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The Fibonacci numbers 1, 2, 3, 5, 8, 13, 21, 34, . . . are familiar to all of us. But there is
another number associated with Fibonacci, namely 1;22,07,42,33,04,40. This rational
number is an approximation to the real root of the cubic polynomial x3 + 2x2 + 10x −
20 (see Figure 1), written in sexagesimal (base 60) notation. That is,

1;22,07,42,33,04,40 = 1 + 22
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Figure 1. Leonardo Pisano (Fibonacci) and his cubic polynomial x3 + 2x2 + 10x − 20.
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In decimal (base 10) this is 1.36880810785, an approximation correct to nine decimal
digits (9 DD). Nowadays, computer algebra systems can calculate this in a fraction of
a second.

This approximation, however, was found in the thirteenth century, more than 350
years before François Viète’s 9 DD approximation to π , 450 years before Newton
described the method that bears his name, and over 700 years before the first electronic
computer. Who did it? Why was it done? How was it done? . . . And why is there a
mistake in it? That is our story here.

The who is Leonardo of Pisa (ca. 1175–ca. 1250), also known as Fibonacci (of
whom no drawings or paintings from his lifetime are known: Figure 1 is a later draw-
ing), arguably the most talented known European mathematician between Pappus of
Alexandria (ca. 290–ca. 350) and Regiomontanus (1436–1476). The why has to do
with a set of problems that were posed to Leonardo as a challenge. The how—and the
mistake—are part of a mystery that we attempt to unravel: the mystery of “Fibonacci’s
Forgotten Number.”

We first describe how Leonardo came to know this number. We then introduce sev-
eral methods that he may have used for approximating roots of polynomials. Finally,
we make a guess as to how he really did it.

Leonardo, Flos, and the real root of x 3 + 2x 2 + 10x = 20
Leonardo of Pisa was born sometime in the 1170s in Pisa, and died there sometime
after 1240. He lived in exciting times. During the Crusades, relations between medieval
Europe and the Islamic world were established and flourishing. Pisa was a maritime
power with economic connections throughout the Mediterranean world. Europe was
rediscovering the great texts from Ancient Greece and Alexandria through the work of
Islamic scholars. The scientific and mathematical achievements of India, China, and
the Islamic countries were likewise finding their way to European scholars.

In 1192, Leonardo journeyed to Bougia in present-day Algeria to join his father, a
customhouse official for the thriving Pisan business community there. While in Bougia
he studied under Islamic tutors, learning both the al-jabr and the Hindu–Arabic numer-
als. He travelled the Mediterranean world for about eight years, after which he returned
to Pisa and published his monumental Liber abaci (Book of Calculations) [12] in 1202.
Liber abaci was an introduction to these new ideas and the now-familiar algorithms of
arithmetic, as well as their use in a variety of applications familiar to merchants and
others engaged in trade. (Chapter 12, Part 7, Problem 18 of Liber abaci is the famous
rabbits problem whose solution introduces the traditional Fibonacci numbers.) This
excellent text cemented Leonardo’s reputation as a mathematics teacher and writer,
and this reputation spread far and wide. (See [10] for a detailed account of Leonardo’s
life and work; try [3] for a somewhat more fanciful account.)

Our story begins in 1225 against this backdrop, at the court of the Holy Roman Em-
peror Frederick II. Leonardo had been granted a formal audience with the Emperor, a
patron of learning who wished to meet Europe’s leading mathematician. As a member
of this audience, Frederick’s court mathematician John of Palermo posed the following
problems for Leonardo to solve:

1. Three men possess a pile of money, their shares being 1
2 , 1

3 and 1
6 . Each man

takes some money from the pile until nothing remains. The first returns half of
what he took, the second one third and the third one sixth. When the total so
returned is divided equally among the men, it is found that each then possesses
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what he is entitled to. How much money was in the original pile, and how much
did each man take from the pile?

2. Find a rational number r such that both r 2 − 5 and r 2 + 5 are rational squares.

3. Find a root of the cubic equation x3 + 2x2 + 10x = 20.

The first problem is fairly routine, and is left for you to solve. Leonardo expanded
his solution to the second problem into a treatise he published that same year called
Liber quadratorum (Book of Squares) [13]. The challenge appears there as Proposition
17. Leonardo had established that if r 2 − n and r 2 + n are rational squares, then there
is a right triangle with rational sides, hypotenuse 2r , and area n. It is not hard to find
the relevant triangle for n = 5, and hence a solution to the second problem.

We now come to the third problem. According to [10], John of Palermo did not
create this problem; he just borrowed it from Omar Khayyam’s Al-jabr (see [8]).
Leonardo’s solution appears in the Flos, or Flower (see [6]), also published in 1225
(certainly a banner year for him), in which he describes all three problems and details
his work on the real root of x3 + 2x2 + 10x = 20, which we hereafter denote μ. He
proves that μ is neither an integer, nor rational, nor of any of the forms from Book X
of Euclid’s Elements. He continues ([10]), “And because it was not possible to solve
this equation in any other of the above ways, I worked to reduce the solution to an
approximation.” (See also [6, Vol. 2, pp. 227–253].) Finally, he states that the root of
this equation is approximately 1;22,07,42,33,04,40.

Thus we establish why, but several questions immediately come to mind. What
methods were available to Leonardo for finding roots of cubics? Which of these (if
any) is the most likely method for Leonardo to have used? How did he do it? Why did
he give us not the glimmer of an idea about his method? And finally, we note that the
sixth base-sixty digit of his approximation is neither a truncation nor a rounding up of
the actual root; so, why did he make this mistake?

We begin with what Leonardo knew. By the time he had learned about the Indian
figures and the al-jabr, the Islamic, Indian, and Chinese mathematicians of the day had
developed methods to approximate square roots and cube roots. Unfortunately, these
methods would not have helped Leonardo, because the polynomial x3 + 2x2 + 10x −
20 is not of the form x3 = a and cannot be placed in that form by “completing the
cube.” As it happens, there were some other numerical methods with which Leonardo
might have had some familiarity. One of them we know these days as the Ruffini–
Horner method, so let’s talk about that now.

The Ruffini–Horner method
Though named for Paolo Ruffini (1765–1822) and William Horner (1786–1837), two
European mathematicians who described it in the early 1800s, the Ruffini–Horner
method was first described (as far as we know) by the eleventh-century Chinese math-
ematician Jia Xian (ca. 1010–ca. 1070), in a now-lost book (see [5]). The mathemati-
cians of medieval Islam were very likely familiar with all manner of mathematical
texts from both China and India, so it is not unreasonable to suppose that this algo-
rithm was available to Leonardo. Nowadays the algorithm has fallen out of style, so
we will describe it in some detail.

Ruffini–Horner finds one digit at a time in the decimal (or sexagesimal) expansion
of the desired root by a translation-and-dilation process that resembles integer long
division, according to the following basic principles:

Let f be a function and let n be an integer.
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1. If f (x) has a root in the interval [n, n + 1), then f (x + n) has a corresponding
root in [0, 1). We call this translation by n.

2. If p(x) = ∑d
i=0 ai xi is a polynomial of degree d with integer coefficients,

10d p
(

x
10

) = ∑d
i=0 ai 10d−i x i is also a polynomial of degree d with integer coef-

ficients.

3. If p(x) is a polynomial of degree d and has a root in [0, 1), then 10d p
(

x
10

)
has a

corresponding root in [0, 10). We call this dilation by 10.

Thus, given a polynomial with a root m in [n, n + 1), translating by n and dilating by
10 produces a related polynomial with a root in [0, 10).

Now let n0 be an integer, let n1, n2, . . . be integers in {0, 1, . . . , 9}, and let s =
n0.n1n2 . . . be the decimal expansion of a root of the polynomial f (x). Invoking the
principles above, we see that s − n0 = 0.n1n2 . . . is a root of f (x + n0) in [0, 1) and
10(r − n0) = n1.n2 . . . is a root of 10d f ( x

10 + n0) in [0, 10). Thus, if f has a root s
and n0 is the greatest integer of s, then 10d f ( x

10 + n0) has a corresponding root whose
greatest integer is n1. Hence, the process of translating and dilating f finds the next
digit in the decimal expansion of r—and that is just what Ruffini–Horner does.

There is more: the Ruffini–Horner scheme for polynomial evaluation is more effi-
cient than mere substitution. It begins with the observation that a polynomial p(x) =
an xn + · · · + a1x + a0 can be rewritten as

p(x) = ((· · · ((an x + an−1)x + an−2)x + · · · + a2)x + a1)x + a0.

Thus, to evaluate p(b) we multiply an by b, add an−1, multiply by b, add an−2, and
so forth. There is a tabular representation of this method called synthetic division that
makes all of this easier to see. It looks like this:

b an an−1 an−2 . . . a0

anb anb2 + an−1b . . . anbn + · · · + a1b

an anb + an−1 anb2 + an−1b + an−2 . . . anbn + · · · + a1b + a0

Here is how to evaluate F(3), where F(x) = x3 + 2x2 + 10x − 20 is Fibonacci’s
cubic:

3 1 2 10 −20
3 15 75

1 5 25 55

Thus, F(3) = 55. For a polynomial of degree d, this method requires d multiplications
versus

(d
2

)
multiplications for the usual substitution method. For that reason, it is the

algorithm of choice for doing polynomial evaluation on a computer (see p. 181 of
Acton’s book [1] for further details).

There is even more: along the way, Ruffini–Horner also calculates coefficients for
the translated polynomial p(x + n) using iterated synthetic division. Here is why: un-
der the Remainder Theorem, if p(x) is a polynomial with real coefficients and n is a
real number, then there is a unique real polynomial q(x) of degree d − 1 such that

q(x) = p(x) − p(n)

x − n
.
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We define real polynomials pk(x) by p0(x) = p(x) and pk+1(x) = pk(x) − pk(n)

x − n
for

0 < k < d. We solve these equations for p(x) = p0(x) and see that

p(x) = p0(n) + p1(n)(x − n) + · · · + pd(n)(x − n)d =
d∑

j=0

p j (n)(x − n) j .

Thus, we obtain the representation of p(x) in powers of x − n by repeated synthetic
division on the polynomials p(x), p1(x), p2(x), . . . . We then replace x by x + n to
get a representation of the translated polynomial p(x + n) = ∑d

j=0 p j (n)x j . Finally,
we obtain the dilated polynomial 10d p( x

10 + n) by adjoining j zeroes to the coeffi-
cient of xd− j in the translated polynomial p(x + n). We observe that this method of
calculating the polynomial of degree d translated by n takes

(d
2

)
multiplications versus

(d + 2)(d + 1) multiplications for the usual method of evaluating
∑d

i=0 ai (x + n)i .
Let’s watch Ruffini–Horner at work on F(x) = x3 + 2x2 + 10x − 20. Now F has a

unique real root, which we have named μ, and we will derive a decimal representation
μ = n0.n1n2n3 . . . . We find that F(0) = −20, F(1) = −7, and F(2) = 16. Hence
1 < μ < 2, and so n0 = 1. We translate F by 1 to obtain x3 + 5x2 + 17x − 7, and
dilate this to obtain g(x) = x3 + 50x2 + 1700x − 7000. As with long division, we use
trial-and-error to find the largest integer n1 such that g(n1) < 0 and g(n1 + 1) > 0: it
turns out that n1 = 3. Let’s streamline the process as above:

1 1 2 10 −20 (guess: n0 = 1)
1 3 13

1 3 13 −7
1 4

1 4 17
1

1 5 (dilate x3 + 5x2 + 17x − 7)

3 1 50 1700 −7000 (guess: n1 = 3)
3 159 5577

1 53 1859 −1423
3 168

1 56 2027
3

1 59 (dilate x3 + 59x2 + 2027x − 1423)

6 1 590 202700 −1423000 (guess: n2 = 6)
6 3576 1237656

1 596 206276 −185344
6 3612

1 602 209888
6

1 608 (dilate x3 + 608x2 + 209888x − 185344)
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At this point, we see that μ = 1.36 to two digits. If we wantμ to k digits of accuracy,
then we translate and dilate k times.

Ruffini–Horner is a clever algorithm—but there was another numerical method
available to Leonardo, and he devoted an entire chapter of Liber abaci to solving prob-
lems by this method, which he called Elchataym. We examine it next.

The method of Elchataym, or double false position
To dispel any doubts that Leonardo was supremely confident in his problem-solving
abilities, we need look no further than Chapter 13 of Liber abaci, titled Here Begins
chapter Thirteen on the Method Elchataym and How with It Nearly All Problems of
Mathematics Are Solved. With this bold beginning, Leonardo explains that the Arabic
al-khata’ayn (literally, “the two errors”) is translated as the method of Double False
Position. Before the development of linear-algebraic techniques six centuries later, this
was the standard method for solving linear equations. We now call it “linear interpola-
tion.”

Here’s how it works. We are looking for the value of x0 on the line y = mx + b for
which mx0 + b is some given value y0. To do this, we pick two convenient values x1

and x2 and calculate y1 = mx1 + b and y2 = mx2 + b. We know that

m = y2 − y1

x2 − x1
= y0 − y1

x0 − x1
.

Solving the latter equality for x0, we find that

x0 = x1 + (y0 − y1)(x2 − x1)

y2 − y1
.

It is clear that this linear interpolation technique can also be used to approximate
roots of polynomials. In fact, at the beginning of Chapter 14 of Liber abaci, Leonardo
uses a modification of this technique to approximate cube roots. Therefore, he could
well have used it on the cubic F(x) = x3 + 2x2 + 10x − 20.

Let’s proceed. In Flos Leonardo proves, as mentioned above, that our root μ is not
an integer: it must lie strictly between 1 and 2 because 0 lies strictly between F(1)

and F(2). Let (x1, y1) = (1, −7), (x2, y2) = (2, 16), and y0 = 0; a short calculation
yields the approximation A = ( 30

23 , 0) for the root μ (see Figure 2). (Note that the cubic
polynomial x3 + 2x2 + 10x − 20 is both increasing and concave up, so that the process
of linear interpolation always produces an underestimate. We return to this point later.)

–5

5

10

15  2,16

A

 
1, –7

Figure 2. The approximation A of the root μ of x3 + 2x2 + 10x − 20 = 0 using Elchataym
with x1 = 1 and x2 = 2.
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Leonardo was probably sharp enough to notice that 3/2 is also larger than μ. Had
he set x1 = 30

23 and x2 = 3
2 , and continued by keeping x2 fixed and replacing x1 by the

new value of x0, he would have found the successive values

1068

781
= 1.367477 . . . ,

73156892

53447629
= 1.3687584 . . . , and

342754819610919692

250404189091145709
= 1.368806252 . . . .

With three more iterations of this algorithm, Leonardo could have obtained the ac-
curacy of the approximation that he attains in the Flos.

How did he get his answer?
In this section, we identify what method we think Leonardo used, point out a curious
error in his approximation, and speculate on the origins of that error.

As we have seen, Ruffini–Horner and iterated linear interpolation are two numerical
methods Leonardo might have used to find that 9 DD approximation to the real root
μ of the polynomial x3 + 2x2 + 10x − 20. There is no record that any other ways to
find numerical approximations were available to mathematicians in the early thirteenth
century, so we study these two.

We first note that in Flos, Leonardo’s approximation 1;22,07,42,33,04,40 is a num-
ber in base sixty that is slightly greater than μ. This fact may be of use in helping us
learn how he arrived at his answer.

Let us now look at Ruffini–Horner. While there is no direct evidence in any of
Leonardo’s writings that he even knew about the Ruffini–Horner method, it was
well-known to the Islamic mathematicians of the day. As Calinger points out (see
[4, p. 369]), Leonardo could easily have come across it during his travels. Now, the
Ruffini–Horner method approximates the root of a polynomial by finding one accu-
rate digit at a time. Like our long division algorithm, each step of the method yields
an approximation that is less than or equal to the root in question. and had he used
Ruffini–Horner, this approximation would be slightly less than the root μ.

On the other hand, with linear interpolation, we are on firmer ground, because we
know that Leonardo used that method in Chapters 13 and 14 of Liber abaci. Us-
ing linear interpolation on our polynomial also produces approximations that are un-
derestimates. As in our example beginning with 1 and 2, iterations of this method
approach from the left, as the chords connecting points on the curve—e.g., (1, −7)

and (2, 16)—cross the x-axis to the left of the curve. As mentioned in the previous
section, the approximations obtained by beginning with x1 = 30

23 and x2 = 3
2 are all

underestimates of the root μ.
We see that neither of these methods available to Leonardo yield overestimates of

the root μ. The fact that 1;22,07,42,33,04,40 is slightly more than μ will not help us
decide in favor of one method over the other. Because of that, we conclude, based on
the prevalence of linear interpolation together with the complete lack of references to
Ruffini–Horner in Leonardo’s work, that Leonardo applied linear interpolation to John
of Palermo’s challenge.

But where did the answer 1;22,07,42,33,04,40 come from? The two available
methods yield underestimates, but the actual base-sixty expansion of the real root
continues 1; 22, 07, 42, 33, 04, 38, 30, 50, . . . . Thus, it lies just halfway between
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1; 22, 07, 42, 33, 04, 38 and 1; 22, 07, 42, 33, 04, 39. The answer he gives is neither
truncated nor rounded; why did he give it?

Maybe it was a misprint; misprints happen. Maybe he made a mistake, and even the
most expert calculators make mistakes. But maybe he did it deliberately, possibly for
the same reason he withheld his method: so that nobody could duplicate his results.

Nowadays, one reason why scholars are eager to publish their work is to establish
priority for their results. In Leonardo’s day, however, a scholar’s methods were stock-
in-trade for obtaining well-paying (or, at least, paying) positions with the nobility, the
royalty, or the church. As such, scholars kept these methods secret from rivals and
competitors. Leonardo’s audience with the Emperor was an excellent opportunity for
him to display his abilities without revealing his methods. And John of Palermo (hav-
ing borrowed the cubic polynomial from Khayyam’s text, which Leonardo is known
to have studied) posed a threat to the secrecy of Leonardo’s calculations. This may
have been reason enough for Leonardo to further conceal his methods by covering his
tracks. Clever Leonardo!

Questions
• Where can I find out more about this? Read the Master. Sigler’s translations of Liber

abaci and Liber quadratorum ([12], [13]) are well written and convey both the sub-
stance and the flavor of Leonardo’s writing. Flos is not quite so accessible, but your
library may have a copy of Boncompagni’s edition of Leonardo’s works ([6]—Flos
appears in Vol. 2, pp. 227–253). (Note: If you don’t know Latin, you may find it
tough going. If you do know Latin, you may find it slightly easier . . . and you might
even help make it easier for the rest of us by translating it!)

• Does Khayyam’s book describe any methods for solving cubics, and if so, why didn’t
Leonardo use them? Yes, it does, but the methods are purely geometric. Omar found
the largest positive root r of a cubic equation by a construction involving a semicircle
and a rectangular hyperbola. His construction produces a line segment of length μ—
but that’s another story.

• How long would it have taken Leonardo to calculate μ to nine digits of accuracy,
using Ruffini–Horner or iterated linear interpolation? This is a fair question. In his
time, Leonardo was perhaps the most highly skilled person in the world in paper-
and-pencil (or quill-and-parchment) arithmetic. Just as a test, one of us used Ruffini–
Horner on Leonardo’s problem, beginning with several sheets of blank paper, work-
ing in a noisy room, and making three spectacular mistakes in arithmetic along the
way. All in all, it took just under two hours. Leonardo would probably have taken
less than an hour. A similar experiment using iterated linear interpolation, beginning
with x1 = 4

3 and x2 = 11
8 took between two and three hours. Leonardo could have

done it in half that time.
• Are there any other appearances of the Ruffini–Horner method between Jia Xian

and Ruffini? Partly. According to Rheinboldt (see [11]), the Ruffini–Horner method
of polynomial evaluation appeared in 1711 in a work by Isaac Newton [9], whose
own root-finding method dates back to . . . but that too is another story.

• Are there other works that deal with Leonardo’s forgotten number? In fact, there is
at least one other, a paper by Glushkov [7] from the 1970s. He does not consider
the use of Ruffini–Horner, but he also comes to the conclusion that Leonardo used
iterated linear interpolation.

• Why did Leonardo express the root in base-sixty notation, when Liber abaci is writ-
ten entirely in base-ten? We don’t know. This sounds like a good research topic!
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(Continued from p. 101)

Never permit him to accept any statement as true which he does not understand.
Let him learn not by authority but by demonstration addressed to his own intelligence.
Encourage him to ask questions and to interpose objections. Thus he will acquire that
most important of all mental habits, that of thinking for himself.

Carefully discriminate, in the instruction and exercises, as to which faculty is
addressed,—whether that of analysis or reasoning, or that of calculation. Each of
these requires peculiar culture, and each has its appropriate period of development. In
the first stage of arithmetical instruction, calculation should be chiefly addressed, and
analysis or reasoning employed only after some progress has been made, and then very
slowly and progressively. A young child will perform many operations in calculation
which are far beyond its powers of analysis to explain thoroughly.

In the exercise of the calculating faculty, the examples should be rapidly performed,
without pause for explanation or analysis; and they should have very great variety, and be
carefully arranged so as to advance from the simple and rudimental to the complicated
and difficult.

In the exercise of the analytical faculty, great care should be taken that the processes
do not degenerate into the mere repetition of formulae. These forms of expression should
be as simple and concise as possible, and should be, as far as practicable, expressed in
the pupils own language. Certain necessary points being attended to, the precise from
of expression is of no more consequence than any particular letters or diagrams in the
demonstration of geometrical theorems. Of course, the teacher should carefully criticise
the logic or reasoning, not so as to discourage, but still insisting upon perfect accuracy
from the first.

The oral or mental arithmetic should go hand in hand with the written. The pupil
should be made to perceive that, except for difficulty in retaining long processes in the
mind, all arithmetic ought to be oral, and that the slate is only to be called into requisition
to aid the mind in retaining intermediate processes and results. The arrangement of this
text-book is particularly favorable for this purpose.

(Continued on p. 138)
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