
Best Practices for Migrating from
RDBMS to Amazon DynamoDB

Leverage the Power of NoSQL for Suitable Workloads

Nathaniel Slater

March 2015

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 2 of 24

Contents
Contents 2	

Abstract 2	

Introduction 2	

Overview of Amazon DynamoDB 4	

Suitable Workloads 6	

Unsuitable Workloads 7	

Key Concepts 8	

Migrating to DynamoDB from RDBMS 13	

Planning Phase 13	

Data Analysis Phase 15	

Data Modeling Phase 17	

Testing Phase 21	

Data Migration Phase 22	

Conclusion 23	

Cheat Sheet 23	

Further Reading 23	

Abstract
Today, software architects and developers have an array of choices for data storage and
persistence. These include not only traditional relational database management
systems (RDBMS), but also NoSQL databases, such as Amazon DynamoDB. Certain
workloads will scale better and be more cost-effective to run using a NoSQL solution.
This paper will highlight the best practices for migrating these workloads from an
RDBMS to DynamoDB. We will discuss how NoSQL databases like DynamoDB differ
from a traditional RDBMS, and propose a framework for analysis, data modeling, and
migration of data from an RDBMS into DynamoDB.

Introduction
For decades, the RDBMS was the de facto choice for data storage and persistence.
Any data driven application, be it an e-commerce website or an expense reporting

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 3 of 24

system, was almost certain to use a relational database to retrieve and store the data
required by the application. The reasons for this are numerous and include the
following:

• RDBMS is a mature and stable technology.

• The query language, SQL, is feature-rich and versatile.

• The servers that run an RDBMS engine are typically some of the most stable and
powerful in the IT infrastructure.

• All major programming languages contain support for the drivers used to
communicate with an RDBMS, as well as a rich set of tools for simplifying the
development of database-driven applications.

These factors, and many others, have supported this incumbency of the RDBMS. For
architects and software developers, there simply wasn’t a reasonable alternative for data
storage and persistence – until now.

The growth of “internet scale” web applications, such as e-commerce and social media,
the explosion of connected devices like smart phones and tablets, and the rise of big
data have resulted in new workloads that traditional relational databases are not well
suited to handle. As a system designed for transaction processing, the fundamental
properties that all RDBMS must support are defined by the acronym ACID: Atomicity,
Consistency, Isolation, and Durability. Atomicity means “all or nothing” – a transaction
executes completely or not at all. Consistency means that the execution of a transaction
causes a valid state transition. Once the transaction has been committed, the state of
the resulting data must conform to the constraints imposed by the database schema.
Isolation requires that concurrent transactions execute separately from one another. The
isolation property guarantees that if concurrent transactions were executed in serial, the
end state of the data would be the same. Durability requires that the state of the data
once a transaction executes be preserved. In the event of power or system failure, the
database should be able to recover to the last known state.

These ACID properties are all desirable, but support for all four requires an architecture
that poses some challenges for today’s data intensive workloads. For example,
consistency requires a well-defined schema and that all data stored in a database
conform to that schema. This is great for ad-hoc queries and read heavy workloads.
For a workload consisting almost entirely of writes, such as the saving of a player’s state
in a gaming application, this enforcement of schema is expensive from a storage and
compute standpoint. The game developer benefits little by forcing this data into rows and
tables that relate to one another through a well-defined set of keys.

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 4 of 24

Consistency also requires locking some portion of the data until the transaction
modifying it completes and then making the change immediately visible. For a bank
transaction, which debits one account and credits another, this is required. This type of
transaction is called “strongly consistent.” For a social media application, on the other
hand, there really is no requirement that all users see an update to a data feed at
precisely the same time. In this latter case, the transaction is “eventually consistent.” It
is far more important that the social media application scale to handle potentially millions
of simultaneous users even if those users see changes to the data at different times.
Scaling an RDBMS to handle this level of concurrency while maintaining strong
consistency requires upgrading to more powerful (and often proprietary) hardware. This
is called “scaling up” or “vertical scaling” and it usually carries an extremely high cost.
The more cost effective way to scale a database to support this level of concurrency is to
add server instances running on commodity hardware. This is called “scaling out” or
“horizontal scaling” and it is typically far more cost effective than vertical scaling.

NoSQL databases, like Amazon DynamoDB, address the scaling and performance
challenges found with RDBMS. The term “NoSQL” simply means that the database
doesn’t follow the relational model espoused by E.F Codd in his 1970 paper A Relational
Model of Data for Large Shared Data Banks,1 which would become the basis for all
modern RDBMS. As a result, NoSQL databases vary much more widely in features and
functionality than a traditional RDBMS. There is no common query language analogous
to SQL, and query flexibility is generally replaced by high I/O performance and horizontal
scalability. NoSQL databases don’t enforce the notion of schema in the same way as an
RDBMS. Some may store semi-structured data, like JSON. Others may store related
values as column sets. Still others may simply store key/value pairs.

The net result is that NoSQL databases trade some of the query capabilities and ACID
properties of an RDBMS for a much more flexible data model that scales horizontally.
These characteristics make NoSQL databases an excellent choice in situations where
use of an RDBMS for non-relational workloads (like the aforementioned game state
example) is resulting in some combination of performance bottlenecks, operational
complexity, and rising costs. DynamoDB offers solutions to all these problems, and is
an excellent platform for migrating these workloads off of an RDBMS.

Overview of Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service running in the AWS
cloud. The complexity of running a massively scalable, distributed NoSQL database is
managed by the service itself, allowing software developers to focus on building
applications rather than managing infrastructure. NoSQL databases are designed for
scale, but their architectures are sophisticated, and there can be significant operational

1 http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 5 of 24

overhead in running a large NoSQL cluster. Instead of having to become experts in
advanced distributed computing concepts, the developer need only to learn
DynamoDB’s straightforward API using the SDK for the programming language of
choice.

In addition to being easy to use, DynamoDB is also cost-effective. With DynamoDB, you
pay for the storage you are consuming and the IO throughput you have provisioned. It is
designed to scale elastically. When the storage and throughput requirements of an
application are low, only a small amount of capacity needs to be provisioned in the
DynamoDB service. As the number of users of an application grows and the required IO
throughput increases, additional capacity can be provisioned on the fly. This enables an
application to seamlessly grow to support millions of users making thousands of
concurrent requests to the database every second.

Tables are the fundamental construct for organizing and storing data in DynamoDB. A
table consists of items. An item is composed of a primary key that uniquely identifies it,
and key/value pairs called attributes. While an item is similar to a row in an RDBMS
table, all the items in the same DynamoDB table need not share the same set of
attributes in the way that all rows in a relational table share the same columns. Figure 1
shows the structure of a DynamoDB table and the items it contains. There is no concept
of a column in a DynamoDB table. Each item in the table can be expressed as a tuple
containing an arbitrary number of elements, up to a maximum size of 400K. This data
model is well suited for storing data in the formats commonly used for object serialization
and messaging in distributed systems. As we will see in the next section, workloads that
involve this type of data are good candidates to migrate to DynamoDB.

Figure 1: DynamoDB Table Structure

table

items

Attributes	
(name/value	 pairs)

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 6 of 24

Tables and items are created, updated, and deleted through the DynamoDB API. There
is no concept of a standard DML language like there is in the relational database world.
Manipulation of data in DynamoDB is done programmatically through object-oriented
code. It is possible to query data in a DynamoDB table, but this too is done
programmatically through the API. Because there is no generic query language like
SQL, it’s important to understand your application’s data access patterns well in order to
make the most effective use of DynamoDB.

Suitable Workloads

DynamoDB is a NoSQL database, which means that it will perform best for workloads
involving non-relational data. Some of the more common use-cases for non-relational
workloads are:

• Ad-Tech

o Capturing browser cookie state

• Mobile applications

o Storing application data and session state

• Gaming applications

o Storing user preferences and application state

o Storing players’ game state

• Consumer “voting” applications

o Reality TV contests, Superbowl commercials

• Large Scale Websites

o Session state

o User data used for personalization

o Access control

• Application monitoring

o Storing application log and event data

o JSON data

• Internet of Things

o Sensor data and log ingestion

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 7 of 24

All of these use-cases benefit from some combination of the features that make NoSQL
databases so powerful. Ad-Tech applications typically require extremely low latency,
which is well suited for DynamoDB’s low single digit millisecond read and write
performance. Mobile applications and consumer voting applications often have millions
of users and need to handle thousands of requests per second. DynamoDB can scale
horizontally to meet this load. Finally, application monitoring solutions typically ingest
hundreds of thousands of data points per minute, and DynamoDB’s schema-less data
model, high IO performance and support for a native JSON data type is a great fit for
these types of applications.

Another important characteristic to consider when determining if a workload is suitable
for a NoSQL database like DynamoDB is whether it requires horizontal scaling. A
mobile application may have millions of users, but each installation of the application will
only read and write session data for a single user. This means the user session data in
the DynamoDB table can be distributed across multiple storage partitions. A read or
write of data for a given user will be confined to a single partition. This allows the
DynamoDB table to scale horizontally—as more users are added, more partitions are
created. As long as requests to read and write this data are uniformly distributed across
partitions, DynamoDB will be able to handle a very large amount of concurrent data
access. This type of horizontal scaling is difficult to achieve with an RDBMS without the
use of “sharding,” which can add significant complexity to an application’s data access
layer. When data in an RDBMS is “sharded,” it is split across different database
instances. This requires maintaining an index of the instances and the range of data
they contain. In order to read and write data, a client application needs to know which
shard contains the range of data to be read or written. Sharding also adds
administrative overhead and cost – instead of a single database instance, you are now
responsible for keeping several up and running.

It’s also important to evaluate the data consistency requirement of an application when
determining if a workload would be suitable for DynamoDB. There are actually two
consistency models supported in DynamoDB: strong and eventual consistency, with the
former requiring more provisioned IO than the latter. This flexibility allows the developer
to get the best possible performance from the database while being able to support the
consistency requirements of the application. If an application does not require “strongly
consistent” reads, meaning that updates made by one client do not need to be
immediately visible to others, then use of an RDBMS that will force strong consistency
can result in a tax on performance with no net benefit to the application. The reason is
that strong consistency usually involves having to lock some portion of the data, which
can cause performance bottlenecks.

Unsuitable Workloads

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 8 of 24

Not all workloads are suitable for a NoSQL database like DynamoDB. While in theory
one could implement a classic entity-relationship model using DynamoDB tables and
items, in practice, this would be extremely cumbersome to work with. Transactional
systems that require well-defined relationships between entities are still best
implemented using a traditional RDBMS. Some other unsuitable workloads include:

• Ad-hoc queries

• OLAP

• BLOB storage

Because DynamoDB does not support a standard query language like SQL, and
because there is no concept of a table join, constructing ad-hoc queries is not as
efficient as it is with RDBMS. Running such queries with DynamoDB is possible, but
requires the use of Amazon EMR and Hive. Likewise, OLAP applications are difficult to
deliver as well, because the dimensional data model used for analytical processing
requires joining fact tables to dimension tables. Finally, due to the size limitation of a
DynamoDB item, storing BLOBs is often not practical. DynamoDB does support a
binary data type, but this is not suited for storing large binary objects, like images or
documents. However, storing a pointer in the DynamoDB table to a large BLOB stored
in Amazon S3 easily supports this last use-case.

Key Concepts

As described in the previous section, DynamoDB organizes data into tables consisting of
items. Each item in a DynamoDB table can define an arbitrary set of attributes, but all
items in the table must define a primary key that uniquely identifies the item. This key
must contain an attribute known as the “hash key” and optionally an attribute called the
“range key.” Figure 2 shows the structure of a DynamoDB table defining both a hash
and range key.

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 9 of 24

Figure 2: DynamoDB Table with Hash and Range Keys

If an item can be uniquely identified by a single attribute value, then this attribute can
function as the hash key. In other cases, an item may be uniquely identified by two
values. In this case, the primary key will be defined as a composite of the hash key and
the range key. Figure 3 demonstrates this concept. An RDBMS table relating media
files with the codec used to transcode them can be modeled as a single table in
DynamoDB using a primary key consisting of a hash and range key. Note how the data
is de-normalized in the DynamoDB table. This is a common practice when migrating
data from an RDBMS to a NoSQL database, and will be discussed in more detail later in
this paper.

Hash	 key	

Range	 key	 	

(DynamoDB	 maintains	 a	 	
sorted	 index)

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 10 of 24

Figure 3: Example of Hash and Range Keys

The ideal hash key will contain a large number of distinct values uniformly distributed
across the items in the table. A user ID is a good example of an attribute that tends to
be uniformly distributed across items in a table. Attributes that would be modeled as
lookup values or enumerations in an RDBMS tend to make poor hash keys. The reason
is that certain values may occur much more frequently than others. These concepts are
shown in Figure 4. Notice how the counts of user_id are uniform whereas the counts of
status_code are not. If the status_code is used as a hash key in a DynamoDB table, the
value that occurs most frequently will end up being stored on the same partition, and this
means that most reads and writes will be hitting that single partition. This is called a “hot
partition” and this will negatively impact performance.

select user_id, count(*) as total from user_preferences group by
user_id

	 	 user_id total
8a9642f7-5155-4138-bb63-870cd45d7e19 1
31667c72-86c5-4afb-82a1-a988bfe34d49 1
693f8265-b0d2-40f1-add0-bbe2e8650c08 1

	 	

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 11 of 24

select status_code, count(*) as total from status_code sc, log l
where l.status_code_id = sc.status_code_id

	 	 status_code total
400 125000
403 250
500 10000
505 2

	 	 Figure 4: Uniform and Non-Uniform Distribution of Potential Key Values

Items can be fetched from a table using the primary key. Often, it is useful to be able to
fetch items using a different set of values than the hash and the range keys. DynamoDB
supports these operations through local and global secondary indexes. A local
secondary index uses the same hash key as defined on the table, but a different
attribute as the range key. Figure 5 shows how a local secondary index is defined on a
table. A global secondary index can use any scalar attribute as the hash or range key.
Fetching items using secondary indexes is done using the query interface defined in the
DynamoDB API.

Figure 5: A Local Secondary Index

Because there are limits to the number of local and global secondary indexes that can
exist per table, it is important to fully understand the data access requirements of any
application that uses DynamoDB for persistent storage. In addition, global secondary
indexes require that attribute values be projected into the index. What this means is that
when an index is created, a subset of attributes from the parent table need to be
selected for inclusion into the index. When an item is queried using a global secondary
index, the only attributes that will be populated in the returned item are those that have

Range	 key	 LSI	 key	

Hash	 key	

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 12 of 24

been projected into the index. Figure 6 demonstrates this concept. Note how the
original hash and range key attributes are automatically promoted in the global
secondary index. Reads on global secondary indexes are always eventually consistent,
whereas local secondary indexes support eventual or strong consistency. Finally, both
local and global secondary indexes use provisioned IO (discussed in detail below) for
reads and writes to the index. This means that each time an item is inserted or updated
in the main table, any secondary indexes will consume IO to update the index.

Figure 6: Create a global secondary index on a table

Whenever an item is read from or written to a DynamoDB table or index, the amount of
data required to perform the read or write operation is expressed as a “read unit” or
“write unit.” A read unit consists of 4K of data, and a write unit is 1K. This means that
fetching an item of 8K in size will consume 2 read units of data. Inserting the item would
consume 8 write units of data. The number of read and write units allowed per second
is known as the “provisioned IO” of the table. If your application requires that 1000 4K
items be written per second, then the provisioned write capacity of the table would need
to be a minimum of 4000 write units per second. When an insufficient amount of read or
write capacity is provisioned on a table, the DynamoDB service will “throttle” the read
and write operations. This can result in poor performance and in some cases throttling
exceptions in the client application. For this reason, it is important to understand an
application’s IO requirements when designing the tables. However, both read and write
capacity can be altered on an existing table, and if an application suddenly experiences
a spike in usage that results in throttling, the provisioned IO can be increased to handle
the new workload. Similarly, if load decreases for some reason, the provisioned IO can
be reduced. This ability to dynamically alter the IO characteristics of a table is a key
differentiator between DynamoDB and a traditional RDBMS, in which IO throughput is
going to be fixed based on the underlying hardware the database engine is running on.

Choose	 which	 attributes	
to	 promote	 (if	 any)

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 13 of 24

Migrating to DynamoDB from RDBMS
In the previous section, we discussed some of the key features of DynamoDB, as well as
some of the key differences between DynamoDB and a traditional RDBMS. In this
section, we will propose a strategy for migrating from an RDBMS to DynamoDB that
takes into account these key features and differences. Because database migrations
tend to be complex and risky, we advocate taking a phased, iterative approach. As is
the case with the adoption of any new technology, it’s also good to focus on the easiest
use cases first. It’s also important to remember, as we propose in this section, that
migration to DynamoDB doesn’t need to be an “all or nothing” process. For certain
migrations, it may be feasible to run the workload on both DynamoDB and the RDBMS
in parallel, and switch over to DynamoDB only when it’s clear that the migration has
succeeded and the application is working properly.

The following state diagram expresses our proposed migration strategy:

Figure 7: Migration Phases

It is important to note that this process is iterative. The outcome of certain states can
result in a return to a previous state. Oversights in the data analysis and data-modeling
phase may not become apparent until testing. In most cases, it will be necessary to
iterate over these phases multiple times before reaching the final data migration state.
Each phase will be discussed in detail in the sections that follow.

Planning Phase

The first part of the planning phase is to identify the goals of the data migration. These
often include (but are not limited to):

• Increasing application performance

• Lowering costs

• Reducing the load on an RDBMS

In many cases, the goals of a migration may be a combination of all of the above. Once
these goals have been defined, they can be used to inform the identification of the

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 14 of 24

RDMBS tables to migrate to DynamoDB. As we mentioned previously, tables being
used by workloads involving non-relational data make excellent choices for migration to
DynamoDB. Migration of such tables to DynamoDB can result in significantly improved
application performance, as well as lower costs and lower loads on the RDBMS. Some
good candidates for migration are:

• Entity-Attribute-Value tables

• Application session state tables

• User preference tables

• Logging tables

Once the tables have been identified, any characteristics of the source tables that may
make migration challenging should be documented. This information will be essential for
choosing a sound migration strategy. Let’s take a look at some of the more common
challenges that tend to impact the migration strategy:

Challenge Impact on Migration Strategy

Writes to the RDBMS source
table cannot be acquiesced
before or during the migration.

Synchronization of the data in the
target DynamoDB table with the
source will be difficult. Consider a
migration strategy that involves
writing data to both the source and
target tables in parallel.

The amount of data in the
source table is in excess of what
can reasonably be transferred
with the existing network
bandwidth.

Consider exporting the data from
the source table to removable disks
and using the AWS Import/Export
service to import the data to a
bucket in S3. Import this data into
DynamoDB directly from S3.

Alternatively, reduce the amount of
data that needs to be migrated by
exporting only those records that
were created after a recent point in
time. All data older than that point
will remain in the legacy table in the
RDBMS.

The data in the source table
needs to be transformed before
it can be imported into

Export the data from the source
table and transfer it to S3.
Consider using EMR to perform the

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 15 of 24

Challenge Impact on Migration Strategy

DynamoDB. data transformation, and import the
transformed data into DynamoDB.

The primary key structure of the
source table is not portable to
DynamoDB.

Identify column(s) that will make
suitable hash and range keys for
the imported items. Alternatively,
consider adding a surrogate key
(such as a UUID) to the source
table that will act as a suitable hash
key.

The data in the source table is
encrypted.

If the encryption is being managed
by the RDBMS, then the data will
need to be decrypted when
exported, and re-encrypted upon
import using an encryption scheme
enforced by the application, not the
underlying database engine. The
cryptographic keys will need to be
managed outside of DynamoDB.

Table 1: Challenges that Impact Migration Strategy

Finally, and perhaps most importantly, the backup and recovery process should be
defined and documented in the planning phase. If the migration strategy requires a full
cutover from the RDBMS to DynamoDB, defining a process for restoring functionality
using the RDBMS in the event the migration fails is essential. To mitigate risk, consider
running the workload on DynamoDB and the RDBMS in parallel for some length of time.
In this scenario, the legacy RDBMS-based application can be disabled only once the
workload has been sufficiently tested in production using DynamoDB.

Data Analysis Phase

The purpose of the data analysis phase is to understand the composition of the source
data, and to identify the data access patterns used by the application. This information
is required input into the data-modeling phase. It is also essential for understanding the
cost and performance of running a workload on DynamoDB. The analysis of the source
data should include:

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 16 of 24

• An estimate of the number of items to be imported into DynamoDB

• A distribution of the item sizes

• The multiplicity of values to be used as hash or range keys

DynamoDB pricing contains two main components – storage and provisioned IO. By
estimating the number of items that will be imported into a DynamoDB table, and the
approximate size of each item, the storage and the provisioned IO requirements for the
table can be calculated. Common SQL data types will map to one of 3 scalar types in
DynamoDB: string, number, and binary. The length of the number data type is variable,
and strings are encoded using binary UTF-8. Focus should be placed on the attributes
with the largest values when estimating item size, as provisioned IOPS are given in
integral 1K increments—there is no concept of a fractional IO in DynamoDB. If an item
is estimated to be 3.3K in size, it will require 4 1K write IO units and 1 4K read IO unit to
write and read a single item, respectively. Since the size will be rounded to the nearest
kilobyte, the exact size of the numeric types is unimportant. In most cases, even for
large numbers with high precision, the data will be stored using a small number of bytes.
Because each item in a table may contain a variable number of attributes, it is useful to
compute a distribution of item sizes and use a percentile value to estimate item size.
For example, one may choose an item size representing the 95th percentile and use this
for estimating the storage and provisioned IO costs. In the event that there are too many
rows in the source table to inspect individually, take samples of the source data and use
these for computing the item size distribution.

At a minimum, a table should have enough provisioned read and write units to read and
write a single item per second. For example, if 4 write units are required to write an item
with a size equal to or less than the 95th percentile, than the table should have a
minimum provisioned IO of 4 write units per second. Anything less than this and the
write of a single item will cause throttling and degrade performance. In practice, the
number of provisioned read and write units will be much larger than the required
minimum. An application using DynamoDB for data storage will typically need to issue
read and writes concurrently.

Correctly estimating the provisioned IO is key to both guaranteeing the required
application performance as well as understanding cost. Understanding the distribution
frequency of RDBMS column values that could be hash or range keys is essential for
obtaining maximum performance as well. Columns containing values that are not
uniformly distributed (i.e. some values occur in much larger numbers than others) are
not good hash or range keys because accessing items with keys occurring in high
frequency will hit the same DynamoDB partitions, and this has negative performance
implications.

The second purpose of the data analysis phase is to categorize the data access patterns
of the application. Because DynamoDB does not support a generic query language like
SQL, it is essential to document that ways in which data will be written to and read from

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 17 of 24

the tables. This information is critical for the data-modeling phase, in which the tables,
the key structure, and the indexes will be defined. Some common patterns for data
access are:

• Write Only – Items are written to a table and never read by the application.

• Fetches by distinct value – Items are fetched individually by a value that uniquely

identifies the item in the table.

• Queries across a range of values – This is seen frequently with temporal data.

As we will see in the next section, documentation of an application’s data access
patterns using categories such as those described above will drive much of the data-
modeling decisions.

Data Modeling Phase

In this phase, the tables, hash and range keys, and secondary indexes will be defined.
The data model produced in this phase must support the data access patterns described
in the data analysis phase. The first step in data modeling is to determine the hash and
range keys for a table. The primary key, whether consisting only of the hash key or a
composite of the hash and range key, must be unique for all items in the table. When
migrating data from an RDBMS, it is tempting to use the primary key of the source table
as the hash key. But in reality, this key is often semantically meaningless to the
application. For example, a User table in an RDBMS may define a numeric primary key,
but an application responsible for logging in a user will ask for an email address, not the
numeric user ID. In this case, the email address is the “natural key” and would be better
suited as the hash key in the DynamoDB table, as items can easily be fetched by their
hash key values. Modeling the hash key in this way is appropriate for data access
patterns that fetch items by distinct value. For other data access patterns, like “write
only”, using a randomly generated numeric ID will work well for the hash key. In this
case, the items will never be fetched from the table by the application, and as such, the
key will only be used to uniquely identify the items, not a means of fetching data.

RDBMS tables that contain a unique index on two key values are good candidates for
defining a primary key using both a hash key and a range key. Intersection tables used
to define many-to-many relationships in an RDBMS are typically modeled using a unique
index on the key values of both sides of the relationship. Because fetching data in a
many-to-many relationship requires a series of table joins, migrating such a table to
DynamoDB would also involve denormalizing the data (discussed in more detail below).
Date values are also often used as range keys. A table counting the number of times a
URL was visited on any given day could define the URL as the hash key and the date as
the range key. As with primary keys consisting solely of a hash key, fetching items with
a composite primary key requires the application to specify both the hash and range key

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 18 of 24

values. This needs to be considered when evaluating whether a surrogate key or a
natural key would make the better choice for the hash and or range key.

Because non-key attributes can be added to an item arbitrarily, the only attributes that
must be specified in a DynamoDB table definition are the hash key and (optionally) the
range key. However, if secondary indexes are going to be defined on any non-key
attributes, then these must be included in the table definition. Inclusion of non-key
attributes in the table definition does not impose any sort of schema on all the items in
the table. Aside from the primary key, each item in the table can have an arbitrary list of
attributes.

The support for SQL in an RDBMS means that records can be fetched using any of the
column values in the table. These queries may not always be efficient – if no index
exists on the column used to fetch the data, a full table scan may be required to locate
the matching rows. The query interface exposed by the DynamoDB API does not
support fetching items from a table in this way. It is possible to do a full table scan, but
this is inefficient and will consume substantial read units if the table is large. Instead,
items can be fetched from a DynamoDB table by the primary key of the table, or the key
of a local or global secondary index defined on the table. Because an index on a non-
key column of an RDBMS table suggests that the application commonly queries for data
on this value, these attributes make good candidates for local or global secondary
indexes in a DynamoDB table. There are limits to the number of secondary indexes
allowed on a DynamoDB table2, so it is important to choose define keys for these
indexes using attribute values that the application will use most frequently for fetching
data.

DynamoDB does not support the concept of a table join, so migrating data from an
RDBMS table will often require denormalizing the data. To those used to working with
an RDBMS, this will be a foreign and perhaps uncomfortable concept. Since the
workloads most suitable for migrating to DynamoDB from an RDMBS tend to involve
non-relational data, denormalization rarely poses the same issues as it would in a
relational data model. For example, if a relational database contains a User and a
UserAddress table, related through the UserID, one would combine the User attributes
with the Address attributes into a single DynamoDB table. In the relational database,
normalizing the UserAddress information allows for multiple addresses to be specified
for a given user. This is a requirement for a contact management or CRM system. But
in DynamoDB, a User table would likely serve a different purpose—perhaps keeping
track of a mobile application’s registered users. In this use-case, the multiplicity of Users
to Addresses is less important than scalability and fast retrieval of user records.

2 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 19 of 24

Data Modeling Example

Let’s walk through an example that combines the concepts described in this section and
the previous. This example will demonstrate how to use secondary indexes for efficient
data access, and how to estimate both item size and the required amount of provisioned
IO for a DynamoDB table. Figure 8 contains an ER diagram for a schema used to track
events when processing orders placed online through an e-commerce portal. Both the
RDBMS and DynamoDB table structures are shown.

Figure 8: RDBMS and DynamoDB schema for tracking events

The number of rows that will be migrated is around 10!, so computing the 95th percentile
of item size iteratively is not practical. Instead, we will perform simple random sampling
with replacement of 10! rows. This will give us adequate precision for the purposes of
estimating item size. To do this, we construct a SQL view that contains the fields that
will be inserted into the DynamoDB table. Our sampling routine then randomly selects
10! rows from this view and computes the size representing the 95th percentile.

This statistical sampling yields a 95th percentile size of 6.6 KB, most of which is
consumed by the “Data” attribute (which can be as large as 6KB in size). The minimum
number of write units required to write a single item is:

𝑐𝑒𝑖𝑙𝑖𝑛𝑔(6.6𝐾𝐵 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 1𝐾𝐵 𝑝𝑒𝑟 𝑤𝑟𝑖𝑡𝑒 𝑢𝑛𝑖𝑡) = 7 𝑤𝑟𝑖𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 20 of 24

The minimum number of read units required to read a single item is computed similarly:

𝑐𝑒𝑖𝑙𝑖𝑛𝑔(6.6𝐾𝐵 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 4𝐾𝑏 𝑝𝑒𝑟 𝑟𝑒𝑎𝑑 𝑢𝑛𝑖𝑡) = 2 𝑟𝑒𝑎𝑑 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚

This particular workload is write-heavy, and we need enough IO to write 1000 events for
500 orders per day. This is computed as follows:

500 𝑜𝑟𝑑𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 × 1000 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 = 5 ×10! 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

5 × 10!𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 × 86400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 = 5.78 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 5.78 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 × 7 𝑤𝑟𝑖𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 = 41 𝑤𝑟𝑖𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

Reads on the table only happen once per hour, when the previous hour’s data is
imported into an Amazon Elastic Map Reduce cluster for ETL. This operation uses a
query that selects items from a given date range (which is why the EventDate attribute is
both a range key and a global secondary index). The number of read units (which will be
provisioned on the global secondary index) required to retrieve the results of a query is
based on the size of the results returned by the query:

5.78 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 × 3600 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 = 20808 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟

20808 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 × 6.6𝐾𝐵 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚
1024𝐾𝐵

 = 134. 11𝑀𝐵 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟

The maximum amount of data returned in a single query operation is 1MB, so pagination
will be required. Each hourly read query will require reading 135 pages of data. For
strongly consistent reads, 256 read units are required to read a full page at a time (the
number is half as much for eventually consistent reads). So to support this particular
workload, 256 read units and 41 write units will be required. From a practical standpoint,
the write units would likely be expressed in an even number, like 48. We now have all
the data we need to estimate the DynamoDB cost for this workload:

1. Number of items (10!)

2. Item size (7KB)

3. Write units (48)

4. Read units (256)

These can be run through the Amazon Simple Monthly Calculator3 to derive a cost
estimate.

3 http://calculator.s3.amazonaws.com/index.html

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 21 of 24

Testing Phase

The testing phase is the most important part of the migration strategy. It is during this
phase that the entire migration process will be tested end-to-end. A comprehensive test
plan should minimally contain the following:

Test Category Purpose

Basic Acceptance Tests These tests should be automatically executed upon
completion of the data migration routines. Their primary
purpose is to verify whether the data migration was
successful. Some common outputs from these tests will
include:

• Total # items processed

• Total # items imported

• Total # items skipped

• Total # warnings

• Total # errors

If any of these totals reported by the tests deviate from
the expected values, then it means the migration was not
successful and the issues need to be resolved before
moving to the next step in the process or the next round
of testing.

Functional Tests These tests exercise the functionality of the application(s)
using DynamoDB for data storage. They will include a
combination of automated and manual tests. The primary
purpose of the functional tests is to identify problems in
the application caused by the migration of the RDBMS
data to DynamoDB. It is during this round of testing that
gaps in the data model are often revealed.

Non-Functional Tests These tests will assess the non-functional characteristics
of the application, such as performance under varying
levels of load, and resiliency to failure of any portion of

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 22 of 24

Test Category Purpose

the application stack. These tests can also include
boundary or edge cases that are low-probability but could
negatively impact the application (for example, if a large
number of clients try to update the same record at the
exact same time). The backup and recovery process
defined in the planning phase should also be included in
non-functional testing.

User Acceptance Tests These tests should be executed by the end-users of the
application(s) once the final data migration has
completed. The purpose of these tests is for the end-
users to decide if the application is sufficiently usable to
meet it’s primary function in the organization.

Table 2: Data Migration Test Plan

Because the migration strategy is iterative, these tests will be executed numerous times.
For maximum efficiency, consider testing the data migration routines using a sampling
from the production data if the total amount of data to migrate is large. The outcome of
the testing phase will often require revisiting a previous phase in the process. The
overall migration strategy will become more refined through each iteration through the
process, and once all the tests have executed successfully, it will be a good indication
that it is time for the next, and final phase: data migration.

Data Migration Phase

In the data migration phase, the full set of production data from the source RDBMS
tables will be migrated into DynamoDB. By the time this phase is reached, the end-to-
end data migration process will have been tested and vetted thoroughly. All the steps of
the process will have been carefully documented, so running it on the production data
set should be as simple as following a procedure that has been executed numerous
times before. In preparation for this final phase, a notification should be sent to the
application users alerting them that the application will be undergoing maintenance and
(if required) downtime.

Once the data migration has completed, the user acceptance tests defined in the
previous phase should be executed one final time to ensure that the application is in a
usable state. In the event that the migration fails for any reason, the backup and
recovery procedure—which will also have been thoroughly tested and vetted at this
point—can be executed. When the system is back to a stable state, a root cause
analysis of the failure should be conducted and the data migration rescheduled once the

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 23 of 24

root cause has been resolved. If all goes well, the application should be closely
monitored over the next several days until there is sufficient data indicating that the
application is functioning normally.

Conclusion
Leveraging DynamoDB for suitable workloads can result in lower costs, a reduction in
operational overhead, and an increase in performance, availability, and reliability when
compared to a traditional RDBMS. In this paper, we proposed a strategy for identifying
and migrating suitable workloads from an RDBMS to DynamoDB. While implementing
such a strategy will require careful planning and engineering effort, we are confident that
the ROI of migrating to a fully managed NoSQL solution like DynamoDB will greatly
exceed the upfront cost associated with the effort.

Cheat Sheet
The following is a “cheat sheet” summarizing some of the key concepts discussed in this
paper, and the sections where those concepts are detailed:

Concept Section

Determining suitable workloads Suitable Workloads

Choosing the right key structure Key Concepts

Table indexing Data Modeling Phase

Provisioning read and write throughput Data Modeling Example

Choosing a migration strategy Planning Phase

Further Reading
For additional help, please consult the following sources:

Amazon Web Services – Best Practices for Migrating from RDBMS to DynamoDB August 2014

Page 24 of 24

• DynamoDB Developer Guide4

• DynamoDB Website5

4 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
5 http://aws.amazon.com/dynamodb

