
S4:	Top-k	Spreadsheet	Style	Search	for	Query	Discovery
Fotis	Psallidas

Columbia	University,	New	York,	NY
fotis@cs.columbia.edu

Bolin	Ding														Kaushik	Chakrabarti														Surajit	Chaudhuri
Microsoft	Research,	Redmond,	WA

bolind,	kaushik,	surajitc@microsoft.com

§… hundreds to
thousands of tables

§… tens to thousands
of columns per table

§… and numerous
relations

Background
An information worker

•Has no exact knowledge of the
database and its underlying schema
• Seeks queries to cover information

needs
• Spends a lot of time to go over the

database schema and manually
discover the queries in need

Q: How to help the information worker discover the queries of interest?

Observation: The information worker knows a few example tuples
that should be present in the output of the queries.

Spreadsheet-Style Search

SPREADSHEET-STYLE SEARCH

John Smith Xbox
Jill Hans Surface

§ Enter example tuples that
should be in the output of the
desired PJ query

§ The system replies with the
set of PJ queries relevant to
the example tuples

Contributions
• Introducing top-k spreadsheet style search and a novel scoring

model for error-tolerant but efficient PJ query discovery
• Efficiently score the PJ queries using a novel Enumeration-

Evaluation framework
• Focusing on evaluation using the framework:

• We introduced a strong baseline that evaluates the minimum
number of minimal PJ queries to terminate early

• Bypassed the baseline by sharing sub-PJ queries and
terminating early

• Introduced optimizations to further increase speedup.
• Extensions of our model and approaches include:

• Incremental computation of the output as soon as the user
types in a cell

• OR semantics to allow partial mapping of columns

System Architecture

John Smith Xbox

Jill Hans Surface

PJ-Query	
Enumerator

Database

Offline	Index	Building

Directed	Schema	Graph

Column/Row-Level	Inverted	Index

In-Memory	(Key,	Foreign	Key)	Snapshot

Input:	Spreadsheet
Online	Top-k	Ranking

Evaluation
Minimal	PJ
Queries

Sales

Products Customers

First	Name Last	NameName

Sales

Products Customers

Last	Name CityName

Name

Output:	Top-k	Minimal	PJ	queries

Offline
Built indices to efficiently compute the row
and column scores

Online
§ Enumerate the PJ queries
§ Filter out the non-minimal
§ Evaluate the minimal PJ queries to

produce the top-k results

Question
How can we efficiently evaluate

the minimal PJ queries?

Column ContainmentRow Containment
Scoring Model // What makes a good score?

John Smith Xbox
Jill Hans Surface

Column	Score 2 1 2

Row	Score
John Smith Xbox 3
Jill Hans Surface 2

Sales

Products Customers

First	Name Last	NameName
Xbox
iPhone

Surface

John
Jill

Michael
Peter

Smith
Johnson
Douglas
Williams

Name First Name Last Name
Xbox John Smith
iPhone Michael Douglas
Surface Jill Johnson
iPhone John Smith

Sales

Products Customers

Cost-based	tie	breaker
§ Two PJ-queries with the same score form a

tie we need to break.
§ Examples of cost functions include:

§ Height, #nodes, and #edges of the tree

Balancing	Factor	α
§ α=1: all example tuples exactly

contained in the output of the PJ
query (strict version)

§ α=0: no alignment requirements.
Ranking based on column
containment only

Are the example columns contained in the mapped
columns of the PJ query and to what extent?

Penalize only domain errors

Are the example tuples contained in the
output of the PJ query and to what extent?

Penalize relationship-alignment errors

Given a spreadsheet filled with example tuples
return the top-k most relevant minimal PJ-queries.

System Task

John Smith Xbox

Jill Hans Surface

Input:	Spreadsheet

PJ Queries

Sales	Currency

Sales

Products Customers

First	Name Last	NameName
Minimal PJ Queries

Sales

Products Customers

First	Name Last	NameName

Sales

Products Customers

Last	Name CityName

Name

Sales	Currency

Sales

Products Customers

First	Name Last	NameName

Currency

score

Sales

Products Customers

First	Name Last	NameName

Sales
Products Customers

Last	Name CityName
Name

Output:	Top-k	Minimal	PJ	Queries

…

Exploration	Space:	Minimal	PJ	queries

score

But
§ Cache is limited
§ We want to evaluate the

minimum amount of PJ
queries (to early terminate)

Evaluation w/ Early Termination

Strategy
§ Evaluate PJ queries in the decreasing order of upper bound score
§ Terminate when current upper bound score less than the k-th

ranked evaluated PJ query
§ Guarantees minimal evaluation set of PJ queries

Sales

Products Customers

First	Name Last	NameName

Sales

Products Customers

Last	Name CityName

Name

Minimal	PJ	Queries

𝒔𝒄𝒐𝒓𝒆	=	5

Evaluation	w/
Early	Termination

Sales
Products Customers

First	Name Last	NameName

Sales
Products Customers

Last	Name CityName
Name

Sort	On	Decreasing	UB	Score

𝒔𝒄𝒐𝒓𝒆𝑼𝑩=5 𝒔𝒄𝒐𝒓𝒆𝑼𝑩=4

…

§ Theoretical result: The score of a PJ query given a spreadsheet is bounded
by the column score

§ Column score efficiently computed using the indices built offline!
§ Idea: Use column score as the upper bound score

Sharing Sub-PJ Queries
Idea

Reuse previously computed
intermediate results for Sub-
PJ queries to efficiently
evaluate multiple PJ queries

Sales

Products Customers

First	Name Last	NameName

Top-1	Minimal PJ	queries

Caching-Evaluation Scheduling Problem
The two extremes of PJ queries evaluation
One at a time All at once

§ Cannot	share Sub-PJ	
queries

§ Can find	the	minimal	
evaluation	set

§ Maximum share	of	Sub-PJ	
queries

§ Far	from	the	minimal	
evaluation	set

Given a set of PJ queries ordered by their upper bound scores can
we minimize the cost of evaluation to produce the top-k output?

NP-hard	even	when	the	minimum	evaluation
set	is	given	by	an	oracle

Sales

Products Customers
First	Name Last	NameName

Sales
Products

Customers
Last	Name CityName

Name

LRU	Cache
Sales

Products
r1 r4r2 …store

reuse(,)

Experiments // Evaluation

0
10000
20000
30000
40000
50000
60000

Naïve Baseline FastTopK Naïve Baseline FastTopK Naïve Baseline FastTopK

Low Medium High

PJ
	Q
ue

ry
-R
ow

	
Ev
al
ua

tio
ns

0.1

1

10

100

Naïve Baseline FastTopK Naïve Baseline FastTopK Naïve Baseline FastTopK
Low Medium High

Ti
m
e	
(s
ec
.)

(lo
g	
sc
al
e)

Enumeration	+	upper	bound	computation Evaluation
//Query Evaluations //	Time Performance

//Vary cache size

Experiments // Settings
DATABASE

Inv.	Index	
(MiB)

(key,fk)	snapshot	
(MiB)

#Relations #Text	
Columns

#Edges

CSUPP 4759.7 1237.4 105 821 63

SPREADSHEET	GENERATION
50 spreadsheets	generated	from	meaningful	PJ-Queries	(added	

2	alignment	errors)	bucketed	under	Low,	Medium,	High cost	classes	

EVALUATION STRATEGIES
Naïve	 Evaluation	of ALL	minimal	PJ-Queries
Baseline Evaluation	w/	early	termination	strategy
FastTopK Evaluation	w/	sharing	sub-PJ	queries and early	

termination

0

5

10

15

100 200 500 1000 2000

Ti
m
e	
(s
ec
.)

Cache	size	(MiB)

Baseline FastTopK

0

10

20

30

40

100 200 500 1000 2000

Ti
m
e	
(s
ec
.)

Cache	size	(MiB)

Baseline FastTopK

-0.5

0.5

1.5

2.5

3.5

100 200 500 1000 2000

Ti
m
e	
(s
ec
.)

Cache	size	(MiB)

Baseline FastTopK

0

5

10

15

20

5 10 20 50 100

Ti
m
e	
(s
ec
.)

k

Baseline FastTopK

3000
4000
5000
6000
7000
8000
9000

10000
11000

5 10 20 50 100

Ro
w
	e
va
lu
at
io
ns

k

Baseline FastTopK
//	Vary k

Sharing Sub-PJ Queries & Early Termination
Idea

Approximate the minimum evaluation set by sharing sub-PJ
queries for exponentially increasing batches of PJ-queries.

LRU	Cache

Evaluation	of a	single	batch

Sales

Products

Name

(,)r1 r4r2 …

Sales

Products

Name

…

Sales

Products Customers

First	Name Last	NameName

Batch	0

LRU	Cache

Evaluation	of a	single	batch
Sales

Products Customers

LaunchedBy CityName

Name

Sales

Products

Name

Sales

Products Customers

Last	Name CityName

Name

(,)Customers

City

Name

Customers

City

Name

r1 r4r3 … (,)r1 r4r2 …

Sales

Products

Name

…

Batch	1

Sort	On	Decreasing	UB	Score

…

Sub-PJ queries

Sub-PJ queries

