
Data Warehousing on AWS 
March 2016 

  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 2 of 26  
 

© 2016, Amazon Web Services, Inc. or its affiliates.  All rights reserved.  

Notices  
This document is provided for informational purposes only. It represents AWS’s 
current product offerings and practices as of the date of issue of this document, 
which are subject to change without notice. Customers are responsible for 
making their own independent assessment of the information in this document 
and any use of AWS’s products or services, each of which is provided “as is” 
without warranty of any kind, whether express or implied. This document does 
not create any warranties, representations, contractual commitments, conditions 
or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities 
and liabilities of AWS to its customers are controlled by AWS agreements, and 
this document is not part of, nor does it modify, any agreement between AWS 
and its customers. 

  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 3 of 26  
 

Contents 
Abstract 4 

Introduction 4 

Modern Analytics and Data Warehousing Architecture 6 

Analytics Architecture 6 

Data Warehouse Technology Options 12 

Row-Oriented Databases 12 

Column-Oriented Databases 13 

Massively Parallel Processing Architectures 15 

Amazon Redshift Deep Dive 15 

Performance 15 

Durability and Availability 16 

Scalability and Elasticity 16 

Interfaces 17 

Security 17 

Cost Model 18 

Ideal Usage Patterns 18 

Anti-Patterns 19 

Migrating to Amazon Redshift 20 

One-Step Migration 20 

Two-Step Migration 20 

Tools for Database Migration 21 

Designing Data Warehousing Workflows 21 

Conclusion 24 

Further Reading 25 

 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 4 of 26  
 

Abstract 
Data engineers, data analysts, and developers in enterprises across the globe are 
looking to migrate data warehousing to the cloud to increase performance and 
lower costs. This whitepaper discusses a modern approach to analytics and data 
warehousing architecture, outlines services available on Amazon Web Services 
(AWS) to implement this architecture, and provides common design patterns to 
build data warehousing solutions using these services. 

 

Introduction  
In today’s world, data and analytics are indispensable to business. Almost all 
large enterprises have built data warehouses for reporting and analytics purposes 
using the data from a variety of sources, including their own transaction-
processing systems and other databases.  

But building and running a data warehouse—a central repository of information 
coming from one or more data sources—has always been complicated and 
expensive. Most data warehousing systems are complex to set up, cost millions of 
dollars in upfront software and hardware expenses, and can take months in 
planning, procurement, implementation, and deployment processes. After you 
have made the initial investments and set your data warehouse up, you have to 
hire a team of database administrators to keep your queries running fast and 
protect against data loss.  

Traditional data warehouses are also difficult to scale. When data volumes grow 
or you want to make analytics and reports available to more users, you have to 
choose between accepting slow query performance or investing time and effort on 
an expensive upgrade process. In fact, some IT teams discourage augmenting 
data or adding queries to protect existing service-level agreements. Many 
enterprises struggle with maintaining a healthy relationship with traditional 
database vendors. They are often forced to either upgrade hardware for a 
managed system or enter a protracted negotiation cycle for an expired term 
license. When they reach the scaling limit on one data warehouse engine, they are 
forced to migrate to another engine from the same vendor with different SQL 
semantics. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 5 of 26  
 

Amazon Redshift has changed how enterprises think about data warehousing by 
dramatically lowering the cost and effort associated with deploying data 
warehouse systems without compromising on features and performance. Amazon 
Redshift is a fast, fully managed, petabyte-scale data warehousing solution that 
makes it simple and cost-effective to analyze large volumes of data using existing 
business intelligence (BI) tools. With Amazon Redshift, you can get the 
performance of columnar data warehousing engines that perform massively 
parallel processing (MPP) at a tenth of the cost. You can start small for $0.25 per 
hour with no commitments and scale to petabytes for $1,000 per terabyte per 
year.  

Since launching in February 2013, Amazon Redshift has been one of fastest 
growing AWS services, with many thousands of customers across industries and 
company sizes. Enterprises such as NTT DOCOMO, FINRA, Johnson & Johnson, 
Hearst, Amgen, and NASDAQ have migrated to Amazon Redshift. As a result, 
Amazon Redshift ranked as a leader in the Forrester Wave: Enterprise Data 
Warehouse, Q4 2015 report.1 

In this whitepaper, we provide you the information you need to take advantage of 
the strategic shift happening in the data warehousing space from on-premises to 
the cloud: 

• Modern analytics architecture  

• Data warehousing technology choices available within that architecture 

• A deep dive on Amazon Redshift and its differentiating features 

• A blueprint for building a complete data warehousing system on AWS with 
Amazon Redshift and other services  

• Practical tips for migrating from other data warehousing solutions and 
tapping into our partner ecosystem   

 

https://www.forrester.com/The+Forrester+Wave+Enterprise+Data+Warehouse+Q4+2015/fulltext/-/E-res124041
https://www.forrester.com/The+Forrester+Wave+Enterprise+Data+Warehouse+Q4+2015/fulltext/-/E-res124041


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 6 of 26  
 

Modern Analytics and Data Warehousing 
Architecture  
Again, a data warehouse is a central repository of information coming from one 
or more data sources. Data typically flows into a data warehouse from 
transactional systems and other relational databases, and typically includes 
structured, semi-structured, and unstructured data. This data is processed, 
transformed, and ingested at a regular cadence. Users including data scientists, 
business analysts, and decision-makers access the data through BI tools, SQL 
clients, and spreadsheets. 

Why build a data warehouse at all—why not just run analytics queries directly on 
an online transaction processing (OLTP) database, where the transactions are 
recorded? To answer the question, let’s look at the differences between data 
warehouses and OLTP databases. Data warehouses are optimized for batched 
write operations and reading high volumes of data, whereas OLTP databases are 
optimized for continuous write operations and high volumes of small read 
operations. In general, data warehouses employ denormalized schemas like the 
Star schema and Snowflake schema because of high data throughput 
requirements, whereas OLTP databases employ highly normalized schemas, 
which are more suited for high transaction throughput requirements. The Star 
schema consists of a few large fact tables that reference a number of dimension 
tables. The Snowflake schema, an extension of the Star schema, consists of 
dimension tables that are normalized even further. 

To get the benefits of using a data warehouse managed as a separate data store 
with your source OLTP or other source system, we recommend that you build an 
efficient data pipeline. Such a pipeline extracts the data from the source system, 
converts it into a schema suitable for data warehousing, and then loads it into the 
data warehouse. In the next section, we discuss the building blocks of an analytics 
pipeline and the different AWS services you can use to architect the pipeline. 

Analytics Architecture 
Analytics pipelines are designed to handle large volumes of incoming streams of 
data from heterogeneous sources such as databases, applications, and devices. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 7 of 26  
 

A typical analytics pipeline has the following stages:  

1. Collect data. 

2. Store the data. 

3. Process the data. 

4. Analyze and visualize the data.  

For an illustration, see Figure 1, following. 

Figure 1: Analytics Pipeline 

 

Data Collection 
At the data collection stage, consider that you probably have different types of 
data, such as transactional data, log data, streaming data, and Internet of Things 
(IoT) data. AWS provides solutions for data storage for each of these types of 
data. 

Transactional Data 
Transactional data, such as e-commerce purchase transactions and financial 
transactions, is typically stored in relational database management systems 
(RDBMS) or NoSQL database systems.  The choice of database solution depends 
on the use case and application characteristics. A NoSQL database is suitable 
when the data is not well-structured to fit into a defined schema, or when the 
schema changes very often. An RDBMS solution, on the other hand, is suitable 
when transactions happen across multiple table rows and the queries require 
complex joins. Amazon DynamoDB is a fully managed NoSQL database service 
that can be used as an OLTP store for your applications. Amazon RDS allows you 
to implement a SQL-based relational database solution for your application.  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 8 of 26  
 

Log Data 
Reliably capturing system-generated logs will help you troubleshoot issues, 
conduct audits, and perform analytics using the information stored in the logs. 
Amazon Simple Storage Service (Amazon S3) is a popular storage solution for 
nontransactional data, such as log data, that is used for analytics. Because it 
provides 11 9’s of durability (that is, 99.999999999 percent durability), Amazon 
S3 is also a popular archival solution.  

Streaming Data 
Web applications, mobile devices, and many software applications and services 
can generate staggering amounts of streaming data—sometimes terabytes per 
hour—that need to be collected, stored, and processed continuously.2 Using 
Amazon Kinesis services, you can do that simply and at a low cost. 

IoT Data 
Devices and sensors around the world send messages continuously. Enterprises 
see a growing need today to capture this data and derive intelligence from it. 
Using AWS IoT, connected devices interact easily and securely with the AWS 
cloud. AWS IoT makes it easy to use AWS services like AWS Lambda, Amazon 
Kinesis, Amazon S3, Amazon Machine Learning, and Amazon DynamoDB to 
build applications that gather, process, analyze, and act on IoT data, without 
having to manage any infrastructure. 

Data Processing 
The collection process provides data that potentially has useful information. You 
can analyze the extracted information for intelligence that will help you grow 
your business. This intelligence might, for example, tell you about your user 
behavior and the relative popularity of your products. The best practice to gather 
this intelligence is to load your raw data into a data warehouse to perform further 
analysis.  

To do so, there are two types of processing workflows, batch and real time. The 
most common forms of processing, online analytic processing (OLAP) and OLTP, 
each use one of these types. Online analytic processing (OLAP) processing is 
generally batch-based. In contrast, OLTP systems are oriented towards real-time 
processing and are generally not well-suited for batch-based processing. If you 
decouple data processing from your OLTP system, you keep the data processing 
from affecting your OLTP workload.  

http://aws.amazon.com/streaming-data/


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 9 of 26  
 

First, let's look at what is involved in batch processing. 

Extract Transform Load (ETL)  
ETL is the process of pulling data from multiple sources to load into data 
warehousing systems. ETL is normally a continuous ongoing process with a well-
defined workflow. During this process, data is initially extracted from one or 
more sources. The extracted data is then cleansed, enriched, transformed, and 
loaded into a data warehouse. Hadoop framework tools such as Apache Pig and 
Apache Hive are commonly used in an ETL pipeline to perform transformations 
on large volumes of data. 

Extract Load Transform (ELT)  
ELT is a variant of ETL where the extracted data is loaded into the target system 
first. Transformations are performed after the data is loaded into the data 
warehouse. ELT typically works well when your target system is powerful enough 
to handle transformations. Amazon Redshift is often used in ELT pipelines 
because it is highly efficient in performing transformations. 

Online Analytical Processing (OLAP)  
OLAP systems store aggregated historical data in multidimensional schemas. 
Used widely in data mining, OLAP systems allow you to extract data and spot 
trends on multiple dimensions. Because it is optimized for fast joins, Amazon 
Redshift is often used to build OLAP systems. 

Now, let’s look at what’s involved in real-time processing of data. 

Real-Time Processing 
We talked about streaming data earlier and mentioned Amazon Kinesis as a 
solution to capture and store streaming data. You can process this data 
sequentially and incrementally on a record-by-record basis or over sliding time 
windows, and use the processed data for a wide variety of analytics including 
correlations, aggregations, filtering, and sampling. This type of processing is 
called real-time processing. Information derived from real-time processing gives 
companies visibility into many aspects of their business and customer activity—
such as service usage (for metering or billing), server activity, website clicks, and 
geolocation of devices, people, and physical goods—and enables them to respond 
promptly to emerging situations. Real-time processing requires a highly 
concurrent and scalable processing layer.  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 10 of 26  
 

To process streaming data in real time, you can use AWS Lambda. Lambda can 
process the data directly from AWS IoT or Amazon Kinesis Streams. Lambda lets 
you run code without provisioning or managing servers. 

Amazon Kinesis Client Library (KCL) is another way to process data from 
Amazon Kinesis Streams. KCL gives you more flexibility than AWS Lambda to 
batch your incoming data for further processing. You can also use KCL to apply 
extensive transformations and customizations in your processing logic. 

Amazon Kinesis Firehose is the easiest way to load streaming data into AWS. It 
can capture streaming data and automatically load it into Amazon Redshift, 
enabling near-real-time analytics with existing BI tools and dashboards you’re 
already using today. You can define your batching rules with Firehose, and then it 
takes care of reliably batching the data and delivering to Amazon Redshift. 

Data Storage 
You can store your data in either a data warehouse or data mart, as discussed in 
the following. 

Data Warehouse 
As we’ve said, a data warehouse is a central repository of information coming 
from one or more data sources. Using data warehouses, you can run fast analytics 
on large volumes of data and unearth patterns hidden in your data by leveraging 
BI tools. Data scientists query a data warehouse to perform offline analytics and 
spot trends. Users across the organization consume the data using ad hoc SQL 
queries, periodic reports, and dashboards to make critical business decisions. 

Data Mart 
A data mart is a simple form of data warehouse focused on a specific functional 
area or subject matter. For example, you can have specific data marts for each 
division in your organization or segment data marts based on regions. You can 
build data marts from a large data warehouse, operational stores, or a hybrid of 
the two. Data marts are simple to design, build, and administer. However, 
because data marts are focused on specific functional areas, querying across 
functional areas can become complex because of the distribution. 

You can use Amazon Redshift to build data marts in addition to data warehouses.  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 11 of 26  
 

Analysis and Visualization 
After processing the data and making it available for further analysis, you need 
the right tools to analyze and visualize the processed data. 

In many cases, you can perform data analysis using the same tools you use for 
processing data. You can use tools such as SQL Workbench to analyze your data 
in Amazon Redshift with ANSI SQL. Amazon Redshift also works well with 
popular third-party BI solutions available on the market. 

Amazon QuickSight is a fast, cloud-powered BI service that makes it easy to 
create visualizations, perform ad hoc analysis, and quickly get business insights 
from your data. Amazon QuickSight is integrated with Amazon Redshift and is 
currently in preview, with general availability planned for later in 2016.  

If you are using Amazon S3 as your primary storage, a popular way to perform 
analysis and visualization is to run Apache Spark notebooks on Amazon Elastic 
MapReduce (Amazon EMR). Using this process, you have the flexibility to run 
SQL or execute custom code written in languages such as Python and Scala. 

For another visualization approach, Apache Zeppelin is an open source BI 
solution that you can run on Amazon EMR to visualize data in Amazon S3 using 
Spark SQL. You can also use Apache Zeppelin to visualize data in Amazon 
Redshift. 

Analytics Pipeline with AWS Services 
AWS offers a broad set of services to implement an end-to-end analytics 
platform. Figure 2 shows the services discussed preceding and where they fit 
within the analytics pipeline. 

 

 

 

 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 12 of 26  
 

Figure 2: Analytics Pipeline with AWS Services 

Data Warehouse Technology Options 
In this section, we discuss options available for building a data warehouse: row-
oriented databases, column-oriented databases, and massively parallel 
processing architectures. 

Row-Oriented Databases 
Row-oriented databases typically store whole rows in a physical block. High 
performance for read operations is achieved through secondary indexes. 
Databases such as Oracle Database Server, Microsoft SQL Server, MySQL, and 
PostgreSQL are row-oriented database systems. These systems have been 
traditionally used for data warehousing, but they are better suited for 
transactional processing (OLTP) than for analytics. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 13 of 26  
 

To optimize performance of a row-based system used as a data warehouse, 
developers use a number of techniques, including building materialized views, 
creating pre-aggregated rollup tables, building indexes on every possible 
predicate combination, implementing data partitioning to leverage partition 
pruning by query optimizer, and performing index based joins.  

Traditional row-based data stores are limited by the resources available on a 
single machine. Data marts alleviate the problem to an extent by using functional 
sharding. You can split your data warehouse into multiple data marts, each 
satisfying a specific functional area. However, when data marts grow large over 
time, data processing slows down. 

In a row-based data warehouse, every query has to read through all of the 
columns for all of the rows in the blocks that satisfy the query predicate, 
including columns you didn’t choose. This approach creates a significant 
performance bottleneck in data warehouses, where your tables have more 
columns, but your queries use only a few.  

Column-Oriented Databases 
Column-oriented databases organize each column in its own set of physical 
blocks instead of packing the whole rows into a block. This functionality allows 
them to be more I/O efficient for read-only queries because they only have to 
read those columns accessed by a query from disk (or from memory). This 
approach makes column-oriented databases a better choice than row-oriented 
databases for data warehousing. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 14 of 26  
 

 

Figure 3: Row-Oriented vs. Column-Oriented Databases 

Figure 3, preceding, illustrates the primary difference between row-oriented and 
column-oriented databases. Rows are packed into their own blocks in a row-
oriented database, and columns are packed into their own blocks in a column-
oriented database. 

After faster I/O, the next biggest benefit to using a column-oriented database is 
improved compression. Because every column is packed into its own set of 
blocks, every physical block contains the same data type. When all the data is the 
same data type, the database can use extremely efficient compression algorithms. 
As a result, you need less storage compared to a row-oriented database. This 
approach also results in significantly lesser I/O because the same data is stored in 
fewer blocks. 

Some column-oriented databases that are used for data warehousing include 
Amazon Redshift, Vertica, Teradata Aster, and Druid. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 15 of 26  
 

Massively Parallel Processing Architectures 
An MPP architecture allows you to use all of the resources available in the cluster 
for processing data, thereby dramatically increasing performance of petabyte-
scale data warehouses. MPP data warehouses allow you improve performance by 
simply adding more nodes to the cluster. Amazon Redshift, Druid, Vertica, 
GreenPlum, and Teradata Aster are some of the data warehouses built on an MPP 
architecture. Open source frameworks such as Hadoop and Spark also support 
MPP.  

Amazon Redshift Deep Dive 
As a columnar MPP technology, Amazon Redshift offers key benefits for 
performant, cost-effective data warehousing including efficient compression, 
reduced I/O, and lower storage requirements. It is based on ANSI SQL, so you 
can run existing queries with little or no modification. As a result, it has become a 
popular choice for enterprise data warehouses and data marts today. In this 
section, we dive deeper into Amazon Redshift and discuss more about its 
capabilities. 

Amazon Redshift delivers fast query and I/O performance for virtually any data 
size by using columnar storage, and by parallelizing and distributing queries 
across multiple nodes. It automates most of the common administrative tasks 
associated with provisioning, configuring, monitoring, backing up, and securing a 
data warehouse, making it easy and inexpensive to manage. Using this 
automation, you can build petabyte-scale data warehouses in minutes instead of 
the weeks or months taken by traditional on-premises implementations.  

Performance 

Amazon Redshift uses columnar storage, data compression, and zone maps to 
reduce the amount of I/O needed to perform queries. Interleaved sorting enables 
fast performance without the overhead of maintaining indexes or projections. 

Amazon Redshift employs an MPP architecture to take advantage of all available 
resources by parallelizing and distributing SQL operations. The underlying 
hardware is designed for high performance data processing, using local attached 
storage to maximize throughput between the CPUs and drives, and a 10 GigE 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 16 of 26  
 

mesh network to maximize throughput between nodes. Performance can be 
tuned based on your data warehousing needs: AWS offers Dense Compute (DC) 
with solid-state drives and also Dense Storage (DS) options. Continuous 
deployment of software upgrades delivers ongoing performance improvements 
without any user intervention. 

Durability and Availability 
To provide the best possible data durability and availability, Amazon Redshift 
automatically detects and replaces any failed node in your data warehouse 
cluster. It makes your replacement node available immediately and loads your 
most frequently accessed data first so that you can resume querying your data as 
quickly as possible. Because Amazon Redshift mirrors your data across your 
cluster, it uses the data from another node to rebuild the failed node. The cluster 
is in read-only mode until a replacement node is provisioned and added to the 
cluster, which typically takes only a few minutes.  

Amazon Redshift clusters reside within one Availability Zone.3 However, if you 
want to a Multi-AZ setup for Amazon Redshift, you can create a mirror and then 
self-manage replication and failover. 

With just a few clicks in the Amazon Redshift Management Console, you can set 
up a robust disaster recovery (DR) environment with Amazon Redshift. You can 
keep copies of your backups in multiple AWS Regions. In case of a service 
interruption in one AWS Region, you can restore your cluster from the backup in 
a different AWS Region. You can gain read/write access to your cluster within a 
few minutes of initiating the restore operation. 

Scalability and Elasticity 
With a few clicks in the console or an API call, you can easily change the number 
and type of nodes in your data warehouse as your performance or capacity needs 
change.4 Amazon Redshift enables you to start with as little as a single 160 GB 
node and scale up all the way to a petabyte or more of compressed user data 
using many nodes. For more information, see About Clusters and Nodes in the 
Amazon Redshift Cluster Management Guide.5    

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 17 of 26  
 

While resizing, Amazon Redshift places your existing cluster into read-only 
mode, provisions a new cluster of your chosen size, and then copies data from 
your old cluster to your new one in parallel. During this process, you pay only for 
the active Amazon Redshift cluster. You can continue running queries against 
your old cluster while the new one is being provisioned. After your data has been 
copied to your new cluster, Amazon Redshift automatically redirects queries to 
your new cluster and removes the old cluster. 

You can use Amazon Redshift API actions to programmatically launch clusters, 
scale clusters, create backups, restore backups, and more. Using this approach, 
you can integrate these API actions into your existing automation stack or build 
custom automation that suits your needs. 

Interfaces 

Amazon Redshift has custom Java Database Connectivity (JDBC) and Open 
Database Connectivity (ODBC) drivers that you can download from the Connect 
Client tab of the console, which means you can use a wide range of familiar SQL 
clients. You can also use standard PostgreSQL JDBC and ODBC drivers. For more 
information about Amazon Redshift drivers, see Amazon Redshift and 
PostgreSQL in the Amazon Redshift Database Developer Guide. 6  

You can also find numerous examples of validated integrations with many 
popular BI and ETL vendors.7 In these integrations, loads and unloads execute in 
parallel on each compute node to maximize the rate at which you can ingest or 
export data to and from multiple resources, including Amazon S3, Amazon EMR, 
and Amazon DynamoDB. You can easily load streaming data into Amazon 
Redshift using Amazon Kinesis Firehose, enabling near real-time analytics with 
existing BI tools and dashboards. You can locate metrics for compute utilization, 
memory utilization, storage utilization, and read/write traffic to your Amazon 
Redshift data warehouse cluster by using the console or Amazon CloudWatch API 
operations. 

Security 

To help provide data security, you can run Amazon Redshift inside a virtual 
private cloud based on the Amazon Virtual Private Cloud (Amazon VPC) service. 
You can use the software-defined networking model of the VPC to define firewall 

http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://aws.amazon.com/redshift/partners/
https://aws.amazon.com/vpc/


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 18 of 26  
 

rules that restrict traffic based on the rules you configure.8 Amazon Redshift 
supports SSL-enabled connections between your client application and your 
Amazon Redshift data warehouse cluster, which enables data to be encrypted in 
transit.  

The Amazon Redshift compute nodes store your data, but the data can be 
accessed only from the cluster’s leader node. This isolation provides another layer 
of security. Amazon Redshift integrates with AWS CloudTrail to enable you to 
audit all Amazon Redshift API calls.9 To help keep your data secure at rest, 
Amazon Redshift encrypts each block using hardware-accelerated AES-256 
encryption as each block is written to disk. This encryption takes place at a low 
level in the I/O subsystem; the I/O subsystem encrypts everything written to 
disk, including intermediate query results. The blocks are backed up as is, which 
means that backups are also encrypted. By default, Amazon Redshift takes care of 
key management, but you can choose to manage your keys using your own 
hardware security modules (HSMs) or manage your keys through AWS Key 
Management Service.10,11 

Cost Model 
Amazon Redshift requires no long-term commitments or upfront costs. This 
pricing approach frees you from the capital expense and complexity of planning 
and purchasing data warehouse capacity ahead of your needs. Charges are based 
on the size and number of nodes in your cluster.  

There is no additional charge for backup storage up to 100 percent of your 
provisioned storage. For example, if you have an active cluster with two XL nodes 
for a total of 4 TB of storage, AWS provides up to 4 TB of backup storage on 
Amazon S3 at no additional charge. Backup storage beyond the provisioned 
storage size, and backups stored after your cluster is terminated, are billed at 
standard Amazon S3 rates.12  There is no data transfer charge for communication 
between Amazon S3 and Amazon Redshift. For more information, see Amazon 
Redshift Pricing.13 

Ideal Usage Patterns  
Amazon Redshift is ideal for online analytical processing (OLAP) using your 
existing BI tools. Organizations are using Amazon Redshift to do the following: 

https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-HSM.html
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-HSM.html
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/redshift/pricing/
http://aws.amazon.com/redshift/pricing/


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 19 of 26  
 

• Run enterprise BI and reporting 

• Analyze global sales data for multiple products  

• Store historical stock trade data  

• Analyze ad impressions and clicks  

• Aggregate gaming data  

• Analyze social trends  

• Measure clinical quality, operation efficiency, and financial performance in 
health care  

Anti-Patterns 
Amazon Redshift is not ideally suited for the following usage patterns: 

• Small datasets – Amazon Redshift is built for parallel processing across a 
cluster. If your dataset is less than 100 gigabytes, you’re not going to get all 
the benefits that Amazon Redshift has to offer and Amazon RDS may be a 
better solution. 

• OLTP – Amazon Redshift is designed for data warehousing workloads 
delivering extremely fast and inexpensive analytic capabilities. If you require 
a fast transactional system, you might want to choose a traditional relational 
database system built on Amazon RDS or a NoSQL database such as Amazon 
DynamoDB.  

• Unstructured data – Data in Amazon Redshift must be structured by a 
defined schema. Amazon Redshift doesn’t support an arbitrary schema 
structure for each row. If your data is unstructured, you can perform 
extract, transform, and load (ETL) on Amazon EMR to get the data ready 
for loading into Amazon Redshift. For JSON data, you can store key value 
pairs and use the native JSON functions in your queries.14 

• BLOB data – If you plan on storing binary large object (BLOB) files such 
as digital video, images, or music, you might want to consider storing the 
data in Amazon S3 and referencing its location in Amazon Redshift. In this 
scenario, Amazon Redshift keeps track of metadata (such as item name, 
size, date created, owner, location, and so on) about your binary objects, 
but the large objects themselves are stored in Amazon S3. 

http://docs.aws.amazon.com/redshift/latest/dg/json-functions.html


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 20 of 26  
 

 

Migrating to Amazon Redshift 
If you decide to migrate from an existing data warehouse to Amazon Redshift, 
which migration strategy you should choose depends on several factors: 

• The size of the database and its tables 

• Network bandwidth between the source server and AWS 

• Whether the migration and switchover to AWS will be done in one step or 
a sequence of steps over time 

• The data change rate in the source system 

• Transformations during migration 

• The partner tool that you plan to use for migration and ETL 

One-Step Migration  
One-step migration is a good option for small databases that don’t require 
continuous operation. Customers can extract existing databases as comma-
separated value (CSV) files, then use services such as AWS Import/Export 
Snowball to deliver datasets to Amazon S3 for loading into Amazon Redshift. 
Customers then test the destination Amazon Redshift database for data 
consistency with the source. Once all validations have passed, the database is 
switched over to AWS.  

Two-Step Migration  
Two-step migration is commonly used for databases of any size:  

1. Initial data migration: The data is extracted from the source database, 
preferably during nonpeak usage to minimize the impact. The data is then 
migrated to Amazon Redshift by following the one-step migration 
approach described previously.  

2. Changed data migration: Data that changed in the source database 
after the initial data migration is propagated to the destination before 
switchover. This step synchronizes the source and destination databases. 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 21 of 26  
 

Once all the changed data is migrated, you can validate the data in the 
destination database, perform necessary tests, and if all tests are passed, 
switch over to the Amazon Redshift data warehouse. 

Tools for Database Migration 
Several tools and technologies for data migration are available. You can use some 
of these tools interchangeably, or you can also use other third-party or open-
source tools available in the market. 

1. AWS Database Migration Service supports both the one-step and the two-
step migration processes described preceding.15 To follow the two-step 
migration process, you enable supplemental logging to capture changes to 
the source system. You can enable supplemental logging at the table or 
database level. 

2. Additional data integration partner tools are the following: 

• Attunity 
• Informatica 
• SnapLogic 
• Talend 
• Bryte 

  
For more information on data integration and consulting partners, see Amazon 
Redshift Partners.16 

Designing Data Warehousing Workflows 
In the previous sections, we discussed the features of Amazon Redshift that make 
it ideally suited for data warehousing. To understand how to design data 
warehousing workflows with Amazon Redshift, let’s now look at the most 
common design pattern along with an example use case.  

Suppose that a multinational clothing maker has more than a thousand retail 
stores, sells certain clothing lines through department and discount stores, and 
has an online presence. From a technical standpoint, these three channels 
currently operate independently. They have different management, point-of-sale 

https://aws.amazon.com/dms/
https://aws.amazon.com/redshift/partners/
https://aws.amazon.com/redshift/partners/


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 22 of 26  
 

systems, and accounting departments. No single system merges all the related 
datasets together to provide the CEO a 360-degree view across the entire 
business.  

Suppose also that the CEO wants to get a company-wide picture of these channels 
and be able to do ad hoc analytics such as the following: 

• What trends exist across channels? 
• Which geographic regions do better across channels? 
• How effective are the company’s advertisements and promotions? 
• What trends exist across each clothing line? 
• Which external forces have impacts on the company’s sales, for example 

the unemployment rate and weather conditions? 
• How do store attributes affect sales, for example tenure of employees and 

management, strip mall versus enclosed mall, location of merchandise in 
the store, promotion, endcaps, sales circulars, and in-store displays? 

An enterprise data warehouse solves this problem. It collects data from each of 
the three channels’ various systems and also from publicly available data such as 
weather and economic reports. Each data source sends data daily for 
consumption by the data warehouse. Because each data source might be 
structured differently, an extract, transform, and load (ETL) process is performed 
to reformat the data into a common structure. Then analytics can be performed 
across data from all sources simultaneously. To do this, we use the following data 
flow architecture: 

 

 Figure 4: Enterprise Data Warehouse Workflow  

 



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 23 of 26  
 

1. The first step in this process is getting the data from different sources into 
Amazon S3. Amazon S3 provides a highly durable, inexpensive, and scalable 
storage platform that can be written to in parallel from many different sources 
at a very low cost.  

2. Amazon EMR is used to transform and cleanse the data from the source 
format to go into the destination format. Amazon EMR has built-in 
integration with Amazon S3, which allows parallel threads of throughput from 
each node in your Amazon EMR cluster to and from Amazon S3.  

Typically, a data warehouse gets new data on a nightly basis. Because there is 
no need for analytics in the middle of the night, the only requirement around 
this transformation process is that it finishes by the morning when the CEO 
and other business users need to access reports and dashboards. Therefore, 
you can use the Amazon EC2 Spot market to further bring down the cost of 
ETL  here.17 A good spot strategy is to start bidding at a very low price at 
midnight, and continually increase your price over time until capacity is 
granted. As you get closer to the deadline, if spot bids have not succeeded, you 
can fall back to on-demand prices to ensure you still meet your completion 
time requirements. Each source might have a different transformation 
process on Amazon EMR, but with the AWS pay-as-you-go model, you can 
create a separate Amazon EMR cluster for each transformation and tune it to 
be exactly the right capacity to complete all data transformation jobs without 
contending with resources of the other jobs.  

3. Each transformation job loads formatted, cleaned data into Amazon S3. We 
use Amazon S3 here again because Amazon Redshift can load the data in 
parallel from Amazon S3, using multiple threads from each cluster node. 
Amazon S3 also provides a historical record and serves as the formatted 
source of truth between systems. Data on Amazon S3 can be consumed by 
other tools for analytics if additional requirements are introduced over time.  

4. Amazon Redshift loads, sorts, distributes, and compresses the data into its 
tables so that analytical queries can execute efficiently and in parallel. As the 
data size increases over time and the business expands, you can easily 
increase capacity by adding more nodes.  

5. To visualize the analytics, you can use Amazon QuickSight or one of the many 
partner visualization platforms that connect to Amazon Redshift using ODBC 
or JDBC. This point is where the CEO and her staff view reports, dashboards, 
and charts. Now executives can use the data for making better decisions about 

http://aws.amazon.com/ec2/spot/


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 24 of 26  
 

company resources, which ultimately increase earnings and value for 
shareholders.  

You can easily expand this flexible architecture when your business expands, 
opens new channels, launches additional customer-specific mobile applications, 
and brings in more data sources. It takes just a few clicks in the Amazon Redshift 
Management Console or a few API calls.  

Conclusion  
We are seeing a strategic shift in data warehousing as enterprises migrate their 
analytics databases and solutions from on-premises solutions to the cloud to take 
advantage of the cloud’s simplicity, performance, and cost-effectiveness. This 
whitepaper offers a comprehensive account of the current state of data 
warehousing on AWS. AWS provides a broad set of services and a strong partner 
ecosystem that enable you easily build and run enterprise data warehousing in 
the cloud. The result is a highly performant, cost-effective analytics architecture 
that is able to scale with your business on the AWS global infrastructure.  

Contributors 
The following individuals and organizations contributed to this document: 

• Babu Elumalai, solutions architect, Amazon Web Services 

• Greg Khairallah, principal BDM, Amazon Web Services 

• Pavan Pothukuchi, principal product manager, Amazon Web Services 

• Jim Gutenkauf, senior technical writer, Amazon Web Services 

• Melanie Henry, senior technical editor, Amazon Web Services 

• Chander Matrubhutam, product marketing, Amazon Web Services 

  



Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 25 of 26  
 

Further Reading 
For additional help, consult the following sources: 

• Apache Hadoop software library18 

• Amazon Redshift best practices19 

• Lambda architecture20 

https://hadoop.apache.org/
http://docs.aws.amazon.com/redshift/latest/dg/best-practices.html
https://en.wikipedia.org/wiki/Lambda_architecture


Amazon Web Services – Data Warehousing on AWS March 2016 

 

Page 26 of 26  
 

Notes 

1https://www.forrester.com/report/The+Forrester+Wave+Enterprise+Data+Wa
rehouse+Q4+2015/-/E-RES124041 

2 http://aws.amazon.com/streaming-data/ 

3 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-
availability-zones.html  

4 http://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html  

5 http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-
clusters.html#rs-about-clusters-and-nodes  

6 http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-
sql.html  

7 http://aws.amazon.com/redshift/partners/  

8 https://aws.amazon.com/vpc/ 

9 https://aws.amazon.com/cloudtrail/ 

10 http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-HSM.html  

11 https://aws.amazon.com/kms/  

12 http://aws.amazon.com/s3/pricing/  

13 http://aws.amazon.com/redshift/pricing/  

14 http://docs.aws.amazon.com/redshift/latest/dg/json-functions.html  

15 https://aws.amazon.com/dms/  

16 https://aws.amazon.com/redshift/partners/  

17 http://aws.amazon.com/ec2/spot/  

18 https://hadoop.apache.org/ 

19 http://docs.aws.amazon.com/redshift/latest/dg/best-practices.html 

20 https://en.wikipedia.org/wiki/Lambda_architecture 

 

 

 

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes
http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://aws.amazon.com/redshift/partners/
https://aws.amazon.com/vpc/
https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-HSM.html
https://aws.amazon.com/kms/
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/redshift/pricing/
http://docs.aws.amazon.com/redshift/latest/dg/json-functions.html
https://aws.amazon.com/dms/
https://aws.amazon.com/redshift/partners/
http://aws.amazon.com/ec2/spot/
https://hadoop.apache.org/
http://docs.aws.amazon.com/redshift/latest/dg/best-practices.html
https://en.wikipedia.org/wiki/Lambda_architecture

	Abstract
	Introduction
	Modern Analytics and Data Warehousing Architecture
	Analytics Architecture
	Data Collection
	Transactional Data
	Log Data
	Streaming Data
	IoT Data

	Data Processing
	Extract Transform Load (ETL)
	Extract Load Transform (ELT)
	Online Analytical Processing (OLAP)
	Real-Time Processing

	Data Storage
	Data Warehouse
	Data Mart

	Analysis and Visualization
	Analytics Pipeline with AWS Services


	Data Warehouse Technology Options
	Row-Oriented Databases
	Column-Oriented Databases
	Massively Parallel Processing Architectures

	Amazon Redshift Deep Dive
	Performance
	Durability and Availability
	Scalability and Elasticity
	Interfaces
	Security
	Cost Model
	Ideal Usage Patterns
	Anti-Patterns

	Migrating to Amazon Redshift
	One-Step Migration
	Two-Step Migration

	Tools for Database Migration
	Designing Data Warehousing Workflows
	Conclusion
	Contributors
	Further Reading
	Notes

