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PREFACE 

Before the year 1923 the literature dealing with generalized 
hypergeometric series was somewhat scattered, but in that year 
Professor G. H. Hardy published his paper ''A chapter from Ra
manujan's note-book" in which he gave an account and proofs of 
the results then known, most of which had been rediscovered by 
Ramanujan. Since then numerous papers have been written on 
the subject, and it seems desirable that the mass of special results, 
obtained by one method or another, should be collected together. 
This is the primary object of this tract. 

No attempt has been made to give a complete account of the 
ordinary hypergeometric series. In fact the first chapter simply 
gives the minimum required for the succeeding chapters. Again, 
all parts of the subject, such as asymptotic expansions, which 
definitely belong to function theory, have been deliberately 
ignored. 

Although the main part of the work deals with generalized 
hypergeometric series, there are also short accounts of Heine's 
basic hypergeometric series and Appell's hypergeometric func
tions of two variables . 

.My thanks are due to Professor G. H. Hardy who made valuable 
suggestions regarding the general plan of the work, and to 
Professor L. J. Mordell who suggested the desirability of a tract 
on this subject. 

MANCHESTER, 

January 1935. 

W. N. B. 



CHAPTER I 

THE HYPERGEOMETRIC SERIES 

1.1. Introduction. The series* 

1 
+ ~b z+ a(a+ I)b(b +I) z2 + a(a+ I)(a + 2)b (b + 1) (b~ 2) za+ ... 

I.e l.2.c(c+I) l.2.3.c(c+l)(c+2) 

is called the hypergeometric series, and is denoted by F (a, b; c; z). 
It is assumed that cis not a negative integer. 

The series converges when I z I < I, and also when z = 1 provided 
that R (c-a-b)> 0, and when z = -1 provided that 

R(c-a-b+ 1)>0. 

For brevity we write 

and then 

(a)n=a(a+I)(a+2) ..• (a+n-I), (a)0 =1, 

F(a, b; c; z)= f (a),n(b)nz". 
n=O n. (c)n 

1.2. The differential equation satisfied by F(a, b; c; z). 
The differential equation 

{-&(-&+ c -1) -z (a.+ a) (-&+b)}y = 0, 

where -& denotes the operator zdjdz, is evidently satisfied by 

"' Y= ~ Anzn if 
n=O 

(n + l)(c + n) An+l =(a+ n)(b + n) An. 

This is the relation satisfied by consecutive coefficients of the 
series F(a,b;c;z), and consequently the equation is satisfied by 
the series. The equation can be written as 

(1) z (l-z) ~~ + {c- (a+ b + I)z} ~; -aby= 0. 

It is easily seen that the complete solution is 

y=A F(a, b; c; z)+Bz1-cF(a+ I-c, b+ 1-c; 2-c; z), 

valid for I z I < I. 
• Introduced into analysis by Gaus:> 1. 
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By changing the dependent variable it can be verified that the 
function (1-z)c-a-bF(c-a, c-b; c; z) 

also satisfies (1). This solution can therefore be expressed in 
terms of the other solutions, and by comparing coefficients we 
have the relation* 

(2) F(a, b; c; z)=(I-z)c-a-bF(c-a, c-b; c; z). 

By changing z into 1-{in ( 1) we obtain 

"I-{) ~~+{(a+b+ 1-c)-(a+b +I){} ~~-aby= 0, 

which has the solutions 

F(a, b; a+b+ I-c; ') and ,c-a-bF(c-a, c-b; I+c-a-b; ,). 

There is thus a relation of the form 

(3) F(a,b;c;z)=OF(a,b;a+b+1-c; 1-z) 
+D(I-z)c-a-bF(c-a, c-b; I+c-a-b; 1-z), 

where C and D are constants, valid in the region for which 
j z I < 1, 11- z I< l. The constants C and D can be found by put~ 
ting z=O and z= 1, provided that we know the sum of the hyper~ 
geometric series when z = I. This sum will now be obtained. 

1.3. 

(I) 

Gauss's theorem. We shall prove that, when 

R(c-a-b)>O, 

r(c)r(c-a-b) 
F(a, b; c; 1) = r (c-a) r (c--b). 

By comparing the coefficients of xn, it is easily verified that, if 
O~x< 1, 

c{c-1-(2c-a-b-I)x}F(a, b; c; x) 

+(c-a)(c-b)xF(a, b; c+l; x) 

= c ( c - 1 )( 1 - x) F (a, b; c - I; x) 
00 

=c(c-1){1+ :E (un-un_1 )xn}, 
n=l 

where un is the coefficient of xn in F(a,b;c-l;x). Now make 

* Due to Euler. 
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x-+ I. The right-hand side tends to zero if un ~ 0, which is so when 
R(c-a-b)>O. Thus 

(c-a)(c-b) 
F(a,b;c;I)= ( b)F(a,b;c+I;I). cc-a-

By repeating this process, we see that 

F .. ) (c-a),(c-b)mF( . . ) 
(a, b, c, I = (c)m(c-a-b)m a, b, c+m, I . 

Now lim (c-a)m (c-b)m= r (c) r (c-a-b). 
m-co(C)m (c-a- b)m r (c- a) r (c-6) 

Also, if vn (a, b, c) is the coefficient of xn in F (a, b; c; x), and 
m > I c I, we have 

rn 
IF(a,b;c+m; I)-11:::; :E lvn(a,b,c+m)j 

11=1 
00 

~ :E vn(lal, lbl, m-lcl) 
n=l 

labl oo 1 < m-1 c I n:o vn <I a I+ 1, I b I+ 1, m+ I-1 c 1). 

Now the last series converges when m > 1 c I+ I a I+ I b I+ I, 
and is a positive decreasing function of m. Hence 

lim F(a, b; c+m; I)= I, 

and Gauss's theorem is proved. 
When a is a negative integer - n, the theorem becomes 

F(-n b· c· 1)= (c-b)n 
' ' ' (c)n ' 

and this is equivalent to Vandermonde's theorem, familiar in 
connection with one proof of the binomial theorem. 

1.4. Connection between hypergeometric functions of 
z and 1-z. We now return to the relation (3) of§ 1.2. By putting 
Z= 0 and z= 1 we have, if R (c-a-b)> 0, R(c) < 1, 

r (a + b + 1 :- c) r:'J ~::- .!!] 0 + r ( 1 + c - a - b) r ( 1 - c) D = 1 
P(a+1-c)r(b+l-c) r(1-a)r(I-b) ' 

c-r(c)r(c-a-b) 
- t(C -a) r(c-b)' 
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We thus find that* 
r(c)r(c-a-b) 

(I) F(a, b; c; z)=r(c-a)r(c-b)F(a, b; a+b+l-c; 1-z) 

r(c)r(a+b-c) 
+---f'(a)J'~ (1-zy-a-bF(c-a, c-b; 1+c-a-b; 1-z). 

1.5. A definite integral for F(a, b; c; z). Consider the 
integral 

I= J: tb-1 (1-nc-b-1 (1- tz)-adt, 

where, for convergence, R (c)> R (b)> 0, and I z J < l. It is sup
posed that the branch of ( 1 - tz )-a is chosen so that (I - tz )-a""* 1 
as t-+0. Then 

I= fl ~ (a),n zntb+n-1 ( 1- t)c-b-1 dt 
On=O n. 

= £ (a)nznr(b+n)r(c-b) 
n=on! r(c+n) 

=r(b)r(c-b) £ (a)n(b)nzn 
r (c) n=O n! (c)n ' 

the change in the order of integration and summation being easily 
justified. We therefore have, under the given conditions, 

(1} ~(a, b; c; z) = r (brr(~~-b) J>l-1 (1- t)C-b-1 ( 1- tz)-a dt. 

When z= I, the integral on the right reduces to a beta function 
and we are led again to Gauss's theorem. 

Again, if z = - 1, a= l + b- c, the integral in (I} becomes J: tb-1 ( 1 _ tZ)c-ll-1 dt, 

which can be evaluated in terms of gamma functions. This sug
geststhatprobablythesumoftheseriesF(b, l+b-c; c; -I) can 
be found. 

Finally, if b = 1-a, z = f, we are led to the integral 

J: (2t-t2)-a(I-t)C-b-1dt, 

* See a.lso :Barnes 1 where another method is used to obtain this formula.. The 
method is reproduced in Whittaker a.nd Watson, 2Uodan Analysis (ed. 4, 1927), 
§ 14.53. 
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and, taking ( l - t)2 as the new variable, this becomes a beta 
function. We can thus evaluate F (a, 1-a;c; !) in terms of gamma 
functions. The actual formulae will be given in Chapter II. 

1.6. Barnes' contour integral for F(a, b; c; z).* Consider 
the contour integral 

_!__fi"" r(a_+s)f(b+8)r(-8) -zsJ-
27Ti -i:>O r (c +8) ( ) ~. 

'vhere I arg (- z) I< 1r, and the path of integration is curved, 
if necessary, to separate the poles 8= -a-n, 8= -b-n, 
(n=O, 1, 2, ... ) from the poles 8=0, 1, 2, .... This contour can 
always be drawn if a and b are not negative integers, as then 
none of the decreasing sequences of poles coincides with one of 
the increasing sequence. 

Now,t if I arg (s+a) I~ 1r-0, I argsl ~ 1r-o, then 
log r (s+a) = (s+a- t) logs -s+! log (27T) +o ( 1), 

when lsl-+oo. 
Thus, the integrand, which can be written 

r(a+s)r(b+s) 1T(-z)s 
- r (c+s) r (i +s) Sil181T ' 

is asymptotically equal to 

1T (- z)s 
- ---;--~-- exp [(a+ b- c -1) log 8]. 

Sill 81T 

Putting 8 = iv on the contour, we see that, for large values of v, 
the integrand is 

0 [va+b-c-1exp {- varg ( -z) -1T I v 1}]. 
Thus the integral is an analytic function of z throughout the 

domain I arg (-z) I~ 1r- o, where o is any positive number. 
Now let C denote the semi-circle of radius N +!on the right of 

the imaginary axis with centre at the origin, N being an integer. 
As before the integrand is 

( -z)s 
O(Na+b-c-1) --. _ 

Slll81T 

for large values of N, the implied constant being independent of 
arg8 when sis on the semi-circle. 

• Barnes 1. t Whitta.kcr a.nd Watson, .Modem A.naly.~i.~, § 13.6. 
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If S= (N + !)ei0 and I z I< 1, we have 
( -z)s 
sins1r = 0 [exp{(N +·~·)cos IJlog I z 1- (N +!)sin IJarg (- z) 

- (N +l)1T I sinO I}J 
= 0 [exp{(N + k)cosOlog I z 1- (N +i)S I sinO 1}], 

and this is 

0 [exp{2-! (N +!)log I z I}J if 0 ~ 181 ~ !1r, 
and O[exp{-2-!S(N+l)}] if !1T~IOI~!1T. 

Hence, if log I z I is negative, that is if I z 1 <I, the integrand 

tends to zero sufficiently rapidly to ensure that J ~ 0 as N ~ oo. 
G 

By using Cauchy's theorem for the contour formed by G and 
the part of the imaginary axis from i(N +!)to -i(N +}),and 
then making N ~oo, we see that, when I arg( -z) 1 =::;7T-S and 
I z I< I, 

_1 fico r (a + 8) r ( b + 8) r ( - 8) 8 

21Ti -iro r ( c + 8) ( - z) ds 

1. ~ r(a+n)r(b+n) 
= 1m ~ zn 

N-H¢n=0 n! r (c+n) ' 

since r ( -s) has a simple pole at 8=n, (n= 0, I, 2, ... ) with residue 
( -l)n-1/n!. Thus the integral represents an analytic function in 
the region I arg ( -z) I< 1T, and when I z I< 1 this analytic function 
may be represented by the series 

r (a) r (b) 
r (c) F (a, b; c; z). 

The symbol F (a, b; c; z) rna y therefore be used to denote the 
more general function defined by the integral when divided by 
r (a) r (b)jr (c). 

1.7. Barnes' lemma.* If the path of integration is curved so as 
to separate the increasing and decreasing sequences of poles, then 

-2
1 ·fi"'. r (oc +s) r (,8 +s) I' (y-8) r (8 -8) ds 
1T~ -too 

_ r (oc+y) r(oc+o) r (~+y) r (,8+ o) 
- r (a.+ ,8+y+8) 

* Ba.mes1. 
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Write I for the expression on the left. Let C be the semi-circle 
of radius p on the right of the imaginary axis with its centre at the 
origin, and suppose that p ~oo in such a way that the lower bound 
of the distance of c from the poles ofr (y-s) r {8 -s) is definitely 
positive. Then 

r (oc+s) r (~+s) r (y- s) r (S- s) 

_ r <a. + 8) r ca + s) 1T2 
- r-(I.:.:.-y-t8Tr (i --8 + s). sin (y- 8) 1Tsiri(3--=-8) 1T 

= 0 (so:+,8+y+3-2 exp {- 21T I I (s) I}] 

as lsi ~oo on the imaginary axis or on G. Thus the original 
integral converges, and the integral round C tends to zero as 

p~oo when R(oc+~+y+S-I)<O. The integral is therefore 
equal to minus 2m times the sum of the residues of the integrand 
at the poles on the right of the contour. Thus 

00 

I= :E r (a.+y+n) r (~+y+n) r (3 -y-n)( -I)n/n! 
n=O 

00 

+ ~ r(oc+8+n)r(,B+o+n)r(y-8-n)(-1)n/n! 
n=O 

=r(a.+y}r(,8+y)r(S-y)F(oc+y, ,8+y; 1+y-S; I) 
+ a similar expression with y and o interchanged. 

Using Gauss's theorem we obtain the required result after a 
little reduction. The formula has been proved only when 

R(oc+~+y+S-1)<0, 

but by the theory of analytic continuation it is true for all 
values of a, {3, y, S for which none of the poles ofr (x+s) r (/3 +s) 
coincide with any of the poles of r (y- s) r (S -8). 

By writing 8- k, oc + k, ,8 + k, y- k, o- k for s, Ot, ,8, y, o, we sec 
that the result is still true when the limits of integration are 
k ± ioo, where k is any real constant. 



CHAPTER II 

GENERALIZED HYPERGEOl\IETRIC SERIES. 
FURTHER RESULTS CONCERNING OR
DINARY HYPERGEOMETRIC SERIES 

2.1. Introductory remarks. In the ordinary hypergeometric 
series F (a, b; c; z) there are two numerator parameters a, b, and 
one denominator parameter c. ~!ore generally, we can consider 

~ (:Xl)n (:X2)n •. ._{:Xp)n zn 
n=O n! (pl)Jt ··· (pq),! ' 

the series 

which we denote by 
F [0(1, 

p q 

With this notation the series F (a, b; c; z) is denoted by 

2F 1 (a, b; c; z). 

When p ~ q, the series converges for all values of z. When 
p > q + 1, the series converges only for z = 0, and is therefore 
significant only when it terminates. 

Usually we shall be concerned with the case when p = q + 1. 
Then the series converges when I z I< I, and also when z= I pro
vided that R (~p- ~:X)> 0, and when z = - I provided that 
R(Lp-Loc+ 1) > 0. 

The differential equation satisfied by 

is, as in§ 1.2, 

F [ocl' cc2' ... , ocp+l; z] 
p·H P 

P1• ... • Pp 

{-& (-&+ P1- 1) ... (-&+ Pp- 1) -z (-&+ oc1)(.& + oc2) ... (-&+ ocP+l)}y= 0, 

where.& denotes the operator zdjdz. The other solutions of this 
equation are easily found to be 
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vaJid for I z I < I if no two of the numbers I, p1 , p2 , ••• , Pp differ by 
an integer. 

2.2. Saaischiitz's theorem. In the formula 

(I-z)a+b-c 2F 1 (a, b; c; z)= 2Fdc-a, c-b; c; z), 

obtained in § 1.2, equate the coefficients of z", and we obtain 

£ (a)r(~)r (~-a_-b)11 =' = (c---:a) 11 (c-b)11 

r~o r! (c)r (n-r)! n! (c), · 
Hence 

~ (a)r<!>l! _r~.~a-b) 11 (=n)r = (c-a)11 (c-b)n_ 
r~o r!(c)r (l+a+b-c-n)rn! n!(c),~ 

It follows that 

(I) .//[a, b;-n; I J=(c~a)~~.(c-b)11 
3 2 c, I+a+b-c-n (c)~~.(c-a-b),~' 

a result due to Saalschi.itz. * It sums the series 

aF 2 [oct ' oc2' oca; I] 
Pt• P2 

when p1 + p2 = oc1 + oc2 + oc3 + I and one of the numerator para
meters is a negative integer. The theorem reduces to Gauss's 
theorem when n-+oo.t 

In future, when the argument z is omitted, it will be assumed 
that z = 1. Saalschiitz's theorem can then be written in the form 

(2) F [a, b, c;J=r(d)r(I+a-e)r(l+b-e)r(I+c-e) 
3 2 d, e r{l-e)r(d-a)r(d-b)r(d-c) , 

provided that a, b or cis a negative integer and d + e =a+ b + c + I. 

2.3. Kwnmer's theorem.t We shall prove that 

(1) F [a, b; -IJ=r(I+a-b)r(I+!a). 
2 1 1+a-b r(I+a)r(1+!a-b) 

As a preliminary lemma we show that 

[a, b; z] -a [ta,t+ia-b;-(I~z)2]' 
(2) 2Ft I b =(1-z) 2Ft 1 b +a- +a-

* Saalschii.tz 1, 2. See a.lso Sheppard 1 and Douga.ll1. 
t For the details of the limiting process, see Douga.ll 1. 
t Kummer 1, p. 53. 
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a formula* which is valid inside the loop of the curve 

l4z I= li-z 12 

which surrounds the origin. The right-hand side of (2) is analytic 
inside this region, and can therefore be expanded in powers of z 
when I z I < 3- 2 y2. Now the right-hand side of (2) is 

~ li~)~(!+!a:-:~):(-4zY(l-z)-a-2r, 
r=O r! (1 +a-b)r 

and the coefficient of zn is 

~ (!_~!(~+la-b)r ( -4)r(a+~r)n-r 
r=O r!(l+a-b)r (n-r)! 

_(a)n ~ (!+!a-b)r(a+n)r(-n)r 
- n! r=O r!(l+a-b)r(ta+f), 

=(a)n F [!+ta-b, a+n, -n;J 
n! 3 2 1+a-b,ta+l 

(a)11 (b)n 
= n-! (1 +a-b)n' 

by Saalschtitz's theorem. The formula (2) is therefore proved 
when I z I< 3- 2y2, and the complete result follows by analytic 
continuation. 

Now let z--+- l, and we find that 

F [a, b; -1]=2-a F [!a, !+~a-b;J· 
2 1 l+a-b 2 1 l+a-b 

The series on the right can be summed by Gauss's theorem, and 
the required formula is easily obtained. 

2.4. Some other sums. As a preliminary lemma we prove the 
formula 

(I) (1-z)-a2Fl[a, ~ -z/(1-z)]=2Fl[a, c:b; z]. 

valid if I z I< l and R (z) < !-

• Gausst. 

GENERALIZED HYPERGEOMETRIC SERIES 

The coefficient of zn on the left is 

~ f~)r_(b)r (-l)'(a+r)"='=(a)n ~ ~~)r_!__-n)r 
r=or!(c)r (n-r)! n!r=O r!(C)7 

(a)n (c- b)n 
n! (c)n 

11 

by Vandermonde's theorem, and the formula is proved. The 
argument is valid if I z I<!, and the complete result follows by 
analytic continuation. 

Now let z-+ - 1, and we find that 

2F1 [a,~;!]= 2a2F1 [a, c-~; -ll 
The series on the right can be summed by Kummer's theorem 

when either c=Ha+b+l) or a+b=l. We thus obtain the 
formulae 

[
a, b; !] r(t)r(t+ta+tb) 

(
2

) 2F 1 !(a+b+I) =ra+ta)r(t+!b)' 

(3) 

The formula (2) is due to Gauss.* 

2.5. Standard types of generalized hypergeometric series. t 
When the parameters of the series 

F [ott, ot2, ... , IXP·H; z] 
p+l p 

P1• ... , Pp 

are such that ~P = ~oc + 1 (which is satisfied by the series 3F 2 in 
Saalschiitz's theor-em) the series will be said to be Saalschiitzian. 

If the parameters satisfy the relations 

l +()(I= P1 + OC2 = · ·· = Pp + ()(P+l • 

the series will be said to be well-poised. 
The series will be called nearly-poised if all but one of the pairs 

of parameters have the same sum. If 

P1 + ()(2 = P2 + ()(3 = · · · = Pp + ocp+l, 

• Gauss 1. 
t The names 'Sa.alschiitzian', 'well-poised' and 'nearly·poised' are due to Whipple 

3, 2 and 5. Whipple applied the term 'Sa.alschiitzia.n' to terminating series only. 
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so that the breakdown in the equality of sums of pairs of para
meters occurs with the first pair (regarding las the first denomin
ator parameter) we shall call the series a nearly-poised series of 
the first kind. If, however, the breakdown occurs with the last 
pair, so that 

1 +ott= Pt + ot2 = ... = Pp-t + otP' 

w·e shall call the series a nearly-poised series of the second kind. 
It will be noticed that the series in Kummer's theorem is well

poised, while the series in Gauss's theorem is nearly-poised. 

CHAPTER III 

SERIES OF THE TYPE 3F 2 WITH 
UNIT ARGUMENT 

3.1. Dixon's theorem. The theorem of Saalschtitz gives one 
ease in which the series 3 F2 with unit argument can be summed. 
In this paragragh we show that any convergent well-poised 
series of this type can be evaluated in terms of gamma functions. 
The formula is* 

(I) /<' [a, b c; J 
3 2 1 +a- b, 1 + n- c 

_r'(1+!a) r'(1+a-b) r'(l+a-c) r(l+§a-b-c) 
- f'{l:t--a) r (1 +!a-b) r' (1 +!a-c) r' (1 +a-b-c)' 

and includes as a special case the sum of the cubes of the co
efficients in the binomial expansion.t It reduces to Kummer's 
theorem when C--*-00. 

Now, by Gauss's theorem • 

Thus 

. r(I+a+2n)r(I+a-b-c) _ F [b+n, c+n;J 
r(I+a-b+n)r(I+a-c+n)- 2 1 l+a+2n . 

_____ !'(a) r (b) r (c) F [a, b, c; J 
r (I +a-b)f'(I +a- c) 3 2 I +a-b, I +a-c 

= ~ -- r(a+n)r(b+n)r(c+n) 
n=<O n! r(I +a- b +n) r (I +a-c +n) 

= ~ r(a+n)r(b_±~l_rjc+n __ ) __ p [b+n, c+n;J 
n,on!r(l+a+2n)r(l+a-b-c) 2 1 I+a+2n 

= ~ ~ r(a+n)r(b+n+m)r(c+n+m) 
. n "- o m = o n! m ! r (I +a + 2n + m) r ( l +a - b -c) 

= i £ r(a+n)r(b+p)r(~_+p) 
w-0 n=on!(p-n)!r(l+a+n+p)r(l+a-b-c) 

= ~ r(a)r(b+p)r(c+p) F [a, -p; -I] 
p '-oP! r (I +a-b-c) r (I +a+p) 2 1 I +a+p 

* Dixon 2. The proof given here is due to Watson 3. 
t Morley 1. l:lcc also Dixon 1, Richmond 1, :\fac:\lahon 1. 



I4 SERIES OF THE TYPE 3 ~1!'2 WITH UNIT ARGUMENT 

= ~ _ _I'(~)f(b+p)f(c+p)f(I+ia) 
p=O p! f (I +a-b-c) f (I +a) r (1 + !a+p) 

_ f(a)r(b)f(c) F [ b, c; J 
-f(1+a)f(1+a-b-c) 2 1 1+la 

r (a) r(b) r (c) r (1 +!a) r (1 +la-b-c) 
= r (1 +a>-f'(1 +a-b-c> r(1 +!a-bYr'-<1 +!a-c) 

and the formula is proved. In the analysis* we have used the 
theorems of Kummer and Gauss. 

3.2. Some transformations of series 3F2 • In this paragraph 
we prove two fundamental relations, one involving two series 

3P 2 , and the other involving three series of this type. The first 
formula ist 

(I) F [a, b, c;]=____!ie)r(j)~i1_ p ce-a,J-a, s;J 
3 2 e,f r(a)f(s+b)f(s+c) 3 2 s+b, s+c ' 

where s=e+f-a-b-c. 
The proof proceeds on similar lines to the proof of Dixon's 

theorem, Gauss's theorem being used in the analysis, 

r_(a) r (b) r (c) F [a, b, c;J 
r (e) r (f) 3 2 e, f 

= ~ _!"' (a+ n) r ~ ~-± ~ !_r ( c + n) 
n=O n!f(e+n)r(j+n) 

= ~ r(b+n)r(c+n) F ce-a,J-a;J 
n=on!r(e+f-a+n) 2 1 e+f-a+n 

= ~ ~ r(b+n) r (c +n) r (e-a+m) r (.f_~a+m) 
n=Om=nn!m! r(e+f-a+n+m} f(e-a) r(j-a) 

_ ~ r(e-a+m)f(J-a+m)r(b)r(c) F [ b, c; J 
-m=om! f(e+f-a+m) f(e-a) r{f-a) 2 1 e+f-a+m 

= ~ ~(e-:~±m> r <J-a+m> r (b) r <c> r<e+ 1=-~=-Y-:-_c+_m> 
m=om! f(e+ J-a-b+m) r (e+J-a-c+m) r(e-a)r (f-a) 

= r(b)r(c)f(e-t:J-:-a-6-c) 
3
F

2
ce-a,f-a, e+f-a-b-c;J 

r(e+f-a-b)f(e+f-a-c} e+f-a-b, e+f-a-c 

* The justification of the interchange in the order of summation is similar to tha.t 
of the next pa.ra.gra.ph. t Thomae 1, equation 11. 
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and this is the formula stated. The argument requires that the 
double series should be absolutely convergent. This is certainly 
f\O if the real part of e +f-a is sufficiently large. Suppose, for 
example, that e+f-a>2r+ l, where r is an integer. Then* 

f(e+f-a+m+n) > f(n+r+ 1) f(m+r+ 1) 

and the double series may be compared with the product of two 
absolutely convergent simple series. 

The second fundamental relation ist 

[
a, b, c;J r(I-a)f(e)r(f)r(c-b) 

<
2> 3F 2 e,f = r(e-b)r(f_--b)I'Tf+b-a)l'(c) 

x F [b, b-e+ 1, b-f+ l;J 
3 2 1 + b - c, 1 + b - a 

+ a similar expression with b and c interchanged. 

To prove this consider the integral 

_ e±lns ___: _ _:_~-=----·--:~c-::-....:.....,---'---' 
l Jiro . r(-s)r(a+s)r(b+s)r(c+s)ds 

2m -iro f(e+s)f(f+s) ' 

where the contour is curved, as usual, to separate the increasing 
and decreasing sequences of poles. As in the proof of Barnes' 
lemma this integral is equal to minus 21ri times the sum of the 
residues at poles of the integrand on the right of the contour. 
Similarly by taking a large semi-circle on the left of the contour 
we can prove that the integral is equal to 2m times the sum of the 
residues at poles on the left of the contour. Equating these two 
results we have 

r (a) r (b) r (c) F [a, b, c;J 
r(e)f(j) 3 2 e,f 

- ,;... e :i 11Ta ___:~_2_..~~~----:-....:. 
~ . r (a) r (b -a) r (c -a) F [a, 1 +a-e, 1 +a-f;J 

-a,b,c r(e-a)f{j--a) 3 2 l+a-b, l+a-c . 

Now multiply these two relations by e'~'i"a and subtract, and 
we obtain (2). 

* Cf. Hardy 2, p. 500. 
t Thoma.e 1, p. 72. See also Hardy 2, p. 501. 
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3.3. Watson's theorem on the sum of a 3F 2 • Using the 
transformation ( 1) of§ 3.2 we have 

F [a, b, c;]= _r(ta+~_b+})r(2c)r(c+t-ta-!b) 
3 2 t (a +b+ 1), 2c r(a)r(c +~--!a+ !b) r(2c+ t- ia- !b) 

F [2c -a, t (l +b-a), c+ k (l-a-b);] 
X a 2 2c+k(l-a-b), c+H1-a+b) · 

The series on the right can be summed by Dixon's theorem, 
and we find that 

(I) 3Fz [:·(a+:~ 1), ;~] 
- r (!) r(t+c) r (!+!a+ !b) r (! -ta- ib +c) 
-r (!+!a) r (!+ !b)·r <t- }a+-c) r (!_.:_!6 +c)· 

This formula was given by Watson* in the case when a is a 
negative integer, and the more general case was given by Whip
ple.t When c-Ho, the theorem reduces to §2.4(2). 

3.4. Whipple's theorem on the sum of a 3F 2 • We now prove 
that, when a+b= 1 and e+ f= 2c+ 1, 

( I) F [a, b, c;J 
a 2 e, f 

1rr (e) r (/) 
= 22C-l r (!a+ te) r (!a+ if) r (kb+!e) r (!b+ !/)' 

a result given by Whipple.:j: 
Using the transformation ( 1) of § 3.2, we see that, under the 

given conditions, 

F [a, b, c;]= r(e)r(J)r(c) F [e-a,f-a, c;] 
3 2 e,j r(a)r(b+c)r(2c) 3 2 b+c,2c 0 

The series on the right can be summed by Watson's theorem, 
and the result follows. When we substitute forb and e and let 
c-+oo, the theorem reduces to §2.4(3). 

3.5. The functions Fp and Fn. The fundamental relations 
of § 3.2 are only two of many relations obtained in 1879 by 
Tho mae§ who approached the subject through the calculus of 

* Watson 5. See a.1so Hardy 2. 
+ Whipple 1. 

t Whipple 1. 
§ Thomae 1. 
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finite differences. In 1923 Whipple* introduced a notation which 
provided a clue to the numerous formulae obtained by Thomae. 

Let r0 , r1 , r2 , r3 , r4 , r5 be six parameters such that 
5 

~ ri=O. 
i=O 

With these parameters associate numbers oc and fJ such that 

oclm•~=! +r,+rm +r,~, 

flmn =I +rm -rn. 

Define functions Fp and Fn by the equations 

F (0 4 5) 1 F [ocl4s• oc24s• oca4s;] 
p ; J = r (1Xlz3) r (fJ4o) r (fJso) 3 2 fJ4o J flso ' 

1 F [()(023 • 1Xo1a' IXo12;] 
Fn (O; 

4
' 

5
) = =r-=-(oc-o4-:s):-;;ro;;-:(,8o4) f'l.Bos) 3 2 {304' f3os • 

The Fn function is derived from the corresponding Fp function 
by changing the signs of all the r's. 

Bypermutationofthesuffixes 60Fp'sand 60Fn'scan be found. 

If ocus=a, 1X24s=b, IX345=c, f34o=e, flso=f, 

()(123 =e+ f-a-b-c=s, 

so that the hypergeometric function occurring in the definition 
of Fp(0;4, 5) is 3F 2 [a,b,c;e,J], then all the ()('sand ,B's can be 
expressed in terms of a, b, c, e and f. They are set out in Table I. 

Table I. 

Expressions for IX'& and ,B's in terms of a, b, c, e,f 
(s=e+f-a-6-c). 

2=1-c I 
3=1-b 
=1-f+a: 
=1-e+al 
=1-a 
= 1-J+b 
==1-e+b 
==1-f+c 
=1-e+c 
=1-s 

O:ua=B 
o:12,=e- c 
a.t2s=f-c 
et13,=e- b 
Gttas=f-b 
<Xus=a 
Ot:2a4=e-a 
<X2a5 =!-a 
Gt2C5 = b 
CY.acs = C 

• Whipple 1. Cf. Barnes 2. 
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In Tables II A and II B the parameters of the Fp's and Fn's are 
given in terms of a, b, c, e, f. 

Table IIA. 

-· --

---' I v,w Numerator parameters Denominator parameters 
··-

I 
-- -·-- -·-···------- -

i 4, 5 b, f a, c e, 
Fp (0) 

'·. I 8, e-a, f-a s+b, s+c 
1, 4 a, e-b, e-c e, 11+a 

-- -·· . --

Fp (l) 0, 2 I 1-e+b, 1-f+b, 1-a 1+b-a, 2-s-a 
[Fp (2) and 0, 4 1-s, 1-f+b, 1-J+c 1+b+c-f, 2-s-a 

2, 3 e-a, f-a, 1-a 1-a+b, 1-a+c Fp (3) arc 
of this type] 2, 4 b, e-a, 1-f+b l+b+c-j, l+b-a 

4, 5 1-s, b, c 1 +b+c-j, 1+b+c-e 
--

Fp (4) 0, 1 1-e+a, 1-b, 1-c 2-e, 1+J-b-c 
[l<'p (5) is of 0, 5 1-e+a, l-e+b, 1-e+c 2-e, 1-e+f 

this type] 1, 2 j-c, I-c, s 1 +f-a-c, l+f-b-c 
I, 5 1-e+a, j-c, f-b l+f-e, l+f-b-c 

Table lin. 

Fn (u; V, w) = r (ocuvw> r (~uv) r <.Buw) 3F2 [0Cuyz.Bu:~Pu:uxu]. 
v, w 

------1-------
4, 5 

Fn (0) 2, 3 
I, 4 

------1-~-

l<'n ( 1) 
[Pn (2) and 
Pn (3) are 
of this type J 

0, 2 
0, 4 
2, 3 
2, 4 
4, 5 

I 

·-

Jt'n ( 4) 
[Fn (5)isof 
this typoJ 

0, 1 
0, 5 
1, 2 
1, 5 1 

-·· 

Numerator parameters 

1-a, 1-b, 1-c 
1-s, 1-e+a, I-j+a 
1-a, 1-e+b, I-e+c 

e-b, f-b, a 
8, J-b, f-c 

1-e+a, l-f+a, a 
1-b, l-e+a, j-b 

s, 1-b, l-c 

e-a, b, c 
e-a, e-b, e-c 

I-J+c, c, l-8 
e-a, 1-f+c, I-f+b 

I Thmominato' ""'='"'" 
2-e, 2-j 

· 2-s-b, 2-s-c 
2-e, 2-s-a 

I l+a-b, s+a 
I 1-b-c+f, s+a 
I 1 +a-b, l+a-c 

1-b-c+f, I+a-b 
1-b-c+f, l-b-c+e 

--
e, 1-f+b+c 
e, 1+e-j 

1-f+a+c, 1-f+b+c 
1 +e-j, I-f+b+c 

In these tables only representative forms are given. The per
mutation of the indices I, 2, 3 corresponds with the permutation 
of a, b, c, whilst the permutation of 4 and 5 corresponds with the 
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permutation of e, f. Thus Fp (2) and Fp (3) are of the same type 
as Fp (1) in the sense that they can be derived from it by the 
interchange of b or c with a. For example, by comparison with 
Fp (I; 0, 2) it is seen that Fp (2; 0, 1) has the parameters 

1-e+a, 1-f+a, 1-b; 1 +a-b, 2-s-b. 
The condition that the series Fp (u; v, w) may be convergent is 
R (ocx11:&) > 0. It will be noticed that r (ocE11z) occurs in the de
nominator in the definition of the Fp function. The condition for 
Fn (u; v, w) to be convergent is R(ocuvw) > 0. 

3.6. Transformations of series 3F2 with unit argument. 
We now turn to the fundamental relations of§ 3.2. The formula (I) 
of that paragraph can be written, in our new notation, 

( 1) Fp (0; 4, 5) = Fp (0; 2, 3). 

By interchanging r4 and r1 we find that 

Fp (0; I, 5) = Fp (0; 2, 3), 
and thus 

(2) Fp (0; 4, 5) = Fp (0; 1, 5). 

Accordingly all the permutations of the indices 1 to 5 are 
legitimate, and we see that all the ten expressions Fp (0; v, w) are 
equal* and may be conveniently denoted by Fp (0). Similar 
results are true for the other Fp's and the Fn's. Thus the 60 series 
Fp may be divided into six groups of 10, the members of any one 
group being all equal. A similar remark applies to the 60 series Fn. 

3.7. Three-term relations. Now turn to the relation (2) of 
§ 3.2. In our present notation this can be written 

(l) sin7T,823 Fp(O)=- Fn(2) 
1T r ( iXo23) r ( OC134) r ( iX135) r ( iX345) 

Fn(3) 
- r ( 1Xm) r ( ~125) r ( iX24s) . 

Changing the signs of the r's, we obtain 

( 2) ~n 7T,8a2 Fn (0) = -- Fp (2)-c-=--,-----,-
7T r ( iXm) r ( :Xo2S) r ( :X024) r ( 1X012) 

Fp(3) 
- r (ocoas) r (1Xro4) r (1X013). 

* Barnes 2, Hardy 2, Whipple 1. 



20 SERIES OF THE TYPE 3F 2 WITH UNIT ARGUMENT 

By combining three equations like (I) it is found* that 

(3) --~ si~TT/345 ___ Fp(O) 
r (1Xm) r ( IXod r (1Xo23) 

+~ sin71f35o __ . Fp(4) 
r (1Xm) r (.xla4) r (.x234) 

sin7rf304 F _) +-~ -- - ~ p(v =0, 
r < oc12s) r ( 0(135) r ( .x2a5) 

and, changing the signs of the r's, 

(4) - sin1Tj35! - Fn (0) 
r < 0(345 > r < 1Xz45) r ( .x145 > 

+ - sin 71 f3o5 Fn ( 4) 
r (1Xoa5) r (.x025) r (1Xo15) 

sin7rf34o F +----- ---- n(5)=0 r ( .xoa4) r < 1Xo24) r < IXo14) · 

Now eliminate Fn(2) from the relation of the type (1) con
necting Fp (5), Fn (0), Fn (2) and the relation of the type (2) 
connecting Fn (2), Fp (0), Fp (5). It follows that"t 

Fp(O) 
(5) r (1X12o> r (.x13~)r (~23o) r (a:24o) r <~~~o) r <0(~4~) 

sin11f305 Fn(O) -K F (-) + -=:;:,--,-------;--=-::- - 0 p D ' 
7rr (a:12a> r (.xl24) r (a:la4) r (a:2a4) 

where 

113 K 0 =sin 11a:145 sin 11a:245 sin 7r.x345 +sin mx123 sin 11/340 sin 11{350 , 

or, in terms of the r' s, 
5 

4713K0 = L COS7r(r0 + 2rn)- cos 37rr0 • 
7L=1 

The analogue of (5) is 

(6) Fn (0) 
r(;~5) r (a:245) r (a:145) r (~;;,) r (a:235) r (a:m) 

+---~in'f!f3soFp(O) - =KoFn(5). 
7rr (1Xots) r (1Xo3s) r <~025} r (oc015) 

All the three-term relations between the 120 hypergeometric 
series are typified by the equations (I) to (6). 

• Cf. Thomac t, equation 46, Hardy 2, equation 7.1. 
t Cf. Thomac t, equation 5:3. The discussion given here is due to Whipple 1. 
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3.8. An example. As an example of the use of the tables 
consider the formula* 

(I) F [a, b, c;J =~(e) r (e-a-b) F [a, b, f -c; J 
3 2 e, f r(e-a)r(e-b) 3 2 a+b-e+I,f 

+ r (e) r(f) r (a +b-e) r (e+ J-a-b -c) 
r (a) r (b) r (j-c) r (e+ f-a -b) 

x F [e-a, e-b, e+f-a-b-c;J 
3 2 e-a-b+I, e+f-a-b · 

By the use of Tables II A and II n we identify the series as 
multiples of Fp (0; 4, 5), Fn (5; 0, 3) and Fn (3; 0, 5). Hence, after 
division by r (s) r (e) r (f), the formula may be written (with the 
help of Table I) in the form 

F (0 -) 71 r (a:oas) p · 4 a= -· ------Fn(5·0 3) 
' , sin7rj353 r(0(234)r(1Xl34)r(oc123) ' ' 

+ 7r - r (1X035) Fn (3· 0 5) 
sin 71J3as r ( 0(145) r ( 0(245) r ( 0(125) ' ' . 

This is equivalent to § 3.7 (I) with the indices 2 and 5 inter
changed. 

The formula (I) has an interesting connection with Saalschtitz's 
theorem. If e + f =a+ b + c + I, the first series on the right reduces 
to a 2F 1 which can be summed by Gauss's theorem, and we ob
taint 

(2) F [a, b, e+f-a-b-1;] 
3 2 e, f 

- r (e) r (f) r (e-a-b) r (f-a-b) 
- r ( e- a) r ( e - b) r (f- afr'(j- b) 

1 r(e)r(j) 
+a-+b-e r(a)r(b)r(e+f-a-6) 

F [e-a, e-b, I; J 
x 3 2 e-a-b+1, e+J-a-b · 

If a or b is a negative integer, the second term on the right 
vanishes, and we obtain Saalschtitz's theorem. Thus (2) gives the 
form which Saalschlitz's theorem assumes when we remove the 

• Ha.rdy 2, equation 5.2. 
t ~a.alschutz 2. Sco a.lso Hardy 2. 
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restriction that one of the numerator parameters must be a 
negative integer. 

3.9. Terminating series. When the parameter cis a negative 
integer, say -1?li, the series 3F 2 [a,b,c;e,f] terminates. In this 
case the series can be written in the reverse order, and we find 
that, when tX345 = c = - m, 

(1) r (tX 124 ) r (tX125) Fp (0) = (- I)m r (tX023) r (tX013) Fn (3). 

This equation is a degenerate form of§ 3. 7 ( 1 ). 
There are 18 terminating series altogether. Three of these are 

forms of Fp (0), namely Fp (0; 4, 5), Fp (0; 3, 5) and Fp (0; 3, 4). 
When reversed these three give Fn (3, 1, 2), Fn (4; 1, 2) and 
Fn(5; I, 2). The relations between the 18 series are shown by the 
equations* 

r (tX123) r (tX 124 ) r ( tX125) Fp (0) 

= r (tXo23) r (tXo24) r (tXo2s) Fp (1) 

= r (tX013) r (tX014 ) r (tX015) Fp (2) 

= ( -l)m r (tX123) r (tX023) r (tX1113) Fn (3) 

= ( -l)m r (tX124) r (tX024 ) r (tX014) Fn(4) 

= ( -l)m r (tXt2s) r (1Xo2s) r (tXots) Fn (5). 

The other series such as Fn (0) do not give any specially simple 
relations. 

• The relation between Fp (0; 4, 5) and Fp (1; 4, 5) was <'stablishcd by Shcp· 
pard 1. !<'or the other relations S('c Whipple l. 

CHAPTER IV 

}IETHODS OF OBTAINING TRANSFORMATIONS 
OF HYPERGEOMETRIC SERIES; (1) BY 
SUl\BHNG SERIES OF LOWER ORDER 

4.1. Introductory remarks. We now consider various me
thods by which transformations of generalized hypergeometric 
series have been obtained. The argument z will usually be equal 
to unity and will therefore be omitted, but later we shall derive 
some transformations of series for which z = - 1. 

In §3.1 we have shown how Dixon's theorem can be obtained 
from Kummer's theorem by using Gauss'stheorem in the analysis. 
Whipple* extended this method to obtain transformations of 
both well-poised and nearly-poised series. Instead of following 
Whipple's method we use a methodt which gives results for 
series of higher order when the series terminate. In this chapter 
we shall be concerned only with terminating series except in the 
case of some deductions in §4.4 and §4.6. 

4.2. A method of obtaining transformations. Suppose we 
have the formula 

(1) ~ (tXdr~2),.(tXa),._(_-:=_?~),.(Kl +n)r!p.1-tl(K2+n)r(ft•-ll(ll)~1 r( -I)'cr 
r=O r! (/31)r(f~2)r (ll +n),.(~J-l)(Kl)ptr(K2)p•r 

(pl)n (p2)n (pa)n (ll)n b» 
- (al)n (a2)n (Kt)n (K2)n' 

giving the sum of a certain hypergeometric series. Then 

F [Pt, P2 • Pa, al, a2, - m; b] _ ~ (al)n (a2)n (- m)n (Kt)n (K2)n 
al, a2, Pt, P2, Pa - n=O n! (pl)n (p2)n (Pa)n (ll)n 

£ (tX1)r (tX2),. (oc3),. (- n),. (K1 + n),.(f'J-ll (K2 + n),.c~z-1) (l1)111 ,. (-I)' cr 
X r=O r! (/31),. (/32)r (ll + n)r(vt-ll (Kl)J4,r (K2)J4zr 

= ;: ~ (al)n(a2)n( -m)n(Kt +f-ttr)n_,.(K2+f-t2r)n-r1(tXl)r(tX2)r(tXa)rC:~. r=O n=r (n- t)! (Pdn (p2)n (Pa)n (ll + 1V)n-r r · (f3t)r (/32),. 

• Whipple 2 and 5. t Bailey 3. 
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Putting n = r + t, we get 

~ mi:,r (al)r+l (a2)r+l (- m )r+l (~1 + J::t r)l (K2 + f.t2r)e(al)r (a2),. (aa),. c'" 

r=O t-o r! t! (pd,.+dP2)r+t (Pa)r+t (ll + '''11")1 (/JI),. ({32),. · 

Thus, if ( 1) is true, we have 

(2) p[Pt• P2, Pa• at, a2, -m; b] 
al, a2, Pt' P2' Pa 

= ~ (ai),.(a2),. ( -m),.(al~2),. ((Xa),.cr 

r~o r! (pl)r (p2)r (Pa),. (/~l),.(/J2)r 

x F[K1 +p.1r, K2 +p.2r, a 1 +r, a2+r, -m+r;J. 
l1 + "•1", Pt +r, P2+r, Pa+r 

In these formulae there may be any number of the quantities 
a,IJ,p,a,K,l,a,p. The numbers /Land vmaybe positive or negative 
integers provided that (a)_, is replaced by ( -l)n/(1-a), •. 

The series on the left of ( 1) can be expressed as a generalized 
hypergeometric series. If we can sum the series on the right of (2) 
in terms of gamma functions, the right-hand side of (2)can also be 
expressed as a generalized hypergeometric series. Thus, from a 
known sum of a generalized hypergeometric series we have a 
method of deducing transformations of such series.* 

4.3. Transformations of well-poised series. In our first 
application of the method we use Saalschiitz's theorem in the 
form 

F [1 +a-b-c, a+n, -n;J = (b), (c)n:___ __ 
3 2 1+a-b, 1+a-c (l+a-b)n(I+a-c)n" 

We thus obtain 

F [a, b, c, a1 , a2 , ••• , a8 , -m;J 
( 1) s+4 s+3 1 +a - b, I +a-c, Pt•P2• ···•Ps> Ps+l 

= ~ ( -4)r(1+a-b-c),.(!a),.(!a+!),(a1),.(a2),. ... (a8)7 ( -m), 
r=O r!(1+a-b),.(1+a-c),(p1),(p2), .•. (p8+1)r 

F [
a+2r, a1 +r, a2 +r, ... , a8 +r, -m+r;J 

X s+2 s+l · 
· P1 +r, P2+T, ... , Ps+r, Ps+I +r 

• The metlwd gi...-en by Bail<'Y 3 is ~lightly more gen('ral than that given hero. 
The numbor ,\of that paper is here tak<-n equal to unity, the ca.se which gives the 
most interesting formulae. 
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Taking s= 1 and choosing the parameters so that Dixon's 
theorem sums the series 3F 2 on the right, we find that 

(2) F [a, b, c, d, -m; J 
<> 

4 1+a-b, 1+a-c, 1+a-d, 1+a+m 

=(~+-~)m(1+}a-d)1114F3 [ l+a-b-c, ka, d, ~m; ]· 
(1+2a)111 (l+a-d)111 1+a-b, l+a-c, d- 2 a-m 

The series on the right of (2) is Saalschiitzian and so can be 
summed when it reduces to a 3F 2 • Taking b= I+ }a we obtain 
the formula* 

(3) sF4 [a, 1 +}a, c, 
!a, l+a-c, 

d, -m; J 
l+a-d, 1+a+m 

(1 +a)m(1 +a-c-d)m 
=(I +a-c)m(l +a-d)

111 
• 

Now choose the parameters in ( l) so that the series on the right 
can be summed by (3), and we obtain the transformation 

(4) F [a,I+!a, b, c, d, e, -m; J 
7 6 !a, I+a-b,I+a-c,I+a-d,1+a-e,l+a+m 

(I +a )m (I +a-d-e )m F [ 1 +a-b-c, d, e, - m; J 
=(1+a-d)m(I+a-e)m 4 3 1+a-b, 1+a-c,d+e-a-m ' 

a result due to Whipple. t It transforms a terminating well
poised 7F 6 into a Saalschiitzian 4F 3 , and conversely transforms 
any terminating Saalschiitzian 4F 3 into a well-poised 7F 6 • When 
e =!a it reduces to (2). 

In the particular case when 

I +2a=b+c+d+e-m, 

the series on the right of ( 4) reduces to a 3 F 2 which can be summed 
by Saalschiitz's theorem and we obtain Dougall's theorem,t 

• Dougallt, equation 9; Hardy 2, equation 3.1; Whipple 2, equation 5.2. The 
formula is true, with slight modifications when m is not a positive integer. For ·the 
more general case see§ 4.4 (1). 

t Whipple 2. See also Whipple 4. The formula. is also true with slight modi
fications when 1 +a- b- t is a negative integer and m is not a positive integer. 
See§ 4.4. 

t Dougall 1, equation 6. See also Hardy 2. The formula is fundamental in 
Hardy's paper. 
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namely 

(5)F[a,I+!a, b, c, d, e, -m;J 
7 6 la, 1 +a-b, 1 +a-c, I +a-d, 1 +a-e, l +a+m 

(I +a)m (I +a-b -c)m(I +a-b-d)m (I +a-c-d)m 
= (f+a_:._b):(r+a~-c)m(1 +a-d)m (1 +a-b- c-d)m' 

provided that 

This formula sums a terminating well-poised ,F6 , with the 
special form of the second parameter, when the sum of the 
denominator parameters exceeds the sum of the numerator 
parameters by two. 

Dougall's theorem cannot be used on the right of (I) for general 
values ofr. We therefore apply the method of §4.2 to Dougall's 
theorem itself, which can be written in the form 

F [k,1+lk,k+b-a,k+c-a,k+d-a, a+n, -n; J 
7 6 }k, l+a-b, 1+a-c, l+a-d, l+k-a-n, I+k+n 

(1 + k)n (b)n (c)n (d)n 
= ( a--~k )-n -(I-+ a- b )n (I +a _:c).:..!!n :.,..-( I-+-a----=d:-)n ' 

where k = I+ 2a- b-c- d. This is equivalent to 

(- I)7 (k)r (I+ !k)r(k + b- a)r (k+c-a)r (k +d -a)r 
n (a+n),.(a-k+n)_,.(-n)r 

,.~0 -r! (! k),. (1 +a- b),.(I +a-c)r (l +a-d)r (1 + k+n),.---

(1 +k)n (b)n (c)n (d)n 
=(a -k)n (1 +a -b)n (I +a-c),. (,-1-+-a--d)~' 

and so, by the process of§ 4.2, we deduce that 

( ) F [a, b, c, d, a 1 , a2 , ... , a8 , -m;J 6 
s+S sH I+a-b, I+a-c, 1+a-d, P1• P2• ... ,ps,Ps+1 

(k),. (k + b- a),. (k+c -a),. (k +d-a),. (!a),.(!+ !a),. 
tn (a1),. ••• (a8 )r (- m),. - :E -~ ~'-.-:.---'-' 

- r~o r! (!k),.(l + !k),. (I +a- b)r (1 +a- c),.(I +a -d),. 
(pl)r • • • {Ps+l)r 

F [a+2r, a-k, a1 +r, ... , a8 +r, -m+r;J 
xs+3 s+2 I+k+2r,pl+r, ... ,ps+r,p~+l+r . 
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In this formula we can choose the parameters so that Dougall's 
theorem sums the series on the right, and we obtain the trans
formation* 

(7) F [a, 1 +!a, b, c, d, e, 
9 8 ta, 1+a-b, l+a-c, I+a-d, I+a-e, 

j, g, -m; J 
1 +a-j, I +a-g, I +a+m 

(I +a)m (I+ k- e)m (I+ k-f),. (1 +k-g),. 
= (T+k)m(I +a -e)m (I +a-J),.(1 +a-g),. 

F [k, 1+tk, k+b-a, k+c-a, k+d-a, e, 
Xg 8 !k 1+a-b 1+a-c 1+a-d 1+k-e 

~ ' ' ' ' ' 
j, g, -m; J 

1+k-f, I+k-g, 1+k+m ' 

where k = 1 + 2a- b-c- d, and the parameters are subject to the 
restriction that 

b + c + d + e + f + g- m = 2 + 3a. 

This formula, which is one of the most general known trans
formations of terminating well-poised series, connects two well
poised series, either of which is of general type except for the 
second parameter, and the restriction that the sum of the de
nominator parameters exceeds the sum of the numerator para
meters by two. 

4.4. Some deductions from the formulae of § 4.3. Dougall's 
theorem includes as limiting cases some of the previous results. 
For example, if we replace d, e by 1 +a-d, I +a- e, and then let 
a-+ oo, we obtain Saalschtitz's theorem. If we substitute for b 
and let m-+ oo we obtain t 

(I) F [a, I+ !a, c, d, e; J 
5 4 !a, I+a-c, l+a-d, l+a-e 

_ r (1 +a-c) r(I +a-d) r (I +a-e) r (1 +a-c-d-e) 
- r (1 +a) r (1 +a-d-e) r (I +a-c-e) r (1 +a-c-d), 

• Bailey 3. 
t The justification of the passage to the lim it i,; not particularly difficult. The 

details are given by Dougall1, § 8. 
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which generalizes § 4.3 (3). The last formula reduces to Dixon's 
theorem when e =!a. 

Similarly, if we let m-HXJ in Whipple's transformation§ 4.3 (4), 
we derive the formula* 

(2) F [a, I+la, b, c, d, e; -I] 
6 5 !a, I+a-b, 1+a-c, 1+a-d, I+a-e 

_rp+a-d)r(1+a-e) F [1+a-b-c, d, e;J 
-r(1+a)r(I+a-d-e) 3 2 I+a-b, 1+a-c ' 

which expresses a well-poised 6F 5 with argument -I in terms of 
a 3F 2 , or conversely expresses any 3F 2 with unit argument in 
terms of a well-poised 6F 5 • 

From (2), taking b+c= I +a, we obtain 

(3) F [a, I +!a, d, e; -I] 
4 3 ta, 1 +a-d, 1 +a- e 

r(I+a-d)r(1+a-e) 
= r (1 +a) r (I +a-d-e)' 

a result which can also be derived from ( l) by making 
C-+-00. 

Dougall's theorem is itself an obvious particular case of§ 4.3 (7), 

obtained by taking k=a-b, when the series on the right reduces 
to unity. 

Now let m-+00 in §4.3(7), after replacing k and b by their 
values in terms of the other parameters. In doing this some care 
is necessary since, when m is large, the terms near both ends of 
the series on the right are important while the terms in the middle 
become negligible. We therefore suppose for convenience that m 

is odd, divide the series on the right into two parts of i (m+ I) 
terms each, and reverse the terms of the second half. There is 
then no great difficulty in justifying the limiting process, and we 
obtain the formulat 

* Whipple 2, equation 6.3. 
t Sec Bailey 5 where the details are gi\'cn. Another method of obtaining (4) is 

given in Chapter VI. 
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F[a,I+!a, c, d, e, f, g; J 
(4:)' 6 !a, I+a-c, I+a-d, 1+a-e, 1+a-J, I+a-g 

r (1 +a-e) r (I +a-f) r (I +a-g) r (l +a-e-j-g) 
= r(I +a) r (1 +-a-- f-g) r (1 +a-g-e)[' (1 +a -e-j) 

F [l +a-c-d, e, j, g; J 
x 4 a I +a- c, 1 +a-d, e + f + g -a 

r(I +a-c) r (1 +a-d) r (1 +a-e) r(1 +a-f) r (1 +a-g) 
+- - r(1+a)r(l+a-c-d)r(efr(J)r(g) 

r (e + f +g-1-a) r (2 + 2a- c-d-e-f-g) 
X 

r(2+2a-c-e-j-g) r(2+ 2a-d-e-f-g) 

F [2+2a-c-d-e-J-g, 1+a-J-g, 1+a-g-e, l+a-e-f;] 
x 4 3 2+a-e-j-g, 2+2a-c-e-J-g, 2+2a-d-e-j-g · 

This relation is true if 

R(2 + 2a-c-d- e-f-g) > 0. 

It is a generalization of Whipple's transformation § 4.3 ( 4). It 
will be noticed that, when one of e,f, g, 1 +a-c-d is a negative 
integer - n, the second term on the right vanishes owing to the 
presence of r (- n) in the denominator. We thus see that 

5 F [a, I+ !a, c, d, e, j, g; J 
( ) 

7 6 !a, I+a-c, 1+a-d, I+a-e, l+a-J, I+a-g 

r (1 +a-e) r (I +a-f) r (1 +a-g) r (1 +a -e- f-g) 
= r (1 +a) r (1 +a-f -g) r (I +a-g-e) r (I +a- e-j) 

F [I +a-c-d, e, J, g; J 
x4 3 I +a-c, 1 +a-d, e+f+g-a ' 

provided only that the series on the right terminates and the 
series on the left converges. This is the form in which Whipple* 
stated his theorem. 

Again, if in §4.3(7) we substitute for g and letj-+oo, or sub
stitute ford and let c-+oo, we obtain relations between well
poised 7F 6 • Such relations will be discussed in Chapter VII. 

* Whipple 2, equation 7.7. See also Whipple 4. 
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4.5. Transformations of nearly-poised series of the second 
kind. In §4.:J(1) take s=O and sum the series on the right by 
Vanderrnonde's theorem. \Ve thus obtain the formula 

) F [a. b, c, -m;J 
(1 4 3 • 1+a-b, I+a-c, w 

(w-a) 111 

( u'),/1 

p[ l+a-w,~a,!(l+a),I+a-b-c,-m; J 
Xs 

4 l+a-b,1+a-c,1(1+a-w-m),1+!-(a-w-m) ' 

which is due to \\"hippie,* and transforms a nearly-poised 4 F 3 

into a Saalschi.itzian 5P 4 • 

If the series on the right of ( 1) reduces to a 3F 2 it can be summed 
by Saalschiitz's theorem. \Ve thus derive the following special 
cases: 

( 1. 1) F [a, 1 +!a, - m;J = (w -=-~=--1:__- _?!t)Jw -_(tlm_-=!, 
3 2 !a, w (w),. 

F [a, b, -m; J-(a-2b)m(1+!a-b)m(-_~!m 
(1.

2
) 3 2 1+(L-l>, 1+2b-m -(1+a-b)m(!a-b)m(-2b),/ 

(1. 3) P [a, 1+la, b, -m; ]=--(!!~~)m(-b)m 
4 3 ~a, I+a-b, 1+2b-m (l+a-b) 111 (-2b),/ 

F [a, 1+!a, b, -m; J 
(1.4) 4 a ia, I+a-b, 2+2b-m 

(a-2b-1)mH+!a-b)111 ( -b-1) 111 

= (1 +a- b)m (ta-b- i)m (=-26--=-1)111 • 

Of these formulae ( 1.1) is the only one that we can use on the 
right of§ 4.3 ( 1 ), and in this case we derive the formula t 

(2) f>F4 [a,1~~a, b, c, -wm;J 
2"a, 1 +a- b, 1 +a-c, 

(w-a-1-m) (w-a),n-1 

(w)n~ 

F [ 1 +!a,!+ !a, 1 +a-b-c, I +a-w, -m; J 
x 5 4 i (3+a-w-m), 1 +! (a-w-m), 1 +a-b, 1 +a-c ' 

• Whipple 5. t Bailey 3, equation 8.5. 
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which expresses a nearly-poised 5F 4 in terms of a Saalschtitzian 
sFt. 

We now turn to§ 4.3 (6) and choose the parameters so that the 
series on the right can be summed by Saalschiitz's theorem, (1.3), 
(1.2) or ( 1.4). We thus derive the four following transformations* 

(3) F [a, b, c, d, -m;J 
5 4 I +a-b, I +a-c, 1 +a-d, w 

= 
(I+ 2k-a)m (1 + k-a)m 

(1 + k)m (I+ 2k- 2a)m 

F [k, l+!k, }a, !+!a, k+b-a,k+c-a,k+d-a, 
x

9 8 !k, 1+k-!a,!+k-!a,1+a-b,I+a-c,1+a-d, 

where 

I+a-w, -m; J 
k-a+w, 1 + k+m 

k=1+2a-b-c-d, W=2a-2k-m; 

(4) F [a, I+ !a, b, c, d, -wm;J 
6 ~ !a, I +a-b, 1 +a-c, 1 +a-d, 

_ (2k-a)m (k-a)m 
-(I+ k)m (2k- 2a)m 

[
k I+!k, i+la, I +!a, k+b-a, k+c-a, k+d-a, 

x9Fs ' 
!k, ·i+k-ka, k-fa, l+a-b, 1+a-c, 1+a-d, 

1+a-w, -m; J 
k-a+w, I+k+m 

where w = 1 + 2a- 2k- m, and k is the same as before; 

(5) F [a, b, c, d, -m;J 
5 4 I +a-b, I +a-c, 1 +a-d, w 

(k-a)m {I+ 2k-a)m-l (2k-a+ 2m) 
(1 +k)m(2k- 2a)m 

F [k, 1+}k, !+!a, !a, k+b-a,k+c-a,k+d-a, 
x

9 8 !k, !+k-}a,l+k-!a,1+a-b,1+a-c,1+a-d, 

where w= 1+2a-2k-m; 

I+a-w, -m; J 
k-a+w, 1+k+m ' 

* Bailey 3, equations 8.1-8.4. 
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(G) F[a,I+!a, b, c, d, -m;J 
6 5 !a, I+a-b, I+a-c, I+a-d, w 

(k-a-1),.(2k-a)111_d2k-a+2m-I) 
-----(I + k) ~~~-( 2fc-=:<ifi-= I j,~- . ---- . 

L~ [k, 
X 9.l' 8 

I+P•, §+!a, I+~a, k+b-a, k+c-a, k+d-a, 
-~k, ~+k-ta, k-~a, I+a-b, I+a-c, I+a-d, 

I +a-u·, -m; J 
k-a+w, I+k+m ' 

where w= 2+ 2a- 2k-m. 
The last four formulae all express nearly-poised series in terms 

of well-poised series. In (3) and (4) the nearly-poised series are 
Saalschiitzian, and in (5) and (6) they are such that the sum of the 
denominator parameters exceeds that of the numerator para
meters by two. 

4.6. Transformations of nearly-poised series of the first 
kind. A terminating series can evidently have its terms written 
in the reverse order. A nearly-poised series of the second kind then 
becomes a similar series of the first kind,* while a Saalschiitzian 
series or a well-poised series remains of the same type. Thus from 
the formulae of the last paragraph we can derive transformations 
of nearly-poised series of the first kind. The results obtained from 
§4.5(I) and (2) aret 

(I} 
4
F

3
[a, b, c, -m;.]=(K)m(K-b-c)11t 

K-b, K-C, K+m, (K-b)m(K-C)m 

F [!~<-~a, t+i-~<-!a, b, c, -m; J 
Xs 

4 K-a,!K,t+tK,b+C-K+l-m 1 

{2) F[a,I+!~<, b, c, -m; J 
S 

4 
tK, }+K-b, I+K-C, I+K+m 

= 
(I+ K)m (I+/(- b- c)m 
(1-t ~-b)m(l +K- c),~ 

F [!~<-!a, !+!K-ia, b, c, -m; J 
x 5 4 I +~<-a, !~<, !+ !~<, b+c-K-m · 

* Whipple 5, § 6. 
t (1) is due to Whipple 5, and (2) to Bailey 3. For the results derived from§ 4.5, 

(a)-(6), sec Bailey 3. 
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It should be noticed that if, in ( 1 ), we let m tend ·to infinity 
through integral values, we obtain the formula* 

(3) aF2 [a, b, c; -I] 
K-b,K-C 

=r(K-b)r(I<-C) ·F [b, C, ~(K-a), ~(l+K-a);J 
r ( K) r ( K- b- c) 4 3 K- a, ~ K' ~ ( K + I) ' 

which transforms a non-terminating nearly-poised 
3
F

2 
with 

argument -I. The series on the right is not Saalschiitzian. 
When c =! K in (3), the relation expresses any 2Jt\ with argu

ment - I in terms of a 3Jt\. This 3F 2 can be transformed by the 
formulae of Chapter III, and so a large number of series can be 
found allied to a given 2 F 1 with argument - L Such series have 
been considered in detail by Whipple.t 

4.7. The case when a is a negative integer. In certain 
applications of nearly-poised series of the second kind the para
meter a is a negative integer. Returning to§ 4.3 it is evident that 
formula (I) of that paragraph is still true if a is a negative integer 
- n, and - m is not necessarily a negative integer. Thus, ta,king 
s = 0 and using Vandermonde's theorem, we derive the formula! 

(I) 4Fa[-n, b, c, d;]=(~---~),_. 
1-n-b I-n-c w (w) 

' ,. It 

X F , ' " '2 :! ' ' [ 
d 1-n-b-c -Jn 1 -.ln I-n-w· J 

5 4 I-n-b, I-n-c, i(l+d-w-n), I+i(d-w-n) · 

This appears to be the most interesting formula of its type. 

• Whipple&. 
t Whipple 8. 
! Whipple 5, equation fi.ll. 



CHAPTER V 

METHODS OF OBTAINING TRANSFORMATIONS 
OF HYPERGEOMETRIC SEHIES; (2) BY 
DOUGALL'S METHOD AND CARLSON'S 

THEOREM 

5.1. An elementary proof of Dougall's theorem. When 
transformations of terminating series have been discovered, they 
are usually capable of being proved in a very simple way. We 
begin by proving Dougall's theorem in a manner substantially 
equivalent to his original proof.* 

Writing fin place of - m, the theorem becomes 

[
a, I+ !a, b, c, d, e, f; J 

7F6 ia, 1 +a-b, 1 +a-c, 1 +a-d, 1 +a-e, l +a-f 
r (1 +a-b) r (1 +a-c) r (1 +a-d) r (1 +a-f) --

= r (l +a) r (l +a-b-c) rTI +a-b -d) r (I +a- c-d) 

r{I +a-b-c-d) r (I +a-b-c-/) r (1 +a-b-d-f) 
r(I+a-c-d-f) 

x r (I +a-b-f) r (I +a-c-j) f' (I +-a---d~--j-)-'-- ~ ~-
r (l +a-b-e-d-f) 

provided that I+ 2a= b +c+d +e+ j, andjis a negative integer. 
Suppose the theorem is true when - f= 0, 1, 2, ... , m-1. We 

shall prove it true when]= - m, and then the result will follow by 
induction. 

Now, by symmetry, the result is true if-cor -dhas one of the 
values 0, 1, 2, ... , m-1, that is if-cor b+c+e+f-1-2a has 
one of these values. It is therefore true in particular whenf = - m 
and c has one of 2m values. But, when]= -m, we can multiply 
by (l +a-c)m(I +a-b-c-d)m and the formula states the 
equality of two polynomials of degree 2m in c. Thus, if we can 
prove the equality for one morevalueof c, the result will be proved. 
We choose the value c =a+ m which is a pole of the last term only 
of the series, and the result is easily verified. 

• Dougall 1. See also Hardy 2. 
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5.2. An elementary proof of a transformation of well
poised series sFs. Similarly we can prove the more general 
relation § 4.3 (7) connecting two well-poised 9F 8 • This relation 
can be written 

F [a, l+!a, b, c, d, e, 
9 8 !a, I +a-b, l +a-c, l +a-d, l +a-e, 

J, g, h; J 
I+a-J, 1+a-g, l+a.-h 

r (1 +a-e) r (1 +a.-f) r (I +a- g) r (I +a.-h) 
= r (I +a) r (I +a.-e-j) r (1 +a-e-(i) r (I +a-e-h) 

r(l +a-f-g-h) r(I +a-e-g-h) r(l +a-e-f-h) 
r (1 +a -e-f-g) 

x- ~----~~=-----~~-=--------~---r (I +a-j-g) r (I +a.- f-h) r (I+ a-g-h) 
r(1+a.-e-j-g-h) 

F [k, 1 +!k, k+b-a, k+c-a, k+d-;-a. e, 
x s 8 ! k, I +a- b, 1 +a- c, 1 +a-d, 1 + k- e, 

J, g, h; J 
l+k-f, 1+k-g, l+k-h 

where k= I +2a-b-c-d, 

b + c + d + e + f + g + h = 2 + 3a, 

and his a negative integer. 
Suppose this result is true when - h has any one of the values 

0, I, 2, ... , m -1. Then, by symmetry, it is true when - e, -for 
-g has one of these values. \:Ve proceed to prove that the result is 
true when h = - m, and then the theorem will follow by induction. 

If h = - m, the formula can be written 

(1) (1 + k)m(l +a-e)m (l +a-f)m (I+ k-e-f)m 

x F [a, 1 +!a, b, c, d, e, 
9 8 ·!a, 1+a-b, l+a-c, l+a-d, l+a-e, 

f, 1 +a+k-e-f+m, -m; J 
I +a --J, e + f- k- m, I +a+ m 
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= (l +a)111 (I+ k-e) 111 (I+ k- j)111 (l -1-tt-e- f)m 

}i~ [k, l+Ak, k+b-a, k+c-a, k+d-rt, e, 
X 9 8 

~k, l+a-b, l+a-c, l+a-d, I+k-e, 

f, I+a+k-e-f+m. -m; J 
I +k-f, e+f-a-m, I +k+m 

where k = l + 2a- b- c -d. 
By hypothesis this is true whenfor I+a+k-e-f+m(=g) 

has one of the values 0, -1, -2, ... , - m + l, that is for 2m values 
of f. 

But the expressions on each side of (I) are polynomials in f of 
degree 2m. It will therefore be sufficient if these expressions are 
equal for one other value off to establish the fact that ( l) i~ an 
identity. We choose the valuef=k+m, and then we require 

F [a, l + ~a, b, c, d, J, - m; J 
7 6 ~a, I+a-b, I+a--c, I+a-d, l+a-f, l+a+m 

(I +a)111 (k+b- a) 111 (k+c- a), (k+d- a) 111 

(k- a)~~~ ( 1 + a=t),JTt-~a::_-c) 111 (f+a -d),". 

This is true by Dougall's theorem, and so the proof is complete. 

5.3. Carlson's theorem. When a transformation is known to 
be true for terminating series, it can sometimes be shown to be 
true also (with slight modifications) for non-terminating series, 
by using a theorem due to Carlson.* To prove this theorem we 
require some preliminary lemmas. 

Lemma 1. Iff (z) is regular in a region D and on its boundary C 
(asimpleclosedcurve), and iflf(z) I~ M on C, then IJ(z) I~ Mat all 
interior points of D. 

We first notice that if 4> (x) is continuous, 4> (x) ~ k, and 

I J" b
::__ · .f>(x)dx?:-k, 

a " 

• Carlson 1. Sec a!Mo Wigert 1, Ricsz 1 a.nd Hardy 1. 'fhe proof given here followli 
that given by TitchmarHh, 'l'lwory of functions (1932), Chapter V. 
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then .p (x) = k. For if .p (g)< k, there is an interval (g- 8, t + 8) in 
whieh .p (x) ~ k- E (say), and 

f''.p (x)dx~ 28 (k- e)+ (b -a- 28) k= (b -a) k- 28.;, 
(/ 

which contradicts the hypotheses. 
Now suppose that, at an interior point z0 of D, lf(z) I has a 

value at least equal to its value anywhere else. Let r be a circle 
centre z0 lying entirely in D. Then 

(I) 

Putting z- z0 = reifJ, f (z )ij (z0 ) = pei<f>, so that p and .p are func
tions of B, we may write {1) as 

(2) I=- pei<f>dO. I J21r 
21T 0 

Hence 1 f21T 
I~ 

277 0 
pdB. 

But by hypothesis p ~ l, and so p = 1 for all values of 0. 
Taking the real part of (2), we now obtain 

I f21T 
I= Z1r 

0 
cos .f>dO, 

and so cos4>= I. Hencef(z) =f(z0 ) on r, and so everywhere; that 
isf(z) is a constant. 

Thus lf(z) I< M at all interior points of D unless f(z) is a 
constant. 

Lemma 2. Let f(z) be an analytic function of z ( =rei9), regular 
in the region D between two straight line.s making an angle 1TjiX at 
the origin, and on the line.s themselve-s. Suppose that 

(3) !f(z)I~M 

on the line.s, and that, as r__,.oo, 

(4) 

where {3 <IX, uniformly in the angle. Then the inequality (3) holds 
throughout the region D. 
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We may suppose, without loss of generality, that the two lines 
are fJ = ± !, 7Tjrx. 

Let F(z)=e-uYf{z), 

where f3 < y < rx and e > 0. Then 

(5) 1 F (z) 1 = e-EiY cosyi11J (z) 1-
On the lines 0 = ± !7Tfrx, cos yB > 0 since y < rx. Hence on these 

lines I F (z) I ~ lf(z) I ~ M. 

Also on the arc I fJ I~ i7T/rx of the circle I z I= R, 
I F(z) 1 ~e-€R">'cosh1T/a: lf(z) 1 <AeR11-£RYcosh1T/a: 

and the right-hand side ~ 0 as R ~ oo. Hence, if R is sufficiently 
large, I F (z) I ~ M on this arc also. Thus, by lemma I, I F (z) I ~ M 
throughout the interior of the region 181 ~ f7Tfrx, r ~ R; that is, 
since R is arbitrarily large, throughout the region D. Hence by ( 5) 

lf(z) I~ MeEr">' 

in D, and, making e~O, the result stated follows. 

Lemma 3. Suppose thatf(z) is regular and of the form O(eklzl) 
for 81 ~ 8 ~ 82 , where 02 -81 < 7T. Suppose also that j(z) = 0 (eh•lzl) 

when 0 = el' and j(z) = 0 (eh21Z I) when 8 = 82. Let H (0) be the func
tion of the form a cos 8 + b sin fJ which takes the values h1 , hz at 

81 , 82 • Then f(z)=O(emO>r) 

uniformly in the angle 81 ~ 8 ~ 02 • 

The value of H (0) is easily seen to be 

Let 

Then 

(6) 

H (
8

) = h1 sin (fJ2 - 0) + h2 sin (8_-:- 01) 

sin(02 -01) • 

F (z) = j(z) e-<a-iblz. 

IF (z) I= lf(z) I e-u<8>r, 

and so, if r is large enough, 

I P (rei8•) I= 0 (elh,-m8,llr) = 0 (I). 

A similar result holds for F (1·ei02). Hence by lemma 2, F (z) is 
bounded in the angle (81 , 82) and the result stated follows from (6). 
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Lemma 4. If f(z) is regular and of the form 0 (ek lzl) for 
R(z)~O, andf(z)=O(e-alzl), where a>O, on the imaginary axis, 
thenj(z) is identically zero. 

We apply lemma 3 tof(z) with 81 =0, 02=i7T, h1=k, h2= -a. 
Then 

(7) f (z) = 0 {e<kcos8-a I sin Bllr} 

for0~8~!7T. 

Similarly, by taking 81 = -l7T, 82 = 0, h1 =-a, h2 =k in lemma 
3, we find that (7) also holds for - !7T ~ 8 ~ 0. 

Let F (z) =ewzf(z), 

where w is a (large) positive number. Then by (7) there is a con
stant M, independent of w, such that 

(8) 1 F(z) 1 ~ .. ll.fel<k+w)cos9-alsln91)r 

for - !7T ~ 0 ~ t7T. In particular we have 

(9) I F(z) I ~M 
for (} = ± f7T and 8 = ± rx, where rx =arc tan { (k + w )fa}. 

We can now apply lemma 2 to each of the three angles 
(- !r., -a.), (-a., a.) and (a., t7T). It follows that (9) actually holds 
for - !7T ~ 0 ~ f7T. Hence 

lf(z) I~ llfe-wrcos9 

and, making w~oo, it follows that 1/(z) I= 0. This proves the 
lemma.* 

Carlson's theorem. If f(z) is regular and of the form O(eklzl), 
where k < 7T,jor R (z) ~ 0, and if j(z) = 0 for z = 0, I, 2, ... , thenf(z) 
is identically zero. 

Consider the function 

F (z) = f(z) cosec 1rZ. 

On the circles I z I =n +},where n is a positive integer, cosec 7TZ 
is bounded. Hence F (z) = 0 (eklzl) on the circles and also on the 
imaginary axis. Since F (z) is regular, it follows that, if 

n-!< I z I <n+!, 
F (z) = 0 (ek(n+!>) = 0 (eklzl), 

* Also due to Carlson 1. 



40 METHODS 01!' OBTAINING TRANSFORMATIONS 

and so F (z) is of this form throughout R (z) ~ 0. Also 

F (z) = 0 (e<k-.,.)1.:1) 

on the imaginary axis. The result therefore follows from lemma 4. 

5.4. An example on Carlson's theorem. We shall illustrate 
the use of Carlson's theorem by applying it (with k = 0) to Whip
ple's transformation of a well-poised 7F 6 , §4.4(5). We shall 
assume that the result is known to be true when g is a negative 
integer. This has been proved in §4.3, but it can also be proved 
by Dougall's method.* Writing - k-z forg, where kis a positive 
integer, the theorem to be proved is 

(1) 
F [a, I +!a, c, d, e, J, 

7 6 ! a, l +a- c, 1 +a - d, I +a- e, 1 +a - f, 

l +-ak+-kz~z] 
r (I+ a -e) r (I +a-f) r (1 +a +k+z) r (l +a-e-f+ k+z) 
r (I +a) r (I +a-e-j) r (l +a-f+ k+z) r (I +a- e + k+z) 

F [ l+a-c-d, e,f, -k-z; J 
x 4 3 1 +a- c, l +a-d, e +f-a- k- z 

and it is known to be true when z = 0, l, 2, .... 
We proceed to prove that (1) is true when 1 +a-c-d is a 

negative integer and the series on the left is convergent, so that 

(2) R{4 + 4a- 2 (c+d+e+f) + 2k+ 2z} > 0. 

The series 6F 6 derived from the left-hand side of ( l) by sup
pressing the parameters involving z is absolutely and uniformly 
convergent for real values of a, c, d, e,j such that all the denomin
ator parameters are positive and 

(3) 3 + 3a- 2 (c + d + e +f)> 0. 

Also, if R (z) ~ 0, 

I 
-k-z+r 1 

l +a+ k+z+r I< l, 
,. See Whipple 4 whore Ca.rlHon'g theorem is also used to provo tho result when 

the serilll! on the left does not tl'rminate. Carlson's theorem had previously been 
uood by Hardy 2 to prove§ 4.4 (1). 
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for 1' = 0, I, 2, ... since 1 +a> 0. Hence the function 7F 6 is abso
lutely and uniformly convergent for R(z) ~ 0, and is regular and 
bounded in this region_ 

Now, if also 

(4) 

the function 

1+a+k-e-f>0, 

r (I +a+k+z) r (1 +a-e-!+ k+z) 
f'(l+a-f+k+z) r(I +a-e+k+z) 

is regular for R (z) ~ 0. Since it tends to unity when I z I-+ co, it is 
bounded in the half-plane. The series 4 F 3 consists of a finite 
number of terms, and each term is bounded for R (z) ~ 0 if 

(5) I+2a+k-c-d-e-j>0, 

in which case e +f-a-k- z cannot be a negative integer 
~ I+ a-c- d. Accordingly, iff (z) is the difference between the 
two sides of (1), the conditions of Carlson's theorem are satisfied 
by f(z). It follows that (l) holds so long as the parameters are 
subject to the conditions (3), (4) and (5) and the restrictions that 
the denominator parameters not involving z are real and positive. 
These conditions may be removed by analytic continuation, and 
(I) is true provided that I+ a- c-dis a negative integer and the 
series on the left is convergent. 

It will be noticed that the formula § 4.3 (7) connecting two 
terminating series 9F 8 cannot possibly be generalized in this way 
owing to the presence of a denominator parameter of the form 
A - m on both sides of the formula. 



CHAPTER VI 

METHODS OF OBTAINING TRANSFORMATIONS 
OF HYPERGEOMETRIC SERIES; (3) BY 

BARNES' CONTOURINTEGRALS 

6.1. Introductory remarks. In Chapter V we saw how 
transformations of non-terminating series can sometimes be 
derived by a use of Carlson's theorem, and in § 4.4 some trans
formations of such series were obtained by a limiting process from 
transformations connecting terminating series of higher orders. 
In this chapter a direct method* is given in which free use is made 
of contour integrals of Barnes' type. 

6.2. Barnes' second lemma. We now prove the formulat 

(I) _I_ f!' (ott +s) r (or.~+~)_ r(1X3 _}-s) r (I- {31-s) r<_-s)ds 
21Ti r (fJz + s) 

r (or.1 ) r (or.2) r ( oc3) r (I- {11 + or.d r (1- /31 + or.2) r (1- /31 + or.3 ) 

r (/32- cxl) r(p2- otz) r (/32 _~;3) -

provided that {11 + {12 = or.1 + or.2 + or.3 + l. The path of integration is 
a line parallel to the imaginary axis except that it is curved, if 
necessary, so that the decreasing sequences of poles lie to the left, 
and the increasing sequences of poles to the right of the contour.t 
All the integrals in this chapter are of this type. 

By Barnes' lemma (§ I. 7) we have 

• Bailey 8. 
t Barnes 2. 
t The integral is taken from c- ioo to e + ioo. In some papers the intcr,raiH a.ro 

taken in the oppoRitc direction, and so variations in sign occur. 
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Thus 

aF z [~1' otz' or.a ;] - , ~r--'('--/3~~>---,--,;::;--:-----:-=-c:--: 
f3t, flz - r <fJ1- or.l) r <fJ1- or.2) r (or.l) r (or.2) 

; I f ( 1Xa)n r r t) x...., -2 . '(fJ) (1X1+s)r(or.2+s) (n-s)r("'1-oc1-or.2-s)ds 
n=O 1T't n. 2 n 

r <!3.> 
= r <fJ1- ~~> r <f(~-;_-2)-=ro:-(-oc1-) =r-( or.z--:) 

X 2~f r(oc1 + s) r(oc2 + s) r (/31 -ocl -<X2 -s) r(-s)2Fl[<X3 p~s;Jds 
and so 

(2) 
3
F 2 [ocl' <Xz' oca;J = ___ r _(/3_t.'"'=) =-r-"({J:--=2'---) ----,--=---=-,---, 

f3t > {32 r ({31- otl) r ({Jl -1X2) r ({J2- 1Xa) r (ocl) r (ot2) 

lr (ocl +s) r(oc2+s) r (fJl-or.l-or.2-s) r({J2-or.a+s) 
I r(-s)ds 

X- ------ - -, ,_ -- - -
2-rri r (fJ2 + s) • 

The interchange in the order of summation and integration can 
easily be justified if R(fJ2 -1X3 +s)>0. Now take fJ1=or.3 ; the 
series on the left can be summed by Gauss's theorem, and the 
lemma is proved. 

If the integral in (I) is evaluated in terms of hypergeometric 
series by considering the residues at poles on the right of the 
contour, we obtain a relation which reduces to Saalschiitz's 
theorem when one of the parameters or.1, oc2, or.3 is a negative 
integer.* 

6.3. Integrals representing well-poised series. From 
Barnes' second lemma it is easily verified that 

r { 01.1 + n) r ( 01.2 + n) r ( ota + n) 
r (~- otl + n) r (K- Ot.2 + n) r (K __ ___:_ota_+_n___,) 

I 

r ( K - Ot.2 - <X3) t' ( K - Ot.3 - otl) r ( K - otl - IX2) 

X _2_Jr(or.l +s)r(or.2 + 8) r(or.a+ 8) r(K- otl- ot2_:- 01.~-s)r(n-:-s)ds 
2-rri r(K+n+s) . 

• The relation similarly obtained from (2) is equivalent to§ 3.8 (I}. 
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It follows, by expansion and the interchange of the order of 
summation and integration, that 

(I) F[a, a., a2, aa, P1•P2• ... p,;] 
K-a1,K-a2,K-a3,a1 ,a2 , ... v, 

r(K-a1)f'(K-ot2)r(K-CXa) _ 
= r (~r (ot2) f'--(~3 ) r (K -()(2-a3)r (K -~~---rxJf'-(K_:: iX1 -ex;) 

X _I_ J-!'_ (a1 +s) r (~_±~~_(cxa +s) r (K- <Xl-~2-=- aa --~1£-~~ 8) 

27Ti r (K+S) 

x F[a, PI• P2• ... , p, -s;Jds. 
v 1 , a2 , ••• ,v,, K+S 

Thus, if we can sum the series on the right of (I) in terms of 
gamma functions, we can find an integral of Barnes' type repre
senting the series on the left. If we use Dixon's theorem on the 
right, we obtain an integral representing the well-poised series 

F [a, b, c, d, e; J 
5 4 1 +a-b, I +a-c, I +a-d, I +a-e ' 

and when b = 1 +!a the integral can be evaluated by Barnes' 
second lemma, giving the formula §4.4(1). We therefore adjust 
the parameters in ( 1) so that the series on the right can be summed 

by that formula, and we obtain 

F [a, I+ !a, b, c, d, e, f; J 
(2) 7 6 !a, l+a-b,I+a-c,I+a-d,I+a-e,1+a-f 

r ( 1 +a-b) r ( l +a-c) r' ( l +a- d) r (I +a-=-:: e) r (I +a-f)~ 
= f(I + a)f' (b) r (c) r (d) r (I +a -c-d) r (I +a-b-d) 

r (l +a-b-c) r (I +a-e-/) 

1 r(I+a-b-c-d-.~) r( -s)ds l
r (b+s) r (c+s) r (d+s) r (1 +a-e-f+ s) 

x- ---- -~~---- ---- -----. 
27Ti r ( 1 +a - e + .~) r ( 1 + a - f + 8) 

When]= -n, a negative integer, and 1 +2a=b+c+d+e-n, 
the integral on the right can be evaluated by Barnes' second 
lemma, and we obtain Dougall's theorem. We cannot use this 
theorem on the right of (1) and so the process comes to an end for 

well-poised series. 
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If we evaluate the integral on the right of {2) by considering 
the residues at poles on the right of the contour, we obtain the 
transformation §4.4(4) of a well-poised 7F 6 in terms of two 
Saalschtitzian 4F 3 • 

6.4. Integrals representing nearly-poised series of the 
first kind. Now in §6.3(I) take t·=O and sum the 2F 1 on the 
right by Gauss's theorem, and we find that 

(1) 4F3 [a, b, c, d; J 
K-b, K-C, K-d 

r (K-b) r ("-c) r (K-d) 
= r (b) r (c) r (d) r <" -c -d) r (K-b -d) r (K-b-c) 

J
r (b +s) r (c+s) P(d +s) r (K-a+ 2s) 

I r(K-b-c-d-s)r(-8)ds 
X- -· - -- ·-·----- -------

2m r ( K- a + 8) r ( K + 28) 

If d =! +! K, c = -k K, we can evaluate the integral on the right 
by Barnes' second lemma, and (changing Kinto I +K) we find that 

(2) F [a, l+iK, b; J 
3 2 !K, 1+K-b 

r (! K) r ( 1 +! K- ~a) r ( 1 + K- b) r (K- a- 2b) 
= r ( 1 + ! K) r (! K- i a) r (I + K -a-b) p (~- 2b) • 

Now use this result on the right of§ 6.3 (I) and we obtain 

(3) F [a, l+!K, b, c, d; J 
S 

4 !K, }+K-b,1+K-C,1+K-d 

K-a r(1+K-b)r(l+K-c)r(1+K-d) 
- -,.,.- f(b)f' (c) r (d) r (1 + K -C --d)r (I+ K-b :__d)-

r(1+K-b-C) 

6.5. Tr~""lsformations of nearly-poised series of the first 
kind. We now evaluate the integral on the right of §6.4(1) by 
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considering the residues at poles on the right of the contour, and 
so obtain the formula 

F [a, b, c, d; J 
(l) 4 3 K-b, K-C, K-d 

r (K-b) r (K- C) r (K-d) r(K -b -C-d) 
= r (; ~~c--d) r (K- b- dfr (~.:__b--=c) r (K) 

}' [b, C, d, !{K-a), ! (I +K-a); J 
Xs 4 K-a, !K, !(K+ I), I.:._K+b+c+d 

r(K-b)r(K -C) r(K-d} r(b +c+d- K) r(3K-a- 2b- 2C- 2d) + --. . ---· ~~ ~ -
r (b) r (c) r (d) r (2~< -a- b-e-d) r (3K- 2b- 2c- 2d) 

p - 2 ~ ' 

(

K-C-d, K-b-d, K-b-C, iK-!a-b-c-d,] 
.\-+ aK-!a-b-c-d· 

Xs 4 I+K-b-c-d, 2K-a-b-c-d, · 
!K-b-c-d, !+!~<-b-e-d 

This is a generalization of§ 4.6 (I), and expresses a nearly~ poised 

4
F

3 
in terms of two Saalschiitzian 5F 4 • 

Similarly from § 6.4 (3) we obtain a transformation of a nearly~ 
poised 

5
F 

4 
into two Saalschi.itzian 5 .£1'4 , and this is a generalization 

of §4.6(2). 

6.6. The integral analogue of Dougall's theorem. The 
second lemma of Barnes may be regarded as the integral analogue 
of Saalschi.itz's theorem of which it gives a generalization. We 
may similarly enquire whether there is an integral analogous to 

Dougall's theorem. 
First consider the integral 

l
r (a+ s) r (I+ !a+s) r (b +s) r (c+s) r (d+s) 

1 r(b-a-s)r(-s)ds 
2-;.i - - -~-C( ~a -t-8) r ( 1 +a --=--c+ s) r (l-t a-d+ s) -

which is analogous to a well-poised series 5P.1 . By considering the 
residues at poles on the right of the contour, the integral can be 
expressed in terms of two well-poised 6F 4 which can be Hummed 
by§ 4.4 (1). We can thus evaluate the integral in terms of gamma. 
functions, and we find after some reduction that 
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1 r(b-a-s)r(-s)d.s lr (a+s) r (I+ !a+s) r (b+s) r (c+s) r (d+s) 

(I) 2rri r(!af.s)r(I+a-c+s)r·(l+a-d+s)-

- r (b) r (c) r (d) r (b +c-a) r (b +d-a) 
- 2r(i+a-c-d)r(b+c+d-a)-. 

Similarly the more general integral 

J
r (a +s) r (I+ !a+s) r (b +s) r (c+s) r (d+s) 

I r(e+s)r{f+s)r(b-a-s)r(-s)d.s 
27Ti r (!a+s) r (1 +a -c +8) r (I +a-d+s) 

r (l +a-e+s) r (I +a-f+s) 

can be expressed in terms of two well~poised series 7F 6 , but these 
can only be evaluated by Dougall's theorem when they terminate, 
and then the contour cannot be drawn to separate the increasing 
and decreasing sequences of poles. We can, however, evaluate the 
integral in another way. 

From Barnes' second lemma we have 

r (d+s) r (e+s) r {f+s) 
r (1 +a-d+s) r (I +a-e+s) r (1 +a-J+s) 

I 
r (I +a-e-f) r (1 +a-d-f) r (I+ a-d-e) 

X _.!_Jr (d+t) r (e+ t) r (/ + t) r (I +a-d-e- j-t) r (s-t)dt 
2m r(l +a+s+t) . 

Thus our integral is equal to* 

_1 Jr(d+t) r (e+t) r (f+t) r (1 +a-d-e-f-t)dt 
2m r (I +a-e-f) r (I +a-d-f) r (I +a-d-e) 

l
r(a +a) r (1 + !a+s) r (b+s) r (c +s) r (s-t) 

x-I r(b-a-s)r(-s)ds 
2m r(ta+s)r(I+a-c+s)r(l+a+s+t) ' 

• For the justification of the interchange in the order of integration cf. Whittaker 
and Watson, Modern Analysis, § 14.53. The lower bound of the distance between 
the sand t contours is supposed to be definitely positive. 
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The integration with respect to s can be performed by means 
of (I), and we obtain 

I'(b)I'(c)r(b+c-a) 
2I' (l +a -e-f) I' (I +a-d-f) r (I +a-d -e) 

1 r(I+a-d-e-f-t)l'(-t)dt 

'

r (d + t) r (e+t) r {f+ t) r (b-a-t) 

X ~ ~ ~~- ~~-- ~- - ~-

21fi. l'(I+a-c+t)r(b+c-a-t) · 

This integral can be evaluated by Barnes' second lemma when 

l + 2a = b + c + d + e +f. 

With this restriction we thus find that 

(
2

) _1 J!:~(a+~) r (I+ ta+s) r (b_±_s)~!: (c2-~) r (d+_s) 
27T'i r (!a +s) r (I +a- c+s) r (I+ a -d+s) 

r (e + s) r (j + s) r (b-a-s) r (- 8) ds 
x- --I'(I -f-a~e+-sTr{I +a--=-J+~ 

I'(b) r (c) r (d) r(e) r (f) r (b+c-a) r (b+d-a) 
2l'{l+a- d--.::...e)T-(1 +-a-::.:..c-e) r (I+ a-c-~d) 

r(b+e-a)r(b+f-a) 
X f' (f +a- c-JTf'TC+·a = d-~j)f'(l +a- e- J). 

This is the integral analogue of Dougall's theorem. By con
sidering the residues at poles on the right of the contour, we obtain 
the formula 

3 F [a, l + ~a, b, c, d, e, f; J 
() 7 6 !a, l+a-b,l+a-c,I+a-d,I+a-e,I+a-f 

I' (1 +a-c) I'(I +a-d) r (I +a-e) r (l+a- j) 
= I'~(l+a)r-(b- a) f'(l +a-d _.:._e) r (I +-a.:::.c _:_e) r (C+a :.:-(;_:_d) 

I'(b+c -a) r (b +d-a) r(b+e-a) r (b +f-a) 
X r'TI+a-=-c-f) r (I +a-d-f) r(l +-a-:::...e_.:._]y 

r (I+ 21J -a) r (b+c -a) r (b +d -a) r (b +e-a) r (b+ f-a) 
- I'(I+h~cjl'(l+b-d)r(i+b-e)r~(i-tb::._J) --

r (a-b) I' (I +a -c) I' (1 +a-d) I' (1 +a-e) I'(l +a-/) 
x r(b-a)I'(I+ct)I'(c)r(d)r(e)r(JT-

OF HYPERGEOMETRIC SERIES 

F [
2b-a, 1 +b- ta, b, b+c-a, 

x7 G b t b b -!a, l+ -a, 1+ -c, 

where l + 2a=b+c+d+e+ f. 

b+d-a, b+e-a, b+f-a;J 
l + b - d, 1 + b - e, 1 + b - f ' 
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This is the form assumed by Dougall's theorem when we remove 
the restriction that one of the parameters must be a negative 
integer. 

6.7. A method of obtaining transformations of integrals of 
Barnes' type. In the formula § 6.6 (2) write k = I+ 2a- c- d-e, 
and replace a, c, d, e, k, b by k, k + c- a, k + d- a, k + e- a, a, a+ t, 
and we find that 

r (a+ t) r (c +i) r(d+ t) r (e+t) r (- t) 
r (I+ a-~c--f-t) r (C-ta-d + t) r (I+ a -e + t) 

2r (c) r (d) r (e) 
= r~(~a------;k,...,.-· )=r:-:-( k-;-+-C -____:__:a,....,) r~(:.,..;.k:._+_d.;--:._a--:)~r:;;-:(,.,.-k-+-e-----:-a) 

I r(k+d-a+s) r(k+e-a+s) 
J
r (k+s) r (I+ fk+s) r (k+c-a+s) 

X 21Ti f' (!k+ 8) I'(l +a- c-t-s)f'-(I + a=-d + s)r(i +a- e +s) 

r ( -t+s) r (a+t+s) r (a- k+t-s) r ( -s)ds 
x--- ------r-(i+k+t+s) ~--'--'---. 

Now multiply by 

r (pl + t) r (p2 + t) r (b-a-t) 
------- r(at+t) ·---

integrate with respect to t, and then put t + s for t on the right. 
We thus obtain 

J
r (a+t) r (c+ t) r (d+ t) r (e+t) r(pl +t} 

I _I _ ~~ ~~~-~ _r<E!±t)r(b-a-t}r(-t)d! 
() 21ri I'(l+a-c+t)r(l+a-d+t)r(l+a-e+t)I'(a1 +t) 

2r (c) r (d) r (e) 

= r(a ~k> rTk+~c-a> r <k+d-a) r (k+ e-a> 
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I r (k+d-a+ s) r (k+e-a+s) r ( -s)ds 

J
r (k +s) r (I+ ik+s) r (k+c-a+s) 

X i1ri r(tk +s) r(1 +a-c +s) r(1 +a-d +s) r(I + a-e +s) 

J

r(a+ 2s+ t) r (a- k+ t) r (pl +s+t) 
X I __ r(p2 +s+t)~J~-=--~-s-t)r(-t)dt 1 21J'i r(l+k+2s+t)r(a1+s+t) 

where k= 1 + 2a-c-d-e. 
In this formula there may be any number of the quantities p 

and a. If we can integrate with respect to t on the right, we can 
obtain a relation between two integrals of Barnes' type. 

6.8. An integral related to well-poised series. In the 
formula§ 6. 7 ( l) choose the parameters p, a so that we can evaluate 
the t integral by §6.6 (2). We thus find that 

1 f r (a+t) r (l + ia+t) r (b+t) r (c+t) r (d+t) r (e+t) 
(
1
) 2~ f'(!a+t)r(l+a-c+t)r(1+a-d+tfr(l+a-e+t) 

r (/ + t) r (g + t) r (h + t) r (b-a-t) r (- t) dt 
x~~~-7~~~~--~~~~~~~~ 

r(I +a-f+t) r(l +a-g+t) r(l +a -h+t) 

r (c) r (d) r (e) r (j+b-a) r (g+b-a) r (h+b-a) 
= r (k+c-a) r-(k-+d=-a)l'(k+e=a) rTi +a-g-h) 

r (l +a-f-h) r(1 +a-f-g) 

1 r(k+c-a+s)r(k+d-a+s) 

J

r (k+s) r (l + lk +s) r (b+s) 

X 21Ti i'T!k+s) r(l +a-c+s) r(l +a-d+s) r(I +a-e+s) 

r (k+e-a+s) r (j +s) r (g+ s) r (h + s) r (b- k- s) r ( -s)ds 
x -- r(t+k-/+sfr(t-t-k-g:t.S)r(L+k-h+s) ' 

where k = 1 + 2a- c -d-e, and the parameters are connected by 
the relation 

(2) 2 + 3a = b + c + d + e + f + g +h. 
From this formula we can, in the usual way, obtain a relation 

connecting four well-poised series of the type 91!'8 • If we write 

V (a;&,c,d,e,j,g,h) 
r (l +a) r (b) r (c) r (d) r (e) r (/) r (g) r (h) 

= =r---:-:( 1,-+-a---b,--'-)--;:;r;-:-( 1-:'--+ a - c) r ( 1 + a-d) r ( l +a-e) 
r (I +a-f) r (1 +a-g) r (1 +a-h) 

OF HYPERGEOMETRIC SERIES 

F [
a, 1 +!a, b, c, d, 

X 9 8 1 OJa, l+a-b, l+a-c, l+a-d, 

e, f, g, h; J 
l+a-~1+a-h1+a-~1+a-h 

the formula can be written 

( 3) cosec ( b - a) 11' 

x{V(a; b, c, d, e,J, g, h)- V(2b-a; b, b+c-a, b+d-a, 
b+e-a, b+f-a, b+g-a, b+h-a)} 

r(c) r(d) r(e) r(f+b-a)r(g+b-a) 
r(h+b-a)cosec(1 +a-f-g-h)1T 

= r (1 +a-d-e) r(fta-c-e) r(l +a-c-d) 
r (1 +a-g-h) r (1 +a -j-h) r (I +a-f-g) 

x{V(1+2a-c-d-e; b, 1+a-d-e, 

1 +a-c-e, I +a-c-d, J, g, h) 

- V(2b-2a-1 +c+d+e; b, b-a+c, b-a+d, 
b-a+e, l+a-g-h, l+a-f-h, l+a-f-g)}, 
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provided that (2) is satisfied. Any one of the series 9F 8 is of general 
type except for the second parameter and the restriction that the 
sum of the denominator parameters exceeds the sum of the 
numerator parameters by two. \Vhenf, gor his a negative integer, 
the formula reduces to § 4.3 (7). 

The parameters of the second seriis are obtained from those of 
the first series by the addition of b- a to each, the parameter so 
obtained from b becoming the first parameter of the second series. 
We shall say that the two series are 'complementary with respect 
to the parameter b.' It will be noticed that the two series on the 
right of (3) are also complementary with respect to the para
meter b. 

6.9. Integrals related to Saalschutzian nearly-poised 
series. Now in the formula § 6. 7 ( 1) take p1 = f, b = l + 2k- a - f, 
so that we can integrate on the right by means of Barnes' second 
lemma. 'Ve are thus led to the formula 
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1 r (I + 2k- 2a-1- t) r (- t) dt jr (a+t) r (c+t) r (d+ t) r (e+t) r (J+t) 

(I) 211i ---r (1 +a -c + t) r (1 +a-d+ t) r (1 +a:..:.:e-+tf-

2r (c) r (d) r (e) r (I+ 2k- 2a) 
= r (k+c-a} r (k+d- a) r (k+e- a) f(1-+k -a) 

X _I s~ (k+s) r (l + ik-t::_1T<~_+ 2s) !'if +8) r (k+c -a+s) 
211i r (} k + s) f ( l + 2k- a+ 2s) f (I + k- f + s) 

r (k+d-a+s) r (k+e-a+s) r (l + 2k -a-f+s) 
r (1 +k-a-f-s) r ( -s)ds 

x--------- -- ---- ----
1' (I +a -c+s) f (1 +a-d+s) f (I+ a-e+s) 

where k= 1 + 2a-c-d-e. 
From this formula we find, in the usual way, a relation in 

which there are two nearly-poised series 5F 4 on the left and two 
well-poised series 9F 8 on the right. The nearly-poised series are 

F [a, c, d, e, j; J 
5 4 1+a-c, I+a-d, l+a-e, 2a+f-2k 

and 

[

I + 2k- 2a, I + 2k- 2a-f + c, I + 2k- 2a-f + d, 
I+2k-2a-J+e, I+2k-a-J; 

,F4 2+ 2k-a-j-c, 2+2k-a-J-d, ' 
2 + 2k- a-f- e, 2 + 2k- 2a-I 

while one series 9F 8 has the pumerator parameters k, I+ lk, la, 
!+ ta,j, k+c-a, k+d-a, k+e-a, I +2k-a-f, and the other 

9
F

8 
is complementary to this with respect to the parameter 

I+ 2k- a-f. The nearly-poised series are Saalschiitzian in type. 
One is of the first kind and the other of the second kind. When 
j is a negative integer the relation reduces to §4.5 (3), while if 
1 + 2k- 2a + e-f is a negative integer the relation reduces to a 
transformation of a Saalschiitzian nearly-poised series 5F 4 of the 
first kind into a well-poised 9F 8 • This is equivalent to the trans
formation obtained from§ 4.5 (3) by the reversal of series, referred 
to in §4.6. 

As a particular case of (1) take d = 1 +!a, e =!+!a, so that 
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k =a-c- -!, and the integral on the right can be evaluated by 
§6.6 (1). Replacing] by d, we obtain the formula 

jr (a+t) r (I+ la + t) r (c +t) r (d+t) 
I r (- 2c- d- t) r (- t) dt 

(
2

) 27Ti- - r(ta+t)f-(I+a-c-tt) 

f(1 +a) r (c) r (d) r (- 2c) r (a- 2c-d) r ( -c-d) 
2r (a- 2c) r (I -tci-c -d) r(---=c) -

Now in§ 6.7 (1) take p1 = 1 + ta, p 2 =f, o-1 =~a. The integration 
on the right with respect tot can he performed by (2) provided 
that b = 2k-a-J, and we are led to the formula 

(3) _!_ Jr (a +t) r (1_+ ta+t) r (c +l) r (d+t) f(e+t) r (/+ t) 
27Ti r (!a+ t) f (I +a -c+t) r (I +a-d+ t) 

r (2k- 2a-f- t) r ( -t)dt 
X ------- . -----~ 

f(1+a-e+t) 

r (c) r (d) r (e) r (2k- 2a) 
r (k_+_c ___ a_c) r~(k + d- a) r (k-+e- a) r (k- a) 

I r(k+d-a+s) f(k+e-a+s) jr (k+s) r (I+ lk+s) r (k+c -a+s) 

x 21Ti f'(lk + s) r {l +a ___:_ c -t 8) r (I + a :__ d + 8) f (I + a__:___ e + 8) 

r (I +a+ 2s) r (f+8) r (2k-a- f+s) r (k-a-J-s) r( -s)ds 
X------- - -·-- ---~ r {2k-a+ 28) r (I +k-f+s) ' 

where k= I+ 2a-c-d-e. 

This formula leads to a relation involving two Saalschtitzian 
nearly-poised series 6F 5 and two well-poised 9F 8 which are com
plementary with respect to the parameter 2k - a-f. One of the 
nearly-poised series is of the first kind and one of the second kind. 
When I is a negative integer the relation reduces to §4.5 (4), and 
when 2k- 2a + e-I is a negative integer the relation reduces to 
the corresponding transformation of a nearly-poised series of the 
first kind. 

Generalizations of§ 4.5 (5) and (6) can be found in a manner 
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entirely analogous to that of§ 4.5. In each case we obtain a rela
tion involving two nearly-poised series, one of each kind, and two 
well-poised 9F 8 • 

It will be noticed that no direct generalizations of§ 4.5 ( l) and 
(2) have been given. The formulae obtained in these cases involve 
five series instead of three or four as previously obtained. In each 
case two of the series are nearly-poised and of the second kind, one 
is nearly-poised and of the first kind, and the other two are 
Saalschlitzian in type. 

CHAPTER VII 

FURTHER TRANSFORMATIONS OF 
WELL-POISED SERIES 

7.1. Introductory remarks. The formula§ 4.4 (5) transforms 
a well-poised series 7F 6 into a Saalschlitzian 4F provided that the 
latter series terminates. There are thus two di!tinct cases, one in 
which the 7F 6 terminates and another in which the F does not 

• 7 6 

termmate although the 4 F 3 does. 
We suppose that 

u+v+w=x+y+z-n+ 1, 

and then the formula in the two cases can be written 

(l) 4F3[x, y, z, -n;J 
u, v, w 

= r(v+w-x) r (1 +y-u) r (1 +z-u) r (1-n-u) 
r ( 1 + y-n-u) r ( 1 + z-n- u) r (I + y + z - u) r ( 1-:..:: u) 

x ,F6 [a, 1 +fa, w-x, v-x, y, z, 
!a, v, w, 1+z-n-u, 1+y-n-u, 

where a=y+z-n-u=w+v-x-1; and 

(2) 4Fa [x, y, z, -wn;J 
u, v, 

1+;:~-ul 

= r (v+w+n) r (I +x-u) r (l + y-u) r (I +z-u) 
r (I +y+z -u) r (1 +Z+X-U) r (I +x+y..::.u)-r-(1-u) 

X 7 6 ' F [
a', 1 + la', w+n, v+n, x, y 

ia', v, w, l+y+z-u, l+z+x-u, 

z· J 
l+x+,y-u ' 

where a' =x+y+z-u=v+w+n-1. 
It is evident that§ 4.4 (5) and these equivalent formulae can be 

used to find additional relations connecting two well-poised series 
or connecting a well-poised series and a Saalschlitzian series. These 
relations have been fully worked out by Whipple.* 

• Whipple 3. 
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7 .2. A relation connecting terminating Saalschiitzian 4F 3 • 

When the ,F 6 in§ 7.1 ( 1) is transformed by§ 4.4 (f>), with g = - n, 
into a Saalschiitzian 4F 3 , we obtain the formula 

( 1) F ex, y, z, -n;J 
4 3 u, '!!, U' 

=(v-~~~Jw-z), 4F3 [ u-x,u-y,z, -n; ]. 
(v),(w), I-v+z-n, 1-w+z-n, u 

where, of course, the parameters are subject to the condition 

u+v+·lv=x+y+z-n+ l. 

The formula (I) can be obtained immediately by equating the 
coefficients of 'n on the two sides of the relation 

F [x, y; '] F ci-n-v, 1-n -w; '] 
2 1 u z I 1-n-z 

= F cu-x, u-y; '] 1/ cv-z, w-z; ']. 
2 1 u 2 1 1-n-z 

which is an immediate consequence of§ 1.2 (2). 
The series occurring in ( 1) can both be reversed, and so we 

obtain two more Saalschiitzian series related to the given 4F 3 . 

By interchanging the parameters x, y, z or u, v, win (1) we obtain 
9 distinct 4F 3 related to the given 4F 3 , apart from the 10 equi
valent series obtained by merely reversing the order of the terms. 

7 .3. Notation for terminating well-poised 7F6 • The method 
of obtaining transformations of a given terminating well-poised 

1F 6 is simple. Starting from §4.4(5), with g= -n, we obtain 
a Saalschiitzian 4F 3 from which other related 4F 3 can he derived 
by §7.2 (1). These 4F 3 can now be transformed by§ 7.I (1) and (2) 
into well-poised series, either terminating or non-terminating. 
The number of series involved is, however, fairly large, and so it 
is convenient to use a notation* analogous to that of§ 3.5. 

Let r1 , r 2 , ... , r6 be six parameters such that 

~r=O, 

and write 4> for the fraction ! (n- 1). 

• Whipple 3. 

We write 

Then evidently 

and 

WELL-POISED SERIES 

ei;=ri+ri-4>, 

oij = ri - rj - n. 

El2 + Ea4 + Ess = 1 - n 

S1z=El3-Eza-n. 

r (1 +Su) r (1- €24) r (1- €3-1) r (1- E4s) 
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(2) w <I · 4) = - . . . . . r (1 - €46 > 
' r (1 +n+ Sl4) r (1-n -E24) r (1-n- €~~) -~-

r (I - n- E4.~;) r ( 1 - n - €46) 

F [
su, I+-~ 014• el6• E1s• E1a· 

X 7 6 !o14 , 1-n-e.16 , 1-n-e4:;, I-n-e34 , 

E12• -n; J 
1-n-e24 , 1+n+S14 ' 

all permutations of the numbers I, 2, ... , 6 being allowed. These 
definitions may also be written in the forms 

n 
(3) 8 (1, 2, 3) = ~ ncp (E23)p (El3)p (El2)p (€56),1-p (e46>n-p (€45)n-p> 

J>=O 

( 4) w ( 1; 4) = (- 1 )n ~ n cp r 1- r <~.± 2p- n 
p=O r1-r4 

X (E12)p (e13)p (e15)p (el&)p (~42>n-p (E4a),._p (e4s)n-p (€4s>n-p 

(l-r1 +r4),_p(1+r1 -r4)p -

The equation § 7.1 ( 1) can now be written 

(5) 8(I,2,3)=W(1;4). 

As the series involved in 8 (I, 2, 3) and W (I ; 4) terminate, they 
may each be written in the reverse order, and (3) and (4) show that 

(6) 8(1, 2, 3)=:8(4, 5, 6), 

(7) W(1; 4)= W(4; I). 

The equation (5) may now be used repeatedly. Thus 

S (I, 2, 3) = W ( 1; 4) = 8 ( 1, 2, 5) = W (2; 6) = 8 (2, 3, 5) = .... 
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Formally there are 20 8's and 30 W's, but each series is counted 
twice if we make no distinction between a given series and that 
obtained by reversal of the terms. 

There are therefore 10 distinct 8's and 15 W's. The 25 series 
are all equal. The identities involved in addition to (5), (6) and 
(7) are 

(8) S(1,2,3)=8(1,2,4)=8(3,5,6), 

(9) W(I;4)= W(2;6)= W(6;2), 

(10) 

(II) 

W(I;4)= W(l;5)= W(5; 1), 

8(1,2, 3)= W (2; I)= W (I; 2). 

7.4. Notation for non-terminating well-poised 1Fe· In 
§ 7 .I (2) the first of the parameters of the series on the right is 

a'=v+w+n-1= -¢-2r4 -r6 -r6 • 

We write 

and 

(1) w (4; 5, 6) 

r (I+ A.4;56) r (I-e-14) r (I-£24 ) r (I- E"a4) r (I- €45) r (I-e-46) 
= r (I +n+S1~) r (1 +n+324) r (I+ n+ 334) r (1-n- £45) 

r (1-n-e-46) r (€66) 

X F [,\4;56• l+i..\4;56> I-e-45• 1-£46> €23> 
7 6 !A.4;5G• I-n-e-46• 1-n-e-45• I+n+Sl4• 

E1a, £12; J 
I + n + 324 , I + n + 834 ' 

and then § 7 .I ( 2) can be written in the form 

(2) 8(1,2,3)=W(4;5,6). 

The series in W (4; 5, 6) is convergent when R(EM) > 0. 
Since S (4, 5, 6) is the same as 8 (I, 2, 3) written in the reverse 

order there are six non-terminating well-poised series corre
sponding with each Saalschtitzian series. It should be noticed, 
however that not all the six are convergent since theE'S have a 
negative' sum. The total number of non-terminating 1F 6 derived 
from the IO equal Saalschiitzian series is 60. 
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By combining (2) with the relations between the 8's, we find 
the following formulae: 

(3) W(4; 5, 6)=8(1, 2, 3):::8(4, 5, 6), 

(4) W(4; 5, 6)=8(1, 2, 4)=8(3, 5, 6), 

(5) W(4; 5, 6)=8(1, 2, 5):::8(3, 4, 6), 

(6) W(4; 5, 6)= W(I; 4)= W(4; I), 

(7) W(4; 5, 6)= W(1; 5)= W(5; 1), 

(8) W(4; 5, 6)= W(l; 2)= W(2; I), 

(9) w (4; 5, 6) = w (4; 5) = w (5; 4), 

(10) W(4; 5, 6)= W(5; 6)= W(6; 5), 

(11) w (4; 5, 6) = w (5; 4, 6), 

(12) w (4; 5, 6) = w (5; 1, 6), 

(I3) W(4; 5, 6)=W(5; I, 2), 

(14) w (4; 5, 6) = w (5; 1, 4), 

(I5) W(4; 5, 6)= W(4; I, 5), 

(I6) W(4; 5, 6)= W(4; I, 2), 

(I7) W(4; 5, 6)=W(1; 2, 3), 

(I8) W(4; 5, 6)= W(1; 2, 4), 

(I9) W (4; 5, 6) = W (I; 2, 5), 

(20) W(4; 5, 6)= W(1; 5, 6), 

(21) W(4; 5, 6)= W(I; 4, 5). 

Thus associated with a given non-terminating well-poised 
series there are 3 distinct Saalschiitzian series, 5 terminating well
poised series, and ll non-terminating well-poised series. Also, 
associated with a given terminating well-poised 7F 6 there are 2 
distinct Saalschiitzian series, 3 terminating well-poised series, 
and 8 non-terminating well-poised series. 

As in § 3.5 we can work out the parameters of the various series 
associated with a given well-poised series, either terminating or 
non-terminating. Tables of these parameters have been given by 
Whipple* and are set out below. The second parameters of the 

• Whipple 3. Whipple also gives tho parameters of the well-poised seri<'s asso
ciated with a. given Saalschiitzian series. 
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well-poised series are omitted, and only numerator parameters of 
these series arc given. 

Table I. Parameters of associated series. lJf aster series 
well-poised and terminating 

s=c+d+e+f-2a-n-l 

W(l; 2) 
W(2; l) 
W(l; 3) 
W(3; I) 
W(2; 3) 
W(3; 2) 
W(3; 4) 

a;c,d,e,f,-n } 
-a-2n; c-n-n, rl-a-n, e-a-n,f-a-n, -n 
s+a-c;s,d,e,f, -n } 
c-a-s- 2n; c-a-n, I +a-e-f, I +a-d-f, 1 +a-d-e, -n 
s-e-n; s, d-a-n, e-a-n,f-a-n, -n } 
c-.~-n; c, l +a-e-f, 1 +a-d-f, 1 +a-d-e, -n 
c-d-n; c, c-a-n, I +a-d-j, 1 +a-d-e, -n 

8(1, 2, 3) 
8(4, 5, 6) 
S(l, 3, 4) 
8(2, 5, 6) 

s, c, c-a-n, -n; c+J-a-n, c+e-a-n, c+d-a-n 
I+a-c-d, I+a-c-j, I+a-c-e, -n; I-n-s, 1-n-c, 1+a-c 
c,d, I+a-e-f, -n; I+a-e, 1+a-f,c+d-a-n } 
e-a. -n,j-a -n, 1 +a-c-d, -n; I-n-c, 1-n-d, e+j-a-n 

W(l; 2, 3) 
W(2; I, 3) 
W(3; I, 2) 
W(1; 3, 4) 
W(2; 3, 4) 
W(3; I, 4) 
W(3; 2, 4) 
W(3;4,5) 

W(4;5,6) 
W(5; 4, 6) 
W(5; 1, 6) 
W(5; I, 2) 
W(5; 1, 4) 
W(4;I,5) 
W(4; 1, 2) 
W(l; 2, 3) 
W(l; 2, 4) 
W(I; 2, 5) 
W(l;5,6) 
W(1; 4, 5) 

1-s-n-c; 1-s, l-c; 1+a-c-d, I+a-c-c,1+a-c-f 
I-s+a-c; 1-s, l+n+a-c; 1+a-c-d, l+a-c-e, I+a-c-f 
I+a-2c; 1-c,1+n+a-c; 1+a-c-d,1+a-c-e,I+a-c-f 
1-c-d-n; 1-c, l-d; e-a-n,f-a-n, 1 +a-c-d 
e +J-s; 1-c+a+n, I-d+a+n; e,f, 1 +a-c-d 
e+j-c-a-n; 1-c, e+J-a; e-a-n,J-a-n, 1 +a-c-d 
e+f-c; l-c+a+n, e+f-a; e,f, I +a-c-d 
s-c; e+f-a, d+f-a; s,f,f-a-n 

Table II. Parameters of associated series. Master series 
well-poised and non-terminating 

t=c+d-e- f -u- 2n 

c+d-n-l; c, d; e,f, g 
c-t-n; c, l-t; e,f, g 
1+e-t-d; 1-d+e+n, l-t;e, 1-n-f-t, 1-n-g-t 
1 +e+f- 2d+n; 1-d+e+n, i-d+J+n; 1-n-g-t, c-g-n, 1-
c-d+e; 1-d+e+n, c; c, c-f -n, c-g-n 
c+e+t-1; e+t+n, c; e, c-j-n, c-g-n 
c+f+2t+n- I; e+t+n./ +t+n; d-g-n, c-g-n, t 
1-f-g-n; 1-j,1-g; l-c,1-d,t 
e-u+t; 1-g, e+t+n; d-g-n, c-u-n, t 
1-d+e-g; 1-g, 1-d+e+n; 1-g-t-n, c-g-n, I-d 
1-c-d+2c+n; 1-d+e+n, I-c+e+n;e, 1-n-j-t, 1-n-g
c+e-J-u-n; e+t+n, 1-d+e+n; e, c-f-n, c-g-n 

S(l, 2, 3) 
S(4, 5, 6) 
S(l, 2, 4) 
S(3, 5, 6) 
S(l, 2, 5) 
8(3,4,6) 

W(l; 4) 
W(4; I) 

W(l; 5) 
W(5; I) 
W(l; 2) 
W(4; 5) 
W(5; 4) 
W(5; 6) 
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Table II (cont.) 

e,f. {/• -11; e-n, d-n, 1-t-n } 
l-c, 1-d,t. -n; 1-e-n, 1-f-n,l-rt-n 
1-n-e-i, 1-n-j-t, g. -n; 1-d+rt. I-c+y, 1-t-n} 
d-g-n,c-y-n,t, -n;e+t,J+i, I-g-n 
d-e-n,d-j-n,y, -n;g+t, l-c+rJ.d-n } 
l-n-y-l,c-g-n,1-d, -n; l-d+e,1-d+f, 1-g-n 

c +d-e- 2n- I ;f, ff, d-e-n, c -e-n, - n } 
l-c-d+c; l-n-j-t,l-n-y-t,l-r, l-d, -n 
f+g-d;f,g, 1-n-e-l,c-e-n, -n } 
d-f- g- 2n; d-f- 11, d- g -n, I - c, t, - n 
f-e-1!;f,l-n-e-t,d-e-n,c-e-n, -n 
I-d-t-n; 1-n-e-t, 1-n-f-t,I-n-g-t, 1-d, -n} 
d+t-n-l;d-e-n,d-f-n,d-y-n,t, -n 
d-e-n; d-e-n, d-f-n, d-g-n, I-c, -n 

The parameters tabulated for 8(1,2,3) arc £ 23 , £ 13 , E12 , -n; 
1-n- £ 56 , 1-n- E46 , 1-n- E45 • Those tabulated for W (1; 4) are 
S14 ; £ 16 , E15 , ~; 13 , ~;12 , - n, and the parameters shown for W (4; 5, 6) 

are A4;ss; 1-~;4s• l-E4G; "2a• Eta• €12. 

7 .5. Transformations of unrestricted well-poised 7F6 • In 
the transformations given so far in this chapter, a parameter or 
a linear combination of parameters has been restricted to be a 
negative integer. We now consider transformations when there 
is no such restriction.* 

The formula § 4.4 ( 4) is a formula of this type. It is convenient 
to write 

W (a; c, d, e, f, g) 

=
7
F

6
[a, 1+1a, c, d, e, f, g; J 

~a, l+a-c, l+a-d,l+a-e, 1+a-f,l+a-g · 

Now transform the series 

W(1+2a-e-f-g; c, d, l+a-J-g, l+a-e-g, l+a-e-j) 

by § 4.4 ( 4) and we obtain the same series 4 F 3 as occur in that 
formula. We thus find that 

• Bailey 12. 
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(1) W (a; c, d, e, f; g) 

r (l +a-c) r (I +a-d) r (2 + 2a-e-f-g) 
r (2+ 2a-c-_d_=-~=_!-g) 

= f' (1 +a) r (I+ a-c-d) r (2 + 2a-c-e- f-g) 
r(2+2a-d-e-/-g) 

x W(1+2a-e-f-g;c,d, I+a-f-g, 1+a-e-g, 1+a-e-f). 

On duplicating this formula we obtain 

(2) W (a; c, d, e, f, g) 

r (I +a-c) r(I +a-d) r (I +a- e) r (I +a-f) 
= r (i +a) r(g) r (2+-2a-d -e-f-g) r (2+ 2a-c-e-f -g) 

r (3+ 3a- c-d-e- f- 2g) r (2+2a-c-d_-=_e_-~-j-g) 
X r(2+ 2a=c-d-j-g) r(2+ 2a-c-d-e-g) 

x W(2+3a-c-d-e-f-2g; l+a-c-g, I+a-d-g, 
l+a-e-g, l+a-f-g, 2+2a-c-d-e-j-g). 

If g or l+a-e-f is a negative integer, (1) gives a relation 
between a terminating and a non-terminating well-poised series, 
whereas if c is a negative integer the formula reduces to one 
connecting two terminating series. Similarly (2) gives, in certain 
circumstances, a relation between two series, only one of which 
terminates. 

The series on the rightof(2)can now be transformed by§ 4.4 (4), 
and we thus derive the formula 

[
a, 1 +!a, c, d, e, j, g; J 

(
3

) ,F6 !a, 1+a-c, l+a-d, l+a-e, I+a-f, l+a-g 

r (1 +a-c) r (I +a-d) r(I +a-e) r (I +a-f) 
r (l +a) r (g) r (I +a-c-f) r (I +a-d-j) 

r (g-f) r (2+ 2a-c-d-e-f -g) 
X - . ---------

r(I+a-e-f) r(2+2a-c-d-e-g) 

[
I +a-c-g, I +a-d-g, I +a-e-g, f;J 

x 4Fa 2+2a-c-d-e-g, I +a-g, I+ f-g 

r(I +a-c) r (I +a-d) r(l +a-e) r(l +a-g) 
+ r (I +a) r (/) r (1 +a-c-g) r (1 +a-d-g) 

r (j-g) r (2+ 2a-c -d-e-f-g) 
X ---------- ·-. ·---·-·-

r (I +a-=e-g) r (2+ 2a -c -d-e-f) 

WELL-POlS ED SERIES 

F [I+a-c-f, 1+a-d-J, I+a-e-f, g;J 
x 4 3 2 + 2a- c-d-e- j, I +a-j, I + g -j · 

This formula and §4.4 (4) appear to be the only formulae of 
their type. They generalize all Whipple's formulae expressing <L 

well-poised 7F6 in terms of a Saalschtitzian 4 F 3 • The formulae ( 1) 

and (2) do not, however, generalize all Whipple's formulae ex
pressing a well-poised series in terms of another well-poised series. 
Apparently the generalizations of the other formulae are not of 
such a simple type. 

7.6. Transformations of well-poised 9F 8 • The formula 
§4.3 (7) transforms a terminating well-poised 9F 8 into another 
series of the same type. It would seem at first sight as if we could 
take the parameters in different sets of three and so obtain several 
formulae connecting well-poised 9F 8 • It appears however that, 
apart from the mere reversal of series, there is only one other 
formula of this type, obtained by-duplicating §4.3(7). This 
formula is* 

(l) F[a,l+!a, b, c, d, e, 
9 8 !a, I+a-b, 1+a-c, l+a-d, 1+a-e, 

f, g, -n; J 
I +a-f, 1 +a-g, 1 +a+n 

(I +a)n (I +a- b- c)n (I +a- b-d)n (I+ a-b -e)n 
( l +a- b-nn (g)n 

(1 +a- b)n (1 +a-c)n (I+ a-d)n (l-+ a-e)n (1 +a-f)n (g-_ b)n 

F [b-g-n, l+!(b-g-n), b, l+a-c-g, 
Xg s !(b-g-n), 1-g-n, b+c-a-n, 

1 +a-d-g, 1 +a-e-g, I +a-J-g, b-a-n, -n; J 
b+d-a-n, b+e-a-n, b+f-a-n, 1+a-g, I+b-g ' 

where 2+3a=b+c+d+e+f+g-n. 
Similarly, by duplicating§ 6.8 (3), we obtain, with the notation 

of that paragraph, 

• Bailey 12. See also Whipple 10 where the formula. is proved by Dougall's 
method. Wo can derive§ 4.3 (7) from this formula. by duplication. 
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(2) cosec(b-a)11.{V(a; b, c, d, e,f, g, h) 

- V(2b-a; b, b+c-a, b+d-a, b+e-a, b+J-a, b+g-a, 
b+h-a)} 

r(c)r(d)r(e)r(j)r(c+b-a)r(d+b-a) --- - --
= f(t +a:_c-=-!/Yf'-[l+a-d-g) r(T+a-e-g) r (I +a-f-g) 

r ( e + b - a) r (f + b -a) cosec (g -h) 1T 

>< r-(I_+_a_--c-~h)-::r;;;:--(~I-+-a-d-h) r (1 +a-e-h) r (I +a-f-h) 

x{V(b-g+h; b, I+a-c-g, I+a-d-g, I+a-e-g, 

I+a-J-g, h, h+b-a) 

- V(b+g-h; b, I+a-c-h, l+a-d-h, I+a-e-h, 

I +a-J-h, g, g+b-a)} 

provided that 2 + 3a=b+c+d+e+ f+g+h. 

The transformation §7.5(3) can be deduced from (I) by a 
limiting process analogous to that by which § 4.4 ( 4) was deduced 
from the previous relation connecting two well-poised series 9F 8 • 

CHAPTER VIII 

BASIC HYPERGEOMETRIC SERIES 

8.1. Introductory remarks. The hypergeometric series was 
generalized in a different way by Heine* who considered the 
series 

(I - qC<) (I - q~) (I - q0t:) ( 1- q<x+l) (I - q~) (I- q~+l) 
I +-(1-q)(l-qr) z+ --(I-q)(l-q2)(1-q")(I-qY+l) z

2
+ ···' 

which reduces to 2F 1 (oc, {3; y; z) when q~ I. 
We shall follow Heine in writing a., {1, y instead of q'X, qf3, qY, 

and define the basic series by 

2<1>1 (oc, {3; y; z) 

I (I-a)(I-{3) (1-oc)(I-ocq)(I-,8)(1-,Bq) 
2 

c= +(I-q)(l-y)z+ (I-q)(l-q2)(1-y)(I-yq)z + ... , 

where I q I< I, I z I< I. 
For brevity we write 

(a)q,n =(I- a) (1-aq) (1- aq2) ,,, (I-aqn-1), (a)q,O =I, 

and then 2<1>1 (oc, ,8; y; z) = i (oc)q,n (f~)q,nzn, 
n=O (q)q,n (y)q.n 

and, more generally, 

r<~>s[IX.l, IX.2, ... , oc,; z]= i (oc1)q,n(oc2)q,n··· (oc,)q,nzn. 
PI• ... , Ps n~o (q)q,n (pl)q,n ... (ps)q,n 

8.2. Some elementary results. As particular cases of the 
series 2<1>1 we have 

(1) z z z2 zs 
-I- 2<1>1 (q, q; q2; z) =-I-+ -I 2 + 1--------a + ... ' -q -q -q -q 

z i i z z2 z3 
(2) -1 -p<I>I (q, q; q; z)= -~-]_ +---~+--. + ... , 

- q - q'I 1 - q 1 - q~ 

2z • 2z2 2z3 
(3) z(J>dq, -I; -q; z)=l+l+q+-I+q2+l+q3+ .... 

• E. Heine, Theorie der Kugeljunctionen, 1 (1878), pp. 97-125. 
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If we divide (2) by z~, an<l replace q, z by q2, qe2i.r, where xis real, 
the imaginary part of the series becomes 

qt sin x q~ sin 3x q~ sin 5x 
-- - +- - 3- + -- -5- + ... ' 
1-q 1-q 1-q 

h. h. h . ~ Kk 2Kx w IC IS t e senes tor -
2 

sn -- . 
7T 7T 

Similarly from (3) we can derive a series connected with 

dn (2K:t/7r). 
We now show that 

(4) 
''- (1-aq"z) 

1<1>0 (a; z) = n --~--11- . 
n=O -q Z 

By subtracting series term by term, it is easily shown that 

1<1>0 (a; z)- 1<1>0 (a; qz) = (1- a) z 1<1>0 (aq; z), 

1<1>0 (a; z)- a 1<1>0 (a; qz) = ( 1- a) 1<1>0 (aq; z). 

Eliminating the series which occurs on the right, we have 

1-az 
1<1>0(a; z)= -1~- 1<1> 0 (a; qz), 

-z 
and thus 

. _ ( l - az) ( 1 - aqz) ..• ( 1 - aq"-1z) . n 
1<1>o(a, z)- (1-z)(l-qz) ... (1-qn-1z) l<l>o(a, q z). 

Now make n-+CO and (4) follows at once. 
As particular cases of this result we note that, if a= 0, 

z z2 1 
(5) 1 + 1-q + (i-q) ( 1- q2) + · · · = (i- z) ( 1-qz)( 1-q2Z~.' 

and, if z is replaced by zja and then a-+co, 
z qz2 ( _ 1 )nql-n(n-1) zn 

(6) 1-1-q +(i=qf(I-q2)- ... +(l-q)(l-q2) ... (l~qn)+ .. . 
= ( I - z) ( I - qz) ( 1 - q2z) ... . 

Another consequence* of (4) is that 

(7) 1$ 0 (a; z) 1<1>0 (b; az) = 1<1>0 (ab; z). 

8.3. The analogue of Dougall's theorem. The method of 
Chapter IV for obtaining transformations of generalized hyper-

"' For the results of this paragraph see Heine, loc. cit. 
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geometric series does not appear to be capable of generalization 
so as to apply to basic series. The transformations of well-poised 
series, however, have their analogues for basic series, with the 
possible exception of the transformations of non-terminating 
well-poised 9F 8 • We first prove the analogue of Dougall's theorem, 
namely* 

(I) <I> [a, qya, -qya, b, c, d, e, q-.v; q] 
8 7 ya, - ya, aqfb, aqjc, aqjd, aqje, aqN+1 

= (aq)q,N (<UJ/cd)q,N (aq/bd)q,N (aqjbc)q,N 
(aqjb)q,N (aqjc)q,S (aqjd)q,N (aq/bcd)q,N' 

provided that bcde=a2qN+l, and N is a positive integer. 
It will be noticed that the effect of the presence of the four 

elements qya, -qva, va, -vain the function on the left is 
merely the insertion of the factor (l-aq2n)/(1-a) in the general 
term of the series. 

The prooffollows the same general lines as the proof ofDougall's 
theorem given in§ 5.1. Writing fin place of q-N, the theorem be
comes 

<I> [a, qya, -qya, b, c, d, e, j; q] 
8 7 va, -va, aqfb, aqjc, aqid, aqfe, aqjj 

= n [Q___~llq'")(1-aq"/cd)(l-aq"/bd)(1-aq11fbc) 
n=l (l-aqnjb) (1-aqi'fc) (1-aq"/d) (1-aqn/Jf 

(I-aqnjbj} (1-aq11jcj) (1-aqnfdj} (l-aq11 jbcdj} J 
X (1-aqnjbcd) (f -aq11jbcj) (1-~njbdj) (1-aqnjcdj) ' 

provided that a2q = bcdef, and j is of the form q-s where N is a 
positive integer. 

Suppose the theorem is true when]= 1, q-1, q-2, ... , q-<x-u. We 
shall prove it true whenf = q-N, and then the result will follow by 
induction. Now by symmetry the result is true if cord has one 
of the values 1, q-1, ... , q-{N-U, that is if c or a2qfbcej has one 
of these values. It is therefore true in particular when j = q-N 
and c has one of 2N values. But when f=q-s we can multiply 
by (aqjc)q,N (aqjbcd)q,N and the formula states the equality of 
two polynomials of degree 2N in c. Thus, if we can prove the 

• Ja<'kson 1. 
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equality for one more value of c, the result will be established. 
We choose the value c=aqN, which is a pole of the last term 
only of the series, and the result is easily verified. 

8.4. The analogue of Saalschutz's theorem. In the formula 
just proved substitute for e, replace d by aqfd, and let a~o. 
We thus obtain the formula* 

(I) $ [b, C, q-N; q] _ (~/~)'l~N (dfc )q,_lv 
3 2 d bcql-Nfd - (d) • (dfbc) ' 

' ~N ~N 

which is the analogue of Saalschtitz's theorem. 
By comparing the coefficients of powers of z and using ( 1 ), it is 

easy to prove the formulat 

(2) 2$l[oc, ~; z]=t(J>o[ot,B/y; Z]z(J>t[y/oc, ;fp; ot/3zfy]. 

This is the analogue of§ 1.2 (2). 
Finally,ifweletN ~coin (1), we obtain the analogue of Gauss's 

theorem, namely 

(3} (J) [b, c; dfbc]= 0 [(l-dqllfb)(1-dqnfc)J 
2 1 d n=O (1-dqll) (I-dq11 jbc) ' 

8.5. Transformations of well-poised basic series. The 
argument of § 5.2 -can be used, with trivial alterations in the 
wording, to prove the transformationt 

(
1

) <I> [a, qy'a, -qy'a, c, d, e, f, g, h, j; q] 
10 9 y'a, -y'a, aqjc, aqfd, aqfe, aqjf, aqjg, aqfh, aqjj 

_ IT [(l-aq11
) (l-aq11 jjg) (l-aq11/Jh) (1-aqnjjj) 

- n= 1 (1-aqn/f) (l-aq11jg)(I-aqnjh) (l-aqnjj) 

(1-aqnjgh) (I-aq11 jgj) (l-aqnjhj) (1-aqnjjghj) J 
X (I-aqnjghj) (I-aqnjhjj)(I-aqnfjjg)(1-aqnjjgh) 

<I> [k, qy'k, -qy'k, kcja, kdfa, kefa, J, g, h, j; q] 
x 10 9 y'k, -y'k, aqjc, aqjd, aqje, kqff, kqfg, kqfh, kqjj ' 

where k=a2qjcde and cdefghj=a3q2, andf, g, h orj is of the form 
q-N where N is a positive integer or zero. 

• Watson 8. Watson derives (1) from (2). (1) had been given previously by 
F. H. Jackson. 

t Heine, loc. cit. p. 115, fonnula 13. t Bailey 4. 
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This is the analogue of the transformation§ 4.3 (7) connecting 
two terminating well-poised series 9F 8 • It includes the analogue 
of Dougall's theorem as an obvious particular case (when cd = aq). 

If we substitute for k and j, and make e~co, the formula 
becomes* 

(2)
8

(J>
7
[a,qy'a,-qy'a, c, d, e, f, g; a2q2jcdefg] 

y'a, - y'a, aqjc, aqfd, aqje, aqff, aqf g 

= n [ (I-aq11
) (l-aq11 /]g) (I-aqnjge) (l-aq11/ef)J 

n=l (1-aqnfe) (l-aq11//) (I-aqnjg) (1-aqnjefg) 

q> [aqjcd, e, .f, g; q] 
x 4 3 efgfa, aqjc, aqjd ' 

where e,j or g is of the form q-N. This is the analogue of Whipple's 
formula §4.3 (4) transforming a well-poised 7F 6 into a Saal
schtitzian 4F 3 • When d= I the series on the left of (2) reduces to 
unity, a.n.d we again obtain the analogue ofSaalschtitz's theorem. 
The formula (2) is due to Watson who used it to prove the Rogers
Ramanujan identities.t 

Now in (1) replace c and k by their values in terms of the other 
parameters, putting j = q-N, and then let N ~co, and in the same 
way~ we obtained §4.4 (4) we derive the formula 

(3) 8$7 [a,.qy'a, -qy'a, d, e, f, g, h; a2q2jdefgh] 
y'a, -y'a, aqjd, aqje, aqjf, aqfg, aqfh 

= n [(I-aq11 )(1-aq11/fg)(l-aq11Jfh)(I-aq11 jgh)J 
n= 1 ( 1-aqnjj) (1- aqnjg) (l- aqnjh) (1- aqnjjgh) 

x q> [ aqjde, J, g, h; q] 
4 3 aqjd, aqfe, fghja 

+ ll [ (1- aq11
) (1- aq11 1~~-e)jl-t__q:~=l)(I-gqn-1) (1_-:::~~~-~)

n= 1 (1- aqnjd) ( 1-aq11 /e) ( 1-aq'tfj) (I- aq11 jg)( I- aq11 jh) 

x ( 1-a2qn+1 jdfgh) (I- a2qn+ljefgh)J 
(I- a2q11+ljdejgh) (I- q•t-2jghfa) 

x q> [aqfgh, aq/fh, aqjfg, a2q2/defgh; q] 
4 3 aq2jjgh,a2q2fdfgh,a2q2jefgh • 

* Watson 6. t Given in tho next paragraph. 
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This is the analogue of § 4.4 (4) and generalizes (2). It also 
shows that (2) is true provided only that the series on the right 
terminates and the series on the left converges, a fact which 
W'atson stated was probable. 

It is evident that other transformations of well-poised basic 
series could be worked out in a way entirely analogous to that of 
Chapter VII. 

8.6. Some limiting cases. Now in the formula § 8.5 (2) make 
c, d, e,jand g tend to infinity. The process of making c, d, e, and/ 
tend to infinity presents no theoretical difficulty when g=q-N, 
since we are dealing with terminating series. To justify the process 
of subsequently making N-+ oo through integral values, an appeal 
must be made to Tannery's theorem. 

Now lim (c)q,n __ c-n=(-I)nqtn(n-1), 
c-+ro (aqjc)q, 71 

with similar formulae in d, e,j and g. Hence 

. [ a2q2] lim 8«1>7 a, qya, -qya, c, d, e, f, g; -de" 
<c,cl,e,t,a-+oo) C 'Jg 

.ya, -va, aqfc, aqfd, aqje, aqjf, aqfg 

cc (a) 1 aq2n 
=I+ ~ ~· - ( -1)5nq~n(n-I)a2nq2n. 

n=l (q)q,n l-(1. 

Also 

lim n . «> [ (1-aqn) ( 1-aqnfjg) (I-aqnfge) (1-aqnjej) J 
(e./,a-+oo) 1t= 1 (I- aqn,le) ( 1-agnjj) ( 1-aqnfg)(l- aq11 fejg) 

= n (I-aq11
), 

n=l 
and 

r <I> [aq/cd, e, f, g; q] 
(c,d,e~~ ...... oo) 4 3 efgja, aqjc, aqfd 

x { ( _ I )n qht<n-1)}3 qn 
=I+ ~ -----~ .. --- -,-,-----.....,...,....~-=--------, 

n=l ( _ I)nqtn<n-1)/au (1-q) (1-q2) ... (I-q't) 

00 anqnl 
=1+ ~ · · ------i- n • 

n=di-q)(l-q ) ... (I-q ) 
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We thus have the formula 
IX) 

(1) I+ ~ ( -1)na2nqin(Sn-l)(J-aq2n) 
n=l 

x u_--:-::aq~> ..:,...< l-:-:;--aq~2)_ .. _. <!.,-:I_-_aqn~-_.:_~ > 
( I - q) ( 1 - q2) ... ( l - qn) 

= II (I - aq11
). I + :E ~ • oo [ oo an n• J 

n=1 n=d1-q)(1-q ) ... (1-qn) 

7I 

By putting a= I and a=q in this result, and using Jacobi's 
well-known formula 

00 (() 

II [(l-q2n-lz)(I-q2n-ljz)(I-q2n)]= ~ (-1)nqn"zn 
n=l n=-cc 

to express the series on the left of (1) as one of two products, we 
obtain the Rogers-Ramanujan identities* 

q q4 q9 
(2) 1 + r .. :~-q + (1-q) <I- q2> +(I:: q)(I-q2> (I-q3) + ... 

I 
(I - q) (I- q4) (I- qG) ( 1-q9) (I- qll) (I - qU) ..• ' 

q2 n6 12 
(3) 1+-+- '1 + -- q + 

1-q (1-q)(I-q2) (I-q)(I-q2)(J-q3) ... 

I 
(I-q2) (1-qaf('} -q7) (I-qB) (1-ql2) (I-ql3) ... · 

In these formulae the indices of the powers of q in the numer
ators on the left are n2 and n (n + l ), while, in the products on the 
right, the indices of the powers of q form two arithmetic progres
sions with difference 5. 

Now in the formula§ 8.5(2) let cd=aq and let e, J, g-+ctJ, and 
we obtain 

00 

(4) 1+ ~ (-1)n.anqhl(an-l)(J-aq2n) 
n=l 

(1-aq) (I-aq2) ... (1-aqn-1) 
X -- -------__ ::...,-....:. 

(1-q) (I-q2) ... (1-qn) 
00 

= n (1-a.qn). 
n=l 

" For the history of these formulae see Rogers a.nd Ra.ma.nuja.n 1, or Ra.ma.nuja.n, 
Collected Papers (192i), p. 344. See also Rogers 1 and 2, Schur 1. The proof given 
here is due to Watson 6. 
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For a= l this gives 
ro ~ 

(5) 1 + ~ ( -l)tt{qtn(3n-l)+qln(3n+1)}= n (I-qn), 
n= 1 n= I 

a classical result (due to Euler) in the theory of partitions. 
Again, if we put cd = aq, e =v'(aq), and let f, g -Ht:J, we obtain 

"" (1-aq) (1-aq2) (1-aqn-1) 
(6) I+~alnq"(n-ll(1-aq2n) ··· __ n 

n=1 (1-q)(l- q2 ) ••• (I-q ) 

= n -------· ---- . ro ( I aqn ) 
n= 1 I - alqn-l 

For example, if a= 1, we have, replacing q by q2 , 

(7) I+ ~ qirnn+I>= ll ( 1-q2n ) 
n= l n=l I- q2n-1 ' 

a result due to Gauss. 
Lastly, ifwe put c=y'a, d= -y'a, and let e,J, g~oo, we obtain 

the relation 

(8) 1+ ~ (I-a)(1-aq)2~~-!l9':,-l)a'lqln<3n+ll 
n=l (1-q)(1-q ) ... (1-q) 

:c [ ro anqn2(I+q)(1+q2) •.. (1+qn)] 
= 0 (I-aqn). I+ L ·~- 2 · " ---· 

n=I n~dl-q)(1-q ) ... (I-q )x 
(I - aq2) (I - aq4) ... ( 1 - aq2n) 

and, in particular, when a= 1, 

"?, qn
2 

'-" ( 1 ) 
(9) 1 + n~d(1.=-q) (1-=..:q2f. .• (l~qn)}2= n~l 1-qn . 

When a= q we find from (8), after using (7), that 

"' (1 +q) {1 +q2) ... (l +q")qll(n+l) 
( 10) I+ n: 1 (I .:.:q){ 1-=-q2)~ ( 1-cj'') ( 1- q3 ) ( f:_ q~(f:_ q2n+l) 

ro [ 1- q6n J 
= n ~ 

1 
(I _ q6n-3 ){C- q11-:~1) · 

Evidently a large number of such formulae could be found, but 
sufficient have been given to indicate the possibilities of the 
transformations given in this chapter. 

CHAPTER IX 

APPELL'S HYPERGEO:METRIC FUNCTIONS 
OF TWO VARIABLES 

9.1. Def'mitions of Appell's functions. We have seen how 
the hypergeometric series can be generalized by simply increasing 
the num her of parameters. Some other generalizations have been 
studied by Appell* in which the num her of variables is increased. 

Consider the two hypergeometric series 

F (oc, {3; y; x), F (oc', {3'; y'; y). 

If we form their product we obtain a double series, depending 
on the two variables x andy, in which the general term is 

(oc)"!'_(~')n (fJ)m (fJ')" xmyn 
m! n! (y),, (y') 11 • 

Now replace one, two or three of the products (oc)m (oc') 11 , 

(fJ)m (fJ')n, (y).,. (y')n by the corresponding expressions 

(oc)m+n> (f3)m+n• (y)m+n· 
There are five possibilities, one of which gives the series 

~~ (ocLm+n (f3)m+n xmyn 
m!n!(y)m+n ' 

which is simply the expansion of the function 

F (a:, f3; y; X+ y). 

The four remaining possibilities lead to the definitions of 
Appell's hypergeometric functions of two variables, namely 

( I) F (oc·f3 {3'· ·x y)=~~(oc)m+n(/3)m(f3')nxmyn 
1 • ' ' y, ' I I ( ) ' m.n. y m+n 

(2) F ( . {3 {3'· '· X y) = ~~ (oc)m+n (f3)m ({3')n xmyn 
2 oc, , , y, Y' ' m' '() ( ') , .n.ymYn 

(3) F (oc '· {3 fJ'· • X y)=~~ (oc)m(oc')n(/3)m(fJ'),.xm•fll 
3 'oc, ' , y, ' ,.: .. u:... ' '() ::f·• m.n. y m+n 

(4) F (oc {3· '·X y)=~~ (oc)m+n(f3)m+tt xmyn 
4 , 'y, y' ' m!n!(y)m(y')n . 

• See Appell and Kampe de Feriet, Fonctions hypergiomttriques et hypersphiriquu 
( 1926). 
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The double series are absolutely convergent for 

(Ia) !xI< I, IYI <I; 

(2a) lxi+IYI<I; 

(3a) lxl <I, IYI <I; 

(4a) I X I!+ I y I! < I. 

To prove these statements we know that the general term of 
F 1 is 

A m n_ f'(y) 
m, n X y - f' (IX) =r -'.!(PC...:...) =r ---,( P~') 

f' (oc + m + n) f' (p + m) r (P' + n) m~.n 
X f' X ::1 , (y+m+n) f' (m+ l) f' (n+ 1) 

and, using Stirling's formula, we see that for large values of m 

A f'(y) ___ ILt--R'-l(m+n)a-y 
m,n-r(oc)r(p)r(p')7W 'W • 

andn, 

Write R(oc)=oc1 , R(P)=P1 , R(P')=fl~', R(y)=yt, 

and let N be a number greater than the modulus of 

r (y)/f' (oc) r <P> r {pt). 

Write also a and b for I x I and I y I· Then, for all large enough 
values of m and n, 

N 
I A xmyn I <----c----- ambn m,n (m + n)Yl-Q!I m1-ftt n1 -ftt' 

from which we conclude that F 1 is convergent when a and b are 
less than unity. 

It can be shown in the same way that the series is divergent if 
a orb is greater than unity. 

Similarly, if Am,nxmyn denotes the general term in F2 , we 
find that 

I A xmyn I< N (m+ n~ (m+n)oc,-lmfl~-y~nfl,'-y,· ambn. 
m,n m!n! 

Let k be a positive number greater than both fl1 - y1 and 
P1' -y1'. Then 
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The series of moduli, therefore, has its terms less than those of 
the series 

N"" 
- k l:r2k+oc,-l(a+b)'" 
4 r=O 

which is 

and is convergent when a+ b < l. 
For the series F 3 we find, for the general term A 111,nxmyn, that 

I Am,nxmyn I< Nmoc,+~,-2noc,'+P,'-2(m+ n)l-y, 

m!n! 
X --------- ambn 

(m+n)! 

< Nmet.!+P~-2 net.,'+P,'-2 (;n + n)l-y, ambn, 

and so the series P 3 is convergent when a and bare less than unity. 
Finally, for F 4 we find that 

I A xmyn I< N (m +n)ocl+P,-2ml-y,nl-y,' j<~7-n) 1}2 
ambn 

m,n l m!n! . 

Let k be a positive number greater than both I-y1 and I-y1', 

and then 

I A xmyn I<- (m + n)2k+oc,+.B,-2 -· ambn. N {(m+n)1}2 
m,n 4k m!n! 

Grouping together those terms of the series 

LL (m + n)2k+oc1+,81-2 {(m + n) 1}
2 
amb'' 

m!n! 
for which m+n=r, we obtain 

r~O r2k+a,+P,-2 {a'"+ cr ar-1 b + Gr ar-2 b2 + ... + b'} 

which is less than 
00 

L r2k+a1+P1-2(y'a+y'b)2r, 
r=O 

and this series is convergent if v' a+ y'b < I. 
It will be noticed that. the functions all reduce to the ordinary 

hypergeometric series F (oc, fl; y; x) when y is zero. The first three 
functions also reduce to F (oc, p; y; x) when fl' is zero. 
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9.2. The partial differential equations satisfied by the 
functions. Consider the function F 1 , and let 

z=Fdoc; {3, {3'; y; x, y)=~~Am,nxmyn. 

Then A = (oc+m+n)(f3+m) A . 
nt+1,n (m+ 1) (y+m+n) m,n 

Write.&= x :x, .p = y ~. Then, as in§ 1.2, we see that F 1 satisfies 

the differential equation 

{ ( .& + .p + oc) ( ~ + {3) - ~ -& ( .& + 4> + y - l ) } z = 0' 

and a similar result is obtained by considering the relation 
between A,n,n and Am,n+l' 

Now write p, q, r, s, t for the first and second order partial 
derivatives, and we find that the function F 1 satisfies the equa
tions 

F r X (l-x)r+y (1-x)s+ {y- (oc+ fi+ l)x}p- f3yq- ocf3z = 0, } . 
1 [y(l-y)t+x(l-y)s+{y- (oc+ {3' + l)y}q- f3'xp-ocf3'z=O 

Similarly we find that the other functions satisfy the equations 

F J x {1-x) r -xys + {y- (oc+ fi + l)x} p- f3yq- ocfiz = 0, } 
2 l y ( l - y) t - xys + { y' - ( oc + {3' + l) y} q- {3' xp - ocf3' z = 0 ' 

F Jx (l- x)r+ ys + {y- (oc+ f3 + l)x} p- ocf3z = 0, ·}. 
3 ly (1- y)t+ xs + {y- (oc' + {3' + l)y}q- oc' f3'z = 0 ' 

r
x(l-x)r-y2t-2xys+{y-(oc+f3+ l)x}p l 

F . -(oc+f3+ l)yq-ocf3z=0, 
4 

·l, y (I -y)t-x2r- 2xys +{y'- (« + f3+ l)y}q · 
- ( oc + f3 + 1) xp- ocf3z = 0 

9.3. Expression of the functions F 1 , F2 , Fa in terms of 
definite integrals. The functions F1 , F 2 , F 3 can be expressed 
in terms of double integrals. The formulae are 

(l) !' ({3) I' ({3') !'Jy-!!_~ {3') F (oc· f3 f3'· · x y) 
I' (y) 1 , ' ' y, ' 

= J J u.B-1vP'-1 (1- u- v)y-{1-fJ'-1 (l-ux- vy)-«dudv 

taken over the triangle u ~ 0, v ~ 0, u+ v ~ l; 

OF TWO VARIABLES 77 

(2) I'(f3)I'(f3')I'(y-f3)I'(y'-f3') . '· '· 
- I'(y)I'(y') F 2 (oc, {3, fi, y, y, x, y) 

= J:J: u.B-1 vtl'-1 (I- u)Y-.8-1 (1- v)Y'-,8'-1 (1- ux- vy)-o:dudv; 

(3) r ({3) r ({3')_ I'_(y- f3- ~) F (oc oc'. f3 {3'. y· X y) 
I' (y) 3 , ' ' ' ' ' 

= J J u.B-1 v.B'-1 ( )-u- v)Y-.8-.8'-1 ( 1-ux)-cx ( 1- vy)-o.' dudv, 

taken over the triangle u ~ 0, v ~ 0, u + v ~ 1. The parameters are, 
of course, supposed to be such that the double integrals are con
vergent. The formulae are readily proved by expanding the inte
grand in powers of x and y and integrating term by term. There 
appears to be no simple integral representation of this type for 
the function F 4 . 

The function F 1 can also be expressed by a; simple integral, the 
formula being 

(4) 
I'(oc)I'(y-oc) , 

I' (y) F 1 (oc; {3, fi ; y; x, y) 

= J: ulli-1 ( 1 - u)Y-«-1 ( l-ux)-.8 (1- uy)-.B' du. 

The four functions can also be expressed as double contour 
integrals taken along contours of Barnes' type. 

9.4. Transformations of the functions F 1 and F2 • Consider 
the integral 

J: ua-1 (l-u)Y-lli-1 (1-ux)-/J (l-uy)-fJ'du, 

which occurs in § 9.3 ( 4). There exist five changes of variable 
which leave unaltered the form of the integral, namely 

v v 
U= l-V, U=-------, U=-::----

1-x+VX 1-y+vy' 

1-v l-v 
U=------, U=--. 

l-vx l-vy 
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On making these changes in the variable, we are immediately 
led to the follO\"·ing transformations: 

(1) 1\(rJ.;f3,f3';y;x,y) 

=(1-x)-P(l-y)-.B'l!\(y-a:; (3, {3'; y; _ ~x-, _ Y~), 
1-x 1-y 

(2) =(1-x)-o:.ft\(a:: y-{3-{3', {3'; y; ---~,!!_-X). 
1.-x 1-x 

(3) =(l-y)-o:F1 (:x; (3, y-(3-{3'; y; ~=~· -l~y)' 

(4) = (1- x)y-o:-.8 (1-y)-.B' lt\ (Y -a:; y- f3- (3', {3'; y; x, l=~), 

( 5) = ( l - x) ·-P ( 1 - y)Y-a -P' F 1 ( y- ex; (3, y- f3- (3'; y; } =:, y) . 
When (3'=0, (l) and (2) reduce to §2.4(1) and (4) reduces to 

§ 1.2 (2). 
The above formulae show that there are at least six solutions 

of the differential equations satisfied by F 1 . It has been shown 
that there are 60 integrals of these equations,* each integral in
volving a function }\, and that there is a linear relation connect
ing any four of these integrals. The 60 solutions correspond to 
Kummer's 24 solutions of the hypergeometric equation. 

Similarly by considering the double integral 

J
1 J1 

ufJ-1 vP'-1 (1- u)y-,8-1 (1- vyt'-P'-1 ( 1-ux- vy)-rxdudv, 
(l 0 

which occurs in §9.3 (2), and making the substitutions 

(a) U= 1-u', V=V', 

(b) U=U', V=1-v', 

(c) u=l-u', v=1-v 1
, 

we deduce the formulae 
(6) F 2 (oc; (3, (3'; y, y'; x, y) 

= (1-x)-o: F 2 ( oc; y- {3, {3'; y, y'; -I ~x' i ~x), 
* A table of those UO solutions is reproduced in Appell and Kampe de Fcriet, 

loc. cit. pp. 62-64. 

(7) 
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=(1-y)-rxFz(oc; (3, y'-(3'; y, y'; lx-y'- L) 1-y , 

79 

(8) =(1-x-y)-o:F2 (oc; y-(3, y'-(3'; y, y'; _
1
_ X~---, 
-x-y 

-~-~~!J. 
There do not appear to be similar transformations for the 

functions Fa and F4 • 

9.5. Cases of reducibility of F1 , F 2 , F3 • As particular cases 
of the formulae (4), (3) and (6) of§ 9.4, we have 

(1) F 1 (oc; {3, (3'; y; x, x) 
= (1-x)Y-o:-.8-/J' F (y-oc, y- (3-{3'; y; x) 

=F(cx, f3+f3'; y; x), 

(2) Fdoc;f3,(31
; f3+f3';x,y)=(l-y)-cxF(oc, (3; f3+f3'; ~=Y), 

y 

(3) F 2 (oc; {3, (3'; (3, y'; x, y)=(1-x)-tXF(oc, (3'; y'; f~J. 

Of these formulae the second shows that the function F 1 

reduces to an ordin~ry hypergeometric function when y = f3 + (3 1
, 

and the third shows that F 2 similarly reduces when y = f3 (or, by 
symmetry, when y' = {31

). 

Now, from the definition of}\, we have 

F 1 (oc; (3, {3'; y; x, y)= i (oc)f((f3))m F(oc+m, {3'; y+m; y)xm 
m~om. Ym 

= i; (oc)f (f3)m (I- y)-.8' F (Y- oc, {3'; y + m; - _L) xm 
m=O m. (y)m I-y 

= ( 1 _ y)-13' ~ i (~)m (f3~m ~y~~ oc)n ((3'),1 xm ( _ ..JL) ", 
m=On=O m.n. (y)m+n I-y 

and so 
(4) Ft<oc; (3, (3'; y; x, y) 

= (1-y)-.8' F 3 ( oc, y-oc; (3, (3 1
; y; x, -I ~y). 

Thus the function F 1 can always be expressed in terms of Fa. 
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Conversely, the function F 3 (oc,rx';f3,f3';y;x,y) reduces to the 
function F 1 when y=rx+rx'. 

Now F 1 reduces to an ordinary hypergeometric series when 
y = f3 + {3'. Thus the function F' 3 similar I y reduces when 

y = oc + oc' = f3 + {3'' 
the formula being 

(5) F 3 (oc, y-oc; {3, y- {3; y; x, y) 

=(1-y)cx+.B~YF(oc, f3; y; x+y-xy). 

We now sho,,,. that the function F 1 can always be expressed in 
terms of F 2 • For 

(1-y)~P' F 2 ( rx; {3, f3'; y, oc; x, -
1 
~J 

= (1- y)~.B' ~ (oc)~ (_~)m xm F (rx + m, /3'; rx; - _}/_) 
m=O m. (y)m 1-y 

= L (oc)~ (f3)mxm F (/3', -m; rx; y) 
n•=O m. (y)m 

= ~ (rx)~ (f3)m xm (oc- f3')71
• F ({3', - m; 1 + /3'- rx- m; 1- y), 

n•=O m. (y)m (oc)m 

the last step following from§ 1.4 (1), though it can easily be veri
fied by simple algebra since the series terminate. We thus have 

~ ~ (f3)m(rx-f3')m(f3:)n(-m)nxm(I-y)n 
m=On"'om!n!(y)111 (l+f3 -<X-m)n 

= ~ ~ (#)n+s(rx-f3')n+s(f3')n(-1)nxn+B(1-y)n 
n=Os=Q s!n!(y)n+s(1+{3'-rx-n-s)n 

and so 

(6) ( 1-y)-.8' F 2 (oc; f3, /3'; y, rx; x, - _ _}/_) 
1-y 

= Fdf3; rx- {3', /3'; y; X, X (1- y)], 
which proves the result. 

This formula also shows that the function F 2 reduces to F 1 
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when y' = rx. Now the function F 1 on the right of (6) reduces to 
an ordinary hypergeometric function when y = rx. Thus 

F 2 (oc; {3, {3'; y, y'; x, y) 

similarly reduces when y = y' = rx. The formula can be written in 
the form 

(7) F 2 (oc; {3, f3'; rx, rx; x, y) 

=(1-x)-P(1-y)-.8' F(f3 {3'· rx·-- xy_ ) 
' ' '(l-x)(1-y) ' 

and this can be proved very easily by expanding the right-hand 
side in powers of x andy. 

9.6. A case of reducibility of F4 • The cases of reducibility 
given in § 9.5 have all been known for a considerable time, and 
are all given in the treatise by Appell and Kampe deFeriet. In 
this paragraph a formula will be given which has only been dis
covered quite recently.* This formula is 

(1) F 4 [oc, /3; y, rx+f3-y+1; z(l-Z), Z(l-z)l 
=F(rx, f3; y; z)F(rx, f3; rx+f3-y+1; Z), 

and is valid inside simply-connected regions surrounding z = 0, 
Z = 0 for which 

I z (1- Z) I!+ I Z (1-z) I!< I. 
If we change z, Z into 1- Z, 1-z, we see that 

(2) F4 [rx, {3; y, rx+f3-y+l; z(l-Z), Z(1-z)] 

=F(rx, {3; y; 1-Z)F{oc, {3; oc+,8-y+1; 1-z), 

inside simply-connected regions surrounding z =I, Z =I which 
satisfy the same inequality as before. 

The formulae (l) and (2) give the complete expression of F4 in 
terms of ordinary hypergeometric functions when y + y' = oc + ,B + 1. 

To prove ( 1) we first consider the function 

(1-x)-0<(1-y)-.BF (oc f3·y y'·- __ _:; __ - -- _Y __ ) 
4 

' ' ' ' (1-x)(l-y)' (1-x)(l-y) ' 

which is an analytic function of x andy when I xI and I y I are 
sufficiently small, and can therefore be expanded in a. double 

• Bailey 11 and 13. 
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series of powers of x andy. The coefficient of xmyn in this expan
sion is 

~ i (oc),.+sUl)r+s ( -1t+s(oc+r+s)m_,(,B+1'+8)n-s 
r=Os=or!sl(y)r(y'}8 (m-r)l(n-s)! 

_(oc}m<f1)11 ~ £ (rx+m)8 (,B+n),(-m),.L-nJ~ 
- t 1 ··lsi()(') m.n. r=Os=O '·. Yr y s 

(oc)ml(fl,>n F(oc+m, -n; y')F(fl+n, -m; y) 
m.n. 

(oc)m (fl)n (y'- oc- m),. (y- {3- n )m 
=--- m!nl(y)m(y1 k -~ 

(oc)m (fJ)n (1 + OC- y')m {1 + fJ- y),. (y- fJ)m-n 
m! n! (y),: (y')n ( 1 + oc-- y')m-n . 

Now, ify+y'=oc+fJ+ 1, the factors* 

(y- f3)m-n and (l +oc-y')m-n. 

cancel, and so we obtain 

(1- x)-0< ( 1- y)-.8 

x F4( oc, f); y, y'; - (1-x~(1-y/ 
= i; ~ ( oc)m (/3)n (y- /3)m (y'- oc)n xmyn 

m=On=O m!n!(y)m(y')n 

= F (oc, y- [3; y; x) F ({3, y'- oc; y'; y) 

=(1-x)-0< (1-y)-.8 F ( ~. [3; y; - 1 :x) F ( oc, {3; y';- /~y), 

and this is equivalent to the formula stated. It has been proved 
for small enough values of I x I and I y I, and therefore of I z I and 
1 Z 1, and the complete result follows by analytic continuation. 

If oc is a negative integer, ( 1) can be written 

F 4 [ -n, f3+n; y, ,8-y+1; zZ, (1-z)(1-Z)] 

=F(-n, f3+n; y; z)F(-n, ,B+n; ,8-y+l; 1-Z). 

* If m<n, e.n expression such as (a)m_,.must be replaced by( -l)n-m/(1 -a>n-m• 
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The second series on the right can be rearranged in powers of Z, 
and we obtain 

(3) F 4 [ -n, f3+n; y, {3-y+ 1; zZ, (1-z)(1-Z)] 

(- 1)n (y)ll 
=(/l-y+ 1 )~ F(-n, f3+n; y; z)F(-n, fl+n; y; Z}, 

a formula due to Watson.* 
There are other cases in which Appell's functions of two vari

ables reduce to ordinary hypergeometric functions, but the cases 
given above include those in which the number of conditions 
satisfied by the parameters is as small as possible. 

* Watson 2. See also Watson, Theo-ry of Bessel FunctioM (1922), § 11.6, where 
the formula. is used to prove Bateman's expansion. 



CHAPTER X 

SOME MISCELLANEOUS RESULTS 

10.1. The theorems of Cayley and Orr. In 1858 Cayley* 
published, without proof, the theorem that, if 

cr. 
(l-z)o:+.8-YF(2oc, 2{J;2y; z)= ~ a

11
zn, 

n~O 

then oc ( ) 

F(ex, {J; y+!; z)Ji'(y-ex, y-{J; y+t; z)= L ·(-- +y ~) a11 Z
11

• 

n=O Y 2 " 

Cayley stated that he had discovered the result in discussing 
certain relations in planetary theory. It was not until forty years 
later that a proof was published by Orr,t who discussed the 
differential equation satisfied by the product of two hyper
geometric series, and obtained several additional results. The 
main results given by Orr may be stated as follows: 

If (1-z)o:+,B-y-!F(2:x, 2/J; 2y; z)=La
71

Z11 , 

then ( + 1) 
F (ex, p; y; z) F ( y- ex+!, y- p + i; y + 1; z) = ~ (~ + ~ ): anzn; 

and if (I -z)a:+,B-y-! F (2oc- I, 2/J; 2y-1; z) = ~a11 z", 

F 1 ~ 1 . ) L (y- !)n n then F(o:,f3;y;z) (y-oc+-z,y-l"- 2 ;y,z = (Y}, --anz · 

Several proofs of these results have been given,t but it is only 
during the last few years that a proof with any real claim to 
simplicity has been discovered.§ 

If we compare coefficients of zn in the products, the identities 
to be proved are seen to be 

(I) F [2ex, 2/J, -n; J-(y-ex)n(y-/J)n 
3 2 2y, l+ex+,B-y-n -(y)11 (y-ex-f3)n 

F [ex, {3, ! -y-n, -n; J 
X4 3 y+!, l+ex-y-n, 1+{3-y-n ' 

• Cayley 1. t Orr 1. 
t Edwardes 1, Wat!!on 4, Whipple 6 and 7. 
§ For the proof given here see Whipple 7. 
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(2) aF2[2o:, 2{3, -n; ]=(y-o:+i),(y-j!_-+!)n 
2y, l+ex+/3-y-n (y+!),,(y+}-:x-f3)n 

F [ex, {3, -y-n, -n; J 
x4 3 y,!+o:-y-n,!+/3-y-n, 

(3) 3F2[2ex-l, 2,8, -n; ]=(y-ex_j:-!)n(y-{J-}}n 
2y-l, ~+ex+fJ-y-n (y-t)n(r+!-oc-/J)

11 

F [ex, p, I -y-n, -n; J 
x4 3 y, i+oc-y-n,~+{J-y-n . 

It is convenient first to prove (2) and (3). The series on the right 
of (2) and (3) are Saalschtitzian. If we change oc, y into ex+!, y +! 
in (3), the right-hand side of (3) can then be transformed into the 
right-hand side of (2) by §7.2(1), the transformation of termin
ating Saalschiitzian 4F 3 • Thus (3) follows from (2). 

To prove (2) we use the transformation of Saalschtitzian 
4
F

3 
already referred to, the transformation of a nearly-poised 

3
F

2 
into a Saalschlitzian 4F 3 (§4.5(I) with c=!+!a), and also the 
formula* 

F [a, b, -n;J = (e-a)n (f-a)n_ F [1-s, a, -n; J 
3 2 e, f (e)n(/), 3 2 I+a-J-n,1+a-e-n' 

where S=e+f-a-b +n. 
We thus find that 

F [2cx, 2{3, - n; J 
3 2 2y, !+ex+{J-y-n 

= (j+ex- p + y),. (2y- 2ex)
113

F
2 

[2ex, ! +ex+ f3- y, - n; J 
(2y)n(!-ex-/J+y)n !+ex-,B+y, 1+2oc-2y-n 

_(!+oc-{J+y)11 F [ex, y-{3, 2y+n, -n;J 
-(!-oc-,8+y),. 4 3 y, y+!, !+oc-{J+y 

_(!-ex+y)n(!-f3+y)n F [ot,,B, -y-n, -n; J 
-(!-~-_:_,Bf.y)11 (y+!)n 4 3 y, !+ex-y-n, !+{3-y-n ' 

and (2) is proved. 

• In the notation of Chapter III this is the relation between Fp (0; 4, i5) and 
Fp (2; 4, 5). It can also be deduced from§ i.2 (1) by substituting for u in terms of 
the othor parameters and making x tend to infinity. 
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To prove (1), multiply (2) byy, changeoc, y intooc +I, y+ 1 in (3) 
and multiply by oc, and subtract term by term. We then find that 

F [2ot, 2{3, - n; J 
3 2 2y+1, !+oc+/3-y-n 

-~y-oc+!),.(y-fJ+!)_r_~: F [oc, {3, -y-n, -n; ]· 
- (y+i)n(Y+!-oe-{3)" 4 a y+ I, !+oc-y-n, !+f3-y-n 
This is (1) withy+ t instead of y, and so Cayley's theorem is 

proved. 
When y = oc + {3, Cayley's theorem beco~es 

(4) { F [ococ~ :~zlJr =aFz [2!oc~ !~: :: ;;+z!J 

a result due to Clausen.* 
Similarly from Orr's theorems we obtain 

(5) [ oc, {3; z J F [ oc, {3; z J- F [ 2ot, 2{3, IX+ {3; z J 
F oc+f3-! oc+f3+! -a 2 2oc+2f3-l, oc+fJ+-k ' 

(B) F[ oc, {3; z ]F[:x,f3-1;z]= F [2oc,2f3-l,oc+f3-l;z], 
oc + f3- t oc + ,8 - ! 3 2 2oc + 2{3- 2, oc + f3 - ! 

both of which were given by Orr. 

10.2. Somesimi1arresu1ts. Furtherresultsofasimilarnaturet 
can be obtained by using the transformation § 4.5 ( 1) of a nearly
poised series into a Saalschiitzian 5F 4 • When the nearly-poised 
series is also SaalschUtzian, the 5F 4 reduces to a 4F 3 • We can thus 
prove for example that, if 

(1-z)o:+.fl-y-! F [2oc, 2,8, y; z]=:Eanzn, 
then 3 2 2y, oc + ,8 + l 
F[ oc,f3;z ]F[!+y-ot,!+y-,B;z]=:E (y+!)n anzn. 

ot+/3+! 2y-ot-,8+l (2y-oc-f3+!)n 
The identity implied is 

) F [2oc, 2{3, y, -n; J 
(l 4 3 2y, oc+,B+!, !-n+oc+fJ-y 

( f + Y- OC )n ( l + Y- fl)n 
( Y + i )n ( l - OC - fJ + Y )n 

F [oc, f3, !+oc+f3-2y-n, -n; J 
x 4 a l + oc- y-n, ! + f3- y- n, ot + f3 + l . 

* Clausen 1. t Bailey 14. 
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To prove this identity, we have 

F [2oc, 2{3, y, -n; J 
4 3 2y, oc + ,8 + !, } - n + oc + f3- y 

= 
(2y- 2oc) 11 (} + oc- f3 + y)

71 

(2y)-;(!-oc- fJ+y),. 

x F [2oc, t+oc+/3-y, l+oc-,8, -n; J 
4 3 

!+oc-f3+y, i+oc+fJ, l-n+2oc-2y 

=(t+~=}+y)114p [oc, oc+}, 2y+n, -n; J 
(!-oc-f3+y)tl 3 l+oc-fJ+y, r+l, oc+fJ+t 

(l+y-ot)n (}+y-/3)n 
= 

(r+.t)"-(! -oc- f3 +y)" 

x F [oc, {3, i +oc+ {3- 2y-n, -n; J 
4 3 l+/3-y-n, t+:x-y-n, oc+fJ+l • 

87 

Here we have used §7.2(1), then §4.5(1), and finally §7.2(1) 
again. 

Further results containing more parameters can be obtained 
from §4.7 (1). Replacing d in that formula by 1-n-d, it is 
easily shown that, if 

then 

Similarly, by changing b, w into 1-n- b, 1-n- win the same 
formula, we see that, if 

then 

(1-z)-o: F [oc, {3, 8, y-oc; -z2j4(1-z)J =:E (y)n a zn. 
4 3 

y, i(fJ+S), !(fJ+S+ I) (f3+S)
11 

n 
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As a particular case of the first of these results, take y = 8 = f3, 
and we obtain the quadratic transformation of Gauss 

(2) F[oc, /3; 4z(1-z)]=F[2:x, 2f3; z]. 
oc+/3+~ oc+f3+i 

Again, taking S=ex + f3-y + 1, we have 

(3) F[oc, ~; z] F[oc+otft~;yz+ 1] 

_ F [ot, f3, Hoc+/3+1), i(oc+f3); 4z(l-z)J 
-4 3 ex+f3,y,oc+f3-y+l ' 

which can also be deduced from § 9.6 (I). 

10.3. Darling's theorems on products. From § 1.2 (2) it is 
evident that 

(1) 2Fdot, f3; y; z) 2F 1 (I-ot, 1-/3; 2-y; z) 

= 2F 1 (ot+I-y, f3+I-y; 2-y; z) 2Ji'dy-oc, y-f3; y; z). 

This relation and § 1.2 (2) have been generalized by Darling,* 
and the generalizations apply to series of any order. For series of 
the type 3F 2 the formulae are 

(2) F [ot, {3, y; z] F [l-ex, 1- f3, 1-y; z] 
3 2 S, € 3 2 2- o, 2- E 

_E-I F [ot+l-o,{3+I-S,y+1-S;z] 
- E - 8 3 2 2- S, E + l - 0 

F [s-ot, 8- f3, 8- y; z] 
x a 2 8, o+ I-€ 

8-l F [oc+l-e, /3+1-e, y+l-e; z] +--a 2 0-€ 2-£, 8+1-E 

F cE-ot, e-f3, £-y; ZJ 
X 3 2 €, E + 1-0 ' 

• Darling 2. For the proofs given here see Bailey 9 and Burchnallt. 
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and 

(3) (l-z)o:+fi+y-S-£ 3 _li'2 [ot, ~: :; ZJ 
= E-1 P [S-ex, S-/3, S-y; z] P c£-oc, E-/3, e-y; z] 

€-8 3 2 S,S+l-€ 3 2 e-l,E+l-3 

S_-_! F eE-OC, €-/3, E-y; ZJ F cs-oc, S-f3, S-y; ZJ 
+~ 3 2 ~ 3 2 <;' <;' ' o-E €, £+1-o o-1, o+1-E 

which reduce to (1) and§ 1.2 (2) when y ="' -+00. 

In order to give a proof which is applicable to series of any 
order, it is convenient to write 

and 

A= F [oc, /3, y; z] 
3 2 S, € , 

B=z1_ 8 F [ot+l-S,f3+l-S,y+1-S;z] 
3 2 2-o,E+l-S ' 

C = zl-£ 
3
F

2 
[IX+ 1- E, f3 + l- E, y + 1- E; ZJ' 

2-€, o+l-€ 

A'= F [l-ot, I-{3, 1-y; ZJ 
3 2 2-8, 2-€ ' 

B' = S-1 F [8-ex, 0- {3, o-y; ZJ 
z 3 2 S, S + I - E ' 

C'= <E-1 F eE-OC, €-{3. E-y; ZJ 
z 3 2 e,e+l-8 ' 

Ll= 
dB dC I 
dz' dz I. 
B, C 

Then (2) and (3) can be written as* 

(4) AA'=e-l BB'+ 8- 1 CC', 
e-S S-€ 

(5) Ll =(e-o) zl-S-.- ( 1- z)S+.--o:-J;!-y-l A'. 

• (5) expres.ses A' in terms of B, C and their differentia.! coefficients, whereas 
(3) expresses A in terms of B', C'. The two formula.e a.re, however, equivalent. 
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By comparing the coefficients of zn in (2), we see that the 
formula to be proved is 

£ ( -I}T1oc_-=_r1'!i~_-r)n (y-r)n 
r=O r! (n- r)! (8- I- r),1+1 (e- I- r) 11 +1 

+ ~ (- 1)r(oc + 1-8 -=~)_~~j,B_-±"__~-=--~ -=-:1)n (y+ I-8-r)n 
7 =o rt(n-r)!(I-8-r),,+I(e-8-r)n+l 

+ ~ (-1}f(oc+1-E-r)u(fl+l-e-r)n(y+1-e-r)n=O. 
7 = 0 r! (n-r)! (1-e-r)n+I (8-e-r)n+1 

Now consider the integral 

f (oc-8)11 (fl-s)n(y-s)nds 

(-s)n+l(S-1-s)n+l(e-1-s)n+I' 

taken round a large circle Is I= R. This integral evidently tends 
to zero as R-+ ro, and, equating to zero the sum of the residues at 
the poles, we obtain the rcq uired identity. 

To prove (5) we consider the integral 

f (oc-8) 11 ({3-s)n (y-s)nds 
(-s~t-m+l (S- l-8) 11 +1 (E- f:.::_-8),1+1' 

where m=O, I, 2. The case when m=O has already been con
sidered and leads to (4). When m= I and 2 we find similarly that 

(6) 

(7) 

A,dA = e-1 B,dB + o-1 0,d0, 
dz E-3 dz 8-E dz 

A,d2A-E-1 B,d2B + o-1 c,d2
0 +----a-

dz2 - e - S dz2 S - E dz2 z2 ( l - z) ' 

where a is a constant. In the case when m = 2 the integrand is 

-~+0(~) and so the integral -+-21Ti as R-+w. The term 
OC! 

ajz2 (1- z) arises from the series~ zn-2• When n ~ m- 1, ( -s)n-m+t 
n=O 

must be replaced by (-I )m-n-1/( 1 + s)m-n-1 , and the identity to 
be proved connects two series instead of three. The corresponding 
powers of z in (6) and (7) are then negative. 
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Prom (4), (6) and (7) we find that 

A' .1 a-1 t=-···-
z2 (I-z)' 

d2A d2B d2C 
dz2 ' dz 2 ' dz2 

where 

dA dB dC 
ii' dz 

, 
dz 

A, B, c 
d3A d3B d3C 
dz3 ' dz3 ' dz3 

Evidently 

dA dB dO 
dz ' dz' dz 

A, B, 0 

9I 

But, by § 2.1, A, B, 0 satisfy a differential equation of the form 

d3y d2y dy 
dz3 + P dz-2 + Q dz + Ry = o, 

where P=S+E"±"l-(oc+,B+y+3)z 
z(1-z) · 

It follows that 

d-11=- P-1 
dz 1

' 

so that ,11 = be-JPdz = bz-(8+£+1) ( 1 - Z )SH-n:-,8-y-2, 

where b is a constant. Thus 

.1 = J.l'! A 'zt-8-€ ( 1- z)8 H-n:-,8-y-1, 

where M is a constant. Equating coefficients of zt-8-E we find that 
M = E- S, and so (5) is proved. 

Exactly similar results are true for series of any order, and they 
can be proved in the same way. 

Similar results are also true for basic series. Thus, by con
sidering the integral 

f (ocs)11,n (~s)11,n (ys)q,n ds 
(s)q,n+l (osjq)q,n+l (esjq)11,11+1 
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round a large circle, we can prove that 

(S) $ [oc, fJ, y; z] $ [q/oc, qjfJ, qjy; ocfJyqzjSEJ 
3 2 ;:;, E 3 2 q2Jo, q2f€ 

_ S (q- E! $ [qocjS, qfJJS, qyfS; z] <I> [ofoc, SffJ, Sjy; ocfJyqzjoE] 
- q(o-E)3 2 q2fo, q~:fo 3 2 s, q8J~: 

~: (q-~~ $ [qocj~:, qfJjE, qyjE; z] $ [Efoc, ~rffJ, Ejy; ocfJyqzjoEJ. 
+ q (E-8)3 2 q2jE, q'f>jE 3 2 E, q~:jO 

This is the analogue of (2). The analogue of (3) is 

(9) 3$2[oc, fJ, yi, !~rzfocf1y]l$o[oc~y; z] 
8(q-~:) <I> [8/oc, offJ, 8/y; qz] $ [€/OC, E/fJ, E/y; ZJ 
q(?J-€) 3 2 0, qojE 3 2 Ejq, qEj'b 

+ E(q-S) $ [E/oc, E/fJ, E/y; qz]3$2[8/rx, SffJ, ofy; ZJ. 
q (E-o) 3 2 

€, q£/S 'bfq, qS/E 

If we put y = E and then let E 4-0, this reduces to Heine's formula 
§ 8.4 (2). 

10.4. Partial sums of hypergeometric series. A number of 
theorems have recently been given which express the sum of n 
terms of an ordinary hypergeometric series with unit argument 
in terms of an infinite series of the type 3F 2 • The subject had 
previously received some attention from Hill and Whipple,* but 
new interest was aroused by a theorem due to Ramanujan, who 
stated that 

1 (1)2 1 (1.3)2 1 
(I) ;n+ 2 n+1+ 2.4 n+2+ ... 

= { ~2 _ }
2 {1 + (!)2 

+ (~)
2 

+ ... ton terms}. 
r(n+t) 2 2.4 

This was proved by Watson and Darling, and generalized by 
Whipple, Hodgkinson and Bailey. t The method used by Watson 

* Hill and Whipple 1, and Hill1 and 2. 
t Watson 7, Darling 1, Whipple 9, Hodgkinson 1, Bailey 6 and 7. 
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is particularly simple. In §3.S(I) put c=f+n-l, where n is a 
positive integer. Then 

F [a, b,f+n-l;J_r(e}r(e-a-b) F [a, b, I-n; J 
3 2 e, 1 - r < e- a> r < e- b) 3 2 a+ b-e+ 1, J · 

Now lete4-a+b+n, and we get* 

F [
a, b;J (2) 2 1 f to n terms 

_r(~_+n)_r(b±n) F [a,b,f+n-1;]. 
- r ( n) r (a + b + n) 3 2 J, a + b + n 

Ramanujan's result is the particular case of (2) when a= b = !, 
f = 1. The method of proof applies when f ~ a + b. 

A more general result ist 

(3) r(x+m)r(y+m) F [x,y,v+m-I;Jtonterms 
r(m)r(x+y+m} 3 2 v, x+y+m 

r(x+n)r(y+n) F [x, y, v+n-1;] t te = 3 2 om rms. 
r(n)r(x+y+n) v, x+y+n 

We can evidently suppose that n > m. Then, in the terms of the 
series on the left, the factors v + r in the denominator cancel with 
factors in the numerator when r ~ m- 1. Thus if we multiply by 
(v)m_ 1 we obtain two polynomials in vofdegreem- I. If therefore 
we can prove that these polynomials are equal for m values of v, 
we have established the result. 

Now for each of them values V= -n+ l, -n, ... , -n-m+2, 
the partial series become complete hypergeometric series which 
can be summed by Saalschtitz's theorem and the verification is 
immediate. When m4-00 the theorem gives (2), and the proof is 
valid for all values of the parameters. 

The series 3F 2 in (2) can be transformed in many ways by the 
transformations of Chapter III. In particular, by using the 

• Ba.iley 6. 
t Bailey 7. Three proofs are given there. 
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relation between Fp (0; 4, 5), Fp ( 4; 0, 1) and Fp ( 1; 0, 4), we find 
that 

(4} 2Fdex, ,8; y] ton terms 

= r ( 1 +ex- y} r (l + f3- y} { 1 - ( ex)n (fJ~~- 3F 2 [I - IX, 1 - fJ, n ;] } ' 
r(1-y}r(1-y+oc+,8} n!(y-1)n 2-y,n+1 

a result which is due to Whipple.* 
Again from (2}, using the relation Fp (0; 4, 5} = Fp (0; I, 4), we 

find that 

(5) 2F 1 [ex, ,8; y] to n terms 

_ r(oc+n~r(,B+n) F [y-ex, y-,8, y-1+n;J 
-r(n)r(oc+,8-y+1)r(y+n) 3 2 y,y+n ' 

whichwasgiven byHodgkinson.t In both(4)and(5)itisassumed 
that R (ex+ f3 + 1- y) > 0. 

Now Whipple's transformation § 4.4 ( 5) can be written 

F [t, x, y, z;J 
4 3 u, v, w 

r (v+w-t) r (I +x-u) r(1 +y-u) r (1 + z-u) 
= r (1 + y+z-u) r {I +z+x..:.:_u) r (1 +x+-y-u) r(1-u) 

F [a, 1 +!a, w-t, v-t, x, y, z; J 
x 7 6 ;ia, v, w, 1 +y+z-u, 1 +z+x-u, 1 +x+y-u ' 

where a=x+y+z-u, u+v+w-t-x-y-z= 1, 

and one oft, x, y, z is a negative integer. 
Put t = 1 - n and let u--+ 1 - n. Then we find thatt 

(6) F [x, y, z;J to n terms 
3 2 v, w 

_ r (v+w+n-1) r (X+ n) r (y+n) r (z+n) 
- r(n)r(y+z+n)r(z+X+n)r(x+y+n) 

F [
a, 1+!a, w+n-1, v+n-1, x, y, z; J 

X 7 6 1 ' 
2 a, v, w, y+z+n, z+x+n, x+y+n 

0 Whipple 9. See also Hodgkinson 1; his fil"llt formula is equivalent to (4). 
t Hodgkinson 1. ~ Bailey 6. 

SOME :MISCELLANEOUS RESULTS 95 

where a= x + y + z + n- 1 and the series on the left is restricted to 
be Saalschtitzian. This reduces to (2) when we substitute for w 
and let z---* oo. 

The well-poised 7F 6 in (6) can be transformed in various ways 
into two Saalschiitzian 4 F 3 by§ 4.4 (4) and§ 7.5 (3). In particular, 
using the latter formula, we find that 

(7) 
3
F

2 
[x, y, z;J ton terms 

v, w 

r(x+n) r(y+n) r(z+n) 
=r-(n) (v+n-1) (w+n-1) 

{ 
r(w)r(w-v) 

x r(v+n-1)r(w-:_x)r(w--yfr(w-=-:Z) 

x F [v-x, v-y, v-z, v+n-1;] 
4 3 t', v+1-w, v+n 

r(v)r(v-w) +-- . ------
r(w+n-1) r(v-x) r(v-y)r(v-z) 

x F [w-x, w-y, w-z, w+n-1;]) 
4 3 w, W+ l-v, w+n J' 

where v + w = x + y + z + l. This result was given by Darling.* 
Similarly from § 6.8 (3) and § 7.6 (2), the relations connecting 

four well-poised 9F 8 , by putting c = 1 - n where n is a positive 
integer, and then letting b --+a+ n, we obtain two formulae each 
of which gives the sum of n terms of the series 

F [a, 1+!a, d, e, j, g, h; J 
7 6 !a, 1+a-d, l+a-e, l+a-f, 1+a-g, 1+a-h ' 

where 1 + 2a = d + e + f + g + h, in terms of two infinite well
poised series. The formulae are very complicated and their only 
interest lies in the fact of their existence. 

• Darling 2, p. 335. 
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l. Prove the following r<'sults, subject to convergence conditions: 

. (8)3 j8(8 + I)'1 3 
(1) s+(s+2) 

1 
+(8+4) 

1
-.1-:-2-f + ... 

sins1r r {! (s +I)} r {t (I - 3s)} 
- -~ (l'{t (1-8)}]2 ' 

. . (s a fs (s + I ll 3 sin S1r 
(u) s-(s+2) I) +(s+4) rt--:-2J - ... =-.,.-. 

( 1
•
1
.i) 

1 3
x-l 

5
(x-l)(x-2)+ _ 

+ x+l+ (x+l)(x+2) ... -x, 

(iv) l-ax-__l + 5 ~~__::-_!l.<x-= 2)- ... = 0, 
x+l (x+l)(x+2) 

-a(x-l)a f(x-12_0-2n 3 
__ {r(x+I)}3 1'(3x-I) 

(v) 1 x+l + 5 t,(x+l)(x+2)J ... - {r(2x)}3 ' 

1x-l I (x-l)(x-2) _ 2u{r(x+ 1)}4 

(vi) l-3x+ 1 + 5(x+ l)(x+2)- ···- 4x{r(2x+ 1}}2' 

(
x-I\2 {(x-l)(x-2)1_ 2 -~_{l'(x+l)}'r(4x+l) 

(vii) l+ x+l; + (x+l)(x+2)J + ... -4x-l {r(2x+l)}' ' 

2:r:yz 
(viii) l-(x+I)(y+1)(z+1) 

2x(x-l)y(y-l)z(z-l) 
+(x+ 1)(x+2)(y+ l)(y+2)(z+l)(z+2) 

r(x+ 1) r (y+ l) r (z+ l) r (x+y+z+ 1) 
= -r'(y+z+ l) r(z+x+ Ifr(x+y+ l) 

[Dougall and Rarnanujan. See Hardy 2.] 

2. Prove the results: 

(i) 1-5(!)
3 
+9 ( 1 :.~)

3 

-13 ( 1_:~)
3 

+ ... = ~' 2 2.4 ,2.4.6 1T 

(ii) 1 + 9 Gr + 11 (~~~)' + 25 (r8
5
} 2Y + ... = Yi1T~tfw~· 

(iii) l-5Gr + 9 (;:~Y -Ja(t!::r + .. ·=rr~m'· 

(iv) ~-GY +G:!Y -G:!:~r + ... = {r<~/~(~jr · 
[Ramanujan. See Hardy 3 and Whipple 4,] 
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3. Prove that 

(i) F [*· i+x, t-x; -1] 
3 2 1-x, l+x 

- 71'2x 
- V 2 . sin 7I'X r ( f-z-:-+"t"') r"(,...;f~X.:...,.+-;;k.,.-,) r""'"""'( ~---:j-:--X) r ( ~ - ! X) ' 

(ii) F [4x+4y, 6x, 6y, t+x+y; -1] 
4 3 l-2x+4y, 1+4x-2y, !+3x+3y 

_ r(_t_) r ( l + 4x- 2y) r{I-2x+ 4y) r(}+ 3x+3y) r ( l +x+y) 
- r(i+ 3x) r (!+ 3y) r (l +x- 2y) r(I- 2x+yfr(l +4x+4y)' 

(iii) F [a, I+ta, !+x, !-x, !+y, t-y; -1] 
6 5 ta, t+a-x, t+a+x, }+a-y, i+a+y 

- 1Tr(t+a+x)r(t+a-x) r(t+a+y) r(J+a-y) 
-22 a l r(a) r(l +a) r{t(I +a+x+y)}r{!(l +a+x-y)} 

r{t(l +a-x+y)} ra (1 +a-x-y)} 
[See Whipple 2, where further results of this kind are given.] 

4. By comparing coefficients of powers of x, prove the formulae: 

(i) 1Ft(1X; p;x)1Fd«; p; -x)=2Fa(1X, p-IX; p, fP• iP+i; ix2
), 

(ii) {I+ ( 1~) 3 + (;;)a+···} {1- (l~)a + (;~)3- ···} 
3!x2 6!x' 9!x8 

= l- (I! 2 !)8+ (2!4 !)3- (3! 6!)8 + ... , 

(iii) 2Fdoc, p; oc+ .B+i; 4x(l-x)}= 2Fd2oc, 2f3; oc+ ,8+!; x), 

(iv) (1-x)-a
8
p

2
[ta, l+}a, l+a-b-c; (l--~) 2] 

1+a-b, 1 +a-c 
_ F [a, b, c; x] 
-

3 2 I+ a- b, l +a- c ' 
each of the formulae (iii) and (iv) being valid inside a certain region sur· 
rounding the origin. For example, (iii) is valid inside the loop of the 
lemniscate l4x(1-x) I= 1 which surronnds the origin. Show that inside 
the other loop of this lemniscate 

(v) 1Fdoc, p; IX+ ,8+ !; 4x (1-x)}= aFd21X, 2P; oc+ ,8+ !; I-x). 
[See Bailey t, where further formulae of this type are given. {i) and (ii) 

are due to Rama.nujan, (iii) is Gauss's quadratic transformation, and (iv) 
is due to Whipple.] 

5. From Ex. 4 (iv) deduce §4.5(1) by multiplying by (1-x)111+m-l and 
equating coefficients of x"'. 

[Bailey 2.] 

6. By comparing coefficients of powers of x, prove that 

(1+x)(l-x)-<~-1 8p2 [t+!a, I+!a, l+a-b-c; (I-=-~~] 
I +a-b, 1 +a-c 

= ,F,[a, I+ !a, b, c; x] 
!a, l+a-b, I+a-c · 
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By multiplying by (1-x)"'+m-1 and equating coefficients of xm, deduce 
§4.5(2). 

{BaileyS.] 

7. Obtain the formula§ 3.8 (1) by multiplying§ 1.4 (1) by z<~-t ( 1-z}l-<1-t 
and integrating from 0 to 1. 

Similarly from§ 1.2 (2) deduce tho formula 

F [(Xl• otz, ota;J r (f3a) r (p1 + f3a -lXI- Otz-Ota) 
3 1 {31' flz r (f3a- Ota) r ({31 + .Bz- Ot1- OCz) 

{Hardy 2.] 

8. Prove the identity 

x aFz[/31-<Xu /31-<XI, <Xa;J· 
f31, .Bt + f3z- a1 -IXz 

p' [a, l+!a, !d, !+!d, a-d, 1+2a-d+m, -m; J 
7 8 !a, I+a-!d, !+a-id, l+d, d-a-m, l+a+m 

_ (1+a),.(l+2a-2d),. 
-(I +a-d)m(l + 2a-d)m' 

where m is a positive integer. 

{Bailey 3.] 

9. Prove that 

F [11+~-t+l, v+i, 11-14+1;]- r(211+2) 
3 2 211+2. 11+~ -2r(11+~-t+I)r(v---~-t-+-;'71) 

x {t~s(ll+~+2)+t!s(ll-~+2) -tfs(v+ ~+ 1) -tfs(ll-~+ 1)}• 
where tfs(x)=r'(x)fr(x). 

[Watson 1. See also Hardy 2.) 

10. Evaluate the integral 

1 / 1 "' r(-s)r(l-8-s)r(I-~!-s)ds 
2,J -("< r(l-1X-8)r(l-.B-s)l'(1-y-B) 

by considering the poles on the two sides of the contour, and hence :;how 
that 

Ji' [«· f1, y;J r(l-IX)r(t-{J)r(t-y)r(o)r(S-£) 
a 2 s, £ rc2-8)r(l-E)l'(8-1X)r(8-PJrcs-y) 

X 
3
p

1
[oc+ 1-8, P+ 1-8, y+ 1-8;] 

2-8, ~:+ 1-8 

..f- rc1-:-:x)r(l-,8)r(l-y)r(£)I'(£-8) 
rc2- () 1'(1-8) r (£-IX) r (£- Pl r (~!- y) 

X F [IX+l-(, {3+1-£, y+l-£;] 
3 z 2-~!,8+1-£ ' 

provided that R(8+£-1X-/3-y)>0. 
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Also deduce this result from § 10.3 (2). Obtain similar results for series 
of any order. 

[Darling 2. The second method is used there.] 

11. If . r(x+s)r(y+s)r(z+s)r(t+s) 
I (x, y, z,t; v, w) = _!__ r·"' I' (v+t~_-::x-y-z -::_t -a) r ( -s)ds 

h 
27T~_ -1.< r(v+.9)r(w+s) • 

prove t at 

I(x,y,z,t;v,w) 

= J' (z) I' (t) I' (I!+W- ·~_-z-t) r (v+ W- y -z -t) 
I'(v-x) r(F-y) I'(w-z) r(w--t) ___ _ 

x l(x, y, w-z, w-t; v+w-z-t, w) 

= l'(v) I'{!{_) r (v+w-.t:- z -:-t) r (v+ w- y-z- t) 
r(v-z) l'(r-t) r(w-=--z) I'(w-t)--

x 1(~·-t, u--t, z, v+w-.-c-y-t; v+w-.r-1, ~·+w-y-t) 
= r(:V) I' (y) 1'(z) I' (t) I' (t'_+W -.V-Z- t) I' (t•+ W- y- z-t) 

l'(v-.r)r(c-y)l'(v-z)l'(t·-t) ---

x !:__(v+w-x- y-z) r (v+~-x-y-t) 
r (w-x) I'(w-y) I'(w-z) I'(w-t) 

x l(w-.l', u:-y. w-z, w-l; w, t·+2w-.t·-y-z-t). 

Hence obtain three formulae f'IWh connecting four Saal:;chiitzian series 
of the type 4F 3 • Deduce expressions for the sum of n terms of a Saal
schlitzian 3F 2 in term,; of two non-terminating Saalschiitzian 4F 3 • 

['C se § 6.3 (2).] 

12. If a,.= -- (/),+< -- ' 
(j- !a), (j- !a), 

prove that the equations 

" :E a,..l:, ,.= l, (s::::O, l, 2, ... , n) 
··~I) . 

are satisfied by :r - !!._ L!__:i- !aln ~n), (J- !a), 
r.n-a+2r n! r!-U)~--· 

Prove also that 
• 

): F [!a, ta;] 
,.:,. .1"r. n:::: 2 1 j to n + 1 tPrrn:;, 

and hence that lim -£. x, n=I'(f)I'(j-a) 
,.,..._ ,.~, . {l'(J-!a))2. 

[The particular case whenf= !(a+5) wa,; giwn by Chapman 1.1 

13. Prove that 

F4 (:x, :r.+ t- {3; i'· {3+ !; X, y'l) 

=(l-l')-2o.F 1x· :x+~-.o Q., zQ. __-l::_ _-4Y_I, 
.1 21 •• 1''1-'•'/• /J'(1-y)2'(l-y)2J" 

[Appell and Kampe de F.)rid, Fonction8 hypergeometriques et hyper· 
spheriques, p. 27.] 
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14. Prove that 

F(1X, {1; y; z)F(cr:, {1; y; Z) 

r(r)r(y-«-tl>F z 1 }(1 Z)J ::::r(y-IX)r(y-fl) ,[1X,{J;y,IX+,B-y+1;z ,( -z -

+ r (y) r («+fl-y) {(I- z) ( 1- Z)}y-a-.e 
r (oc) r (,B) 
x F 4 [y- {1, y-IX; y, y- oc- {1+ 1; zZ, (1-z) (1- Z)]. 

Prove also that 

F (IX, {1; y; z) F (IX, {1; y; Z) 

= i i: (cc)m+n(8}m+n(Y-oc),(y-tl)m(zZ)m(z+Z-zZ)". 
m~On=O m!n!(y),(y)2m+n 

[Watson 2. The first formula can be derived from§ 9.6 ( 1) and§ 1.4 ( l ).] 

15. If 

H (IX' {J) _ 1 + rxf3 
y,8 -(y-1)(8-1) (y-1)y(8-1)8 

+ oc(oc+1).${,8+1) + 
<r-1lr<r+1)(8-1J8(o+1) ···• 

prove that H (IX, ,8) = H (Y- IX, Y- f3 ) • 
y, 8 y, y + 0- (1.- {1 

Prove also that, if H, (IX, ~) denot~s the sum of the first r terms of 
y, 0/ 

H (IX, {1) , then 
Y• o 

H,(IX, ,8) =H (y-IX, y- fJ ) 
y, 8 ' Y• y+ 8-IX- f3 

__ (1X),({J), ~-H(y-IX, y-{1 l 
(y-1),(8-1), y+r,y+o-!1.-{31 ' 

Deduce from the first result that 

1 __ 1_ __!_ . 1 - . r. 
1002 + 10!2 + 102Z + l03Z + ... - 0 0100u02 ... , 

and show that. a million terms of the given series give only the same order 
of accuracy as three terms of the transformed series. 

[Hill and Whipple 1.) 

16. Show that, if 

(1-z)a+ll-y F [ 2oc, 2f3• y+!; z]=La zn 
3 a 2y, IX+ ,B + i n • 

then F[cr:.(J;z]F[y-Ot,y-f3;z]-l: (y),. n 
!1.+{3+! 2y-Ot-,8+! - (2y-1X-f1+!)n a,.z. 

Deduce that 

F[ IX, {J; z Jp[i~.o:, i- {3; z]= F [o:- f3+i. P~.<X+f, t; zJ. 
rx+ {J+i ~-IX- fJ 3 2 rx+ {1+ t, ~-IX- f3 

[For the first result see Bailey 14. The second result was given by 
Orr 1.] 
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17. If 

C=zi-( F [x+1-,,f3+1-,,y+l-{,8+1-{;z] 
~ 3 2- ,, E +}- ,, /J+ 1-' 0 

D=z!-9 
4
F

3
[x+ I- 9, {3+ I-8, y+ 1-8, 8+ 1-9; z] 

2-B, e+ 1-/J, '+ 1-9 ' 
A'=

4
F

3
[1-oc, 1-{3, 1-y, 1-8;z] 

2-e,2-,,2-9 ' 

<,<+1-{,e+l-9 ' 
H'=z•-I4Fa[<-cx, e-,8. £-y, e-8; z] 

pro\·e that 

D d_f}_- cdf? = ~~{ z3-•->"-e ( 1-z)<+)-;-0-1-a-ll-y-a (A'dB~ _ B'd-1~) 
dz dz £ - l dz dz · 

Show that, by taking 

(+,+9-1-IX-{J-y-o=O 
and equating coefficients of z", the formula § 7.6 (I) is obtained. 

[For the first result see Darling 2.] 

18. Assuming Murphy's formula 

P,.(J.L)=F(n+1, -n;l;!-!J.L) 
for the Legendre polynomial of order n, prove that 

(2n)! 
P" (f.L) =22n(n f)iz"F(i, -n; t-n;z-2), 

where z=J.L+v'(J.Lz-1). 
Hence prove the formula of Neumann and Adams 

p ( )P ( )= f A.,_,A,Aq ,(2p+?q-4r+I)p ( ) 
P 11- • 11- ·- A 2p + 2q _ 2r + I :PH-ar J.L 

1 -·O P+Q-r 

A 
I. 3 . 5 ... ( 2r - I ) d ,=-- 1 an p>q. r. 

where 

:\lore generally, if 

P nm (!L) = 
2
· m (n ~m~! ) 1 (11-2 -l)im F(m -n,m+n+ 1;m+ I;!- if.L), m. n m. 

where m and n are positive integers and m~n, prove that 
2m-2n(2n)! m 

P,.m(n)= -·· ·--z"-"'(u2-l)i F(~+m m-n· ~-n· z-2) 
r n! (n-m)! r '2" ' ''2" ' 

2-m-Zn(2n)! m = zn+m(f..L2 -I)-l F(~-m -m-n·~-n·z-2) 
and n!(n-m)! Y , ,y ' ' 

( 2_l)tmp •n( )P'"( )= (p+m)!(q+m)! 
IL ., IL 4 J.L 2'"(p-m)"!(q-m)! 

'ltAr.mA;_,A;_,(2p+2q+2m-4r+l) ., 
X A m 

2 
Pp-t-q-t-m-z,(p.), 

r=u PH+m-• p+2q+2m-2r+l 

where A"'= -.i.ih_ A = (!-m), 
• (a+m)!' r,m r! ' 

and p, q, m are positive integers such that p"" q + 2m, q"" m, 
[See Bailey 10, where other references are given.] 
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19. If 

p(a.,M(x) = (- J)n r(n j""1X_±_!) Jt'( -n n+ IX+ Q+ l· IX+ l· l_ lx) 
n n!r(IX+l) ' t' ' >"2" "2" ' 

prove that 

~ n! (ex+ p + Ih_ t" p<«.ll> (cos 2¢) p(a., .6) (cos 2111) 
,.=o(IX+ l)n(.B+ l)n • • 

= ( l + t)-o.-11-1 F4 [ t ( oc + ,B + l ), ! (ex+ f:l+ 2); IX+ 1, f3 + 1; a2fk2, b2jk~] 

and 

~ n I (IX+ ,8-ffJ) :E · - " (2n + cc + Jl + l) tnp!a.,.6) (cos 2.,) p<a. . .6) (cos 2<1)) 
,=o(cc+ 1),.(.8+ 1),. n • 

= (oc~/+~)~)+~~-; t) P4 [Hx+ ,B + 2), l (IX+ ,B+ 3); a+ I, ,8+ 1; a2ik2, b2ik2], 

where a=sincfosin~. b=coscfocos<l>, k=!(t-l+ti). Deduce in particular 
that 

~ (-l)"(IX+,B+ l)"t"P~.Il>(x) 
n=U (,8+ 1),. 

=(l+t~o.~=IFI !(cc+,B+l), !(cc+,8+2); 

L .a+t 

[Cf. 'Vatson 8, where the sum of the second series is expressed as an 
integral of an elementary function.] 

20. Pro,·e the formulae 

(i) F 4 [x, f3; y, 1+oc-y; z(l-Z), Z(1-z)] 

=P2 [cx; f3, f3; y, l+x-y; z, Z], 

(ii) F [a Q, Q. - x Y J 4 ,,...,y,l", (1-:r)(l-y)'-(1-x)(l-y) 

= ( 1 - x )" ( 1 - y )" F 1 [a; y - f3, I + x - y; y; :t', xy]. 

From (ii) deduce the formulae 

(iii) F [ ,B R X 
4 IX, j IX,,_.;- (1-.r)(J-y)' 1f J ( 1-x)(l-y) 

=(1-xy)-l(I-x)~(l-y)", 

[ 
:r y J 

(iv) F. cc, p; ~. fJ; -o::..~i)(1-y)' -<I-x)(I-!J) 

=(1-:r)"(l-y)" F[cc, I+ x- ,8; ,8; xy], 

(v) F [IX ,8·1+1X-R Q,- X y J 
~ ' ' ~"'' ,... (1-x)(I-y)' -(1-x)(l-y) 

=(1-y)"F[oc, ,B; l+x-{3; _:l'il_-;>J 
[Bailey 15.) 
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