
Optimizing Multiplayer Game
Server Performance on AWS

April 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Amazon EC2 Instance Type Considerations 1

Amazon EC2 Compute Optimized Instance Capabilities 2

Alternative Compute Instance Options 3

Performance Optimization 3

Networking 4

CPU 13

Memory 27

Disk 34

Benchmarking and Testing 34

Benchmarking 34

CPU Performance Analysis 36

Visual CPU Profiling 36

Conclusion 39

Contributors 40

Abstract
This whitepaper discusses the exciting use case of running multiplayer game

servers in the AWS Cloud and the optimizations that you can make to achieve

the highest level of performance. In this whitepaper, we provide you the

information you need to take advantage of the Amazon Elastic Compute Cloud

(EC2) family of instances to get the peak performance required to successfully

run a multiplayer game server on Linux in AWS.

This paper is intended for technical audiences that have experience tuning and

optimizing Linux-based servers.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 1

Introduction
Amazon Web Services (AWS) provides benefits for every conceivable gaming

workload, including PC/console single and multiplayer games as well as mobile-

based, social-based, and web-based games. Running PC/console multiplayer

game servers in the AWS Cloud is particularly illustrative of the success and cost

reduction that you can achieve with the cloud model over traditional on-

premises data centers or colocations.

Multiplayer game servers are based on a client/server network architecture, in

which the game server holds the authoritative source of events for all clients

(players). Typically, after players send their actions to the server, the server runs

a simulation of the game world using all of these actions and sends the results

back to each client.

With Amazon Elastic Compute Cloud (Amazon EC2) you can create and run a

virtual server (called an instance) to host your client/server multiplayer game.1

Amazon EC2 provides resizable compute capacity and supports Single Root I/O

Virtualization (SR-IOV), high frequency processors. For the compute family of

instances Amazon EC2 will support up to 72 vCPUs (36 physical cores) when we

launch the C5 compute-optimized instance type in 2017.

This whitepaper discusses how to optimize your Amazon EC2 Linux multiplayer

game server to achieve the best performance while maintaining scalability,

elasticity, and global reach. We start with a brief description of the performance

capabilities of the compute optimized instance family and then dive into

optimization techniques for networking, CPU, memory, and disk. Finally, we

briefly cover benchmarking and testing.

Amazon EC2 Instance Type

Considerations
To get the maximum performance out of an Amazon EC2 instance, it is

important to look at the compute options available. In this section, we discuss

the capabilities of the Amazon EC2 compute optimized instance family that

make it ideal for multiplayer game servers.

https://aws.amazon.com/ec2/

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 2

Amazon EC2 Compute Optimized Instance

Capabilities

The current generation C4 compute optimized instance family is ideal for

running your multiplayer game server.2 (The C5 instance type, announced at

AWS re:Invent 2016, will be the recommended game server platform when it

launches.) C4 instances run on hardware using the Intel Xeon E5-2666 v3

(Haswell) processor. This is a custom processor designed specifically for AWS.

The following table lists the capabilities of each instance size in the C4 family.

Instance

Size

vCPU

Count

RAM

(GiB)

Network

Performance

EBS Optimized: Max

Bandwidth (Mbps)

c4.large 2 3.75 Moderate 500

c4.xlarge 4 7.5 Moderate 750

c4.2xlarge 8 15 High 1000

c4.4xlarge 16 30 High 2000

c4.8xlarge 36 60 10 Gbps 4000

As the table shows, the c4.8xlarge instance provides 36 vCPUs. Since each vCPU

is a hyperthread of a full physical CPU core, you get a total of 18 physical cores

with this instance size. Each core runs at a base of 2.9 GHz but can run at 3.2

GHz all core turbo (meaning that each core can run simultaneously at 3.2 GHz,

even if all the cores are in use) and at a max turbo of 3.5 GHz (possible when

only a few cores are in use).

We recommend the c4.4xlarge and c4.8xlarge instance sizes for running your

game server because they get exclusive access to one or both of the two

underlying processor sockets, respectively. Exclusive access guarantees that you

get a 3.2 GHz all core turbo for most workloads. The primary exception is for

applications running Advanced Vector Extension (AVX) workloads.3 If you run

AVX workloads on the c4.8xlarge instance, the best you can expect in most

cases is 3.1 GHz when running three cores or less. It is important to test your

specific workload to verify the performance you can achieve.

The following table shows a comparison between the c4.4xlarge instances and

the c4.8xlarge instances for AVX and non-AVX workloads.

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 3

C4 Instance Size

and Workload

Max Core Turbo

Frequency (GHz)

All Core Turbo

Frequency (GHz)

Base Frequency

(GHz)

C4.8xlarge – non AVX

workload

3.5 (when fewer than

about 4 vCPUs are

active)

3.2 2.9

C4.8xlarge – AVX

workload

≤ 3.3 ≤ 3.1 depending on the

workload and number of

active cores

2.5

C4.4xlarge – non AVX

workload

3.2 3.2 2.9

C4.4xlarge – AVX

workload

3.2 ≤ 3.1 depending on the

workload and number of

active cores

2.5

Alternative Compute Instance Options

There are situations, for example, for some role-playing games (RPGs) and

multiplayer online battle arenas (MOBAs), where your game server can be more

memory bound than compute bound. In these cases, the M4 instance type may

be a better option than the C4 instance type since it has a higher memory to

vCPU ratio. The compute optimized instance family has a higher vCPU to

memory ratio than other instance families while the M4 instance has a higher

memory to vCPU ratio. M4 instances use a Haswell processor for the

m4.10xlarge and m4.16xlarge sizes; smaller sizes use either a Broadwell or a

Haswell processor. The M4 instance type is similar to the C4 instance type in

networking performance and has plenty of bandwidth for game servers.

Performance Optimization
There are many performance options for Linux servers, with networking and

CPU being the two most important. This section documents the performance

options that AWS gaming customers have found the most valuable and/or the

options that are the most appropriate for running game servers on virtual

machines (VMs).

The performance options are categorized into four sections: networking, CPU,

memory, and disk. This is not an all-inclusive list of performance tuning

options, and not all of the options will be appropriate for every gaming

workload. We strongly recommend testing these settings before implementing

them in production.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 4

This section assumes that you are running your instance in a VPC created with

Amazon Virtual Private Cloud (VPC)4 that uses an Amazon Machine Image

(AMI)5 with a hardware virtual machine (HVM). All of the instructions and

settings that follow have been verified on the Amazon Linux AMI 2016.09 using

the 4.4.23-31.54 kernel, but they should work with all future releases of Amazon

Linux.

Networking

Networking is one of the most important areas for performance tuning.

Multiplayer client/server games are extremely sensitive to latency and dropped

packets. A list of performance tuning options for networking is provided in the

following table.

Performance Tuning

Option

Summary Notes Links or Commands

Deploying game

servers close to

players

Proximity to players

is the best way to

reduce latency

AWS has

numerous Regions

across the globe.

List of AWS Regions

Enhanced networking Improved

networking

performance

Nearly every

workload should

benefit. No

downside.

Linux/Windows

UDP

Receive buffers Helps prevent

dropped packets

Useful when the

latency between

client and server is

high. Little

downside but

should be tested.

Add the following to

/etc/sysctl.conf:

net.core.rmem_default =

New_Value

net.core.rmem_max =

New_Value

(Recommend start by doubling

the current values set for your

system)

Busy polling Reduce latency of

incoming packet

processing

Can increase CPU

utilization

Add the following to

/etc/sysctl.conf:

net.core.busy_read =

New_Value

net.core.busy_poll =

New_Value

(Recommend testing a value of

50 first then 100)

https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/about-aws/global-infrastructure/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking-windows.html

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 5

Performance Tuning

Option

Summary Notes Links or Commands

Memory Helps prevent

dropped packets

 Add the following to

/etc/sysctl.conf:

net.ipv4.udp_mem =

New_Value New_Value

New_Value

(Recommend doubling the

current values set for your

system)

Backlog Helps prevent

dropped packets

 Add the following to

/etc/sysctl.conf:

net.core.netdev_max_backlog=

New_Value

(Recommend doubling the

current values set for your

system)

Transmit and receive

queues

Possible

performance boost

by disabling

hyperthreading

The following recommendations cover how to reduce latency, avoid dropped

packets, and obtain optimal networking performance for your game servers.

Deploying Game Servers Close to Players

Deploying your game servers as close as possible to your players is a key

element for good player experience. AWS has numerous Regions across the

world, which allows you to deploy your game servers close to your players. For

the most current list of AWS Regions and Availability Zones, see

https://aws.amazon.com/about-aws/global-infrastructure/.6

You can package your instance AMI and deploy it to as many Regions as you

choose. Customers often deploy AAA PC/console games in almost every

available Region. As you determine where your players are globally you can

decide where to deploy your game servers to provide the best experience

possible.

Enhanced Networking

Enhanced networking is another performance tuning option.7 Enhanced

networking uses single root I/O virtualization (SR-IOV) and exposes the

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/ec2/faqs/#Enhanced_Networking
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 6

network card directly to the instance without needing to go through the

hypervisor.8 This allows for generally higher I/O performance, lower CPU

utilization, higher packets per second (PPS) performance, lower inter-instance

latencies, and very low network jitter. The performance improvement provided

by enhanced networking can make a big difference for a multiplayer game

server.

Enhanced networking is only available for instances running in a VPC using an

HVM AMI and only for certain instance types, such as the C4, R4, R3, I3, I2,

M4, and D2. These instance types use the Intel 82599 Virtual Function Interface

(which uses the “ixgbevf” Linux driver.) In addition, the X1, R4, P2, and

M4.16xlarge (and soon the C5) instances support enhanced networking using

the Elastic Network Adapter (ENA).

The Amazon Linux AMI includes these necessary drivers by default. Follow the

Linux or Windows instructions to install the driver for other AMIs.9, 10 It is

important to have the latest ixgbevf driver, which can be downloaded from

Intel’s website.11 The minimum recommended version for the ixgbevf driver is

version 2.14.2.

To check the driver version running on your instance run the following

command:

ethtool -i eth0

User Datagram Protocol (UDP)

Most first-person shooter games and other similar client/server multiplayer

games use UDP as the protocol for communication between clients and game

servers. The following sections lay out four UDP optimizations that can improve

performance and reduce the occurrence of dropped packets.

Receive Buffers

The first UDP optimization is to increase the default value for the receive

buffers. Having too little UDP buffer space can cause the operating system

kernel to discard UDP packets, resulting in packet loss. Increasing this buffer

space can be helpful in situations where the latency between the client and

server is high. The default value for both rmem_default and rmem_max on

Amazon Linux is 212992.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking-windows.html
https://downloadcenter.intel.com/download/18700/Network-Adapter-Virtual-Function-Driver-for-10-Gigabit-Network-Connections

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 7

To see the current default values for your system run the following commands:

cat /proc/sys/net/core/rmem_default

cat /proc/sys/net/core/rmem_max

A common approach to allocating the right amount of buffer space is to first

double both values and then test the performance difference this makes for your

game server. Depending on the results, you may need to decrease or increase

these values. Note that the rmem_default value should not exceed the

rmem_max value.

To configure these parameters to persist across reboots set the new

rmem_default and rmem_max values in the /etc/sysctl.conf file:

net.core.rmem_default = New_Value

net.core.rmem_max = New_Value

Whenever making changes to the sysctl.conf file you should run the following

command to refresh the configuration:

sudo sysctl -p

Busy Polling

A second UDP optimization is busy polling, which can help reduce network

receive path latency by having the kernel poll for incoming packets. This will

increase CPU utilization but can reduce delays in packet processing.

On most Linux distributions, including Amazon Linux, busy polling is disabled

by default. We recommend that you start with a value of 50 for both busy_read

and busy_poll and then test what difference this makes for your game server.

Busy_read is the number of microseconds to wait for packets on the device

queue for socket reads, while busy_poll is the number of microseconds to wait

for packets on the device queue for socket poll and selects. Depending on the

results, you may need to increase the value to 100.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 8

To configure these parameters to persist across reboots add the new busy_read

and busy_poll values to the /etc/sysctl.conf file:

net.core.busy_read = New_Value

net.core.busy_poll = New_Value

Again, run the following command to refresh the configuration after making

changes to the sysctl.conf file:

sudo sysctl -p

UDP Buffers

A third UDP optimization is to change how much memory the UDP buffers use

for queueing. The udp_mem option configures the number of pages the UDP

sockets can use for queueing. This can help reduce dropped packets when the

network adaptor is very busy.

This setting is a vector of three values that are measured in units of pages (4096

bytes). The first value, called min, is the minimum threshold before UDP

moderates memory usage. The second value, called pressure, is the memory

threshold after which UDP will moderate the memory consumption. The final

value, called max, is the maximum number of pages available for queueing by

all UDP sockets. By default, Amazon Linux on the c4.8xlarge instance uses a

vector of 1445727 1927636 2891454, while the c4.4xlarge instance uses a

vector of 720660 960882 1441320.

To see the current default values run the following command:

cat /proc/sys/net/ipv4/udp_mem

A good first step when experimenting with new values for this setting is to

double the values and then test what difference this makes for your game server.

It is also good to adjust the values so they are multiples of the page size (4096

bytes). To configure these parameters to persist across reboots add the new

UDP buffer values to the /etc/sysctl.conf file:

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 9

net.ipv4.udp_mem = New_Value New_Value New_Value

Run the following command to refresh the configuration after making changes

to the sysctl.conf file:

sudo sysctl -p

Backlog

The final UDP optimization that can help reduce the chance of dropped packets

is to increase the backlog value. This optimization will increase the queue size

for incoming packets for situations where the interface is receiving packets at a

faster rate than the kernel can handle. On Amazon Linux the default value of the

queue size is 1000.

To check the default value run the following command:

cat /proc/sys/net/core/netdev_max_backlog

We recommend that you double the default value for your system and then test

what difference this makes for your game server. To configure these parameters

to persist across reboots add the new backlog value to the /etc/sysctl.conf file:

net.core.netdev_max_backlog = New_Value

Run the following command to refresh the configuration after making changes

to the sysctl.conf file:

sudo sysctl -p

Transmit and Receive Queues

Many game servers put more pressure on the network through the number of

packets per second being processed rather than on the overall bandwidth used.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 10

In addition, I/O wait can become a bottleneck if one of the vCPUs gets a large

volume of interrupt requests (IRQs).

Receive Side Scaling (RSS) is a common method used to address these

networking performance issues.12 RSS is a hardware option that can provide

multiple receive queues on a network interface controller (NIC). For Amazon

Elastic Compute Cloud (Amazon EC2), the NIC is called an Elastic Network

Interface (ENI).13 RSS is enabled on the C4 instance family but changes to the

configuration of RSS are not allowed. The C4 instance family provides two

receive queues for all of the instance sizes when using Linux. Each of these

queues has a separate IRQ number and is mapped to a separate vCPU.

Running the command $ ls -1 /sys/class/net/eth0/queues on a

c4.8xlarge instance displays the following queues:

$ ls -l /sys/class/net/eth0/queues

total 0

drwxr-xr-x 2 root 0 Aug 18 21:00 rx-0

drwxr-xr-x 2 root root 0 Aug 18 21:00 rx-1

drwxr-xr-x 3 root root 0 Aug 18 21:00 tx-0

drwxr-xr-x 3 root root 0 Aug 18 21:00 tx-1

To find out which IRQs are being used by the queues and how the CPU is

handling those interrupts run the following command:

cat /proc/interrupts

Alternatively, run this command to output the IRQs for the queues:

echo eth0; grep eth0-TxRx /proc/interrupts | awk '{printf "

%s\n", $1}'

What follows is the reduced output when viewing the full contents of

/proc/interrupts on a c4.8xlarge instance showing just the eth0 interrupts. The

first column is the IRQ for each queue. The last two columns are the process

https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 11

information. In this case, you can see the TxRx-0 and TxRx-1 are using IRQs

267 and 268, respectively.

 CPU0 CPU23 CPU33

267 634 2789 0 xen-pirq-msi-x eth0-TxRx-0

268 600 0 2587 xen-pirq-msi-x eth0-TxRx-1

To verify which vCPU the queue is sending interrupts to run the following

commands (replacing IRQ_Number with the IRQ for each TxRx queue):

$ cat /proc/irq/267/smp_affinity

00000000,00000000,00000000,00800000

$ cat /proc/irq/268/smp_affinity

00000000,00000000,00000002,00000000

The previous output is from a c4.8xlarge instance. It is in hex and needs to be

converted to binary to find the vCPU number. For example, the hex value

00800000 converted to binary is 00000000100000000000000000000000.

Counting from the right and starting at 0 you get to vCPU 23. The other queue is

using vCPU 33.

Because vCPUs 23 and 33 are on different processor sockets, they are physically

on different non-uniform memory access (NUMA) nodes. One issue here is that

each vCPU is, by default, a hyperthread (but in this particular case they are each

hyperthreads of the same core), so a performance boost could be seen by tying

each queue to a physical core.

The IRQs for the two queues on Amazon Linux on the C4 instance family are

already pinned to particular vCPUs that are on separate NUMA nodes on the

c4.8xlarge instance. This default state may be ideal for your game servers.

However, it is important to verify on your distribution of Linux that there are

two queues that are configured for IRQs and vCPUs (which are on separate

NUMA nodes). On C4 instance sizes other than the c4.8xlarge, NUMA is not an

issue since the other sizes only have one NUMA node.

One option that could improve performance for RSS is to disable

hyperthreading. If you disable hyperthreading on Amazon Linux, then, by

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 12

default, the queues will be pinned to physical cores (which will also be on

separate NUMA nodes on the c4.8xlarge instance). See the Hyperthreading

section in this whitepaper for more information on how to disable

hyperthreading.

If you don’t pin game server processes to cores, you could prevent the Linux

scheduler from assigning game server processes to the vCPUs (or cores) for the

RSS queues. To do this you need to configure two options.

First, in your text editor, edit the /boot/grub/grub.conf file. For the first entry

that begins with “kernel” (there may be more than one kernel entry, you only

need to edit the first one), add isolcpus=NUMBER at the end of the line, where

NUMBER is the number of the vCPUs for the RSS queues. For example, if the

queues are using vCPUs 3 and 4, replace NUMBER with “3-4”.

created by imagebuilder

default=0

timeout=1

hiddenmenu

title Amazon Linux 2014.09 (3.14.26-24.46.amzn1.x86_64)

root (hd0,0)

kernel /boot/vmlinuz-3.14.26-24.46.amzn1.x86_64 root=LABEL=/

console=ttyS0 isolcpus=NUMBER

initrd /boot/initramfs-3.14.26-24.46.amzn1.x86_64.img

Using isolcpus will prevent the scheduler from running the game server

processes on the vCPUs you specify. The problem is that it will also prevent

irqbalance from assigning IRQs to these vCPUs. To fix this you need to use the

IRQBALANCE_BANNED_CPUS option to ban all of the remaining CPUs.

Version 1.1.10 or later of irqbalance on current versions of Amazon Linux

prefers the IRQBALANCE_BANNED_CPUS option and will assign IRQs to the

vCPUs specified in isolcpus in order to honor the vCPUs specified by

IRQBALANCE_BANNED_CPUS. Therefore, for example, if you isolated vCPUs

3-4 using isolcpus, you would then need to ban the other vCPUs on the instance

using IRQBALANCE_BANNED_CPUS.

To do this you need to use the IRQBALANCE_BANNED_CPUS option in the

/etc/sysconfig/irqbalance file. This is a 64-bit hexadecimal bit mask. The best

way to find the value would be to write out the vCPUs you want to include in

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 13

this value in decimal format and then convert to hex. So in the earlier example

where we used isolcpus to exclude vCPUs 3-4, we would then want to use

IRQBALANCE_BANNED_CPUS to exclude vCPUs 1, 2, and 5-14 (assuming we

are on a c4.4xlarge instance), which would be 1111111111100111 in decimal and

finally FFE7n when converted to hex. Add the following line to the

/etc/sysconfig/irqbalance file using your favorite editor:

IRQBALANCE_BANNED_CPUS=”FFE7n”

The result is that vCPUs 3 and 4 will not be used by the game server processes

but will be used by the RSS queues and a few other IRQs used by the system.

Like everything else, all of these values should be tested with your game server

to determine what the performance difference is.

Bandwidth

The C4 instance family offers plenty of bandwidth for a multiplayer game

server. The c4.4xlarge instance provides high network performance, and up to

10 Gbps is achievable between two c4.8xlarge instances (or other large instance

sizes like the m4.10xlarge) that are using enhanced networking and are in the

same placement group.14 The bandwidth provided by both the c4.4xlarge and

c4.8xlarge instances has been more than sufficient for every game server use

case we have seen.

You can easily determine the networking performance for your workload on a

C4 instance compared to other instances in the same Availability Zone, other

instances in another Availability Zone, and most importantly, to and from the

Internet. Iperf is probably one of the best tools for determining network

performance on Linux,15 while Nttcp is a good tool for Windows.16 The previous

links also provide instructions on doing network performance testing. Outside

of the placement group, you need to use a tool like Iperf or Nttcp to determine

the exact network performance achievable for your game server.

CPU

CPU is one of the two most important performance-tuning areas for game

servers.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-windows-ec2/

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 14

Performance

Tuning Option

Summary Notes Links or Commands

Clock Source Using tsc as the

clock source can

improve

performance for

game servers

Xen is the default

clocksource on

Amazon Linux.

Add the following entry to the kernel

line of the /boot/grub/grub.conf file:

tsc=reliable clocksource=tsc

C-State and

P-State

C-state and P-state

options are

optimized by

default, except for

the C-state on the

c4.8xlarge. Setting

C-state to C1 on the

c4.8xlarge should

improve CPU

performance.

Can only be

changed on the

c4.8xlarge.

Downside is that

3.5 GHz max

turbo will not be

available.

However, the 3.2

GHz all core turbo

will be available.

Add the following entry to the kernel

line of the /boot/grub/grub.conf file:

intel_idle.max_cstate=1

Irqbalance When not pinning

game servers to

vCPUs irqbalance

can help improve

CPU performance.

Installed and

running by default

on Amazon Linux.

Check your

distribution to see

if this is running.

NA

Hyperthreading Each vCPU is a

hyperthread of a

core. Performance

may improve by

disablinghyperthrea

ding.

 Add the following entry to the kernel

line of the /boot/grub/grub.conf file:

Maxcpus=X (where X is the number of

actual cores in the instance)

CPU Pinning Pinning the game

server process to

vCPU can provide

benefits in some

situations.

CPU pinning does

not appear to be

a common

practice among

game companies.

"numactl --physcpubind

$phys_cpu_core --membind

$associated_numa_node

./game_server_executable"

Linux Scheduler There are three

particular Linux

scheduler

configuration

options that can

help with game

servers.

 sudo sysctl -w

'kernel.sched_min_granularity_ns=New

_Value'

(Recommend start by doubling the

current value set for your system)

sudo sysctl -w

'kernel.sched_wakeup_granularity_ns=

New_Value'

sudo sysctril –w

(Recommend start by halving the

current value set for your system)

'kernel.sched_migration_cost_ns=New

_Value'

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 15

Performance

Tuning Option

Summary Notes Links or Commands

(Recommend start by doubling the

current value set for your system)

Clock Source

A clock source gives Linux access to a timeline so that a process can determine

where it is in time. Time is extremely important when it comes to multiplayer

game servers given that the server is the authoritative source of events and yet

each client has its own view of time and the flow of events. The kernel.org web

site has a good introduction to clock sources.17

To find the current clock source:

$cat

/sys/devices/system/clocksource/clocksource0/current_clocksource

By default, on a C4 instance running Amazon Linux this is set to xen.

To view the available clock sources:

cat

/sys/devices/system/clocksource/clocksource0/available_clocksource

This list should show xen, tsc, hpet, and acpi_pm by default on a C4 instance

running Amazon Linux. For most game servers the best clock source option is

TSC (Time Stamp Counter), which is a 64-bit register on each processor. In

most cases, TSC is the fastest, highest-precision measurement of the passage of

time and is monotonic and invariant. See this xen.org article for a good

discussion about TSC when it comes to XEN virtualization.18 Synchronization is

provided across all processors in all power states so TSC is considered

synchronized and invariant. This means that TSC will increment at a constant

rate.

TSC can be accessed using the rdtsc or rdtscp instructions. Rdtscp is often a

better option than rdtsc since rdtscp takes into account that Intel processors

https://www.kernel.org/doc/Documentation/timers/timekeeping.txt
https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 16

sometimes use out-of-order execution, which can affect getting accurate time

readings.

The recommendation for game servers is to change the clock source to TSC.

However, you should test this thoroughly for your workloads. To set the clock

source to TSC, edit the /boot/grub/grub.conf file with your editor of choice. For

the first entry that begins with “kernel” (note that there may be more than one

kernel entry, you only need to edit the first one), add tsc=reliable

clocksource=tsc at the end of the line.

created by imagebuilder

default=0

timeout=1

hiddenmenu

title Amazon Linux 2014.09 (3.14.26-24.46.amzn1.x86_64)

root (hd0,0)

kernel /boot/vmlinuz-3.14.26-24.46.amzn1.x86_64 root=LABEL=/

console=ttyS0 tsc=reliable clocksource=tsc

initrd /boot/initramfs-3.14.26-24.46.amzn1.x86_64.img

Processor State Control (C-States and P-States)

Processor State Controls can only be modified on the c4.8xlarge instance (also

configurable on the d2.8xlarge, m4.10xlarge, and x1.32xlarge instances).19 C-

states control the sleep levels that a core can enter when it is idle, while P-states

control the desired performance (in CPU frequency) for a core. C-states are idle

power saving states, while P-states are execution power saving states.

C-states start at C0, which is the shallowest state where the core is actually

executing functions, and go to C6, which is the deepest state where the core is

essentially powered off. The default C-state for the c4.8xlarge instance is C6. For

all of the other instance sizes in the C4 family the default is C1. This is the

reason that the 3.5 GHz max turbo frequency is only available on the c4.8xlarge

instance. Some vCPUs need to be in a deeper sleep state than C1 in order for the

cores to hit 3.5 GHz.

An option on the c4.8xlarge instance is to set C1 as the deepest C-state to

prevent the cores from going to sleep. That reduces the processor reaction

latency but also prevents the cores from hitting the 3.5 GHz Turbo Boost if only

a few cores are active; it would still allow the 3.2 GHz all core turbo. Therefore,

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 17

you would be trading the possibility of achieving 3.5 GHz when a few cores are

running for the reduced reaction latency. Your results will depend on your

testing and application workloads. If 3.2 GHz all core turbo is acceptable and

you plan to utilize all or most of the cores on the C4.8xlarge instance, then

change the C-state to C1.

P-states start at P0, where Turbo mode is enabled, and go to P15, which

represents the lowest possible frequency. P0 provides the maximum baseline

frequency. The default P-state for all C4 instance sizes is P0. There is really no

reason for changing this for gaming workloads. Turbo Boost mode is the

desirable state.

The following table describes the C- and P-states for the c4.4xlarge and

c4.8xlarge.

Instance size Default Max C-State Recommended

setting

Default P-State Recommended

setting

c4.4xlarge

and smaller

1 1 0 0

c4.8xlarge 6a 1 0 0

a) Running cat /sys/module/intel_idle/parameters/max_cstate will show the max C-state as 9. It is actually

set to 6, which is the maximum possible value.

Use turbostat to see the C-state and max turbo frequency that can be achieved

on the c4.8xlarge instance. Again, these instructions were tested using the

Amazon Linux AMI and only work on the c4.8xlarge instance but not on any of

the other instance sizes in the C4 family.

First, run the following turbostat command to install stress on your system. (If

turbostat is not installed on your system then install that, too.)

sudo yum install stress

The following command stresses two cores (i.e., two hyperthreads of two

different physical cores):

sudo turbostat --debug stress -c 2 -t 60

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 18

Here is a truncated printout of the results of running the command:

Definitions:

AVG_MHz: number of cycles executed divided by time elapsed.

%Busy: percent of time in "C0" state.

Bzy_MHz: average clock rate while the CPU was busy (in "c0" state).

TSC_MHz: average MHz that the TSC ran during the entire interval.

The output shows that vCPUs 9 and 20 spent most of the time in the C0 state

(%Busy) and hit close to the maximum turbo of 3.5 GHz (Bzy_MHz). vCPUs 2

and 27, the other hyperthreads of these cores, are sitting in C1 C-state (CPU%c1)

waiting for instructions. A frequency close to 3.5 GHz was achievable because

the default C-state on the c4.8xlarge instance was C6, and so most of the cores

were in the C6 state (CPU%c6).

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 19

Next, try stressing all 36 vCPUs to see the 3.2 GHz All Core Turbo:

sudo turbostat --debug stress -c 36 -t 60

Here is a truncated printout of the results of running the command:

You can see that all of the vCPUs are in C0 for over 99% of the time (%Busy)

and that they are all hitting 3.2 GHz (Bzy_MHz) when in C0.

To set the C-State to C1, edit the /boot/grub/grub.conf file with your editor of

choice. For the first entry that begins with “kernel”, (there may be more than

one kernel entry, you only need to edit the first one) add

intel_idle.max_cstate=1 at the end of the line to set C1 as the deepest C-

state for idle cores:

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 20

created by imagebuilder

default=0

timeout=1

hiddenmenu

title Amazon Linux 2014.09 (3.14.26-24.46.amzn1.x86_64)

root (hd0,0)

kernel /boot/vmlinuz-3.14.26-24.46.amzn1.x86_64 root=LABEL=/

console=ttyS0 intel_idle.max_cstate=1

initrd /boot/initramfs-3.14.26-24.46.amzn1.x86_64.img

Save the file and exit your editor. Reboot your instance to enable the new kernel

option. Now rerun the turbostat command to see what changed after setting the

C-state to C1:

sudo turbostat --debug stress -c 2 -t 10

Here is a truncated printout of the results of running the command:

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 21

The output in the table above shows that all of the cores are now at a C-state of

C1. The maximum average frequency of the two vCPUs that were stressed,

vCPUs 16 and 2 in the example above, is 3.2 GHz (Bzy_MHz). The maximum

turbo of 3.5 GHz is no longer available since all of the vCPUs are at C1.

Another way to verify that the C-state is set to C1 is to run the following

command:

cat /sys/module/intel_idle/parameters/max_cstate

Finally, you may be wondering what the performance cost is when a core

switches from C6 to C1. You can query the cpuidle file to show the exit latency,

in microseconds, for various C-states. There is a latency penalty each time the

CPU transitions between C-states.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 22

In the default C-state, cpuidle shows that to move from C6 to C0 requires 133

microseconds:

$ find /sys/devices/system/cpu/cpu0/cpuidle -name latency -o -

name name | xargs cat

POLL

0

C1-HSW

2

C1E-HSW

10

C3-HSW

33

C6-HSW

133

After you change the C-state default to C1, you can see the difference in CPU

idle. Now we see that to move from C1 to C0 takes only 2 microseconds. We

have cut the latency by 131 microseconds by setting the vCPUs to C1.

$ find /sys/devices/system/cpu/cpu0/cpuidle -name latency -o -

name name | xargs cat

POLL

0

C1-HSW

2

The instructions above are only relevant for the c4.8xlarge instance. For the

c4.4xlarge instance (and smaller instance sizes in the C4 family), the C-state is

already at C1 and all core turbo 3.2 GHz is available by default. Turbostat will

not show that the processors are exceeding the base of 2.9 GHz. One problem is

that even when using the debug option for turbostat the c4.4xlarge instance

does not show the Avg_MHz or the Bzy_MHz values like in the output shown

above for the c4.8xlarge instance.

One way to verify that the vCPUs on the c4.4xlarge instance are hitting the 3.2

GHz all core turbo is to use the showboost script from Brendan Gregg.20

https://raw.githubusercontent.com/brendangregg/msr-cloud-tools/master/showboost

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 23

For this to work on Amazon Linux you need to install the msr tools. To do this

run these commands:

sudo yum groupinstall "Development Tools"

wget https://launchpad.net/ubuntu/+archive/primary/+files/msr-

tools_1.3.orig.tar.gz

tar –zxvf msr-tools_1.3.orig.tar.gz

sudo make

sudo make install

cd msr-tools_1.3

wget https://raw.githubusercontent.com/brendangregg/msr-cloud-

tools/master/showboost

chmod +x showboost

sudo ./showboost

The output only shows vCPU 0 but you can modify the options section to change

the vCPU that will be displayed. To show the CPU frequency run your game

server or use turbostat stress, and then run the showboost command to view the

frequency for a vCPU.

Irqbalance

Irqbalance is a service that distributes interrupts over the cores in the system to

improve performance. Irqbalance is recommended for most use cases except

where you are pinning game servers to specific vCPUs or cores. In that case,

disabling irqbalance may make sense. Please test this with your specific

workloads to see if there is a difference. By default irqbalance is running on the

C4 instance family.

To check if irqbalance is running on your instance run the following command:

sudo service irqbalance status

Irqbalance can be configured in the /etc/sysconfig/irqbalance file.

You want to see a fairly even distribution of interrupts across all the vCPUs. You

can view the status of interrupts to see if they are properly being distributed

across vCPUs by running the following command:

https://launchpad.net/ubuntu/+archive/primary/+files/msr-tools_1.3.orig.tar.gz
https://launchpad.net/ubuntu/+archive/primary/+files/msr-tools_1.3.orig.tar.gz
https://raw.githubusercontent.com/brendangregg/msr-cloud-tools/master/showboost
https://raw.githubusercontent.com/brendangregg/msr-cloud-tools/master/showboost

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 24

cat /proc/interrupts

Hyperthreading

Each vCPU on the C4 instance family is a hyperthread of a physical core.

Hyperthreading can be disabled if you determine that this has a detrimental

impact on the performance of your application. However, many gaming

customers do not find a need to disable hyperthreading.

The table below shows the number of physical cores in each C4 instance size.

Instance Name vCPU Count Physical Core Count

c4.large 2 1

c4.xlarge 4 2

c4.2xlarge 8 4

c4.4xlarge 16 8

c4.8xlarge 36 18

All of the vCPUs can be viewed by running the following:

cat /proc/cpuinfo

To get more specific output you can use the following:

egrep '(processor|model name|cpu MHz|physical id|siblings|core

id|cpu cores)' /proc/cpuinfo

In this output, the “processor” is the vCPU number. The “physical id” shows the

processor socket ID. For any C4 instance other than the c4.8xlarge this will be

0. The “core id” is the physical core number. Each entry that has the same

“physical id” and “core id” will be hyperthreads of the same core.

Another way to view the vCPUs pairs (i.e., hyperthreads) of each core is to look

at the thread_siblings_list for each core. This will show two numbers that are

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 25

the vCPUs for each core. Change the X in “cpuX” to the vCPU number that you

want to view.

cat /sys/devices/system/cpu/cpuX/topology/thread_siblings_list

To disable hyperthreading, edit the /boot/grub/grub.conf file with your editor

of choice. For the first entry that begins with “kernel” (there may be more than

one kernel entry, you only need to edit the first one), add maxcpus=NUMBER at

the end of the line, where NUMBER is the number of actual cores in the C4

instance size you are using. Refer to the table above on the number of physical

cores in each C4 instance size.

created by imagebuilder

default=0

timeout=1

hiddenmenu

title Amazon Linux 2014.09 (3.14.26-24.46.amzn1.x86_64)

root (hd0,0)

kernel /boot/vmlinuz-3.14.26-24.46.amzn1.x86_64 root=LABEL=/

console=ttyS0 maxcpus=18

initrd /boot/initramfs-3.14.26-24.46.amzn1.x86_64.img

Save the file and exit your editor. Reboot your instance to enable the new kernel

option.

Again, this is one of those settings that you should test to determine if it

provides a performance boost for your game. This setting would likely need to

be combined with CPU pinning before it would provide any performance boost.

In fact, disabling hyperthreading without using pinning may degrade

performance. Many major AAA games running on AWS do not actually disable

hyperthreading. If there is no performance boost you can avoid this setting to

avoid the administrative overhead of having to maintain this on each of your

game servers.

CPU Pinning

Many of the game server processes we see usually have a main thread and then

a few ancillary threads. Pinning the process for each game server to a core

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 26

(either a vCPU or physical core) is definitely an option but not a configuration

we often see. Usually pinning is done in situations where the game engine truly

needs exclusive access to a core. Often game companies simply allow the Linux

scheduler to handle this. Again, this is something that should be tested, but if

the performance is sufficient without pinning it can save you administrative

overhead to not have to worry about pinning.

As will be discussed in the NUMA section, you can pin a process to both a CPU

core and a NUMA node by running the following command (replacing the

values for $phys_cpu_core and $associated_numa_node in addition to the

game_server_executable name):

“numactl –physcpubind $phys_cpu_core –membind

$associated_numa_node ./game_server_executable”

Linux Scheduler

The default Linux scheduler is called the Completely Fair Scheduler (CFS),21 and

it is responsible for executing processes by taking care of the allocation of CPU

resources. The primary goal of CFS is to maximize utilization of the vCPUs and,

in turn, provide the best overall performance. If you don’t pin game server

processes to a vCPU then the Linux scheduler assigns threads for these

processes.

There are a few parameters for tuning the Linux scheduler that can help with

game servers. The primary goal of the three parameters documented below is to

keep tasks on processors as long as reasonable given the activity of the task. We

focus on the scheduler minimum granularity, the scheduler wakeup granularity,

and the scheduler migration cost values.

To view the default value of all of the kernel.sched options run the following

command:

sudo sysctl -A | grep -v "kernel.sched_domain" | grep

"kernel.sched"

The scheduler minimum granularity value configures the time a task is

guaranteed to run on a CPU before being replaced by another task. By default

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 27

this is set to 3 ms on the C4 instance family when running Amazon Linux. This

value can be increased to keep tasks on the processors longer. An option would

be to double this setting this to 6 ms. Like all other performance

recommendations in this whitepaper, these settings should be tested thoroughly

with your game server. This and the other two scheduler commands do not

persist the setting across reboots, so it needs to be done in a startup script:

sudo sysctl -w 'kernel.sched_min_granularity_ns=New_Value

The scheduler wakeup granularity value affects the ability of tasks being woken

to replace the current task running. The lower the value the easier it will be for

the task to force removal. By default this is set to 4 ms on the C4 instance family

when running Amazon Linux. You have the option of halving this value to 2 ms

and testing the result. Further reductions may also improve the performance of

your game server.

sudo sysctl -w 'kernel.sched_wakeup_granularity_ns= New_Value'

The scheduler migration cost value sets the duration of time after a task’s last

execution where the task is still considered “cache hot” when the scheduler

makes migration decisions. Tasks that are “cache hot” are less likely to be

migrated, which helps reduce the possibility the task will be migrated. By

default this is set to 4 ms on the C4 instance family when running Amazon

Linux. You have the option to double this value to 8 ms and test.

sudo sysctril –w 'kernel.sched_migration_cost_ns= New_Value'

Memory

It is important that any customers running game servers on the c4.8xlarge

instance pay close attention to the NUMA information.

Performance Tuning

Option

Summary Notes Links or Commands

NUMA On the c4.8xlarge

NUMA can become

None of the C4

instance sizes

There are three options to

deal with NUMA: CPU

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 28

Performance Tuning

Option

Summary Notes Links or Commands

an issue since there

are two NUMA

nodes.

smaller than the

c4.8xlarge will have

NUMA issues since

they all have one

NUMA node.

pinning, NUMA balancing,

and the numad process.

Virtual Memory A few virtual memory

tweaks can provide a

performance boost

for some game

servers.

 Add the following to

/etc/sysctl.conf:

vm.swappiness =

New_Value

(Recommend start by

halving the current value

set for your system)

Add the following to

/etc/sysctl.conf:

vm.dirty_ratio =

New_Value

(Recommend going with

the default value of 20 on

Amazon Linux)

Add the following to

/etc/sysctl.conf:

vm.dirty_background_ratio

= New_Value

(Recommend going with

the default value of 10 on

Amazon Linux)

NUMA

All of the current generation EC2 instances support NUMA. NUMA is a memory

architecture used in multiprocessing systems that allows threads to access both

the local memory, memory local to other processors, or a shared memory

platform. The key concern here is that the remote memory usage provides much

slower access than the local memory. There is a performance penalty when a

thread accesses remote memory, and there are issues with interconnect

contention.

For an application that is not able to take advantage of NUMA, you want to

ensure that the processor only uses the local memory as much as possible. This

is only an issue for the c4.8xlarge instance because you have access to two

processor sockets that each represent a separate NUMA node. NUMA is not a

concern on the smaller instances in the C4 family since you are limited to a

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 29

single NUMA node. In addition, the NUMA topology will remain fixed for the

lifetime of an instance.

The c4.8xlarge instance has two NUMA nodes. To view details on these nodes

and the vCPUs that are associated with each node run the following command:

numactl --hardware

To view the NUMA policy settings run:

numactl --show

You can also view this information in the following directory (just look in each

of the NUMA node directories):

/sys/devices/system/node

Use the numastat tool to view per-NUMA-node memory statistics for processes

and the operating system. The –p option allows you to view this for a single

process while the –v option provides more verbose data.

numastat -p process_name

numastat –v

CPU Pinning

There are three recommended options to address potential NUMA performance

issues. The first is to use CPU pinning, the second is automatic NUMA

balancing, and the last is to use numad. These options should be tested to

determine which provides the best performance for your game server.

First we will look at CPU pinning. This involves binding the game server process

both to a vCPU (or core) and to a NUMA node. You can use numactl to do this.

Change the values for $phys_cpu_core and $associated_numa_node in

addition to the game_server_executable name in the following command for

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 30

each game server running on the instance. See the numactl man page for

additional options.22

numactl --physcpubind=$phys_cpu_core --

membind=$associated_numa_node game_server_executable

Automatic NUMA Balancing

The next option is to use automatic NUMA balancing. This feature attempts to

keep the threads or processes in the processor socket where the memory that

they are using is located. It also tries to move application data to the processor

socket for the tasks accessing it. As of Amazon Linux Ami 2016.03, automatic

NUMA balancing is disabled by default.23

To check if automatic NUMA balancing is enabled on your instance run the

following command:

cat /proc/sys/kernel/numa_balancing

To permanently enable or disable NUMA balancing, set the Value parameter to

0 to disable or 1 to enable and run the following command:

sudo sysctl -w 'kernel.numa_balancing=Value'

echo 'kernel.numa_balancing = Value' | sudo tee

/etc/sysctl.d/50-numa-balancing.conf

Again these instructions are for Amazon Linux. Some distributions may set this

in the /etc/sysctl.conf file.

Numad

Numad is the final option to look at. Numad is a daemon that monitors the

NUMA topology and works to keep processes on the NUMA node for the core. It

is able to adjust to changes in the system conditions. The article Mysteries of

NUMA Memory Management Revealed explains the performance differences

between automatic NUMA balancing and numad.24

http://linux.die.net/man/8/numactl
https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/
http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-management-revealed/#more-599
http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-management-revealed/#more-599

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 31

To use numad you need to disable automatic NUMA balancing first. To install

numad on Amazon Linux, visit the Fedora numad site and then download the

most recent stable commit.25 From the numad directory run the following

commands to install numad:

sudo yum groupinstall "Development Tools"

wget https://git.fedorahosted.org/cgit/numad.git/snapshot/numad-

0.5.tar.gz

tar –zxvf numad-0.5.tar.gz

cd numad-0.5

make

sudo make install

The logs for numad can be found in /var/log/numad.log and there is a

configuration file in /etc/numad.conf.

There are a number of ways to run numad. The numad –u option sets the

maximum usage percentage of a node. The default is 85%. The recommended

setting covered in the Mysteries of NUMA article is –u100, so this setting would

configure the maximum to 100%. This forces processes to stay on the local

NUMA node up to 100% of their memory requirement.

sudo numad –u100

Numad can be terminated by using the following command:

sudo /usr/bin/numad –i0

Finally, disabling NUMA completely is not a good choice because you will still

have the problem with remote memory access so it is better to work with the

NUMA topology. For the c4.8xlarge instance we recommend taking some action

for most game servers. We recommend testing the available options that we

discussed to determine which provides the best performance. While none of

these options may eliminate memory calls to the remote NUMA node for a

process, they each should provide a better experience for your game server.

https://git.fedorahosted.org/git/numad.git
http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-management-revealed/#more-599

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 32

You can test how well an option is doing by running your game servers on the

instance and using the following command to see if there are any numa_foreign

(i.e., memory allocated to the other NUMA node but meant for this node) and

numa_miss (i.e., memory allocated to this node but meant for the other NUMA

node) entries:

numastat -v

A more general way to test for NUMA issues is to use a tool like stress and then

run numastat to see if there are foreign/miss entries:

stress --vm-bytes $(awk '/MemFree/{printf "%d\n", $2 * 0.097;}'

< /proc/meminfo)k --vm-keep -m 10

Virtual Memory

There are also a few virtual memory tweaks that we see customers use that may

provide a performance boost. Again, these should be tested thoroughly to

determine if they improve the performance of your game.

VM Swappiness

VM Swappiness controls how the system favors anonymous memory or the page

cache. Low values reduce the occurrence of swapping processes out of memory,

which can decrease latency but reduce I/O performance. Possible values are 0 to

100. The default value on Amazon Linux is 60. The recommendation is to start

by halving that value and then testing. Further reductions in the value may also

help your game server performance.

To view the current value run the following command:

cat /proc/sys/vm/swappiness

To configure this parameter to persist across reboots add the following with the

new value to the /etc/sysctl.conf file:

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 33

vm.swappiness = New_Value

VM Dirty Ratio

VM Dirty Ratio forces a process to block and write out dirty pages to disk when

a certain percentage of the system memory becomes dirty. The possible values

are 0 to 100. The default on Amazon Linux is 20 and is the recommended value.

To view the current value run the following command:

cat /proc/sys/vm/dirty_ratio

To configure this parameter to persist across reboots add the following with the

new value to the /etc/sysctl.conf file:

vm.dirty_ratio = New_Value

VM Dirty Background Ratio

VM Dirty Background Ratio forces the system to start writing data to disk when

a certain percentage of the system memory becomes dirty. Possible values are 0

to 100. The default value on Amazon Linux is 10 and is the recommended value.

To view the current value run the following command:

cat /proc/sys/vm/dirty_background_ratio

To configure this parameter to persist across reboots add the following with the

recommended value to the /etc/sysctl.conf file:

dirty_background_ratio=10

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 34

Disk

Performance tuning for disk is the least critical because disk is rarely a

bottleneck for multiplayer game servers. We have not seen customers

experience any disk performance issues on the C4 instance family. The C4

instance family only uses Amazon Elastic Block Store (EBS) for storage with no

local instance storage; so C4 instances are EBS-optimized by default.26 Amazon

EBS can provide up to 48,000 IOPS if needed. You can take standard disk

performance steps such as using a separate boot and OS/game EBS volume.

Performance Tuning

Option

Summary Notes Links or Commands

EBS Performance C4 instances are

EBS-optimized by

default. IOPS can be

configured to fit the

requirements of the

game server.

 NA

Benchmarking and Testing

Benchmarking

There are many ways to benchmark Linux. One option you may find useful is

the Phoronix Test Suite.27 This open source Python-based suite provides a large

number of benchmarking (and testing) options. You can run tests against

existing benchmarks to compare results after successive tests. You can upload

the results to OpenBenchmarking.org for online viewing and comparison.28

There are many benchmarks available and most can be found on the

OpenBenchmarking.org tests site.29 Some tests that can be useful for

benchmarking in preparation for a game server are the cpu,30 multicore,31

processor,32 and universe tests.33 These tests usually involve multiple subtests.

Be aware that some of the subtests available may not be available for download

or may not run properly.

To get started you need to install the prerequisites first:

sudo yum groupinstall "Development Tools" -y

sudo yum install php-cli php-xml –y

https://aws.amazon.com/ebs/
http://www.phoronix-test-suite.com/
http://openbenchmarking.org/
http://openbenchmarking.org/tests/pts
http://openbenchmarking.org/suite/pts/cpu
http://openbenchmarking.org/suite/pts/multicore
http://openbenchmarking.org/suite/pts/processor
http://openbenchmarking.org/suite/pts/universe

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 35

sudo yum install {libaio,pcre,popt}-devel glibc-{devel,static} -

y

Next download and install Phoronix:

wget https://github.com/phoronix-test-suite/phoronix-test-

suite/archive/master.zip

unzip master.zip

cd phoronix-test-suite-master

./install-sh ~/directory-of-your-choice/phoronix-tester

To install a test, run the following from the bin subdirectory of the directory you

specified when you ran the install-sh command:

phoronix-test-suite install <test or suite name>

To install and run a test use:

phoronix-test-suite benchmark <test or suite name>

You can choose to have the results uploaded to Openbenchmark.org. This

option will be displayed at the beginning of the test. If you choose “yes” you can

name the test run. At the end a URL will be provided to view all the test results.

Once the results are uploaded, you can rerun a benchmark using the benchmark

result number of previous tests so the results are displayed side-by-side with

previous results. You can repeat this process to display the results of many tests

together. Usually you would want to make small changes and the rerun the

benchmark. You can also choose not to upload the test results and instead view

them in the command line output.

phoronix-test-suite benchmark TEST-RESULT-NUMBER

https://github.com/phoronix-test-suite/phoronix-test-suite/archive/master.zip
https://github.com/phoronix-test-suite/phoronix-test-suite/archive/master.zip

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 36

The screenshot below shows an example of the output displayed on

OpenBenchmarking.org for a set of multicore benchmark tests run on the

c4.8xlarge instance:

CPU Performance Analysis

One of the best tools for CPU performance analysis or profiling is the Linux perf

command.34 Using this command you can record and then analyze performance

data using perf record and perf report, respectively. Performance analysis is

beyond the scope of this whitepaper, but a couple of great resources are the

kernel.org wiki and Brendan Gregg’s perf resources.35 The next section

describes how to produce flame graphs using perf to analyze CPU usage.

Visual CPU Profiling

A common issue that comes up during game server testing is that while multiple

game servers are running (often unpinned to vCPUs) one vCPU will hit near

100% utilization while the other vCPUs will show low utilization.

Troubleshooting this type of performance problem and other similar CPU issues

can be a complex and time-consuming process. The process basically involves

looking at the function running on the CPUs and finding the code paths that are

the most CPU heavy. Brendan Gregg’s flame graphs allow you to visually

analyze and troubleshoot potential CPU performance issues.36 Flame graphs

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/flamegraphs.html

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 37

allow you to quickly and easily identify the functions used most frequently

during the window visualized.

There are multiple types of flame graphs, including graphs for memory leaks,

but we will focus on CPU flame graphs.37 We will use the perf command to

generate the underlying data and then the flame graphs to create the

visualization.

First, install the prerequisites:

Install Perf

sudo yum install perf

Remove the need to use root for running perf record

sudo sh -c 'echo 0 >/proc/sys/kernel/perf_event_paranoid'

Download Flamegraph

wget

https://github.com/brendangregg/FlameGraph/archive/master.zip

Finally you need to unzip the file that was downloaded. This

will create a directory called FlameGraph-master where the flame

graph executables are located

unzip master.zip

To see interesting data in the flame graph you either need to run your game

server or a CPU stress tool. Once that is running you run a perf profile

recording. You can run the perf record against all vCPUs, against specific

vCPUs, or against particular PIDs. Here is a table of the various options:

Option Notes

-F Frequency for the perf record. 99 Hz is usually sufficient for most use cases.

-g -- Used to capture stack traces (as opposed to on CPU function or instructions).

-C Used to specify the vCPUs to trace.

-a Used to specify that all vCPUs should be traced.

sleep Specified the number of seconds for the perf record to run.

http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://github.com/brendangregg/FlameGraph/archive/master.zip

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 38

The following are the common commands for running a perf record for a flame

graph depending on whether you are looking at all the vCPUs or just one. Run

these commands from the FlameGraph-master directory:

Run perf record on all vCPUs

perf record -F 99 -a -g -- sleep 60

Run perf record on specific vCPUs specified by number after

the –C option.

perf record -F 99 -C CPU_NUMBER -g -- sleep 60

When the perf record is complete, run the following commands to produce the

flame graph:

Create perf file. When you run this you will get an error

about “no symbols found”. This can be ignored since we are

generating this for flame graphs.

perf script > out.perf

Use the stackcollapse program to fold stack samples into

single lines.

./stackcollapse-perf.pl out.perf > out.folded

Use flamegraph.pl to render a SVG.

./flamegraph.pl out.folded > kernel.svg

Finally, use a tool like WinSCP to copy the SVG file to your desktop so you can

view it.

Below are two examples of flame graphs. The first was produced on a c4.8xlarge

instance for 60 seconds while sysbench was running using the following options

(for each in 1 2 4 8 16; do sysbench --test=cpu --cpu-max-prime=20000 --num-

threads=$each run; done). You can see how little of the total CPU processing on

the instance was actually devoted to sysbench. You can hover over various

elements of the flame graphs to get additional details about the number of

samples and percentage spent for each area.

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 39

The second graph was produced on the same c4.8xlarge instance for 60 seconds

while running the following script:

(fulload() { dd if=/dev/zero of=/dev/null |dd if=/dev/zero

of=/dev/null |dd if=/dev/zero of=/dev/null |dd if=/dev/zero

of=/dev/null |dd if=/dev/zero of=/dev/null | dd if=/dev/zero

of=/dev/null | dd if=/dev/zero of=/dev/null | dd if=/dev/zero

of=/dev/null | dd if=/dev/zero of=/dev/null | dd if=/dev/zero

of=/dev/null | dd if=/dev/zero of=/dev/null | dd if=/dev/zero

of=/dev/null & }; fulload; read; killall dd)

The output presents a more interesting set of actions taking place under the

hood:

Conclusion
The purpose of this whitepaper is to show you how to tune your EC2 instances

to optimally run game servers on AWS. It focuses on performance optimization

of the network, CPU, and memory on the C4 instance family when running

game servers on Linux. Disk performance is a smaller concern because disk is

rarely a bottleneck when it comes to running game servers.

This whitepaper is meant to be a central compendium of information on the

compute instances to help you run your game servers on AWS. We hope this

guide saves you a lot of time by calling out key information, performance

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 40

recommendations, and caveats to get up and running quickly using AWS in

order to make your game launch as successful as possible.

Contributors
The following individuals and organizations contributed to this document:

 Greg McConnel, Solutions Architect, Amazon Web Services

 Todd Scott, Solutions Architect, Amazon Web Services

 Dhruv Thukral, Solutions Architect, Amazon Web Services

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 41

1 https://aws.amazon.com/ec2/

2 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html

3 https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

4 https://aws.amazon.com/vpc/

5 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

6 https://aws.amazon.com/about-aws/global-infrastructure/

7 https://aws.amazon.com/ec2/faqs/#Enhanced_Networking

8 https://en.wikipedia.org/wiki/Single-root_input/output_virtualization

9 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-

networking.html

10 http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-

networking-windows.html

11 https://downloadcenter.intel.com/download/18700/Network-Adapter-

Virtual-Function-Driver-for-10-Gigabit-Network-Connections

12 https://www.kernel.org/doc/Documentation/networking/scaling.txt

13 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

14 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-

groups.html

15 https://aws.amazon.com/premiumsupport/knowledge-center/network-

throughput-benchmark-linux-ec2/

16 https://aws.amazon.com/premiumsupport/knowledge-center/network-

throughput-benchmark-windows-ec2/

17 https://www.kernel.org/doc/Documentation/timers/timekeeping.txt

18 https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

19

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_co

ntrol.html

20 https://raw.githubusercontent.com/brendangregg/msr-cloud-

tools/master/showboost

21 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Notes

https://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/ec2/faqs/%23Enhanced_Networking
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking-windows.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking-windows.html
https://downloadcenter.intel.com/download/18700/Network-Adapter-Virtual-Function-Driver-for-10-Gigabit-Network-Connections
https://downloadcenter.intel.com/download/18700/Network-Adapter-Virtual-Function-Driver-for-10-Gigabit-Network-Connections
https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-windows-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-windows-ec2/
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt
https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://raw.githubusercontent.com/brendangregg/msr-cloud-tools/master/showboost
https://raw.githubusercontent.com/brendangregg/msr-cloud-tools/master/showboost
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Amazon Web Services – Optimizing Multiplayer Game Server Performance on AWS

Page 42

22 http://linux.die.net/man/8/numactl

23 https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/

24 http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-

management-revealed/#more-599

25 https://git.fedorahosted.org/git/numad.git

26 https://aws.amazon.com/ebs/

27 http://www.phoronix-test-suite.com/

28 http://openbenchmarking.org/

29 http://openbenchmarking.org/tests/pts

30 http://openbenchmarking.org/suite/pts/cpu

31 http://openbenchmarking.org/suite/pts/multicore

32 http://openbenchmarking.org/suite/pts/processor

33 http://openbenchmarking.org/suite/pts/universe

34 https://perf.wiki.kernel.org/index.php/Main_Page

35 http://www.brendangregg.com/perf.html

36 http://www.brendangregg.com/flamegraphs.html

37 http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

http://linux.die.net/man/8/numactl
https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/
http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-management-revealed/%23more-599
http://rhelblog.redhat.com/2015/01/12/mysteries-of-numa-memory-management-revealed/%23more-599
https://git.fedorahosted.org/git/numad.git
https://aws.amazon.com/ebs/
http://www.phoronix-test-suite.com/
http://openbenchmarking.org/
http://openbenchmarking.org/tests/pts
http://openbenchmarking.org/suite/pts/cpu
http://openbenchmarking.org/suite/pts/multicore
http://openbenchmarking.org/suite/pts/processor
http://openbenchmarking.org/suite/pts/universe
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

