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Abstract In Human-Robot Interactions (HRI), robots
should be socially intelligent. They should be able to
respond appropriately to human affective and social
cues in order to effectively engage in bi-directional
communications. Social intelligence would allow a
robot to relate to, understand, and interact and
share information with people in real-world human-
centered environments. This survey paper presents
an encompassing review of existing automated affect
recognition and classification systems for social
robots engaged in various HRI settings. Human-affect
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detection from facial expressions, body language,
voice, and physiological signals are investigated, as
well as from a combination of the aforementioned
modes. The automated systems are described by their
corresponding robotic and HRI applications, the sen-
sors they employ, and the feature detection techniques
and affect classification strategies utilized. This paper
also discusses pertinent future research directions
for promoting the development of socially intelli-
gent robots capable of recognizing, classifying and
responding to human affective states during real-time
HRI.

Keywords Human-robot interactions · Affect
classification models · Automated affect detection ·
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1 Introduction

Human-robot interaction (HRI) encompasses both the
development of robots that engage humans in spe-
cific activities and tasks, as well as the study of
how humans and robots interact with each other dur-
ing such scenarios [1]. HRI can take many forms,
from an operator teleoperating mobile robots during
search and rescue operations [2], to robotic office-
building mail delivery [3], to a socially engaging nurse
robot delivering medicine to elderly long-term care
residents [4].
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Past HRI research has mainly concentrated on
developing efficient ways for humans to con-
trol/supervise robot behavior [1]. More recently,
research has also focused on developing robots that
can detect common human communication cues for
more natural interactions [5–7]. Social HRI is a subset
of HRI that encompasses robots which interact using
natural human communication modalities, including
speech, body language and facial expressions [8]. This
allows humans to interact with robots without any
extensive prior training, permitting desired tasks to be
completed more quickly and requiring less work to
be performed by the user [8]. However, in order to
accurately interpret and appropriately respond to these
natural human communication cues, robots must be
able to determine the social context of such cues.

For robots to successfully take part in bi-directional
social interactions with people, they must be capa-
ble of recognizing, interpreting and responding effec-
tively to social cues displayed by a human interactant.
In particular, during social interactions, a person’s
affective displays can communicate his/her thoughts
and social intent [9]. A person’s affect is a com-
plex combination of emotions, moods, interpersonal
stances, attitudes, and personality traits that influence
his/her own behavior [10]. A robot which is capable
of interpreting affect will have an enhanced capacity
to make decisions and assist humans due to its abil-
ity to respond to their affect [11]. Such robots would
promote more effective and engaging interactions with
users that would lead to better acceptance of these
robots by their intended users [12].

Affective interactions between a human and a robot
may take several forms, including: collaborative HRI
[13], assistive HRI [14], mimicry HRI [15], and gen-
eral HRI (e.g., multi-purpose) [16]. Collaborative HRI
involves a robot and a person working together to
complete a common task [17, 18]. A robot needs
to be able to identify a person’s affective state to
avoid misinterpreting social cues during collabora-
tion and to improve team performance [19]. Assistive
HRI involves robots that are designed to aid people
through physical, social and/or cognitive assistance
[20, 21]. Automated affect detection would promote
effective engagement in interactions aimed at improv-
ing a person’s health and wellbeing, e.g. interventions
for children with autism [22] and for the elderly [23].
Mimicry HRI consists of a robot or person imitat-
ing the verbal and/or nonverbal behaviors of the other

[24]. Mimicry of affect can also be used to build social
coordination between interacting partners and encour-
age cooperation [25]. Lastly, general or multi-purpose
HRI involve robots designed to engage people using
bi-directional communication for various applications.

Previous surveys on automated affect recognition
have investigated approaches that utilized to deter-
mine affect from facial expressions [26–28], body
language [28, 29], voice [27, 28] or a combina-
tion of facial expressions and voice [27]. In [28],
additional modalities including physiological signals
and text were also investigated, as well as various
combinations of two or more of the aforementioned
modalities [28]. These surveys primarily focused on
Human-Computer Interactions (HCI) applications, as
opposed to HRI addressed in this paper. HCI is the
design, planning and study of devices and systems
that allow or improve how a human interacts with vir-
tual objects or agents on a computer [30]. HRI, on
the other hand, requires an embodied physical robot to
interact with a person or multiple persons. Embodied
social robots have been designed to display human-
like social behaviors in order to encourage humans to
engage in social interaction with the robot, e.g. [31,
32]. A number of studies have shown that physically-
embodied agents offer more engaging, enjoyable and
effective social interactions than do computers and/or
virtual agents [33–35].

A recent survey on perception systems for social
HRI was presented in [36]. This survey focused on
discussing perception methods used by robots mainly
for face and object recognition, localization and track-
ing. Systems developed to allow social robots to
autonomously identify a person’s affect require spe-
cific sensors that will not interfere with or influence
a person’s behaviors during the desired HRI sce-
nario. Socially interacting robots should also be able
to interpret and respond to natural (non-acted) dis-
plays of affect. Within this context, it is important
to investigate the desired HRI scenarios and as well
the affect feature detection and classification sys-
tems used by robots to recognize and interpret human
affect. Furthermore, the real-world experimental sce-
narios that have been studied and their corresponding
results should be examined to provide insight into this
emerging research area.

Uniquely, the objective of this paper is to present
the first extensive survey of automated affect recog-
nition and classification techniques used by social
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robots in varying HRI scenarios. The contributions of
the paper are summarized as follows:

1. Descriptions of most common modalities utilized
to detect affect and corresponding categoriza-
tion models, namely: facial expressions, body
language, voice, physiological signals, and multi-
modal techniques.

2. Classification of each affect-detection system
with respect to its proposed HRI scenario, includ-
ing collaboration tasks between humans and
robots, assistive tasks, where robots aid a human
to complete, mimicry tasks, where robots/humans
perform the same behavior, and multi-purpose
tasks that can potentially encompass a large range
of HRI activities.

3. Descriptions of affect-detection systems, focusing
on their integration and use by social robots, their
perception and feature identification techniques,
their affect models and classification methods,
and direct results from HRI experiments.

4. Discussion of current challenges and comparisons
of existing approaches as well as future research
directions.

The remaining sections of this paper are organized
as follows: Section 2 reviews the affect categoriza-
tion models utilized for automated affect detection.
Sections 3, 4, 5, 6 and 7 present affect recognition
and classification systems for social robots focusing
on affect detection from facial expressions, body lan-
guage, voice, physiological signals, and a combination
of the aforementioned modes, respectively. Section 8
presents a discussion of the research problems and
approaches that have been addressed in the litera-
ture, and potential future trends. Section 9 provides
concluding remarks.

2 Affect Categorization Models

The neuroscience and cognitive science fields have
identified two leading types of models that describe
how people perceive and classify affect: categorical
and dimensional [37]. In general, categorical models
consist of a finite number of discrete states, each rep-
resenting a specific affect category [37, 38]. For exam-
ple, a form of affective expression such as a facial
expression, body language display, vocal intonation
or a combination of these can be classified into one

of these states: happy, sad, angry, etc. Dimensional
models, on the other hand, also known as continu-
ous models, use feature vectors to represent affec-
tive expressions in multi-dimensional spaces, allowing
for the representation of varying intensities of affect
[37, 39]. Changes in affect are considered in the
continuous spectrum for these models. This section
discusses existing variations of these two leading
models and how they have been used by robots in HRI
scenarios.

2.1 Categorical Models

In 1872, Darwin first classified six universal human
affective states that were cross-culturally innate by
studying expressions and movements in both humans
and animals [40]. These six states were defined to be
happiness, surprise, fear, disgust, anger, and sadness.
In 1962, Tomkins also proposed that there were a lim-
ited number of human affective states by observing
human communication movements such as nods and
smiles [7]. He introduced the Affect Theory, which
included nine discrete affect categories: joy, interest,
surprise, anger, fear, shame, disgust, dis-smell, and
anguish [41, 42]. Similar to Darwin, Ekman also con-
ducted human cross-cultural studies and determined
that human facial affect was a collection of the same
six recognizable basic categories [43]. Ekman codi-
fied the corresponding facial expressions into these
affective states using the Facial Action Coding Sys-
tem (FACS), where positions of facial action units
(AU) are classified as distinct facial expressions of
emotions [44]. This categorical model is debatably
the most often used model today for classifying
affect [45].

The strength in categorical models lies in their abil-
ity to clearly distinguish one affect from the others.
However, categorical models lack the ability to clas-
sify any affect that is not included as a category in the
model.

2.2 Dimensional Models

In order to address the challenge of classifying affect
across a continuous spectrum, dimensional models
have been developed. Russell [39] and Barrett [46]
argued that affect cannot be separately classified as
gradations, and blends of affective responses could not
be categorized. Furthermore, they argued that there
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were no correspondences between discrete affect and
brain activity. The majority of dimensional models
that have been developed use either two or three
dimensions for affect categorization.

In 1897, Wundt first proposed that affect could
be described by three dimensions: pleasure vs. dis-
pleasure, arousal vs. calm, and relaxation vs. tension
[47]. The pleasure-displeasure dimension described
the positivity or negativity of mental state, the arousal-
calm dimension referred to excitation level, and the
relaxation-tension dimension referred to the frequency
of affect change [47]. In 1954, Schlosberg proposed
a similar model also consisting of three dimensions
of affect: pleasure vs. displeasure, attention vs. rejec-
tion, and level of activation (also known as relax-
ation vs. tension) [48]. The attention-rejection dimen-
sion described the levels of openness of a person
[49].

In 1980, Plutchik designed a three-dimensional
model which included valence, arousal, and power.
The model combined both categorical and dimen-
sional model theories as it incorporated blends of eight
basic affective states: curiosity, fear, disgust, sadness,
acceptance, joy, anger, and surprise [50]. The valence
dimension described how positive or negative an affect
was, similar to that of the abovementioned pleasure-
displeasure scale, and the power dimension described
sense of control over the affect.

In [51], Mehrabian suggested the pleasure, arousal,
and dominance (PAD) emotional state to incorpo-
rate all emotions. Dominance described the dominant
or submissive nature of the affect. Russell also pro-
posed a two-dimensional circumplex model contain-
ing valence and arousal dimensions [52]. The model
illustrated that affect was arranged in a circular fash-
ion around the origin of the two-dimensional scale.
The circumplex model has been widely used to evalu-
ate facial expressions [53].

Watson proposed a two-dimensional PANA (Pos-
itive Activation-Negative Activation) model to better
account for affect consisting of high arousal and neu-
tral valence [54]. The PANA model suggests that
positive affect and negative affect are two separate
systems, where states of very high arousal are defined
by their valence and states of very low arousal tend to
be more neutral in valence [55].

Dimensional models have the ability to encom-
pass all possible affective states and their variations
[56]. However, they lack the strength to distinguish

one prominent affect from another and can often be
confused with each other.

2.3 Affect Models Used in HRI

A number of HRI studies have incorporated the
use of affect classification using categorical emo-
tional models for facial expressions [57–60], body
language [61–64], voice [7, 19, 65–69], physio-
logical signals [70–72], and multi-modal systems
[73, 74]. These models allow robots to interpret affec-
tive states in a similar manner as humans [75]. The
most common discrete affective categories used by
robots in HRI settings are disgust, sad, surprise, anger,
disgust, fear, sad, happy, surprise, as well as neutral.
These affective categories encompass Ekman’s six
basic affect and have been used to infer the appropriate
social robot response in various HRI scenarios.

HRI studies have also been conducted with
robots using dimensional models for affect classifi-
cation using facial expressions [76–78], body lan-
guage [5, 79, 80], voice [81, 82], physiological sig-
nals [4, 22, 70, 83–87], and multi-modal systems
[88–90]. The most common model used in HRI is the
two-dimensional circumplex (valence-arousal) model.
This model captures a wide range of positive and neg-
ative affect encountered in common HRI scenarios.

HRI researchers have also developed their own
dimensional affective models. For example, in [91],
a four-dimensional model was developed for mul-
timodal HRI to determine affect from voice, body
movements, and music. The dimensions of the model
were speed, intensity, regularity, and extent. The use
of both categorical or dimensional models has allowed
social robots to effectively determine a person’s affect
and in turn respond to it by changing its own behavior
which has also included the display of the robot’s own
affect.

3 Facial Affect Recognition During HRI

Facial expressions involve the motions and positions
of a combination of facial features, which together
provide an immediate display of affect [92]. Darwin
was one of the first scientists to recognize that facial
expressions are an immediate means for humans to
communicate their opinions, intentions, and emotions
[40]. Schiano et al. also identified facial expressions
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to be the primary mode of communication of affective
information due to the inherently natural face-to-face
communication in human-human interactions [93].
Fridlund emphasized the cross-cultural universality of
emotions displayed by the face [94], and that facial
expressions are used for social motives [95], and may
directly influence the behaviors of others in social
settings [96].

A key feature to social robots is their ability to
interpret and recognize facial affect in order to have
empathetic interactions with humans [97]. With the
advancement of computer-vision technologies, there
has been significant research effort towards the devel-
opment of facial-affect-recognition systems to pro-
mote robot social intelligence and empathy during
HRI [97]. In order to emulate empathy, robots should
be capable of recognizing human affective states,
displaying their own affect, and expressing their per-
spective intentions to others [98]. There are several
challenges in recognizing human facial affect during
HRI including: lack of control over environmental
lighting conditions and working distances [58, 98],
real-time computational requirements [58, 99], pro-
cessing spontaneous dynamic affective expressions
and states [100], and physical and technology con-
straints [101].

The majority of facial affect recognition systems
use 2D onboard cameras to detect facial features.
Facial-affect classification is, then, used to esti-
mate affect utilizing binary decision trees [58], 2)
AdaBoost [102], multilayer perceptrons (MLPs) [60],
support vector machines (SVMs) [103], support vec-
tor regression (SVRs) [60, 76], neural networks (NNs)
[60, 104–108], or dynamic Bayesian networks
(DBNs) [75].

This section presents a detailed review of the state-
of-the-art human facial affect recognition systems for
HRI scenarios.

3.1 Collaborative HRI

A collaborative HRI scenario was presented in
[78, 88], where a cat-like robot, iCat, with an expres-
sive face was used to play chess on an electronic
chessboard with children and provided real-time
affective feedback to their chess moves. The study
aimed to investigate how children perceive and col-
laborate with an empathic social robot in a school
environment. During game playing, a child’s affect

was captured by a 2D webcam and categorized as
positive, neutral or negative valence. The inputs into
the affect model were behavioural and contextual fea-
tures, which included the probability of a smile, eye
gaze, game state and game evolution. The probabil-
ity of a smile was determined using SVMs and facial
geometric features obtained from both 2D and 3D
facial landmarks extracted using the Seeing Machine’s
faceAPI [109]. Eye gaze, which was defined by the
pose of the head relative to the webcam, was also
tracked using faceAPI. The game state and game
evolution between players were determined by the
configuration of the chess game [110]. The affect-
detection system, then, used these features as inputs
into SVMs in order to estimate the probability of
each of the three valence levels. The overall system
was trained with features from the Inter-ACT affec-
tive multi-modal video corpus [111], which contained
videos of interactions of children playing chess with
iCat. Based on the valence level, iCat employed an
empathic strategy when the player was not experienc-
ing positive valence with high probability by either
providing encouraging comments, scaffolding by giv-
ing feedback on a user’s previous move, offering
help by suggesting a good move, or making a bad
move on purpose. A reinforcement learning technique
was used to adapt the robot’s behavior over time to
a player. Experiments were conducted with 40 ele-
mentary school children playing chess with the iCat
in one of three control groups, where iCat had no
empathic response, had random empathic response,
or had adaptive empathic response. After the interac-
tion, each child was asked a number of questions in
an interview setting to evaluate the empathic perfor-
mance of iCat. All children in the adaptive empathic
control group believed that iCat knew how they were
feeling compared to 77 % of the children from the
random empathic control group, and 50 % of the chil-
dren from the neutral control group. The study con-
cluded that empathy was an important mechanism for
robots to have in order to facilitate interactions with
humans.

In [77], the humanoid Nao robot played a question-
based quiz game on a tablet with a child while they
were seated across from one another. Both players
would take turns asking and answering questions that
appeared on the tablet. The robot’s emotions were
influenced by both the emotions of the child and the
state of the game. The emotional state of the child was
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determined by the human operator tele-operating the
robot in a Wizard of Oz manner. Namely, the human
operator determined the arousal and valence values for
the children following guidelines based on the loca-
tion of specific facial emotions (e.g., angry, excited,
calm, bored, sad) on a 2D affect model. These values
were, then, used as inputs along with the robot’s dia-
logue into the Nao robot to model its own affective
state. Facial emotions were recorded using a separate
2D environment video camera. Experiments consisted
of investigating the interactions of two Nao robots,
one which adapted its behavior to the emotions of
the child and one that did not. The robots played the
quiz game with 18 child participants in a counter-
balanced procedure. The level of extroversion of the
child on a scale of 0 to 100 was determined before-
hand using the BFQ-C questionnaire [112]. This value
was used to select the speech volume and gesture
size of the robots during interactions. Questionnaires
regarding the opinions of children with respect to both
robots, and video analysis of the interactions found
that the children had more expressions and reacted
more positively towards the affective robot than the
non-affective robot. The study showed that a robot
with adapting expressive behaviors could influence
the expressive behaviors of children and engage them
in a collaborative HRI.

3.2 Assistive HRI

In [58], the B21r robot utilizing an onboard 2D cam-
era was used to identify a user’s facial affect for
the intended application of assistive learning. The
robot had an LCD display to show its own virtual
face and facial expressions. As a teacher, B21r could
use facial affect information to evaluate the quality
of the class lessons it was providing and progress
from one lesson to another. The facial expression
identification approach consisted of extracting skin-
color information from images provided by the 2D
camera, then, localizing the entire human face and
corresponding facial components and, lastly, fitting a
deformable model to the face using a learning-based
objective function. Structural and temporal facial fea-
tures were used as inputs to a binary-decision tree in
order to classify the following seven affective states:
anger, sad, happy, disgust, fear, neutral, and surprise.
Experiments with the facial-affect-classification sys-
tem using the Cohn-Kanade facial expression database

[113] obtained a recognition rate of 70 % based on
488 image sequences of 97 individuals displaying
the aforementioned facial expressions. A preliminary
experiment was also conducted with the B21r robot,
where a subject stood facing the robot and displayed
neutral, happy and surprise facial expressions. 120
readings of each expression resulted in a mean recog-
nition rate of 67 %.

In [102], an autonomous mobile service robot,
named Johnny, was designed to serve guests in a
restaurant. The robot was capable of receiving seat
reservations, welcoming and escorting guests to seats,
taking and delivering an order, and entertaining guests
by playing appropriate songs based on their affect.
The robot was equipped with pan-tilt stereo cameras,
which were used to obtain still images of the following
seven facial expressions: sadness, surprise, joy, fear,
disgust, anger, and neutral. Gabor filters were used to
extract texture and shape information and detect local
lines and edges for each facial expression. The multi-
class AdaBoost.MH learning method [114] was used
for Gabor feature selection The AdaBoost.MH algo-
rithm was trained using randomly created training sets
of images from the Cohn-Kanade database [113] to
find which Gabor features were the most relevant to
differentiate between different facial expressions. Two
weak learners were analyzed for the AdaBoost.MH:
multi-threshold and single-threshold decision stumps.
The single threshold decision stump aimed to find a
single threshold that best separated all facial expres-
sions, and the multi-threshold version found multiple
thresholds, one threshold for each facial expression,
that best separated all facial expressions. The facial-
recognition system was also tested on the Cohn-
Kanade database, where recognition experiments were
repeated five times on randomly generated training
and test sets from the database. It was found that the
multi-threshold weak learner performed better due to
its average error rate being lower, where the mini-
mum average error rate obtained using 900 features
was 9.73 % for single-threshold decision stumps, and
8.84 % for multi-threshold decision stumps using
only 500 features. In addition to having facial expres-
sion recognition capability, the robot was also able to
manipulate objects with its hand to deliver restaurant
orders, plan its path and localize in the environment,
and recognize both speech and hand gestures from
guests as demonstrated in a RoboCup@Home [115]
competition.
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There have also been a number of automated facial-
affect-detection systems that have been developed for
assistive HRI scenarios but that have not yet been
implemented and tested on robotic platforms [57,
59]. One of the earlier works can be found in [57],
where a human affect-recognition system was devel-
oped for the purpose of robots carrying out intelligent
conversations and for the application of better liv-
ing. 60 feature points from the eyebrows, eyes, and
mouth were obtained from images provided by a CCD
camera. Twenty-one additional parameters were also
generated from the 60 feature points. These param-
eters expressed the shapes of the eye, eyebrow and
mouth. The feature parameters were used as inputs
into a back propagation NN to recognize the six affec-
tive states of surprise, fear, disgust, anger, happiness,
and sadness. Experiments with 30 clients resulted in
recognition rates ranging from 66.4 % to 91.2 %. The
results showed the potential of the system to be used
in robotic applications.

3.3 Mimicry HRI

Another form of HRI is mimicry, where the robot imi-
tates the facial expressions of a human user. In [116],
the Sony AIBO robotic dog was used to imitate the
facial affect of a person by using an array of LEDs
on its own face, and by moving its body, head and
ears. In order for the robot to mimic human affect,
head and face tracking [117] was used to compute
the facial feature positions and 3D head pose of a
real-time video sequence of human facial expressions
obtained from an environmental camera. The facial-
affect-recognition approach consisted of capturing the
temporal pattern of facial features, namely, the lip and
eyebrows during the video sequence to detect when
facial actions changed abruptly. A temporal classifier
was, then, used to classify facial expressions into the
five following emotions: surprise, sad, joy, disgust,
and anger. The sequence of facial actions was mod-
eled by a second-order auto-regressive function and
frames of interest were detected by identifying a local
positive maximum in the temporal derivatives of a
facial action. A performance study on this method was
done on 35 test videos featuring seven people from the
Carnegie Mellon University (CMU) database [118]
and recognition rates were 80 % in classifying facial
expressions. Subsequently, the AIBO robot was used
to imitate the expressions of a human subject using

a 1600-frame sequence of human expressions. The
results showed that AIBO was able to mimic human
expression with only a slight delay.

In [60], the iCat robot was used in order to have
people imitate its facial expressions. A 2D camera
in the robot’s nose was used to obtain images of
the person. A semi-automated technique was used
to find the image region that contained a face. To
reduce the number of features to extract from an
image, features were extracted using one of three
techniques: Independent Component Analysis (ICA)
[119], Principal Component Analysis (PCA) [119],
and Non-negative matrix Factorization (NMF) [120].
Three regression techniques were, then, compared for
direct facial expression imitation: SVR [121], MLPs
[122], and cascade-correlation NNs [122]. Training
data from 32 subjects imitating 50 facial expres-
sions (i.e., fear, anger, surprise, happiness, disgust,
and sadness) of the robot under two different lighting
conditions were used. Experiments consisted of cap-
turing a maximum of 100 facial images for each of
the 32 subjects. A five-fold cross-validation approach
was utilized to determine how often each regression
estimator resulted in successfully imitating a facial
expression. The SVR approach had the most accurate
results with and without the feature-extraction stage.

In both [104] and [105], a robotic head was devel-
oped to recognize human facial affect through an
imitation game with humans in order to investi-
gate emotional interaction-based learning. The robotic
head consisted of two eyes (each having a 2D cam-
era), two eyebrows, and a mouth. The robot’s state of
mind was considered to be a “baby”, where the robot
knew very little about its surroundings and learned
through interaction, and a human was considered to
be a parental figure. The facial-affect states identified
during the interactions were happiness, sadness, anger,
surprise, and neutral. Online learning of the facial
expressions was achieved using a NN-based architec-
ture. Facial expressions were learned without the need
to locate and frame a face. Focus points, such as eyes,
eyebrows, nose, and mouth, were used to recognize
facial expressions and infer the location of the face.
These focus points were learned through an unsuper-
vised pattern matching strategy called Self Adaptive
Winner takes all (SAW) [123], and a combination of
log-polar transform and Gabor filters were applied to
extract visual features. In [104], during the learning
phase, ten different humans were asked to imitate the
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facial expressions of the robotic head in random order.
The robot learned these facial expressions though a
sequential exploration of the focus points in 1,600
images taken by one of its 2D cameras and attempted
to condition them to a given facial expression. Exper-
iments consisting of 20 new people interacting with
the robot were conducted to test the generalization of
the approach [104]. Results of a 20-fold cross valida-
tion indicated that the robot could imitate persons not
included in the learning phase. In [105], an additional
experiment was presented to investigate the success
rate for the facial identification system using the same
20 people database mentioned above. Three feature-
extraction techniques were compared including using
log-polar transform, Gabor filters, or a combination
of both. The results showed that the average suc-
cess rate was better for all emotions when using the
hybrid feature-extraction approach, except for sad-
ness. Sadness resulted in low recognition as each per-
son imitating the robot showed sadness in a different
manner believed to be as a result of the context of the
situation.

An animated face robot was developed in [106]
to produce human-like facial expressions and also
recognize human facial affect. Human facial affect
was recognized using facial images obtained by a
CCD camera mounted inside the robot’s left eye.
The monochrome CCD camera captured brightness
distribution data of a face and this information was
used to locate the positions of each iris of a person’s
eyes. Then 13 vertical lines were selected that crossed
facial characteristic points in each area of the face,
i.e., the eyebrows, eyes, and mouth. These two types
of information were used together as inputs into a
NN for facial expression recognition. The NN was
trained through back propagation using a video of 15
subjects changing their facial expressions from neu-
tral to each of the following six expressions: anger,
surprise, disgust, fear, sadness and happiness. The off-
line trained NN was, then, used in recognition tests
with a video of another 15 subjects. The recogni-
tion rate was determined to be 85 % at a rate of 55
ms.

In [124], an experiment was performed with the
animated face robot to examine the personality of
the robot (i.e., response behavior to a person). In
the experiment, a Q-learning algorithm was imple-
mented to enable reinforcement learning of the robot’s
preferable responses. Three types of rewarding were

utilized: AND, OR and COMPARATIVE. Five sub-
jects provided positive, negative or neutral rewards
based on the ability of the robot face to express hap-
piness. The results showed that both the OR and
COMPARATIVE rewarding types were effective in
the learning process and can be used for a robot
to learn its own appropriate facial expression during
communicative interaction with a person.

In [125], a KANSEI communication system was
developed for robot emotional synchronization with a
person. KANSEI encompasses emotion, intelligence,
feeling, impression, sensitivity, and intuition to pro-
mote natural communication [126], The head-robot
KAMIN was used to recognize human affect through
facial expressions and, then, synchronize its own
affective state. KAMIN had its own facial expres-
sions projected onto its dome screen using a fish-eye
lens projector. Images from a 2D video camera were
used for face detection and tracking using AdaBoost
[127]. Namely, AdaBoost was used to detect critical
facial features, such as eyes, mouth, and eyebrows.
Facial expression recognition was performed by using
a 2D continuous scale with bending and inclination
as its two dimensions [128]. The scale was based
on hand-coded expressions of 43 subjects displaying
happy, angry, fear, sad, disgust and surprise. Exper-
iments were conducted with 12 university students
displaying the aforementioned six emotions in ran-
dom order. In order to induce these emotions, the
students were shown pictures and videos and pro-
vided with selected topics. The bending and inclina-
tion parameters were, then, obtained and plotted in the
2D emotional recognition space. The average recogni-
tion rate was determined to be 77 %. In order for the
robot to display the synchronized emotions, a vector
field of dynamics was designed into the 2D circum-
plex (valence-arousal) model. Namely, the identified
human emotion was mapped onto the model and the
vector field was used to direct the robot’s emotion
towards where the human emotion was mapped in the
2D space. Forty university students were used to test
the synchronization; twenty interacted with KAMIN
when it had synchronized emotions, and twenty inter-
acted with the robot when it did not have synchronized
emotions. The robot was able to match the same
arousal and valence levels as the subjects during the
interactions and the subjects were more willing to
communicate with the robot when it synchronized
with their emotions.
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In [75], a real-time system for recognition and
imitation of facial expressions was developed for the
robotic head Muecas. Muecas was equipped with
an onboard camera to capture images of a per-
son’s face for facial expression recognition. The five
facial expressions recognized were: fear, happiness,
anger, sadness, and neutral. Facial expression recogni-
tion was accomplished in three steps: face detection,
invariant facial feature extraction, and facial expres-
sion classification. Face detection was achieved using
the Viola and Jones face detection method [129].
Noise and illumination effects were improved by
using a series of filters, including a Gabor filter for
easier extraction of edge-based facial features. Invari-
ant edge-based features were then extracted using a
set of AUs. The features points were selected based
on FACS [130]. These features were, then, used as
inputs into a DBN classifier, which was used to cat-
egorize facial expressions into the 5 emotions. Off-
line training was accomplished by fitting a Gaussian
distribution to learning data. Imitation was achieved
through the mapping of the AUs to a mesh model of
Muecas prior to direct mapping to the robot’s actua-
tors to avoid any possible collisions when generating
expressions. Experiments were conducted with 20 par-
ticipants performing the facial expressions randomly
five times. Results showed a detection rate of over
90 % for all facial expressions.

3.4 Multi-Purpose HRI

In [76], a facial-affect-detection system was devel-
oped for social HRI settings. The proposed methodol-
ogy utilized 2D images extracted from a video cam-
era onboard a robot to identify facial feature points.
These feature points were then converted into a unique
set of geometric-based Facial Expression Parameters
(FEPs). The non-dimensionalized FEPs allowed for
affect estimation from any facial expression without
the need for prior expressions as a baseline. SVR was,
then, used to determine the valence and arousal lev-
els corresponding to spontaneous facial expressions
using the FEPs as inputs. Experiments with the JAFFE
database [131], and a database consisting of images
of individuals displaying natural emotions created by
the authors of [76] showed affect-prediction rates from
74 to 94 % and 70 to 72 % for valence and arousal,
respectively, at a 15 % tolerance level. Preliminary
HRI experiments were also conducted consisting of

one-on-one interaction scenarios between the expres-
sive social robot Brian 2.0 and five participants during
two different types of interaction stages: a getting-to-
know you stage and a storytelling stage. At a 20 %
tolerance level, valence and arousal prediction rates
were determined to be 72 % and 70 %.

In [132], the humanoid robot, RObot huMan inter-
Action machiNe (ROMAN), utilizing a mounted 2D
camera on its body was used to recognize human emo-
tions. The affect of the robot itself was influenced
by the affect of the person during interaction. For
example, the robot would respond slower and show
empathy when the person was in a state of sadness.
A Haar cascade classifier and a contrast filter were
used to localize a person’s facial features, including
the pupils, eyebrow, mouth, and lower and upper lip.
These feature points were selected based on FACS
[130]. Based on the exact feature point locations and
measurement of action unit activities from FACS, a
probability was associated with the six basic emo-
tions: disgust, sadness, fear, happiness, surprise, and
anger. Experiments consisted of testing emotion inter-
pretation and emotion detection on a data set of the
six basic emotions displayed by different faces [132].
Results showed a recognition rate of about 60 % for
the emotions of surprise, sadness, and happiness.

In [103], the social mobile robot RobotVie was
used to recognize human-facial expressions in uncon-
strained environments. The robot used four environ-
mental video cameras positioned at different angles
for processing human facial expressions during face-
to-face interaction in real-time and was capable of
categorizing facial expressions into seven affective
states: surprise, joy, neutral, sadness, anger, disgust,
and fear. Face detection was achieved via video data
using an extended version of the Viola and Jones
face-detection method [129]. Facial expression clas-
sification was implemented using a combination of
SVM and AdaBoost learning techniques, AdaSVM.
Namely, AdaBoost was used to extract a reduced set
of Gabor features to use for training the SVM. Initial
training and testing of the affect-classification method
was conducted using the Cohn-Kanade database
[113]. The technique was also evaluated with the Pic-
tures of Facial Affect database [133]. Recognition
results for the two databases were 93 % and 97 %,
respectively. Moreover, a HRI experiment was con-
ducted with 14 participants displaying facial expres-
sions to RoboVie. The participants were instructed
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to have both spontaneous head movements and facial
expressions. To test the affect-recognition system, the
recorded video was slowed down to 1/3 speed and four
human observers adjusted a dial to indicate the amount
of happiness they observed in each video frame. A 28-
dimensional vector was defined for each video frame
based on the output of the classifiers for each of the
7 emotions and the 4 cameras. An average correlation
of 0.56 was found between the observers and the robot
on training data, and 0.30 on new images of the same
14 participants.

In [134], during an HRI scenario, the expressive
Einstein robotic head was used to directly respond to
the affect of multiple people during HRI. The robot
was able to recognize the facial expressions of multi-
ple people simultaneously, and speak and display its
own facial expressions to the group. An environmen-
tal 2D camera situated in front of the robot was used
to capture the faces of the multiple people. The robot
classified their facial expressions into seven classes
including fear, happy, anger, sad, disgust, neutral, and
surprise. Facial expression recognition was accom-
plished by combining and statistically weighting two
classification methods. Firstly, facial features were
extracted using Active Appearance Models (AMM),
where shape and texture information were used to
identify feature points on the face, such as eyes,
mouth and eyebrows. Facial expressions were then
classified using a features vectors- based approach,
using the distances and ratios of these points. Sec-
ondly, differential AAM features were determined
using the difference of AAM features between a dis-
played facial expression and a neutral face using a
low dimensional manifold space. The two approaches
were using weights in a linear discriminate function.
This method was applied to each face detected in the
scene and the weight of each face was determined
by its size, namely, the closer to the robot, the more
dominant was the person’s emotion on the overall
emotion atmosphere. Experiments were performed on
the Cohn-Kanade database [113]. The results showed
a recognition rate greater than 90 % for happy, angry,
and surprise. However for the negative emotions, the
approach did not perform well due to the minimal dis-
tance differences between feature points. HRI exper-
iments were also conducted with a group of three
students interacting with the robot. The robot was able
to determine the affective atmosphere obtained from

the facial expressions of the students and displayed its
own facial expressions and speech.

In [135] and [136], a social interaction model was
developed for the AIBO dog robot to permit a robot
and user to engage in bi-directional affective commu-
nication. The AIBO detected the user’s facial affect
and responded with its own affective movements.
Facial-affective states that were recognized by the
robot included joy, sadness, surprise, anger, fear, dis-
gust, and neutral. The dog robot was able to respond
using emissions of sounds, lights, and motions. For
instance, when the user displayed an angry face, the
dog would display sadness by playing a sad song and
lowering its head. An onboard CMOS camera located
on the robot’s head was used to obtain facial images.
Facial expression recognition was accomplished using
facial feature extraction and mapped onto the facial
action units defined by FACS [130]. These facial
movements were then mapped to facial expressions. A
Probabilistic Finite State Automation (PFSA) method
was used to determine the state of the robot. Q-
learning was also applied to train the dog to respond
in a certain way to a user’s emotional state. In [136],
experiments were conducted to motivate the AIBO
robot to behave in a certain way. Through Q-learning,
the robot adapted its behavior to the human’s affective
state. A friendly personality was achieved when the
human interacted in positive states, such as joyful and
happy.

In [107] and [108], a small humanoid robot, HOAP-
3, was able to recognize human facial expressions
and respond accordingly with a postural sequence of
affective movements. Both AAMs and a Neural Evo-
lution Algorithm were used for face shape recognition
and facial expression classification. AAMs were used
to identify facial features from the eyes, chin, nose,
mouth, and eyebrows based on matching of a statis-
tical model of appearance and shape variation to the
facial image. The Neural Evolution Algorithm con-
sisted of using a Differential Evolution (DE) optimizer
with a NN system. The input parameters to the NN
were the location of the facial features obtained using
AAM. In [108], experiments were conducted evalu-
ating the recognition rates for the happy, sad, neutral
facial expressions in both static and real-time images
of several different subjects. Sixty-three facial fea-
ture points were used. Recognition results for affec-
tive states ranged from 72.5 % for sad to 96 % for
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happy. Once recognized, the robot would implement a
pre-programmed gesture based on the detected facial
expression. Namely, it was able to respond with faster
postural movements when the human was happy and
slower movements when the human was sad.

A number of automated facial affect detection sys-
tems have also been proposed [97, 137–143], for gen-
eral HRI scenarios, but have not yet been integrated
on robots. For example, in [141], a fast learning algo-
rithm that improved training time for SVMs used in
facial affect classification was developed to be used by
service robots. The approach involved using a CMOS
image sensor to acquire facial images, and identify and
extract facial features for affect recognition process-
ing. Affect recognition was achieved by using Support
Vector Pursuit Learning (SVPL) of the facial feature
positions for different facial expressions. The method
allowed automatic retraining of a new SVM classifier
for new facial data by modifying parameters of the
SVM hyperplane. Experiments consisted of evaluat-
ing the performance of both an SVM and SVPL on a
dataset of 100 images from ten different individuals.
The SVM was trained with 20 images and tested on
the other 80 images. The recognition rate was recorded
to be 86 %. In another experiment, SVPL was applied
to retrain a SVM that was only recorded to have a
52 % recognition rate. With the new retrained SVM,
the recognition rate increased to a 96 % recognition
rate.

4 Body Language Based Affect Recognition
During HRI

Body language conveys important information about a
person’s affect during social interaction [144]. Human
behavioral research has identified a number of body
postures and movements that can communicate affect
during social interactions [145–147]. For example,
in [145], Mehrabian showed that body orientation,
trunk relaxation, and arm positions can communicate
a person’s attitude towards another person during a
conversation. In [146], Montepare et al. found that
the jerkiness, stiffness and smoothness of body lan-
guage displays can be utilized to distinguish between
happy, sad, neutral and angry affective states displayed
during social interaction. Furthermore in [147], Wall-
bott identified specific combinations of trunk, arm and

head postures and movements that corresponded to
14 affective states including the social emotions of
guilt, pride, and shame. Body movements and pos-
tures have also been linked to dimensional models
of affect [148, 149]. For example, it has been identi-
fied that there exists a strong link between a person’s
level of arousal and the speed of movements during a
body language display [148] and that head position is
important in distinguishing both valence and arousal
[149].

To-date, the majority of research on identifying
body language during HRI has concentrated on rec-
ognizing hand and arm gestures as input commands
for a robot to complete specific tasks including nav-
igating an environment [150–158], identifying object
locations [159–161], and controlling the position and
movements of a robot arm [162, 163]. A fewer num-
ber of automated affect detection systems have been
developed to specifically identify body language dis-
plays from individuals engaged in HRI [5, 15, 61–
64, 79, 80]. These affect from body language sys-
tems, which are discussed in this Section, have been
designed for various HRI scenarios, including collab-
orative HRI [61], assistive HRI [5, 63, 79], mimicry
[15, 62, 80], and multi-purpose HRI scenarios
[64].

4.1 Collaborative HRI

In [61], the expressive cat-like robot iCat was designed
to play a one-on-one chess game with children. The
engagement of a child in a game was determined
through his/her seated trunk pose. A 2D color cam-
era mounted in the environment was utilized to obtain
a lateral view of the child. Each child wore a green
shirt during the interaction, in order for his/her trunk
to be segmented from the background information
via color segmentation. The following features of
the trunk were utilized to identify engagement: body
angle, slouch factor, quantity of motion, contraction
index and meta features consisting of the deriva-
tives of the aforementioned features over time. These
features were, then, used as input for classifying a
child as engaged or not engaged using learning tech-
niques. Experiments were conducted with five 8-year
old children. Baseline engagement was identified by
three trained coders watching videos of the inter-
actions. The aforementioned body language features
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were used with 63 different classifiers from Weka
[164] in order to identify engagement. Classification
results showed that the ADTree and OneR learning
techniques obtained the highest recognition rate of
82 % in identifying engagement.

4.2 Assistive HRI

In [79], the human-like social robot, Brian 2.0,
engaged users in both a memory training exercise
and providing instructions to build a picnic table. An
automated static body pose interpretation and clas-
sification system was developed to determine what
level of accessibility (openness and rapport) a user
feels towards Brian 2.0 during these interactions.
2D and depth information from a KinectTM sensor
mounted on the robot’s trunk was used to make a 3D
upper body ellipsoid model of the person’s trunk and
arm poses during the interaction. These poses were,
then, used to determine a user’s level of accessibility
towards the robot based on the Position Accessibil-
ity Scale (PAS) of the Nonverbal Interaction States
Scale [165]. The PAS identifies accessibility on a 4-
level scale based on trunk orientations with a finer
scaling of 12 levels when the arm orientations are
also considered. A person was determined to be more
accessible towards the robot during social interactions
when his/her upper and lower trunks and arms were
oriented more towards the robot. 18 university stu-
dents, aged 19–35, engaged in one-on-one social HRI
experiments with Brian 2.0. The results showed an
accessibility recognition rate of 89 % on the 4-level
scale and 86 % on the 12-level scale when com-
pared to the accessibility levels identified by an expert
coder.

In [5], the newer version of the robot, Brian 2.1,
was utilized to provide social assistance to elderly
residents of a long-term care facility during meal
eating. A KinectTM sensor, mounted on the robot’s
chest, was used to identify natural dynamic body
language displays by the users during the meal in
order to determine their affective valence and arousal
levels. A 3D upper body model was used to track
dynamic body displays of a user utilizing the depth
data obtained from the KinectTM sensor. The depth
data of the user was segmented using a Gaussian
mixture model of the background, connected com-
ponent analysis and head and shoulders contours.

The upper body model was fit to the depth data
of the user utilizing a dynamic Bayesian network
with a ray-constrained iterative closest point mea-
surement model [166]. The following body features
were, then, extracted from the depth data: the bow-
ing/stretching of the trunk, distance of the hands
from the trunk, head position, forwards/backwards
and vertical motion of the body, expansiveness of
the body and speed of the body. These features were
utilized as inputs into seven different learning tech-
niques in order to classify the displayed valence and
arousal levels. Experiments were conducted at a long-
term care facility with eight elderly participants, aged
83–92, interacting one-on-one with Brian 2.1 during
two lunch meals. The results found that the Radial
Basis Function Network (RBFN) learning technique
obtained the highest recognition rate for valence at
77.9 % and both the Adaboost with Naı̈ve Bayes
(ANB) base classifier and Random Forest techniques
obtained the highest recognition rates for arousal at
93.6 %.

In [63], a human-like robot, Nadine, utilized a
gesture understand HRI (GUHRI) system compris-
ing an environmentally located KinectTM sensor and
a CyberGlove worn by the user, to identify specific
affective, communicative, and action gestures of the
user during a teacher (robot) – student (user) interac-
tion scenario. The skeleton joint locations estimated
with the Microsoft KinectTM SDK [167] and the
KinectTM sensor as well as the CyberGlove were uti-
lized as features for gesture classification. An energy
based large margin nearest-neighbor technique was
utilized to classify the features into one of the affec-
tive gestures of confidence and praise as well as the
following gestures: asking a question, objection, stop,
success, shake hand, weakly agree, call, drink, read,
or write. Experiments were conducted with 25 partic-
ipants of different genders, body sizes and races. The
participants were asked to generate each of the afore-
mentioned gestures for the robot during a teacher-
student interaction, with the robot responding to each
gesture with a specific behavior, e.g. when the partic-
ipant displayed an affective praising gesture, Nadine
responded by saying “Thank you for your praise.”
Random subsets of varying sizes of the participants’
gestures were utilized for training the large margin
nearest neighbor classifier. Utilizing a subset of 4
training samples for each gesture resulted in a recogni-
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tion rate of 90 % while a subset of 14 training samples
resulted in a recognition rate of 97 %.

4.3 Mimicry HRI

In [62], the humanoid robot Nao was designed to
engage children in movement imitation games, where
a child was asked to mimic the movements of the
robot. The robot, then, recognized and gave feed-
back on the child’s movements. The hand wave was
used as the movement for the robot to recognize. A
2D camera in the robot’s eye was utilized to track
the hand using skin color and motion information
in the captured video stream. The robot, then deter-
mined the energy average amplitude of acceleration
and frequency of local acceleration maxima of a wave.
Experiments consisted of an adult actor performing
happy, angry, sad, and polite waves. It was observed
that distinct affective states could be identified based
on their acceleration-frequency matrix for the hand
wave gesture. This procedure of identifying distinctive
affective features from hand waves was also presented
in [168] for multi-purpose HRI scenarios.

Several researchers also investigated how social
robots influence the affective body language of a
user during mimicry HRI [15, 80]. In [15], the
Robovie robot was designed as a partner robot that
could offer mental and communicational support to
humans. The study investigated how robot and user
body language displays compared to the subjective
experience of the interaction. A post-interaction ques-
tionnaire was utilized to obtain participant experi-
ence using five adjective pairs: good-bad, kind-cruel,
pretty-ugly, exciting-dull, likeable-unlikeable. Robot-
and human body language displays were recorded
utilizing an optical tracking system. Experiments
with 26 university students talking and playing rock-
paper-scissors with the robot found that synchro-
nized eye contact and body language were correlated
with positive questionnaire ratings, i.e., a participant’s
more positive ratings corresponded to more interac-
tion time with synchronized eye contact and body
language.

In [80], the Nao robot was utilized to investigate
how the mood of the robot influenced the mood of
a user during an imitation game where the user was
tasked with mimicking the robot’s movements, where
these movements could range from easy to difficult.

Experiments were conducted with 36 university stu-
dents, aged 19 to 41, playing the imitation game
with the robot. Participants rated both the valence
and arousal levels of the robot and their own valence
and arousal levels using self-assessment manikins
after each game. The results showed that valence and
arousal levels of the participants matched the valence
and arousal levels of the robot during the easy game.
For the more difficult game, the participants per-
formed the task better when the robot displayed a
negative valence compared to a positive valence while
implementing its movements.

4.4 Multi-Purpose HRI

In [64], Kirin, a full sized humanoid robot, utilized
two sensor modalities consisting of an environmen-
tally located KinectTM to track a person’s move-
ments and 40 touch sensors on its body in order to
autonomously identify a person’s affective touching
gestures, e.g. a person hugging the robot. Skeleton
tracking of the user using the Microsoft KinectTM for
Windows SDK [167] was utilized to determine the
following body language features: the mean, standard
deviation, maximum, minimum, first and third quar-
tile and interquartile distances of the 3D positions
of the head, torso, right upper and lower arms, and
hands. These features and readings from the touch
sensors were utilized as inputs for a either a SVM
or a k-nearest neighbor (kNN) learning technique for
classifying a gesture as one of 20 investigated affec-
tive touch gestures, such as hugging or kissing that
show affection and slapping or pushing that show
aggression. Experiments were conducted with 17 par-
ticipants (eight Japanese and nine non-Japanese, with
an average age of 32). Each participant performed
each of the 20 affective touch gestures. Results found
that SVM obtained the highest affective gesture recog-
nition rate of 90.5 %, while kNN had a recognition
rate of 82.4 %.

A number of automated affective body language
perception and identification systems have also been
proposed in the literature for multi-purpose robotic
use, but have not yet been integrated onto robots
for social HRI [169–172]. For example, in [172]
the Microsoft KinectTM sensor and its SDK [167]
were utilized to identify body language features using
Laban Movement Analysis in order to determine if
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a body language display could be recognized as a
rejoicing or lamenting affective state.

5 Voice Based Affect Recognition During HRI

During social interactions, people can communicate
affect with their voices [173]. Changes in a person’s
affect can result in changes to the position of his/her
larynx, vocal fold tension and position and breath-
ing rate as well as positions and shapes of the lips
and mouth muscles, which all influence the tone and
quality of the voice [174]. Human vocal displays of
affective states are determined by internal physiolog-
ical changes as well as partially determined by social
display rules [173]. For example, in formal social sit-
uations a person may produce a pleasant voice quality
even when internally feeling rage [173]. Research into
human voice has identified features of vocal intona-
tion that directly correspond to specific affective states
[175, 176]. In [175], it was identified that the mean
and range of the fundamental frequency of a verbal
utterance can be utilized to distinguish between a spe-
cific set of emotions including cold and hot anger,
happiness, sadness, anxiety, elation, panic fear, and
despair. In [176], a review of empirical studies that
have examined the vocal expression of affect during
social interactions identified that the intensity (total
energy), fundamental frequency, utterance contour,
high frequency energy, and word articulation rate can
be used to distinguish between the affective states of
stress, anger, fear, sadness, joy and boredom. More
recent research has also found that the fundamental
frequency, spectrum shape, speech rate, and intensity
of a voice signal reflect changes in arousal, valence
and potency/control during social interactions [177].

For social robots to engage in effective bi-
directional communication with humans it is impor-
tant that they have the ability to perceive and interpret
human vocal affect. To-date, a number of affect-
recognition systems have been developed for social
robots to determine affective states from a person’s
voice [7, 19, 65, 67, 69, 81, 82, 178, 179]. These
systems, similar to the previous systems, can also be
classified based on their use by robots in the follow-
ing HRI scenarios: collaborative [19, 65, 81], assistive
[69, 82, 178], mimicry [7], and multi-purpose HRI
[67, 179].

5.1 Collaborative HRI

In [19], the role of affect was investigated in HRI
scenarios where a PeopleBot robot and a human user
jointly completed a task together. The task was to find
a signal-transmission location by using verbal com-
munication. The PeopleBot robot utilized the states
of the user, itself, and the task to determine which
robot actions to perform and which affective states
to display. The PeopleBot robot was equipped with
two onboard microphones to identify the content and
affect of a user’s utterance. The affect considered
was stress. Unvoiced sounds were removed from the
recorded voice signal and a word was determined to
be “stressed” if the average frequency of the word
had a higher pitch than the current cumulative aver-
age pitch. The ratio of stressed words to unstressed
words was compared to a threshold to determine if a
whole utterance corresponded to a stressed user state.
Experiments were conducted with 24 university stu-
dents. The students controlled the motion of the robot
using voice commands such as “turn right” and “go
forward” in order for the PeopleBot to locate a signal-
transmission location. User stress was induced during
the experiments by having the robot warn the user
that its battery level was getting low before comple-
tion of the activity. The participants were divided into
three groups. For the first group, the voice of the robot
was modulated to express stress for all battery warn-
ings. For the second group, the voice of the robot
only expressed stress in response to the robot detect-
ing that the user was stressed. The third group was
a control group and the robot did not express stress.
Results indicated that the appropriate expression of
affect, as displayed by changes in the robot’s voice
quality, based on robot state and human affective state
improved task performance, namely, that the partici-
pants and robot were more successful at finding the
signal transmission location.

In [65], the KaMERo robot was designed to engage
individuals in games of “20 questions,” where the
robot asked the questions in order to identify an object
the user was thinking of. KaMERo had a mobile
base with three articulated legs having wheels and
a head with two expressive antenna-like ears anda
facial avatar displaying facial expressions. During the
game, the robot used an onboard microphone to detect
the emotions of happiness, sadness, and anger, from
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the user’s voice in order to determine its own emo-
tional display. The recorded voice signal was used
to determine the following features [68]: log energy,
Mel-Frequency Cepstral Coefficients (MFCCs), and
the corresponding delta and acceleration coefficients.
These features were utilized as inputs for a single-
state Hidden Markov Models (HMM) trained for each
emotion. Experiments with 19 participants, ranging in
age from 20 to 40, were conducted where each par-
ticipant played the game twice with the robot. In one
scenario, the robot displayed an emotional behavior
(in response to the participant’s affective state) and
in the next scenario the robot did not display any
emotional behavior. The results showed that partic-
ipants enjoyed the interaction more and found it to
be more natural when the robot displayed an emo-
tional behavior. A second set of experiments was per-
formed to validate the emotional-response system of
the robot. Ten participants watched videos of the robot
playing the game with a person and rated the appro-
priateness of the robot’s responses during the game.
The results found that the participants considered the
robot’s emotional behavior to be appropriate for the
interactions.

In [81], a robot arm, Cyton, was used to pick up
an object based on the affect of a user. The affec-
tive voice of the user was identified using arousal and
predictability levels utilizing a voice signal recorded
on a microphone headset worn by the user. Affec-
tive voice signals were determined by first applying a
bandpass filter and computing the energy of the signal.
Voiced and unvoiced sounds were identified utilizing
an autocorrelation function and the zero-crossing rate
applied to the energy of the voice signal. A user’s
arousal level was identified as the numerical integral
on the energy profile of the voiced sound. A user’s
predictability level was identified as a function of the
frequency of occurrence of energy peaks. Experiments
with ten university students consisted of the partici-
pants speaking to encourage the robot to pick up the
object they wanted. The participants were informed
that the content of the speech would not influence
the robot’s behavior, but vocal intonation would.
Depending on the affective quality of the utterances,
the robot would either hesitate or move with confi-
dence towards an object. The results showed that with
vocal affect sensing, the robot was able to pick up the
correct object. Post-interaction questionnaires found

that although the participants did not have experience
with robots they found the system easy to use.

5.2 Assistive HRI

In [82], the small humanoid robot, Nao, acted as
a domestic assistant for older adults. A microphone
worn on the user was utilized to identify positive
and negative valence from a user’s voice. A number
of features were determined from the recorded voice
signal for automated affect classification: fundamen-
tal frequency, energy, and MFCCs, relaxation coeffi-
cient, phase distortion, the ratio of unvoiced to voiced
sound, harmonics-to-noise ratio, jitter, and shimmer.
An SVM was utilized to classify these features into
positive or negative valence. Experiments consisted of
22 older adults speaking with the Nao robot on topics
including well-being, minor illness, depression, med-
ical distress and being happy. Experts were utilized
to code the recorded voice signals into a large num-
ber of affective states, however to simplify automated
classification only voice signals identified as positive
or negative valence were investigated. The results of
using 2-fold cross validation on the positive and neg-
ative valence voice signals of the older adults and
investigating voice signal feature performance found
the features that best distinguished between negative
and positive valence (at a recognition rate between
50 % and 60 %) were phase distortion, shimmer and
energy.

In [69] and [178], two automated affect detec-
tion systems were designed for future implementation
on the T-ROT human-like mobile robot which was
developed to assist the elderly. When the automated
affect-detection system is implemented, the robot will
utilize an onboard microphone to identify the affect of
a user speaking to the robot. In [178], the phonemes
and pitch of a person’s voice were investigated as dis-
tinct affective features for use in classification of the
affective states of neutral, joy, sadness and anger. First
a voice signal was separated into 24 phoneme classes
based on the first and second formants of the sig-
nal. The average pitch was, then, determined for each
phoneme class and each affective state. The results of
utilizing this technique were compared to the results
of a technique that identified affective state utilizing
just the pitch of a voice signal. These techniques were
tested on a database of five male and five female actors
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speaking Korean. The results showed that combining
phoneme and pitch information provided probabil-
ity density functions with smaller standard deviations
than the probability density functions of just the pitch
information.

In [69], a novel speaker-independent feature was
proposed for classifying the affective states of neu-
tral, joy, sadness and anger. The proposed feature was
the ratio of spectral flatness to the spectral center of a
voice signal. Spectral flatness is the ratio of the geo-
metric mean of the power spectrum to the arithmetic
mean of the power spectrum. The spectral center is
the average frequency weighted by acoustic power.
The proposed approach first identified a voice signal
as male or female utilizing pitch and MFCCs fea-
tures as input to a Gaussian Mixture Model (GMM).
Next the pitch, energy and MFCCs were utilized
as inputs into another GMM to determine whether
the voice signal belonged to one of two groups of
affective states: anger and joy, or neutral and sad-
ness. Finally, the proposed ratio of spectral flatness
to spectral center was utilized as input for a final
GMM to classify the voice signal as one of the affec-
tive states in each group. Testing this technique on
an updated version of the aforementioned database
[178] with the affective states of anger, joy, sadness
and neutral, resulted in an average recognition rate of
57.2 %.

5.3 Mimicry HRI

In [7], the Barthoc Jr. child-like robot was used to
classify affective voice signals during story telling
interactions with users. Using a microphone headset
worn by a user, the robot classified a voice signal as
communicating happy, fear or neutral affective states.
The robot identified the user’s affective state using a
Naı̈ve Bayes classifier with pitch, MFCCs and energy
as input features. An acted voice database [180] was
utilized to train the classifier. Experiments consisted
of 28 participants reading “Little Red Riding Hood”
to the robot while being instructed to generate happy,
fear and neutral tones of voice during relevant parts
of the story. 17 participants interacted with a robot
that would respond to emotional tones of voice by
displaying the corresponding facial expression for the
detected affective state, and eleven participants inter-
acted with a robot that would respond with a small
head nod and a neutral facial expression. Baseline for

the affective states was determined by asking the par-
ticipants to rate the robot on three 5-point Likert scales
focusing on whether the robot’s facial expression are
appropriate for the situation, the robot recognizing
the affective components of the story, and the robot’s
behaviors were similar to that of a human. The results
showed that the participants rated the robot that dis-
played facial expressions higher than the robot that did
not display facial expressions.

5.4 Multipurpose HRI

In [179], a cartoon-like entertainment robot was
designed to detect a person’s affective voice while
engaging him/her in a general conversation. The user
wore a headset and the affective states of anger,
happiness, neutral, sadness and surprise were identi-
fied from his/her voice signal. User utterances were
extracted by comparing the zero-crossing rate to a pre-
defined threshold. Fourteen fundamental frequency
features and energy statistical features were deter-
mined from the energy contour of the user’s voice
signal. These features included the mean, minimum,
maximum, median, standard deviation, and derivatives
of the fundamental frequency and energy. Fisher’s lin-
ear discriminant analysis and a hierarchical SVM were
utilized to classify the identified features as affec-
tive states. Experiments had five participants repeat
15 affective sentences (three for each affective state
of neutral, happiness, anger, surprise, and sadness)
six times to the robot. The robot displayed a certain
behavior in response to each detected affective state,
for example, the robot shook its head if it detected that
the participant communicated the affective state sur-
prise. The results showed a 73.8 % recognition rate for
the five affective states.

In [67], a small round robot, Mung, was developed
to detect the affective states of neutral, joy, sadness,
and anger during general conversation. An onboard
microphone was used to record a user’s affective
voice when speaking to the robot. A user’s utterance
was separated into six phoneme groups utilizing the
first and second formant frequencies, and the center
of gravity of its audio spectrum. Then, six different
sets of features were determined and trained for each
phoneme group: energy, pitch, zero-crossing rate, log
frequency power coefficient, MFCCs and linear pre-
diction coefficient. The mean and standard deviation
were calculated for each feature. GMMs were trained
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for each phoneme group and each set of features.
The results of the GMMs were combined to obtain
a final user affective state using sum-rule fusion for
each set of features. Testing with a database of acted
expressions found that the automated affective voice
detection system obtained the highest recognition rate
of 92.34 % when utilizing MFCCs features. Exper-
iments were, then, performed in which participants
were asked to speak to the robot while conveying the
affective states of neutral, joy, sadness and anger with
their voices. Results of these experiments also found
that utilizing only the MFCCs features resulted in the
highest recognition rate of 88.33 %.

A number of automated vocal-affect-detection sys-
tems have also been proposed for integration and use
by robots during social multi-purpose HRI [66, 181–
187]. For example, in [181], the Emotional Prosody
Speech and Transcripts of the Linguistic Data Consor-
tium database [188] was utilized to test an automated
affect detection from voice technique proposed for
social robots. The presented technique utilized the
zero-crossing rate, log energy, pitch, and MFCCs of
a recorded voice signal as input features for GMMs
trained for up to 5 affective states. The results found
that the technique obtained a recognition rate of
96.9 % when distinguishing between the states of
anger and neutral, and 59.4 % when distinguishing
between the states of anger, neutral, happy, boredom
and sadness.

6 Affective Physiological Signals Recognition
During HRI

Human affect influences the body in many ways, for
example by changing a person’s heart rate, skin con-
ductance and ElectroDermal Response (EDR), tension
in specific muscles, breathing rate, etc., [189, 190].
These changes in the body can be monitored as phys-
iological signals and utilized to estimate a person’s
affective state [189–192]. For example, a decrease
in heart rate, measured with an electrocardiogram
(ECG) can signify that a person is feeling disgust
or sadness. These two affective states can be distin-
guished from each other by sadness resulting in a
decrease in skin conductance, measured with elec-
trodes on the skin, while disgust results in an increase
in skin conductance [189]. It has also been found that
increased tension in the corrugator muscle (above the

eyebrow) and masseter muscle (upper jaw), measured
with electromyograms (EMGs), relate to increases in
anxiety and mental stress [190]. Additionally, with
respect to dimensional models of affect, it has been
found that an increase in skin conductance and heart
rate relate to an increase in arousal [192]. Physiolog-
ical signals are well suited for HRI due to data being
easily obtained from wireless wearable sensors and
analyzed in real-time to detect a user’s affective state
[193].

Several researchers have developed automated
affect-detection systems using physiological signals to
allow robots to interpret human affective states during
HRI [4, 6, 70, 72, 84–86, 190, 193]. These systems
can also be classified based on the proposed HRI sce-
narios: collaborative [70, 190, 193], assistive [4, 6,
84–86], and multi-purpose [72].

6.1 Collaborative HRI

In [190], a mobile robot was developed for human-
robot collaboration during a navigation and explo-
ration task where the human (e.g., an astronaut) and
a robot were simultaneously exploring an unknown
environment and the robot could respond to the
human’s affect. The mobile Trilobot robot detected
a person’s level of anxiety utilizing wearable sensors
measuring a user’s heart rate, skin conductance, and
muscle movement. ECG heart rate data was utilized
to calculate parasympathetic and sympathetic ner-
vous system features via power spectral and wavelet
packet analysis. Skin conductance features were iden-
tified as the mean amplitude and phasic response of
the skin conductance signal measured on the fingers.
Muscle activity features included the mean ampli-
tude of an electromyogram (EMG) signal recorded
over one eyebrow to detect frowning and the vari-
ability in the EMG recorded under the jaw to capture
clenching/tightening of the jaw. A fuzzy-logic system
was utilized to identify a person’s anxiety level uti-
lizing the aforementioned features. User self-reported
anxiety levels and experimental results were utilized
to generate the initial set of rules for fuzzification,
which included defining ranges of feature values and
generating a set of rules that related these ranges
to anxiety levels. An initial set of experiments had
participants engaged in mathematical problems with
varying difficulty in order to obtain physiological data
for varying anxiety levels and training the fuzzy logic
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system. A second set of experiments had the mobile
robot engage in a navigation and exploration task
and respond to the physiological data collected from
the previous experiment. The robot would detect a
user’s anxiety level and, then, ask him/her if assis-
tance was needed. If assistance was indeed needed,
the robot would trigger an alarm to alert other peo-
ple that someone needs assistance. The results found
a positive correlation between self-reports of a partic-
ipant’s anxiety level and the output of the fuzzy logic
system.

In [193], an affect-detection system was designed
in order to allow a robot arm to detect a person’s
affect when the robot and the person are engaged
in a collaborative manufacturing or assembly task.
An example of such a task is the hand-over-task
of an object. The system was designed to detect a
person’s level of arousal (low, medium, high) and
valence (low, medium, high) utilizing physiological
data obtained from wearable sensors. HMMs were
utilized to classify a person’s valence and arousal lev-
els utilizing heart rate, skin conductance, and muscle
activity above an eyebrow. An EKG Flex/Pro sen-
sor was utilized to measure heart rate signal in order
to determine the peak-to-peak heart rate and heart
rate acceleration. A SCFlex-Pro sensor was utilized to
measure skin conductance and the rate of change of
skin conductance. A Myoscan Pro EMG was utilized
to identify the level of response of muscle activity
above an eyebrow by applying a low pass filter to
the EMG data. All features were utilized as inputs
to the HMMs trained for each valence and arousal
level. The HMM that resulted in the highest prob-
ability for a set of input features was identified as
the user’s valence or arousal level. Experiments con-
sisted of 36 participants, ages 19 to 56, watching two
different robot tasks. The tasks included pick-and-
place and reach-and-grab. Each task was generated
with two different arm movement planning strategies
at 3 different speeds: slow, medium, fast. The plan-
ning strategies included a conventional potential field
with obstacle avoidance, and safe planning, which in
addition to the potential field utilized a danger crite-
rion to minimize the collision force between the robot
and human. The participants rated their own levels of
arousal and valence for each robot arm movement.
Three examples of each valence and arousal level from
the experimental physiological data were utilized as
training data for the HMMs and the remaining data

were utilized for testing. The results showed that the
proposed system obtained a recognition rate of 74 %
for arousal and 70 % for valence on training data and
61 % for arousal and 62 % for valence on the test data.

In [70], a system was developed to detect a per-
son’s affective response to the motion of an industrial
robot’s arm during HRI. The system detected valence
and arousal levels based on wearable sensors which
measured facial muscle tension, skin conductance, and
heart rate. The same features and sensors described
in [193] were used as inputs into a fuzzy inference
engine for valence and arousal classification. The
input features were fuzzified with trapezoidal mem-
bership functions and the rule base was generated
using results of physiological research that related
each of the features to valence and arousal levels,
e.g., when muscle activity above the eyebrow is neg-
ative then valence is positive, and when heart rate is
faster than baseline then arousal is high. Experiments
had ten subjects watch the same set of pick-and-place,
and reach-and-grab movements as in [193]. In addi-
tion to having their physiological data recorded, the
participants rated their own affect on 5-point Likert
scales for anxiety, surprise and calm after watch-
ing the robot. The results found that the estimated
arousal ratings were negatively correlated with sub-
ject ratings of calm, and positively correlated with the
subjects’ ratings of anxiety and surprise. Additionally,
subjects reported less anxiety and surprise towards
the robot arm motion that utilized the safe plan-
ner in comparison to the conventional potential field
planner.

6.2 Assistive HRI

In [84], a basketball net was fastened on the end-
effector of a 5-degree-of-freedom robot arm in order
to allow a person to play a basketball game in
which the position and speed of the net was changed
to increase or decrease the difficulty of the game.
The difficulty of the game was adjusted based on
a player’s affect and performance level, which was
defined as high, medium or low anxiety. The robot
utilized the Biopac system to collect physiological
data from wearable sensors on the user in order to
identify his/her level of anxiety. The identified phys-
iological features included cardiovascular activity via
an ECG sensor, EDR via a skin conductance sen-
sor, muscle activity of the cheek, above an eyebrow



J Intell Robot Syst (2016) 82:101–133 119

and on the neck with an EMG as well as skin tem-
perature. These features were utilized as inputs into
a SVM for anxiety classification. Experiments were
performed in two phases. The first phase consisted
of 15 participants engaged in problem solving tasks
and playing Pong in order to obtain physiological data
to train the SVM for Phase II. Phase II consisted of
14 participants engaged in the basketball game with
the robot. The robot arm would vary the difficulty
of the game depending on participant performance as
well as anxiety level. The results of the experiments
showed that the robot was capable of reducing anxiety.
Namely, a decrease in anxiety was reported by 79 %
of participants, which also resulted in 64 % of the
participants improving their performance during the
game.

In [6], the above system was expanded to detect
the following affective states of a child diagnosed
with autism spectrum disorder (ASD) during the
basketball game: anxiety, liking, and engagement.
The same set of physiological features was used
as inputs into SVMs. The SVMs were trained for
each investigated affect and ground truth ratings were
obtained from a combination of participant, par-
ent, and therapist ratings. Experiments consisted of
six participants, ages 13 to 16, playing two bas-
ketball games with the robot. The results showed
an average recognition rate of 79.5 % for anxi-
ety, 85 % for liking, and 84.3 % for engagement,
respectively.

In [4], a mobile nurse robot, PeopleBot, was
designed to deliver medicine to elderly residents in
a long-term care facility. Users wore a polar heart-
rate monitor and an iWorx GSR-200 amplifier used
to monitor Galvanic Skin Response (GSR) using elec-
trodes on the index and ring fingers. These physio-
logical signals were used to estimate a user’s valence
and arousal levels defined as low, medium, and high.
In particular, GSR data was processed with wavelet
analysis to identify GSR wavelet coefficient features.
The mean and standard deviation of the peak-to-peak
heart rate were taken as heart rate features. A step-
wise backward-elimination regression was applied to
these features in order to determine which distinguish-
able features to use for classification, resulting in 14
GSR wavelet coefficients and the standard deviation
of heart rate being used for arousal, and 11 GSR
wavelet coefficients, and the mean and standard devi-
ation of the heart rate for valence. These features

were utilized as inputs to a NN for affect classifi-
cation. Experiments consisting of 14 different trials
were conducted with 24 residents from two long-
term-care facilities. Each subject received a bottle of
medicine from the robot during each trial, with each
trial having a different physical robot configuration
(i.e., varying facial, interaction and voice features).
Participants rated their own valence and arousal levels
utilizing self-assessment manikins. Baseline physio-
logical data was normalized for each participant prior
to the experiments. Utilizing 80 % of the data for train-
ing and 20 % for testing, the proposed system obtained
a recognition rate of 82 % for arousal and 73 % for
valence.

In [85], the OCZ NIATM headband was utilized
to measure muscle tension in a person’s forehead
in order to estimate his/her stress level. This stress
level was then used to control the social behav-
iors of the Roomba®robot vacuum cleaner. A lin-
ear relationship was utilized to determine a user’s
stress level from the muscle tension measurement.
The robot was designed to start vacuuming in a loca-
tion away from the user if a high level of stress was
detected, in an effort to avoid a stressed user. If the
robot detected a low level of stress the robot sim-
ulated a pet-like behavior by coming closer to the
user.

In [86], the mobile robot, PeopleBot, with a face
displayed on a screen and a male voice, was uti-
lized as a nurse robot in order to measure a person’s
blood pressure. The robot would instruct a user how
to use an Omron blood-pressure monitor and report
the results of the test to the user. Post interaction,
the resulting blood pressure was utilized to investi-
gate a person’s positive or negative feelings towards
the robot. Experiments had 57 participants, all over 40
years old, have their blood pressure measured before
and during an interaction with the PeopleBot robot.
The participants were also asked to report their affec-
tive state during the interaction utilizing the positive
and negative affect schedule [194], namely, how they
felt towards the robot utilizing 5-point Likert scales
on 20 emotional words such as distressed and excited.
In addition, they were asked to draw their own ideas
for a healthcare robot. The results should that partic-
ipants who had drawn human-like healthcare robots
had higher blood pressure and more negative feelings
towards the PeopleBot robot compared to participants
who had drawn box-like healthcare robots.
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6.3 Multi-Purpose HRI

In [72], a mobile non-expressive human-like robot,
PR2, and the expressive human-like mobile dexterous
social robot, MDS, engaged users in drawing tasks.
Near-InfraRed Spectroscopy (NIRS) brain imaging
was employed in order to determine if a person was
feeling aversion or affinity towards a robot. The NIRS
data was obtained from a two-channel NIRS oximeter
sensor worn on the user’s head. The NIRS raw-light
attenuation data was converted to hemoglobin concen-
trations, and noise and drift were removed from the
signal using a Savitzky-Golay low pass filter [195]
and linear detrending. During HRI, the changes in
hemoglobin concentrations were utilized to monitor
prefrontal brain activity. Experiments were conducted
with 38 participants engaged in the drawing tasks with
each robot under three different interaction conditions:
1) a 3rd person condition in which the participant
watched a video of another person performing the
drawing task with the robot, 2) a 1st person view in
which the robot interacted with a participant remotely
via a video conference on a laptop, and 3) a co-located
condition in which the robot was located across a
table from the participant. Each participant also rated
their experience with each of the robots in the afore-
mentioned conditions in addition to having NIRS data
collected. Participants rated their arousal using self-
assessment manikins, and the eeriness and human-
likeness of the robots using 5-point Likert scales. The
results showed that the participants had a significant
increase in prefrontal brain activity during the co-
located interaction with the MDS robot compared to
the PR2 robot, while a significant decrease in pre-
frontal activity was observed during the 3rd person
condition with the MDS compared to the PR2. No
significant changes were observed for the 1st person
interaction condition. Taking into account participant
self-reports, an increase in prefrontal activity corre-
sponded with aversion (higher arousal and eeriness
ratings) towards the robot. Participants were found to
have more aversion towards the expressive MDS robot
than the PR2 robot.

Several automated affect detection systems have
also been designed to be used for future applica-
tions in HRI [71, 87]. For example in [71], an affect
detection system with future applications in HRI was
developed to identify the affective states of anger,

boredom, engagement, frustration and anxiety utiliz-
ing heart rate, EDR and muscle activity features. The
heart rate features, measured from ECG data, include
interbeat interval, relative pulse volume, pulse tran-
sit time, heart sound, pre-ejection period. The EDR
feature is measured as the skin conductance mea-
sured from a sensor on a finger. Muscle activity
features are measured with EMGs mounted above the
eyebrow, on the cheek, and on the neck. Classifi-
cation was performed utilizing a variety of learning
techniques. Experiments consisted of 15 participants
engaging in computer based-cognitive tasks and iden-
tify their own affective states during the tasks. The
results showed that SVM had the highest recogni-
tion rate of 85.8 % for instances not included in
the training data, however, regression trees, which
obtained a recognition rate of 83.5 %, were ranked
the highest in terms of computer memory and time
efficiency.

7 Multimodal Affect Recognition During HRI

The systems and techniques discussed above focus
on the recognition of one single input mode in order
to determine human affect. The use of multimodal
inputs over a single input provides two main advan-
tages: when one modality is not available due to
disturbances such as occlusion or noise, a multimodal
recognition system can estimate affective state using
the remaining modalities, and when multiple modal-
ities are available, the complementarity and diversity
of information can provide increased robustness and
performance [74]. Several researchers have consid-
ered the combination of two or more input modes in
order to effectively determine human affect during the
various HRI applications.

Social robots can interact with people using a num-
ber of communication channels in order to establish
a social relationship. Human affective states can be
inferred from a combination of these communication
channels. Multimodal data, however, is more diffi-
cult to acquire and process due to the need of many
more sensors in order to acquire data from multiple
channels, the inherent additional dimensionalities in
learning algorithms, and multimodal data fusion [73].
The following section will review various multimodal
affect detection systems for robots in HRI settings.
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7.1 Assistive HRI

In [73], the multimodal acquisition platform, Human
Interaction Pervasive Observation Platform (HIPOP),
was implemented in the humanoid robot, Facial
Automation for Conveying Emotions (FACE), to
determine arousal and pleasure levels of adolescents
and young adults with ASD. FACE consisted of a
passive body, equipped with a female face that was
capable of autonomously producing various human-
like expressions, such as happiness, anger, sadness,
disgust, fear, and amazement. The study consisted of
therapists using the robot in interactions with children
with ASD to investigate emotional and social recog-
nition capabilities during treatments. A treatment ses-
sion consisted of: 1) a familiarization stage, where
the therapist introduced FACE and the environment
to the subject, 2) imitation stages, where a subject
described and imitated the robot’s facial expressions
and eye gaze direction, and 3) play and spontaneous
conversation, where the subject engaged in conversa-
tions with FACE. The robot was able to speak through
a text-to-speech synthesizer that was manually con-
trolled by a human operator. Multimodal inputs used
to determine a child’s affect included physiological
signals, hand gestures, and human eye gaze direc-
tion. Physiological signals were acquired through a
sensorized t-shirt [196, 197], which had embedded
real-time ECG, accelerometer and respiration sensors.
The features that were analyzed were heart rate, heart
rate variability and R-R intervals. In addition, physi-
ological signals were also acquired by a glove, which
provided EDR, hand gestures and postures signals,
and skin conductance signal. These features were col-
lected by electrodes located on the fingers of the glove,
and a multi-axial accelerometer around the wrist.
Moreover, a wearable eye tracking system equipped
with a high-speed camera was used for capturing eye
gaze direction. Audio signal of speech was acquired
from a wearable microphone, while an environmen-
tal microphone recorded environmental sounds. Audio
signals were used to extract high-level features that
were correlated with the subject’s psychophysiologi-
cal state. Pleasure and arousal levels were extracted
using Valenza et al.’s quadratic discriminant classi-
fier [198], where extracted features were processed
through a Bayesian Decision Tree in order to provide
a confidence percentage for each affect level. Accord-

ing to [198], recognition rates were reported to be
greater than 90 % for both arousal and valence in
a 40-fold-cross-validation. Furthermore, experiments
were conducted to test whether FACE was able to
involve subjects with ASD in the interaction with the
android without any discomfort. Results showed that
some children with ASD could not identify the facial
expressions of FACE during imitation, but ECG sig-
nals indicated that the children were less stressed than
in the familiarization phase of the experiment. Dur-
ing gaze imitation, all children with ASD followed
FACE when it moved its attention away. Lastly, 55 %
of the children with ASD established a spontaneous
conversation with FACE.

7.2 Mimicry HRI

An extension of the approach in [75] was presented
in [199], where speech recognition from two micro-
phones was incorporated with the facial expression
recognition system in the humanoid robotic head,
Muecas. Utilizing both modalities, Muecas was able to
imitate human affect (happiness, sadness, anger, neu-
tral, fear) and respond in real-time through the display
of facial expressions and head pose. The facial expres-
sion recognition system was similar to that in [75]
where facial expression recognition was accomplished
through Gabor filtering and DBN classification. For
speech recognition, the speech rate, pitch, and energy
were extracted from the signals received from the
audio signal. Speech rate was calculated using Fourier
transform, comparing the signal with different speech
rates and analyzing the amount of energy at each rate.
The speech rate calculated served as an input to the
DBN classifier. Results showed a speech recognition
rate of 87 % for sadness, 71 % for happiness, 67 %
for fear, and 82 % for neutral from 40 candidates.
Using both modalities, Muecas showed the ability to
imitate the recognized affect through its own facial
expressions.

7.3 Multi-Purpose HRI

In [200], a multimodal affect detection system,
Robotics Dialog System (RDS), using voice and
facial expression information was implemented on
the social robot, Maggie. Maggie is a doll-like robot
capable of moving its head and arms. The robot
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was equipped with a video camera and microphone
within its body, and a webcam in its mouth. The
affective states that were classified were happy, neu-
tral, sad, and surprise. Voice features, such as pitch,
flux, energy, signal centroid, signal-to-noise, ratio,
and number of words pronounced in a minute, were
extracted from audio signals obtained from the robot’s
onboard microphone. These features were input into
an off-line classifier trained using decision tree learn-
ing (J48) and decision rule (JRIP) on voice examples
from interviews, TV shows, audiobook, and databases
with tagged voice corpus. Facial expressions (happy,
neutral, sad, surprise) recognition was accomplished
through third-party software packages which included
the Sophisticated High-Speed Object Recognition
Engine (SHORE) for face detection and the Computer
Expression Recognition Toolbox (CERT) for affect
classification in real-time. CERT uses SVM to clas-
sify action units in order to infer facial affect [201].
The two modalities were combined using a decision
rule based on calculating the degree of confidence
using Bayes Theorem. The preliminary performance
of each modality was tested on 40 undergraduate
students posing the affective states using voice and
facial expressions while standing in front of a mobile
Pioneer robot equipped with a 2D camera and an
omnidirectional microphone. Results showed that the
voice decision tree and decision rule had an aver-
age success rate of 56.37 % and 57.10 % respec-
tively, and SHORE and CERT had an average success
rate of 75.55 % and 62.66 %, respectively. Using
multimodal information, the average success rate of
the RDS system was recorded to be 83 %, which is
higher than the success rate of each individual modal-
ity. In an HRI experiment with the robot Maggie, 16
participants were asked by the robot to express one
affective state at a time. Results using both modes
showed an overall success rate of 77 % for the RDS
system.

In [202], a stuffed animal-like social robot, CuD-
Dler, was developed to recognize and respond to a
user’s emotional acts from facial and voice modal-
ities. The affective states being detected were neu-
tral, happy, sad, angry, and surprise. The software
architecture driving CuDDler consisted of several
key independent modules including Facial Expression
Recognition (FER), Emotion Sound Event Recogni-
tion (ESER), Unified Robotic Framework (URF), and
Emotion Expression Engine (EEE). The main task of

the FER module was to extract the facial expression
status from frontal faces and to recognize a user’s
affect. Images of the user’s face were captured by the
robot’s webcam. The eye positions of the user were
estimated based on the Haar-based eye detector and
the detected face was cropped and normalized based
on the positions of the two eyes in terms of scal-
ing and in-plane rotation. Local Binary Pattern (LBP)
features were extracted from selected patches on the
normalized face and a linear SVM classifier was used
to determine affect. The main task of the ESER mod-
ule was to detect and classify emotional sounds, such
as crying, laughing, or non-voiced occurrences such
as stroking, patching, and punching CuDDler. The
acoustic signal was continuously tracked using two
microphones and the acoustic signature was extracted.
The acoustic signature was, then, used to recognize
the sound event. The URF module synchronized FER
and ESER information together to achieve an appro-
priate affective response. The main tasks of the EEE
module included the generation of different robot
emotions, such as happy, sad, and angry, in response
to the detected user affect. For instance, for patting,
stroking, and laughing, CuDDler would respond with
a happy affective state. Experiments were conducted
with CuDDler where more than 100 participants inter-
acted with the robot by touching it and displaying
facial expressions. Then, participants were asked to
fill a Likert scale questionnaire to indicate whether the
robot understood their emotional acts, such as hitting,
patting, stroking, and squeezing. According to the 70
questionnaires that were completed, the robot was able
to recognize the emotional acts of pat, hit, and stroke
and responded appropriately to these situations.

In [90], an affective human-robot communication
system for the humanoid robot AMI was developed
to communicate bi-directionally with a human. The
affect recognition system classified the multimodal
data from facial expressions (captured by a CCD
camera) and voice (captured by a microphone) into
three dominant emotions: happy, sad, and angry. The
framework developed allowed the robot to respond to
the user’s current emotional status. Affect recognition
through facial expression, captured by the CCD cam-
era, was accomplished by extracting Ekman’s facial
expression features for the lips, eyebrows and fore-
head [130]. Affect recognition through speech was
accomplished by extracting phonetic and prosodic fea-
tures. Each feature vector from the two modalities
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was trained using a NN with affect classifiers for
happy, sad, and angry. The training results of the
two modalities were integrated together using deci-
sion logic where the final affect was determined by
a weighted sum of the results of the two modali-
ties. Moreover, the robot was able to produce its own
affect through a synthesizer, which produced facial
expressions, dialogue and gestures. The affect syn-
thesizer used a 3D emotion model consisting of the
following dimensions: stance (open-close), valence
(negative-positive), and arousal (low-high). AMI’s
affect would always be under open stance since the
robot was motivated to be openly involved in inter-
actions with humans. The system was able to rec-
ognize human affective status, and determine the
appropriate behavior according to the user’s current
affect. For instance, AMI responded with slow speech
when the user’s overall multimodal affective state
was sadness during an interaction of greeting and
consoling.

In [203], the humanoid robot, Nao, was used to sim-
ulate a child for adult-child interaction. Interactions
consisted of the adult greeting the robot, showing a
toy to the child robot, revoking the toy, and saying
goodbye. The robot was equipped with four micro-
phones located around its head and a 2D video cam-
era located in between its eyes. The robot was able
to infer affect from both human voice and human
gait, and mapped this affect to a 4D affect GMM
known as SIRE (Speed, Intensity, Irregularity, and
Extent). The voice features of speech rate, volume
range, high-frequency energy ratio, and pitch range
were extracted to determine each of the SIRE param-
eters, respectively. Mapping to SIRE parameters was
accomplished by calculating the Z-score of data points
relative to the mean and variance over the dataset and
the resulting Z-score was shifted and scaled to a range
of [0,1]. Human gait features extracted to determine
each of the SIRE parameters included: 1) walking
speed, 2) maximum foot acceleration, 3) step tim-
ing variance, and 4) maximum step length. The same
procedure for voice affect was used to map human
gait features to the SIRE affect model. Experiments
investigated whether the robot could be trained using
affective voice and then be able to recognize affec-
tive gait. German utterances from 10 subjects from the
EmoDB database [180] were used for training and 28
subjects from the Body-Movement Library [204] were
used for testing. Results indicated that the robot was

able to recognize affect with a 62 %, 90 %, 43 %, and
55 % accuracy for happiness, sadness, anger, and fear,
respectively.

In [205], a robot that recognized affect from facial
and vocal expression was proposed for general pur-
pose HRI. The robot was designed on a mobile base
with a head equipped with a face screen for pro-
jectable facial expressions. Facial and voice affect
were categorized into five affective states: neutral,
happy, sad, fear, and anger. For recognizing facial
affect, the facial image was captured by an onboard
2D camera and facial features (eyebrows, eyes, nose,
and mouth) were extracted using PCA, where a fea-
ture vector containing detected action units of the face
was produced. The feature vector was, then, used to
classify facial expressions using a Bayesian Network.
The Bayesian Network used the positions of action
units to infer a probability for each possible facial
expression. Recognizing vocal affect was also done
in a similar manner. Voice information was recorded
with an onboard microphone and features (sampling
frequency, pitch, volume level/energy) were extracted
using the Praat toolkit [206]. These features were,
then, input to a Bayesian Network to classify the
vocal expressions as affect. The Bayesian Network
used the sampling frequency, pitch, and energy infor-
mation to infer a probability associated to each vocal
expression. All the probabilities produced by the facial
and vocal affect recognizers were, then, input into
another Bayesian Network decision tree to ultimately
infer the human’s affective state. Experiments were
performed to test both vocal expression classification
and facial expression classification. A total of 450
sentences from 50 audio files were used as training
for the vocal expression classifier. Results showed an
average classification rate of 80.92 % for testing 129
sentences. For facial expression classification, exper-
iments did not use any databases. Testing was done
using a captured video stream from the robot’s cam-
era. Classification was considered complete when the
Bayesian Network produced a probability of 80 % or
higher for any of the affective states.

Other automated multimodal affect recognition
systems have also been proposed [74, 207–209], but
not yet incorporated in robots engaged in HRI. For
instance, in [208], a multimodal affect-recognition
system using facial expression and voice informa-
tion was proposed for multipurpose HRI scenarios.
The system recognized the following affective states:
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anger, disgust, happiness, fear, neutral, sadness, and
surprise. For visual facial expression recognition, an
AAM was used to describe and generate both the
shape and texture of face from facial features. Face
pose and facial features (nose, mouth, and eyes) were
recognized by a face-detection module [210], where
the module generated a feature-based model for every
face found and searched the next frame for similar
face model information. The facial features were used
to initialize the iterative AAM fitting algorithm. A
one-against-all SVM was, then, applied to classify
the AAM fitting into the seven affective states. For
speech-affect recognition, EmoVoice [211], a frame-
work that contained analysis on emotional speech
databases and emotional speech application, was used.
Features extracted were based on the prosodic and
acoustic properties of speech signals such as pitch,
energy, linear regression and range of frequency
spectrum of short-term signal segments, length of
voiced and unvoiced parts in an utterance, and num-
ber of glottal pulses. Furthermore, SVM with a lin-
ear kernel was used for classification of the seven
affective states. For fusion of both recognition modal-
ities, Bayesian Networks were used where results
from the individual facial and voice classifiers were
fed into the network and the posteriori probabili-
ties were determined. Performance evaluation of the
multimodal recognition system was conducted on the
DaFEx database [212]. The overall average recog-
nition rate of the system was 78.17 %, compared
to 74.46 % for facial expression recognition, and
61.90 % for voice-affect recognition. Another exper-
iment was conducted on four subjects, where the
subjects were asked to display facial expressions of
five emotion classes: anger, happiness, neutral, sad-
ness, and surprise with and without speaking. Results
showed that the multimodal approach again outper-
formed the single modal approaches: average emotion
recognition rate of 58.15 % for multimodal, 55.39 %
for facial expression modality, and 23.63 % for voice
modality, respectively.

8 Discussions

A wide variety of affect recognition and classifica-
tion systems have been reviewed herein for socially
interacting robots with respect to automated affect
detection of humans during HRI scenarios. The most

popular input mode used is facial expressions, while
there have been a similar number of systems devel-
oped for the other modes as well as multi-modal
systems. Categorical models have also been used as
the main choice of affect classification from facial
expressions [57–60, 75, 102–104, 106–108, 116, 134,
136], body language [62–64], voice [7, 65, 67, 69,
178, 179], and multi-modal inputs [73, 90, 199, 200,
202, 205].

The affect categories noted range from using
Ekman’s six basic emotions [44] along with a neu-
tral emotion [58, 102, 103, 106, 134], or using smaller
subsets of these emotions ranging from three [7, 65,
90, 106–108, 134] to five [67, 75, 104–106, 116,
134–136, 199, 202, 205] affective states. Several of
the affect-detection systems designed for social robots
have used dimensional models, mainly consisting of
valence and arousal scales for recognition from facial
expressions [76, 77, 125], body language [5], voice
[81, 82], physiological signals [4, 70, 86, 193], and
multi-modal inputs [193, 203]. A small number of
systems have utilized alternative affect classification
scales, such as accessibility [79], engagement [61],
predictability [81], stance [90], speed regularity and
extent [203], stress [19, 85], anxiety [84, 190], and
aversion and affinity [213].

The current systems presented are limited to a
small number of categorical affective states or a small
number of dimensional levels. However, humans can
display a large variety of affective states during social
interactions [214] and affect-detection systems that
can identify only a small set of states (e.g., two to
five) will not allow a robot to effectively participate in
natural bi-directional affective communications with
humans. Hence, research should continue to investi-
gate a variety of affect categorization models, with
future work focusing on expanding the number of
categorical states or dimensions explored in order to
allow socially interacting robots to effectively respond
to the large number of possible affective states/levels
displayed by people during social HRI.

Each affect-recognition approach discussed above
used sensors and feature extraction techniques unique
to each particular modality. The most common method
of capturing facial information was using a single
2D camera [57–60, 75, 78, 88, 106, 116, 125, 132,
134–136]. Facial features were mainly extracted from
the eyes, eyebrows, lips, and nose region according
to FACS [130]. However, recognition approaches and
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facial feature extraction techniques usually only per-
form well when the human frontal face is positioned
directly in front of the camera. This will not always
be the case during HRI. A few research groups have
also used stereo vision [102, 104] for better facial
affect estimation, but no group, to-date, has used
3D information from 3D sensors in order to infer
affect.

The KinectTM sensor, which provides a system with
2D and/or 3D information, was the most commonly
used sensor for identifying affect from body language
[5, 63, 64, 79]. A wide range of body language fea-
tures have been investigated, but the KinectTM skele-
ton joint positions were utilized more than any other
set of features [63, 64].

For detecting affect from voice, the most common
sensor was a microphone worn by a user [7, 81, 82,
179]. The most common features detected included
the traditional voice features of pitch and fundamen-
tal frequency, which human behavior researchers have
directly linked to affect [175], as well as features that
have been identified more recently, such as MFCCs.

The majority of systems that detect affect from
physiological signals have utilized ECG, EMG and/or
skin conductance sensors in order to identify a wide
variety of heart rate, facial muscle activity, and skin
conductance level measures [4, 6, 70, 84, 85, 190,
193]. One physiological system investigated blood
pressure [86] and another investigated prefrontal brain
activity measured with a near-infrared spectroscopy
[72], however, these systems did not report recog-
nition rates, thus, additional research is required to
determine how well these signals can effectively rec-
ognize affect.

Multimodal systems contain the most sensors com-
pared to all other modalities. Sensors include ECG and
EMG [73, 83] to record physiological signals, micro-
phones [83, 90, 199, 200, 202, 203, 205] to record
voice intonations, and 2D cameras to capture facial
information [90, 199, 200, 202, 205], and body lan-
guage information [203]. These sensors have been
integrated together in order to extract many features,
including heart rate [73, 83], voice pitch [83, 90, 199,
200, 202, 203, 205], gait features [203] and facial fea-
tures [90, 199, 200, 202, 205]. Future research should
continue to investigate a wide range of features for all
modes in order to determine which combinations of
features result in the highest recognition rates during
real-world interactions.

The majority of affect-classification techniques
have successfully incorporated learning algorithms
in order to identify distinct affective states or lev-
els. For facial-affect detection this has included the
use of Binary Decision Trees [58], AdaBoost [102],
Multilayer Perceptrons [60], SVMs [103] and SVRs
[60, 76], NNs [60, 104–108], and Dynamic Bayesian
Networks [75].

Affect-classification techniques using body lan-
guage have included the use of SVM or KNN [64],
nearest neighbor [63], as well as the testing of a vari-
ety of learning algorithms [5, 61]. Only a few systems
have been developed that incorporate body language
features that have been linked to affect in psychology
or human behavior studies [5, 79]. Although identi-
fying affective states from body language is still an
open research area in psychology and human behavior
research [29], a number of findings in these research
areas can be applied to automated affective body lan-
guage detection during social HRI. For example, it
has been found that culture and context are important
when attempting to identify affect from body language
displays [29]. Utilizing such additional information
will allow robotics researchers to develop more effec-
tive human affective body language detection systems
that can recognize natural (non-acted) body language
during HRI.

GMMs [67, 69] and SVMs [82, 179] have been
the most common learning techniques used for clas-
sifying affective voice features during HRI. Naı̈ve
Bayes [7] and HMMs [65] have also been investigated.
Future research in this area should focus on expand-
ing the types of learning algorithms investigated for
affect detection. The affect-detection systems using
physiological signals have utilized fuzzy models [70,
190], HMMs [193], SVM [6, 84], and NN [4] learn-
ing techniques for classifying affect from identified
features. The majority of these systems reported pos-
itive correlations between recognized affect and base-
line affect, with only three studies reporting recogni-
tion rates. Future research on systems for detecting
affect from physiological signals should also focus
on providing more quantitative results with respect
to the recognition of specific affective states/levels
as is the standard with the other modes. Classifi-
cation techniques utilized by multi-modal systems
included HMMs [83], Bayesian network [73, 199],
SVMs [200, 202], NNs [90], and statistical methods
[203].
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With respect to the specific HRI scenarios, human-
affect recognition has been used in a number of game
scenarios with robots. A number of them have been
specifically with children, ranging from playing chess
[61, 78, 88], playing a quiz game [77], playing a bas-
ketball game with children with ASD [6], social and
emotional intervention with children with ASD [73],
simulating a child to engage in adult-child interac-
tions [203], or playing a movement imitation game
[62]. Game scenarios with adults have also included
playing 20 questions [65] as well as movement imi-
tation [86]. In these scenarios, the affect-aware robots
were mainly providing a collaborative role by play-
ing the game with the user, or they were involved
in behavioral mimicry. In [6], the robotic arm mov-
ing the basketball hoop was used to investigate the
use of robotic therapeutic interventions for children
with ASD. Other assistive applications of robots, in
particular for the elderly, have also been considered
including delivering medicine [4] and food [102], as
well as providing assistance with activities of daily
living including meal eating [5]. The remaining HRI
scenarios have been more general and not applica-
tion dependent, namely focusing on the ability to
detect affect [64, 67, 72, 76, 90, 103, 107, 108, 132,
134–136, 179, 200], or learning to mimic human
affect [60, 62, 75, 86, 104–106, 116, 125, 199]. It
will be interesting to see these affect recognition
techniques integrated and tested in more long-term
studies with socially intelligent robots in order for
us to move closer to an age where social robots
will be integrated into our everyday lives assisting
and collaborating us with a wide variety of everyday
tasks.

A number of databases have also been used to eval-
uate affect-recognition methods. Popular databases
include the Cohn-Kanade database [113], CMU
database [118], JAFFE database [131], DaFEx
database [212], EmoVoice [211], and EmoDB
database [180]. The majority of existing affect detec-
tion systems for social HRI have been tested on
acted affect displays from facial expressions [58, 76,
102, 103, 116, 134], body language [62–64], voice
[7, 67, 69, 178, 179], and multimodal [75, 199,
200, 203] inputs. In general, systems that rely on
physiological signals have mainly concentrated on
utilizing non-acted data from real-world interactions
[4, 6, 70, 72, 84–86, 190, 193]. A smaller num-
ber of single mode affect-detection systems using

facial expressions, voice or body language have uti-
lized non-acted data from real-world HRI scenar-
ios [4, 5, 19, 61, 65, 73, 77–79, 81, 82, 88, 102].
Databases and acted evaluations can provide an ini-
tial approach to testing the performance of these
systems. However, they do not provide the sensory
information from the real-world scenarios needed for
long-term training or testing of systems being used
for affect detection during natural real-world interac-
tions. Experimental studies in intended settings with
robots and a large number of participants including
the targeted users such as children and the elderly will
need to be performed to investigate the performance
capabilities of affect-detection systems. Furthermore,
investigations into the affect displays of different cul-
tures will need to be conducted to ensure the wide
use of such automated affect-detection systems dur-
ing HRI. Developing systems that are robust to age
and cultural backgrounds will allow social robots to
engage a larger number of users in natural social
HRI.

9 Conclusions

In order for socially interacting robots to be accepted
into society, they need to be able to interact naturally
with human users. For a robot to naturally inter-
act with a person, it must take into account his/her
affective state and respond with its own appropriate
behavior. In recent years, a number of automated sys-
tems have been developed which allow social robots to
detect human affect. These automated affect-detection
systems have primarily focused on identifying affect
from facial expressions, body language, voice, phys-
iological signals, as well as various combinations of
those modalities. They have been proposed for or
applied to different HRI tasks, including collabora-
tion, assistance, mimicry, as well as multi-purpose
HRI scenarios. This survey paper has presented a dis-
cussion on the current state-of-the-art in this area dis-
cussing each system with respect to its intended HRI
scenario and robot, the sensors and sensory informa-
tion utilized, the feature extraction and affect classifi-
cation methods employed, as well as the experiments
performed and system performance results. Further-
more, the remaining open challenges that still need
to be addressed have been outlined in order to pro-
mote the effective development of affect-aware social
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robots capable of autonomously identifying a person’s
(people’s) affect in real-world human-centered HRI
scenarios.
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Balaguer, C.: Facial emotion recognition and adapta-
tive postural reaction by a humanoid based on neu-
ral evolution. Int. J. Adv. Comput. Sci. 3(10), 481–493
(2013)
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