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Abstract

In the past 15 years a ‘task-based’ literature has emerged, exploring

the consequences of technological change on the labour market. This

literature relies on a particular understanding of the capabilities of

machines – known as the ‘ALM hypothesis’. However, this hypoth-

esis has often led the literature to underestimate these capabilities.

Tasks that were believed to be out of reach of automation can now

be automated. In this paper I set out two distinct explanations for

why these capabilities were underestimated – one that is explored

in the recent literature and maintains the ALM hypothesis, and a

new explanation that challenges it. I propose a new hypothesis that

nests the ALM hypothesis as a special case.

Keywords: Technological Change; Computerization; Automation;

Job Tasks; Wages.

JEL: J20; J21; J23; J24; J30; J31; 031; 033.

1 Introduction

Accurately forecasting the future capabilities of machines is very di�cult.

The traditional ‘task-based’ literature that explores the e↵ect of technolog-

⇤Fellow, Balliol College, Oxford University. This is a revised version of Chap-
ter II of my doctoral dissertation, ‘Technology and Employment’. Thanks to David
Autor, Brian Bell, Martin Ellison, Frank Levy, Alan Manning, Margaret Stevens,
Larry Summers, Richard Susskind, and David Vines for helpful input. Contact:
danielsusskind@gmail.com.
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ical change on the labour market has at times underestimated them. For

instance, Autor et al. (2003) noted that the task of driving a car could

not be readily automated, but a type of driverless car appeared two years

later;1 Autor et al. (2013) noted that order-taking and table-waiting could

not be readily automated, but later that year the US restaurants Chili’s

and Applebee’s announced they were installing 100,000 tablets to allow

customers to order and pay without a human waiter;2 Autor (2015) noted

that the task of identifying a species of bird based on a fleeting glimpse

could not be readily automated, but later that year an app was released to

do that as well.3

These examples suggest that the traditional literature’s conception of

how machines operate and the capabilities that this implies – known as

the ‘ALM hypothesis’ – may be incorrect.4 These tasks were believed to

be out of reach of automation because they were ‘non-routine’ rather than

‘routine’. But in practice this has proven not to be the case.5 The first con-

tribution in this paper is to set out two distinct explanations for why this

might be so. The first explanation is that proposed in the recent literature

(for instance, Autor 2014 and 2015, and Remus and Levy 2016). It main-

tains the ALM hypothesis, and argues that tasks which we thought were

‘non-routine’ are, in fact, more ‘routine’ than we realised. Here, the role

of technology is to move the boundary between ‘non-routine’ and ‘routine’

tasks. The second is a new explanation. It challenges the ALM hypothesis,

and argues that the ‘non-routine’ and ‘routine’ distinction itself is no longer

a compelling way to think about the constraints on automation. Here, the

role of technology is instead to allow machines to perform tasks in such

a way that the ‘non-routine’ and ‘routine’ distinction no longer applies.

This, I argue, is an increasingly compelling explanation. I propose a new

hypothesis about the capabilities of machines, based on this explanation,

1The Society of Automative Engineers defines five levels of vehicle ‘autonomy’. These
early cars were at a low level. Since 2005, further progress has been made. I thank Frank
Levy for this point.

2See Pudzer (2016).
3See http://merlin.allaboutbirds.org/photo-id/.
4‘ALM’, after ‘Autor, Levy and Murnane’ – the authors of Autor et al. (2003).
5It is important to note that the traditional literature did recognise that the ALM

hypothesis may not hold indefinitely. Autor et al. (2003), for instance, refers to “present
technologies” and says that the ALM hypothesis is only “at present” a binding constraint
(emphasis added).
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that nests the ALM hypothesis as a special case.

2 The Traditional Approach

2.1 Context

Autor et al. (2003) provides the foundations for the new literature exploring

the consequence of technological change on the labour market. Autor et

al. (2003) is motivated by a disappointment with the dominant ‘skills-

biased technical change’ (SBTC) thesis.6 The SBTC thesis has empirical

support.7 But the SBTC thesis does not explain why technology has this

‘skills-biased’ property. As Autor et al. (2003) notes:

“It fails to answer the question of what it is that computers
do – or what it is that people do with computers – that causes
educated workers to be relatively more in demand.” (pg. 1280)

The purpose of Autor et al. (2003) is to answer this question and to provide

a deeper explanation for the SBTC thesis. Autor et al. (2003) introduces

two innovations to do this. The first is the ‘task-based’ approach. This

breaks production into two stages – ‘factor-based’ production functions for

tasks that describe how factors with particular skills and capabilities com-

bine to perform di↵erent types of task, and ‘task-based’ production functions

for goods that describe how di↵erent types of tasks are combined to produce

di↵erent types of good. When these two distinct sets of functions are taken

together, the resulting aggregate function describes how particular factors

combine to produce di↵erent types of goods.8 The second innovation is a

theory about the capabilities of “computer capital”.

2.2 The ALM Hypothesis

The ‘ALM hypothesis’ is the theory about capabilities of computer capital

developed in Autor et al. (2003). Based on “an intuitive set of observa-

6For an overview of the SBTC thesis, see Acemoglu (2002).
7See Autor et al. (2003) for the “wealth of quantitative and case-study evidence” to

support it.
8Goos, Manning and Salomons (2014) describe this as a “two-stage setup”.
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tions” from economists and others, Autor et al. (2003) make two assump-

tions:

“(1) that computer capital substitutes for workers in carrying
out a limited and well-defined set of cognitive and manual ac-
tivities, those that can be accomplished by following explicit
rules (what we term “routine tasks”); and (2) that computer
capital complements workers in carrying out problem-solving
and complex communication activities (“nonroutine tasks”).”
(pg. 1280)

These two assumptions are critical. Together, this distinction between ‘rou-

tine’ and ‘non-routine’ tasks, and these two assumptions with respect to

that distinction, are the ALM hypothesis. A weak interpretation of the

ALM hypothesis is that it implies machines are more capable at perform-

ing ‘routine’ tasks than ‘non-routine’ tasks. A strong interpretation of the

ALM hypothesis is that it implies machines are capable of performing ‘rou-

tine’ tasks but cannot perform ‘non-routine’ tasks. In the literature both

interpretations are used, often within the same paper. But the models that

rely on the ALM hypothesis mostly rely upon the strong interpretation.

This is the interpretation I will focus on.

To see why the ALM hypothesis may no longer hold, two questions

must be answered. First, what is the basis for the ‘routine’ vs. ‘non-

routine’ distinction? Secondly, what is the basis for the assumption that

machines can only perform ‘routine’ tasks?

‘Routine’ vs. ‘Non-Routine’ Tasks

In Autor et al. (2003), the distinction between ‘routine’ and ‘non-routine’

tasks is based on the work of Michael Polanyi, a philosopher – in particu-

lar Polanyi (1966). The authors argue that ‘non-routine’ tasks are “tasks

fitting Polanyi’s description”, where Polanyi is quoted as follows:

“We can know more than we can tell [p. 4] . . . The skill of a
driver cannot be replaced by a thorough schooling in the theory
of the motorcar; the knowledge I have of my own body di↵ers
altogether from the knowledge of its physiology; and the rules
of rhyming and prosrody do not tell me what a poem told me,
without any knowledge of its rules [p. 20].” [Emphasis added]
(pg. 1283)
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Autor et al. (2003) therefore implies that ‘non-routine’ tasks are those

that are performed by human beings using knowledge about which “we

can know more than we can tell”, that human beings can perform without

“any knowledge” of the rules they follow.9 Put simply, ‘non-routine’ tasks

are those that rely on what Polanyi called ‘tacit’ knowledge – knowledge

that people struggle to articulate when called upon to do so. For example,

a world-class sportsman may struggle to articulate the heuristics that allow

him to throw a ball unrivalled distances. But this is still ‘knowledge’ – it is

just not ‘explicit’ knowledge that can readily be articulated, but is ‘tacit’.

Autor (2014), a more recent re-statement of the task-based approach, again

defines ‘non-routine’ tasks with reference to Polanyi’s concept of ‘tacit’

knowledge. It argues that ‘non-routine’ tasks are those we only “tacitly

understand how to perform”, that involve processes we “do not explicitly

understand”.

This addresses the first question. Following Autor et al. (2003) and

Autor (2014), ‘non-routine’ tasks are those that require tacit knowledge

to perform. The second question follows – why does the fact that a task

is ‘non-routine’, and so requires tacit knowledge, imply that a machine is

poorly suited to perform it?

‘Computer Capital’ and Routine Tasks

Autor et al. (2003) also introduces the argument that machines can only

perform ‘routine’ tasks. This claim is grounded on a particular under-

standing of how machines must operate. In Autor et al. (2003) this is that

a machine can only perform a task if it can “follow explicit programmed

rules”. This implies that a machine requires a task to be “exhaustively

specified with programmed instructions” and without these “explicit pro-

grammed instructions” a machine cannot perform the task. The same point

is made in Autor (2014) but with an additional claim:

“For a computer to accomplish a task, a programmer must first
fully understand the sequence of steps required to perform that

9In Autor, Levy, and Murnane (2002) there is an informal discussion of the ideas that
would become the ALM hypothesis. The argument in this earlier paper is that “what
computers actually do” is “the execution of procedural or “rules-based” logic”. This is
similar to the ALM hypothesis.
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task, and then must write a program that, in e↵ect, causes the
machine to precisely simulate these steps.” (pg. 6)

In Autor (2015) this is described as the “traditional” approach to program-

ming. But the claim in Autor (2014; 2015) is not simply the original one

made in Autor et al. (2003), that a machine must be set an explicit set of

programmed rules; it is stronger – that those explicit rules must originate

with, and precisely reflect, the thinking process of a human being. It is

from this stronger claim that the assumption that computer capital can

only perform ‘routine’ tasks follows. Autor (2015) puts this formally:

“But the scope for this kind of substitution is bounded because
there are many tasks that people understand tacitly and ac-
complish e↵ortlessly but for which neither computer program-
mers nor anyone else can enunciate the explicit “rules” or pro-
cedures.” (pg. 11)

And Autor (2014) more prosaically:

“At a practical level, Polanyi’s paradox means that many fa-
miliar tasks, ranging from the quotidian to the sublime, cannot
currently be computerized because we don’t know the rules.”
(pg. 8)

The answer to the second question. If human beings cannot articulate their

thought process in performing a task, if they do not ‘understand’ how they

perform the task, then they cannot articulate a set of rules for a machine

to follow, and the machine will not be able to perform the task. Those

tasks for which human beings cannot articulate their thought processes are

the ‘non-routine’ ones – and so, accordingly to the ALM hypothesis, ‘non-

routine’ tasks cannot be performed by machines. Conversely, those tasks

that human beings can articulate their thought processes for are ‘routine’

tasks, and so those are the tasks that machines can perform.

2.3 Machines Can Perform ‘Non-Routine’ Tasks

The ALM hypothesis has a clear implication – machines cannot perform

‘non-routine’ tasks. Yet in practice this no longer holds. Increasingly,

machines perform a wide range of ‘non-routine’ tasks. This is an important
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challenge to the ALM hypothesis. Driverless cars are a good case. Polanyi

(1966) considered driving a car as a definitive case of a task that requires

tacit knowledge:

“The skill of a driver cannot be replaced by a thorough schooling
in the theory of the motorcar.” (pg. 20)

Given the ALM hypothesis draws on Polanyi (1966), it is understandable

that Autor et al. (2003) also use the task of driving a car as a definitive

case of a ‘non-routine’ task:

“Navigating a car through city tra�c or deciphering the scrawled
handwriting on a personal check – minor undertakings for most
adults – are not routine tasks by our definition. The reason is
that these tasks require visual and motor processing capabil-
ities that cannot at present be described in terms of a set of
programmable rules.” (pg. 1283)

In the task-based literature that followed Autor et al. (2003), the task of

driving a car is also used as a definitive case of a ‘non-routine’ task that

cannot be computerised. Consider Levy and Murnane (2004):

“The bakery truck driver is processing a constant stream of in-
formation from his environment .... To program this behaviour
we could begin with a video camera and other sensors to capture
the sensory input. But executing a left turn across oncoming
tra�c involves so many factors that it is hard to imagine discov-
ering the set of rules that can replicate the driver’s behaviour.”
(pg. 20)

In 2004, this position – that the task of driving a car necessarily required

a human being – was consistent with the available evidence. Yet this no

longer holds. Almost all major car companies are now developing driverless

cars.10

But driverless cars are only one example of the widespread computer-

isation of ‘non-routine’ tasks. Consider, for instance, a second task that

Autor et al. (2003) suggests is ‘non-routine’ and so cannot readily be

computerised, that of “deciphering the scrawled handwriting on a personal

10See Gibbs (2016).
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check”. This task too can now be performed by machines.11 Indeed, it can

be performed in a variety of ways, and is a small part of a much larger field

in AI research on ‘pattern recognition’.12 So too for a third task noted by

Autor et al. (2003), “medical diagnosis”.13 In turn, in Autor and Dorn

(2013) it is claimed that a further set of ‘non-routine’ tasks cannot readily

be computerised. Consider three of these – personal care, order-taking,

and table-waiting. Traditionally, each of these may have required a human

being. But whether this will continue is unclear. In Japan, for example,

where the elderly population is the highest in the world and expected to

rise further (26.7 percent 65 or older, Yoshida 2016), the burden of care

is increasingly being shared between human beings and machines – com-

merical robots like ‘Paro’, a therapeutic toy seal, and ‘Pepper’, a personal

robot, are used, and the market for nursing care robotics is expected to

grow twenty-five-fold from 2015 to 2035 (Neumann 2016).14 As for order-

taking and table-waiting, there are now many restaurants and cafes where

these processes are performed by machines.15

A further, important, recent development is that it now appears, in cer-

tain cases, that the opposite of the ALM hypothesis holds in practice – not

only can certain ‘non-routine’ tasks be computerised, but the ‘non-routine’

character of these tasks makes them more susceptible to computerisation.

Consider Ng (2016), a leading AI researcher:

“If a typical person can do a mental task with less than one
second of thought, we can probably automate it using AI either
now or in the future.”

Here those tasks that require ‘tacit’ knowledge are at greater risk. This is

the opposite of what the ALM hypothesis supposes.

11These systems are now ubiquitous. For example, for economists there is a
smartphone app called ‘Mathpix’ which scans handwritten equations and solves
them. This is available at https://itunes.apple.com/gb/app/mathpix-solve-graph-math-
using/id1075870730?mt=8.

12Consider Pattern Recognition, published by Elsevier, a journal dedicated to this
field.

13This is now a thriving field. See, for example, Moorefields (2016), describing the new
partnership between Google DeepMind Health and Moorfields Eye Hospital in London.

14http://www.parorobots.com/ and https://www.ald.softbankrobotics.com/en/cool-
robots/pepper.

15See Pudzer (2016).
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2.4 The First Explanation

The recent literature has noted that many ‘non-routine’ tasks can now be

automated. The models in Acemoglu and Autor (2011) and Acemoglu and

Restrepo (2016), for instance, allows for machines to displace labour in a

wider range of tasks. In turn, Autor (2015) raises direct questions about

the ALM hypothesis:

“Polanyi’s paradox – “we know more than we can tell’ – presents
a challenge for computerisation because, if people understand
how to perform a task only tacitly and cannot “tell” a computer
how to perform the task, then seemingly programmers cannot
automate the task – or so the thinking has gone.” (pg. 24)
[Emphasis added]

However, the explanation presented for why these ‘non-routine’ tasks can

now be automated maintains the ALM hypothesis. It argues that tasks

which we thought were ‘non-routine’ are, in fact, more ‘routine’ than we

realised. New technologies – advances in processing power, data retrieval

and storage capabilities, and algorithm design – have made it possible to

make ‘explicit’ more of the ‘tacit’ knowledge that human beings draw upon.

This argument is made, for instance, in Autor (2014):

“Contemporary computer science seeks to overcome Polanyi’s
paradox [the inability to articulate rules for tasks that require
‘tacit’ knowledge] by building machines that learn from human
examples, thus inferring the rules that we tacitly apply but do

not explicitly understand.” (pg. 2) [Emphasis added]

in Autor (2015):

“[R]ather than teach machines rules that we do not understand,
engineers develop machines that attempt to infer tacit rules

from context, abundant data, and applied statistics.” (pg. 23)
[Emphasis added]

and in Remus and Levy (2016) with respect to predicting the outcome of

a legal dispute:

“Because the mental protocol [of a judge issuing a decision] is
tacit – and not easily articulated – the judge may not experi-
ence his decisions as routine, but the machine learning model
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makes the tacit protocol explicit as a mathematical combination
of characteristics taken from the case, which can then be used
to predict future judicial decisions.” (pg. 13) [Emphasis added]

2.5 The Second Explanation

There is, however, a second explanation for why ‘non-routine’ tasks can be

automated. The first explanation argues that new technologies allow us

to uncover more of the tacit rules that human beings follow in performing

‘non-routine’ tasks; the second explanation argues that new technologies

allow us to perform tasks with systems and machines that follow rules

which do not need to reflect the rules that human beings follow at all, tacit

or otherwise. This is a new and important conceptual point.

A significant feature of many new systems and machines is that they

perform tasks in very di↵erent ways to human beings. The existing litera-

ture recognises this. In the traditional literature, for instance, Autor et al.

(2003) notes in a footnote that it is “a fallacy to assume that a computer

must reproduce all of the functions of a human being to perform a task

traditionally done by workers.”And in the recent literature, Autor (2014)

reflects this in a discussion of how driverless cars operate:

“It is sometimes said by computer scientists that the Google
car does not drive on roads but rather on maps ... the Google
car navigates through the road network primarily by comparing
its real-time audio-visual sensor data (collected using LIDAR)
against painstakingly hand-curated maps that specify the exact
locations of all roads, signals, signage, obstacles, etc. ... while
the Google car appears outwardly to be as adaptive and flexible
as a human driver, it is in reality more akin to a train running
on invisible tracks.” (pp. 33-4)

This system performs the task of driving a car in a di↵erent way to a human

being. While both a human being and a machine rely upon sensor data

to drive the car – though their respective sensors vary – only the machine

requires a “pre-specified” map.

The chess-playing system Deep Blue, developed by IBM, is a canonical

case of a machine that performs a di�cult task in a di↵erent way to a human

being. In 1997 Deep Blue defeated the then then chess world-champion,

Garry Kasparov, in a six game set. Kasparov (2010) noted that:
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“Instead of a computer that thought and played chess like a
human, with human creativity and intuition, they got one that
played like a machine, systematically evaluating 200 million
possible moves on the chess board per second and winning with
brute number-crunching force.”

However, the fact that machines can increasingly perform tasks in di↵er-

ent ways to human beings has implications for the rules that these machines

follow. This is not su�ciently recognised in the existing literature. In par-

ticular, when machines perform tasks in di↵erent ways to human beings it

is no longer necessary for the rules that these machines follow to resemble

the rules that human beings follow. In the cases of driving a car or playing

chess, there is no longer a need to understand, articulate, and replicate the

thinking process of a human driver or chess-player. It is wrong to imagine

that the only rules that a machine could follow are those that human beings

actually do follow. Put another way, the set of all possible rules a machine

could follow is larger than the particular rules that human beings actually

do follow.

The limitation with the ALM hypothesis follows. It assumes that the

only way to computerise a task is to understand, articulate, and replicate

the thinking process of a human being when performing that task. The

only purpose of the ‘routine’ vs. ‘non-routine’ distinction is to distinguish

between those types of tasks for which human beings can articulate their

thought processes and those they cannot. And the basis for the assumption

that machines can only perform ‘routine’ tasks is that those are the only

tasks for which we can write a specific procedure, since those are the only

tasks we can articulate how human beings perform. But when machines

follow di↵erent rules to human beings, it is clear that ALM hypothesis no

longer holds for those tasks. The inability of human beings to articulate

their thinking processes is no longer a constraint.

The possibility that these systems and machines follow di↵erent rules

suggests that first explanation for why certain ‘non-routine’ tasks can now

be automated is incomplete. It may be true that it is now possible to

automate certain ‘non-routine’ tasks because the ‘tacit’ rules followed by

human beings can be made ‘explicit’. But if these machines follow rules

that do not resemble those that human beings follow the first explanation
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is insu�cient. The second explanation is necessary. Both arguments could

explain why it is now possible to automate many more ‘non-routine’ tasks.

But as machines become more powerful, there is less need to replicate the

thinking-processes of human beings. This second explanation is becoming

increasingly important.

More fundamentally, the ALM hypothesis draws on traditional reason-

ing about ‘artificial intelligence’ (AI). It relies on what is known as the first

generation of AI research, conducted from the 1950s to 1980s.16 Called

‘expert systems’ or ‘knowledge-based systems’, these required a human

‘domain specialist’ who was capable of articulating how they performed a

particular task and then representing this in a set of rules for a machine to

follow. Winston (1977), Hayes-Roth et al. (1983) and Russell et al. (1995)

provide an overview of these approaches.17 But the second generation of

AI research, relying upon brute-force processing power, massive data stor-

age capabilities, and advances in algorithm design, does not require this.

Consider, for instance, the task of performing a medical diagnosis. Esteva

et al. (2017) describes a system that can predict as accurately as 21 der-

matologists whether a picture of a skin discolouration is cancerous. This

system does not try to uncover the tacit rules that those dermatologists

follow. Instead, it is performing the task in a fundamentally di↵erent way

– training a neural network on a dataset of 129,450 cases to derive a set

of diagnostic ‘rules’ that do not need to reflect those that a dermatologist

might follow. This would not have been technically feasible 15 years ago,

when the task-based literature began.18

This does not imply at all that Polanyi’s distinction between ‘tacit’ and

‘explicit’ knowledge is wrong. But it does imply that Polanyi’s distinction

is the wrong constraint when thinking about the capabilities of machines

that operate in very di↵erent ways to human beings. Only when the way

in which a machine performs a task must exactly reflect the way in which a

human being performs that same task does a Polanyi-type constraint bind.

16See Susskind and Susskind (2015).
17See also Weizenbaum (1976) and Dreyfus (1976; 1992). These first generation AI

researchers also thought a Polanyi-type constraint, based on the inability to express
tacit knowledge, was important.

18Or consider DeepMind, the AI system by Google – its accomplishments are set out
in Mnih et al. (2015) and Silver et al. (2016).
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2.6 A New Hypothesis

These two explanations have di↵erent implications for the rules that ma-

chines follow in performing ‘non-routine’ tasks. The first explanation sug-

gests that these machines are following the ‘tacit’ rules of human beings,

which have been made ‘explicit’ – these ‘non-routine’ tasks were ‘routine’

after all. The second suggests that these machines are following rules that

do not reflect the rules that human beings follow – the ‘non-routine’ and

‘routine’ distinction no longer matters.19

It follows that in thinking about automation, the appropriate criteria

is not whether a task is ‘routine’ or ‘non-routine’ from the standpoint of a

human being, as under the ALM hypothesis, but whether it has features

that make it more or less routinisable from the standpoint of a machine. If

a task is routinisable, a routine can be composed that allows a machine to

perform it – but that routine may not necessarily reflect the way in which

a human being performs the task. The concept of ‘routinisability’ nests the

concept of ‘routineness’. The latter asks whether a task has features that

make it more or less feasible to articulate how a human being performs it

in a set of rules for a machine to follow. The former asks whether a task

has features that make it more or less feasible to articulate a set of rules

for a machine to follow. A new general hypothesis follows.

HYPOTHESIS: (1) that machines substitute for workers in carrying out

a set of tasks and activities that are ‘routinisable’; and (2) that machines

complement workers in carrying out a set of tasks that are ‘unroutinisable’.

The set of tasks and activities that are routinisable changes over time.

This general hypothesis also nests the ALM hypothesis – in the special case

where the rules that a machine follows must resemble those that human

beings follow, the ‘routineness’ and the ‘rountinisability’ of a task coin-

cide. In that special case, the general hypothesis collapses to the ALM

hypothesis. But in general, the routineness of a task is only one signal of

19One of features of the latest machines is that they are opaque – it is di�cult to
articulate the particular rules that they themselves follow. I thank David Autor for
this point. But this makes the second explanation even more important – if it is not
possible to verify that a particular set of rules resembles a human being’s, then a broader
explanation is needed to allow for the possibility that these rules may be di↵erent.
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a task’s routinisability – and it appears an increasingly weak one. Most

importantly, the set of tasks that were routinisable in the past is likely to

be far smaller than the set of tasks that are routinisable in the future.

3 Conclusion

The traditional literature, based on the ALM hypothesis, supports an op-

timistic view about the threat of automation.20 This optimism relies on

the claim that there exists a large set of types of tasks that cannot be

automated and, in turn, that those “tasks that cannot be substituted by

automation are generally complemented by it” (Autor 2015). But if, as

argued in this paper, many ‘non-routine’ tasks can also be automated,

then the set of types of tasks that o↵er a ‘refuge’ for labour will be far

smaller than the traditional literature assumes. The comparative advan-

tage of labour is eroded, and labour is forced to specialise in performing

a shrinking set of types of complemented tasks. These are tasks that are

not routinisable. Intuitively this suggests that the ALM hypothesis, and

the boundary it has imposed between what machines can and cannot do,

may have created a misleading sense of optimism about the prospects for

labour. This is an important argument for pessimism that requires further

theoretical and empirical research.

4 Bibliography

Acemoglu, Daron. 2002. “Technical Change, Inequality, and the Labor Market”.
Journal of Economic Literature 40 (1): 7-72.
Acemoglu, Daron and David Autor. 2011. “Skills, Tasks and Technologies: Im-
plications for Employment and Earnings”. In: Handbook of Labour Economics, Volume
4B eds. David Card and Orley Ashenfelter, 1043-1171. Amsterdam: North-Holland.
Acemoglu, Daron and Pascual Restrepo. 2016. “The Race Between Machine and
Man: Implications of Technology for Growth, Factor Shares, and Employment.” NBER
Working Paper No. 22252.
Autor, David, Frank Levy and Richard Murnane. 2003. “The Skill Content of
Recent Technological Change: An Empirical Exploration”. The Quarterly Journal of
Economics 118 (4) 1279-1333.

20I use ‘optimism’ and ‘pessimism’ as a form of short-hand. Put simply, ‘pessimistic
outcomes’ are those that make people feel pessimistic about labour’s future and vice-
versa for ‘optimistic outcomes’.

14



Autor, David. 2013. “The “Task Approach” to Labor Markets: An Overview”,
Journal for Labour Market Research 46 (3) 185 - 199.
Autor, David. 2014. “Polanyi’s Paradox and the Shape of Employment Growth”.
NBER Working Paper No. 20485.
Autor, David. 2015. “Why Are There Still So Many Jobs? The History and Future
of Workplace Automation”. Journal of Economic Perspectives 29 (3) 3-30.
Dreyfus, Hubert. 1976. What Computers Can’t Do: The Limits of Artificial Intelli-
gence New York: Harper & Row.
Dreyfus, Hubert. 1992. What Computers Still Can’t Do: A Critique of Artificial
Reason MA: MIT Press.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan Swetter,
Helen Blau and Sebastian Thrun. 2017. “Dermatologist-level classification of skin
cancer with deep neural networks.” Nature 542 155-188.
Gibbs, Samuel. 2016. “Self-driving cars: who’s building them and how do they work?”
The Guardian, May 26.
Goos, Maarten, Alan Manning and Anna Salomons. 2014. “Explaining Job
Polarization: Routine-Biased Technological Change and O↵shoring”. The American
Economic Review 104 (8) 2509-2526.
Hayes-Roth, Frederick, Donald Waterman and Douglas Lenat. 1983. Building
Expert Systems. MA: Addison-Wesley.
Kasparov, Garry. 2010. “The Chess Master and the Computer” The New York
Review of Books, Feb 11.
Levy, Frank and Richard Murnane 2004. The New Division of Labor. India: New
Age International Ltd.
Mnih, Volodymr, Koray Kavukcuoglu, David Silver,Andrei Rusu, Joel Ve-
ness,Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. 2015. “Human-level control through deep reinforcement learning.” Nature
518 529-533.
Neumann, Dana. 2016. “Human Assistant Robotics in Japan’ EU Japan Centre for
Industrial Cooperation, March.
Ng, Andrew. 2016. “What AI Can and Can’t Do Right Now’ The Harvard Business
Review, November 9.
Polanyi, Michael 1966. The Tacit Dimension. London: University of Chicago Press.
Puzder, Andy. 2016. “Why Restaurant Automation Is on the Menu” The Wall Street
Journal, March 24.
Remus, Dana and Frank Levy. 2016. “Can Robots be Lawyers? Computers,
Lawyers, and the Practice of Law.” Available at SSRN: http://ssrn.com/abstract=2701092.
Russell, Stuart and Peter Norvig 1995. Artificial Intelligence: A Modern Approach.
New Jersey: Pearson Education.
Silver, David, Aja Huang, Chris Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel and Demis Hassabis. 2016. “Mastering the
game of Go with deep neural networks and tree search.” Nature 529 484-489.
Weizenbaum, Joseph 1976. Computer Power and Human Reason. US: W.H. Freeman
and Company.
Winston, Patrick. 1977. Artificial Intelligence. Reading: Addison Wesley.
Yoshida, Reiji. 2016. “Japan census report shows surge in elderly population, many
living alone” The Japan Times, June 29.

15


