origin for static content. To do that, add a second origin pointing to the Amazon S3

bucket used for that purpose:

33. Then create two more cache behaviors, one for each of the two folders (wp-

content and wp-includes) that should use the Amazon S3 origin rather than the

default Elastic Load Balancing origin.

Configure both in the same manner:

a. Serve GET HTTP requests only.

b. Amazon S3 does not vary its output based on cookies or HTTP headers, so you

can improve caching efficiency by not forwarding them to the origin via

CloudFront.

c. Despite the fact that these behaviors serve only static content (which accepts no

parameters), you will forward query strings to the origin. This is so that you can

use query strings as version identifiers to instantly invalidate, for example, older

CSS files when deploying new versions. For more information, see the Amazon

CloudFront Developer Guide.25

25
 http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html

Application Versioning

34. During installation and configuration of the W3 Total Cache plugin, certain changes

have been performed on the file system. For example the plugin code has been

downloaded and certain configuration files have been created. Those changes (that

you implement after your initial AWS Elastic Beanstalk deployment) will be lost if the

instance is terminated. They will also not be applied to any new instances added

later (e.g., Auto Scaling).

To avoid this, as a first step you can use secure copy (SCP) to download the web

folder from the staging environment (folder /var/app/current/) locally.

Then create a new .zip file (remember to also include the .ebextensions folder)

and deploy it as a new application version. Please note that this now includes hard-

coded values (e.g., the host names of the ElastiCache nodes in the W3 Total Cache

configuration) and as such is environment specific.

Auto Scaling Configuration
35. As the last step you now need to set up the Auto Scaling options. In the Auto Scaling

configuration page for your environment in the AWS Elastic Beanstalk console, set

up a minimum of 2 and a maximum of 10 nodes across Availability Zones.

On the same page, configure a scaling policy that will be triggered based on the CPU

Utilization metrics:

Additional considerations
The above example is a starting point implementation. For a production environment

there are additional considerations around security, backups, operations etc. For further

reading we recommend going through the following material in the AWS whitepapers26

section:

- Backup and Recovery Approaches Using AWS
27

- AWS Security Best Practices
28

- Operational Checklists for AWS
29

26
 AWS whitepapers

27
 http://d0.awsstatic.com/whitepapers/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf

28
 http://media.amazonwebservices.com/AWS_Security_Best_Practices.pdf

29
 http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf

http://aws.amazon.com/whitepapers/
http://d0.awsstatic.com/whitepapers/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
http://aws.amazon.com/whitepapers/
http://d0.awsstatic.com/whitepapers/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf

