
World-Class Product Certification using Erlang
Ulf Wiger
Ericsson AB

S-126 25, Älvsjö
Sweden

+46 8 719 81 95

ulf.wiger@etx.ericsson.se

Gösta Ask
Ericsson AB

S-126 25, Älvsjö
Sweden

+46 8 757 11 18

Gosta.Ask@etx.ericsson.se

Kent Boortz
Ericsson AB

P.O. Box 1505
S-125 25, Älvsjö, Sweden

+46 8 727 57 55

Kent.Boortz@uab.ericsson.se

ABSTRACT
It is now ten years ago since the decision was made to apply the
functional programming language Erlang to real production
projects at Ericsson. In late 1995, development on the Open
Telecom Platform (OTP) started, and in mid 1996 the AXD 301
project became the first user of OTP. The AXD 301 Multi-service
Switch was released in October 1998, and later became “the heart
of ENGINE”, Ericsson's leading Voice over Packet solution.

In those early days of Erlang programming, high-level tools for
development and testing were not really available, and
programmers used mainly the Emacs editor and the Erlang shell.
Still, anecdotal evidence suggested a 4-10x productivity increase
compared to mainstream programming techniques.

Through the years, significant progress has been made, especially
in the area of automated testing of Erlang programs. The OTP
team designed an Erlang-based test suite execution environment,
were developers can easily write their own automated test suites,
and now performs nightly builds where more than one thousand
test cases are executed on ten different platforms. OTP designers
can view the outcome in web-based test reports as they come to
work the next day. Each corrected bug results in a new test case
that is incorporated into the ever-growing test suite. Thus, this
world-class middleware is certified to telecom-class quality
without a dedicated test team!

The AXD 301 project uses OTP's test environment, and executes
more than 10,000 automated test cases before each major release.
Designers and testers compose their own test suites, and the
designers carry out function tests with little or no help from the
Integration and Certification team. Each test case can be run both
in a simulated environment on the designer's workstation and in
the test lab on real hardware. In order to provide stimuli to the
system, the testers often design their own traffic generators in
Erlang.

To analyze the faults that occur, Erlang offers an increasing
wealth of debugging options. Beyond the symbolic error
messages, which are often sufficient to locate the fault, Erlang
developers are able to dynamically turn on tracing on message
passing, scheduling events, garbage collections, selected function
calls, etc.

This paper demonstrates how Erlang's declarative syntax and
pattern matching provide an outstanding environment for test
suite development.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools (e.g., data
generators, coverage testing), tracing, error handling and
recovery.

General Terms
Measurement, Performance, Design, Reliability, Experimentation,
Languages, Verification.

Keywords
Erlang, Testing

1. INTRODUCTION
In the late 90’s Ericsson put much thought into designing general
Test Tool Middleware for corporate-wide usage. It would adapt a
Test Management System to the various Traffic generators that
were being used in System Test Departments in Ericsson; TSS
2000, MGTS, HP BSTS, IGEN, Wandel & Goltermann to
mention a few.

One driving force was to replace the Automation parts based on
Autosis — a script-like language that was used in connection with
mobile simulators like MSMS/MSTG in a predominantly AXE10
target environment. These thoughts were written down during the
era of Business area Radio Automated Verification Environment
(BRAVE), an initiative that for a while attracted large funding
from Ericsson management.

The result was a Requirement Specification[1]. This was clearly a
Top Down approach. It turned out to suffer from lack of practical
experience to guide the work onwards. Some general ideas from
the BRAVE era can still be used. On the whole it must be noted,
however, that local Bottom Up approaches to Test Automation
have been more successful in producing working results. The
efforts to co-ordinate Test Automation Development have failed.
Instead, a large marketplace has developed inside the company

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

2002 ACM 1-58113-592-0 02 0001 5.00

where different local solutions to the problem of Test Automation
compete. This is not necessarily bad.

The ideas of the mid-90’s, to be able to “verify” large systems and
create “certification” (in the sense of guaranteeing fault-free
operation by testing), are all but dead. Not that the ideas lacked
merit, but the practical difficulties, and perhaps also the lack of
understanding what “verification” actually implies in the context
of large real-time systems, have drawn the ideas into disrepute.
There is however work starting out again on a smaller scale with
better hope of success. Model checking of parts of the Erlang-
based AXD 301 component RCM, (specifically, a distributed
read/write locker used by the cluster controller RCM) is reported
in ref. [3]. Work by Prover Technology on the formal verification
of certain characteristics of Hardware circuits also shows the
possibilities, see ref. [4]. This is largely still a research activity.

Meanwhile, it is still perfectly true that testing is needed — more
than ever actually, since switch control programs, both for
telephony and for data, have grown enormously both in size and
complexity. There is no other option than test. It is however
important to understand the limitations of traditional testing, both
from a theoretical and from a practical point of view. Isolated
Function Test cannot find more than a fraction of all the faults
that exist in any of the large products. Hence more efficient means
to provoke error situations and thereby find faults are needed. The
best practices so far consist of the generation of a massive and
diversified traffic load on all external interfaces of the system
under test. Let such testing be called Traffic Load Test.

There is a paradox in Traffic Load Test compared to Function
Test (FT); you really do not know what kind of faults you are
looking for. You hope for continuous error-free operation of the
whole network, even during maximal utilisation of all available
resources. At the same time you know from experience that it is
precisely in a situation with massive traffic load on the network
(the system) that dormant faults start to pop up and show their
existence. It can be that timer constraints somewhere in the
application programs are too tight, or data faults may appear in
some protocol data that is not used until a congestion situation
occurs. The faults were there all along, but FT test cases could not
find them. To find such faults by systematic testing over all
possible values on the input data streams is simply not feasible.
The state space is too large. Nevertheless, faults of this nature are
what our customers fear most of all. They will blame us when
such faults appear during operation, creating a heavy burden on
our maintenance staff. It is therefore imperative that we try and
flush as many dormant faults as possible out of the systems before
the products are released. Automated System Test with Traffic
Load is the method.

Waiting for the general solutions, testers are always faced with the
necessity to automate everyday tasks. Stability tests of large
networks with a multitude of different tools generating traffic as
Background Activity Traffic can be run manually, but the cost is
high. The risk of human error is large, causing delays. Stability
tests are usually run over extended periods of time and must be
possible to restart frequently if some errors occur in the network.
Customers also require regression tests on system updates.

All too often, testing is seen as a completely separate activity from
design, and the ability of the design environment to prepare for,
and help streamline, the testing phase is often ignored. Indeed, it
is common in large industrial projects for developers to simply

hand off their software to a testing department, which then tries to
find faults in it. One obvious argument in favor of such a
procedure is that it is difficult to test your own software, much
like it is difficult to proofread your own documents. The obvious
counter argument is that it is extremely difficult to completely test
a component without rather detailed knowledge of how it was
designed. Invariably, the testers in this scenario will stumble upon
faults that they cannot analyze, and will call on the designers for
support; the designers, not being familiar with the testing
procedure, may find it difficult to reproduce the error.

With design and test thus separated, it is vital to create detailed
specifications of the components, lest the testers be forced to read
the source code of the entire system in order to find out how it is
supposed to work. As traditional mainstream programming
languages make pretty poor specification tools, new notations are
invented to bridge the gap, and a whole industry has grown out of
the need to support the parallel development of specification and
program.

Within functional language research, much effort is put into
designing programming languages that offer extensive support for
finding faults already at compile time. This is achieved mainly by
designing the programming language so that it becomes useful as
a specification language as well, and then making the compiler
capable of verifying as many of the specification properties as
possible. As not many examples of complex industrial systems
designed in such languages exist, it remains uncertain how much
of the traditional testing process can be reduced.

The Erlang programming language strikes a compromise between
traditional industrial languages and functional languages. Its
syntax puts it at the same level as common specification languages
like SDL[5], but it is not as strict as many of its cousins among
functional programming languages. It does not necessarily reduce
the amount of testing needed, but as it turns out, seems to appeal
to testers and designers alike. This allows for breaking down the
barriers between design and test, and blurring the line where
programming ends and testing begins. We will try to show in this
paper why this is desirable.

2. Evolution of Testing in OTP and AXD 301
2.1 The Setting
When the AXD 301 project started, the Erlang programming
language had only been used in projects of significantly smaller
size and complexity. The Open Telecom Platform was a concept,
based on experiences from previous Erlang projects, but the only
concrete implementation available was that of BOS – the
predecessor of OTP. AXD 301 had to start conducting
experiments based on BOS and await the first version of OTP.

Several things were unknown: whether Erlang/OTP would work
in a project of AXD 301’s size; whether performance would be
adequate; and how, indeed, to proceed with design and testing.

It was decided that we would not use any modeling tool intended
for another programming paradigm (e.g. UML, SDL) before we
knew more about what programming method would be most
appropriate. Pre-studies indicated that programming in Erlang
would present altogether different challenges to a modeling tool
than e.g. C/C++, due to dynamic typing and pattern matching
semantics, native support for concurrency and distribution, etc.

Similarly, investments in test equipment were careful, awaiting
more experience of testing in Erlang-based projects.

The product itself, the AXD 301 ATM Switch (which later
evolved into a Multi-service Switch and Voice Media Gateway),
defined the task to be solved: a datacom product with the same
management profile and robustness normally associated with a
traditional telephone switch. This means non-stop operation, in-
service upgrade and expansion, excellent overload protection, and
an abundance of diagnostics functionality. The sheer complexity
of control systems for telephony has become quite staggering: The
Lucent Definity PBX contains 4 million lines of code[7], and the
Nortel DMS-500 local and long-distance telephony switch
consists of 26 million lines of code[8].

Telecom-class quality can be illustrated another way: A subscriber
to AT&T’s private line service with an Enhanced Reliability
Option (ERO)1 is guaranteed less than a cumulative 5 minutes of
service outage each month; otherwise, AT&T will refund the
subscription fee for the month in question[9]. This naturally
includes planned downtime. 5 minutes in one month corresponds
to 99,9999% availability for each subscriber line. Assuming 64
kbps/subscriber (a typical telephone line) and e.g. 31*32 = 992
subscriber lines on one interface board in the switch2, more than 5
minutes service outage on one interface board means that AT&T
would lose the equivalent of 992 subscriber months, or >82 years,
of revenue. Furthermore, assuming one control processor (without
redundancy) for one subrack (16 interface boards), a control
processor crash causing more than 5 minutes of downtime would
by itself result in a loss of 15872 subscriber months, or >1300
years, of revenue. A subscription rate of $30/month would mean
that $476,000 would have to be refunded. It is easy to imagine
that faults requiring a service technician to drive to the switch and
manually replace a board, or rebooting a control processor, would
result in much longer outages than 5 minutes. More seriously, of
course, losing the ability to service emergency calls could even
lead to people dying.

Several tricks are used to ensure that the provided service meets
the stringent quality requirements. The most important design
feature is of course redundancy — all critical components
duplicated — but great care must also be taken to make sure that
the system automatically recovers from its own errors as often as
possible. But most of all, the product must be subjected to an
enormous battery of tests in order to weed out problems before the
first delivery to a customer.

2.2 The Learning Phase
AXD 301 was developed incrementally, and the first increment
was a learning increment. The main goal was to learn how to
deliver software to the test lab, and how to integrate and start a
basic system.

Much was learned about what needed to be improved in
Erlang/OTP, and many suggestions on how to improve error

1 AT&T does not actually use AXD 301 to deliver this service; it

is simply an example to illustrate the point. AXD 301 was
designed to provide this type of service quality.

2 As each interface board in the AXD 301 is capable of handling
622 Mbps, it is entirely possible to service many more
subscribers than this on one board.

reporting were put forth by testers experienced in certifying the
AXE 10 telephony switch.

As the incremental development progressed, testers began
designing their own test tools, traffic generators, etc. Some of the
tools proved more useful than quite expensive third party
equipment.

2.3 The OTP Test Server
During these early stages, the Erlang/OTP design team started
developing an automated test server. The OTP test server relies
heavily on the core aspects of the Erlang language and runtime
system. Test cases are written in plain Erlang, and test results are
presented in a user-friendly HTML format (see Figure 1).

Figure 1: Test run overview produced by OTP’s Test Server

From the high-level overview of a test run, the designer can drill
down into each test suite and further inspect the results. For each
test case, the result, execution time and possible error
identification are presented, along with a link to the test case
output and source code (see Figure 2).

Figure 2: Test suite overview

A process evolved: for each bug found in the OTP middleware, a
test case was to be written that reproduced the error (see e.g.
Figure 2 above, test cases otp_2740 and otp_2760). Once the bug
was fixed, the solution should be verified using the new test case,
and regression-tested using other test cases. The new test case was
then included in the standard test suite for future test runs. The
OTP test suites now comprise more than 3,000 test cases that are
executed nightly on 5–10 different platforms.

The AXD 301 project eventually based its test automation on the
OTP test server. To date, more than 10,000 test cases have been
developed and now form a collection of automated test suites for
AXD 301.

2.4 AXD 301’s Custom Tools
Erlang proved a highly useful vehicle for designing lab tools.
Testers have designed tools for administering the test labs,
automatically configuring the test systems, generating different
traffic patterns, and running customized long-term stability tests.

Design teams rely on Erlang’s excellent support for executing3

distributed systems in a workstation environment, and run the
same installation procedures on their own workstation as those
run in a target environment. Many test suites execute just as well
in the design environment as they do in the target system, and
designers are even able to run through software upgrade tests on
their own workstation.

System management uses Erlang to design custom profiling and
debugging tools for their own purposes. Many of these have made
their way into the actual system and are available via the web-
based operator interface.

3 Using the word “simulating” is hardly appropriate, as the

software executes in almost exactly the same manner as in the
target environment; apart from using UDP instead of aal5 for
some drivers, there is no extra emulation layer.

2.5 Putting it Together
In 1996, when the AXD 301 and OTP projects were started, no
tools were available to augment design and testing. Still,
anecdotal evidence indicated a significant productivity increase
compared to mainstream technology[10].

Through the years, tools have been developed by designers,
testers and system management that raise the level of productivity
even further and increase the precision in the development and
testing cycle. Erlang’s tracing support and error reporting have
improved significantly.

Using the OTP test server, designers write their own test cases
that are then used for block testing, then put together into a larger
subsystem test suite, all performed in the interactive design
environment. Moving into the target environment, the test
organization performs initial integration, after which the
designers’ test suites are reused for function testing – carried out
by the designers themselves. After this, the test organization
performs system tests, stress tests, long-term stability tests, etc.,
reusing the original test suites again in new combinations and
adding their own test cases written by testers.

All considered, Erlang/OTP, the OTP test server, and custom
tools form an integrated whole where the line between design and
test becomes blurred. Designers experience increased productivity
and become an integral part of the testing process (as it should
be), and testers quickly become proficient programmers in their
own right, designing test tools and test suites.

Finally, Erlang’s excellent symbolic error reports and tracing
facilities are powerful aides in locating and correcting faults that
occur. Even here, testers become empowered by the close
integration between test tools and the applications, and often
assist in profiling and optimizing the system. This serves to
reduce lead times and increase delivery precision. Furthermore,
designers and testers are able to take great pride in their work.

3. Fault localization in Erlang
Taking a closer look at how fault localization is performed in
Erlang/OTP, we will start with intrinsic language features, while
describing some simple design techniques. Moving on to actual
faults, we describe how errors are presented by the system, and
how designers and testers can work to find the problem.

3.1 Language features
3.1.1 Pattern matching
Erlang programming is based in large part on describing patterns
that are then matched and enforced by the Erlang runtime system.

Example 1: Pattern matching in function head

factorial(N) when integer(N), N>0 ->
 N * factorial(N-1);
factorial(0) ->
 1.

The function in Example 1 above will only accept an integer as
input. Anything else will immediately trigger an exception. The
same goes for expressions inside a function body. In Example 2
below, the function write_to_file/2 can be relied upon to either
output Data to Filename, or exit:

Example 2: Pattern matching within function body

write_to_file(Filename, Data) ->
 {ok, Fd} = file:open(Filename, write),
 ok = io:fwrite(Fd, "~p.~n", [Data]),
 ok = file:close(Fd).

The write_to_file/2 function above contains a series of checks:

1. The function file:open/2 returns {ok, Fd} if, and only if, the
file given by Filename could be opened with write access.

2. The function io:fwrite/3 will nowadays exit upon failure, so
asserting that it returns ‘ok’ is actually redundant.

3. Finally, it is asserted that the file referenced by file descriptor
Fd was properly closed.

This is a very common way to write Erlang functions, and proves
highly useful when designing test cases. Assertions are implicit in
the Erlang syntax, and a test case will either run to completion
passing all built-in assertions, or fail with a verbose error
description. In Example 3 below, taken from the OTP test suite
for built-in storage structures, pattern-matching and concurrency
support are used to verify that the access rights work as they
should (indentation modified to fit publication format):

Example 3: Test case from OTP’s ‘ets’ test suite

privacy(doc) ->
 ["Privacy check. Check that a "
 "named(public/private/protected) table "
 "cannot be read by the wrong process(es)."];
privacy(suite) -> [];
privacy(Config) when list(Config) ->
 ?line process_flag(trap_exit,true),
 ?line Nosy =
 spawn_link(?MODULE,nosy,[self()]),
 receive

 {'EXIT',Nosy,Reason} ->
 ?line exit({privacy_test,Reason});
 ok ->
 ok

 end,

 %% check read rights
 ?line [] = ets:lookup(pub, foo),
 ?line [] = ets:lookup(prot,foo),
 ?line {'EXIT',{badarg,_}} =
 (catch ets:lookup(priv,foo)),

 %% check write rights
 ?line true = ets:insert(pub, {1,foo}),
 ?line {'EXIT',{badarg,_}} =
 (catch ets:insert(prot,{2,foo})),
 ?line {'EXIT',{badarg,_}} =
 (catch ets:insert(priv,{3,foo})),

 %% check that it really wasn't written, either
 ?line [] = ets:lookup(prot,foo),

 Nosy ! die,
 receive

 {'EXIT',Nosy,_} ->
 ok

 end,
 ok.

nosy(Boss) ->
 Pub = ets:new(pub, [public,named_table]),
 Prot = ets:new(prot,[protected,named_table]),
 Priv = ets:new(priv,[private,named_table]),
 Boss ! ok,
 receive

 die ->
 ok

 end.

3.1.2 Process supervision
All execution of Erlang programs takes place in dedicated
lightweight threads – processes. An exception causes the process
in question to die, not necessarily affecting other processes in the
system. Processes communicate with each other using
asynchronous message passing, and the receiving process can
apply pattern matching on the message queue to facilitate
selective message reception and prioritization of messages.

Furthermore, processes can be linked. When a process dies, all
processes linked to it will also die (“cascading exit”), unless they
have been configured to trap exits, in which case they will receive
an exit notification as a regular message. This mechanism is used
to implement special supervisor processes, which make sure that
the system is able to heal from partial failure. A supervisor will
normally restart a crashed process a (configurable) number of
times, before failing in its turn, escalating the problem to the next
higher level.

Since processes crashing do not bring down the rest of the system,
faults can be trapped by error reporting software and presented in
a user-friendly fashion.

3.2 Error reports
Erlang is a symbolic language, and data structures can thus easily
presented in a very accessible format. This greatly simplifies
interpretation of error reports and inspection of storage structures.

A standard error report contains information about type of fault,
the name of the function and identity of the process where the
fault occurred, and a call chain helping the designer to further
clarifying the root cause. See examples in chapter 3.4 below.

3.3 Patching, code change
Once an error has been located to a certain module, that module
can be modified, recompiled and inserted into a running system.
Processes executing within that same module can continue
running the old version of the code, either until completion or
until they elect to migrate smoothly to the new version. This
allows for both interactive fault localization and rapid correction
of minor faults.

3.4 Small Example
A small example will serve to illustrate many of the above
mentioned features. The following program implements a simple
adder, using OTP’s generic server behavior.

Example 4a: Simple client-server program

-module(adder).
-behaviour(gen_server).

%% Only exported functions are callable from
%% outside the module
-export([start_link/1,
 add/2,
 read/1]).

%% gen_server-specific exports
-export([init/1,
 handle_call/3,
 code_change/3,
 terminate/2]).

start_link(InitialValue) ->
 gen_server:start_link(Module = adder,
 InitialValue,
 Options = []).

%% Client functions
add(Adder, Value) ->
 gen_server:call(Adder, {add, Value}).

read(Adder) ->
 gen_server:call(Adder, read).

%% Server callback functions
init(InitialValue) ->
 {ok, InitialValue}.

handle_call({add, N}, From, Value) ->
 NewValue = Value + N,
 {reply, NewValue, NewValue};
handle_call(read, From, Value) ->
 {reply, Value, Value}.

terminate(Reason, Value) ->
 ok.

The following Erlang session illustrates a way to compile and test
the above example by hand. The indentation of the output has
been slightly edited to fit the page layout and comments have
been inserted to clarify the sequence:

Example 4b: Interactive compile-and-test session

Erlang (BEAM) emulator version ... [threads:0]
Eshell V... (abort with ^G)

First, start the SASL application4 for descriptive error
and progress reporting:

4 SASL = System Architecture Support Libraries, part of OTP

1> application:start(sasl).
ok
2>

Some output snipped; the progress reports tell of
processes that have been started. The reports include
process identifier, start function (module, function and
arguments, or “mfa”), as well as some process
supervision options.

=PROGRESS REPORT==== 8-Jul-2002::22:02:17 ===
 supervisor: {local,sasl_sup}
 started: [{pid,<0.47.0>},
 {name,release_handler},
 {mfa,{release_handler,
 start_link,[]}},
 {restart_type,permanent},
 {shutdown,2000},
 {child_type,worker}]

=PROGRESS REPORT==== 8-Jul-2002::22:02:17 ===
 application: sasl
 started_at: nonode@nohost

2> cd("c:/dev/erlang/sigplan/src").
c:/dev/erlang/sigplan/src
ok

Compile the adder module:

3> c(adder).
{ok,adder}

The module is now compiled and loaded. Now start the
server process, and try the client functions from the shell
prompt. The shell uses the same pattern matching syntax
as the Erlang language:

4> {ok,Adder} = adder:start_link(17).
{ok,<0.66.0>}
5> adder:add(Adder,3).
20
6> adder:add(Adder,-3).
17
7> adder:read(Adder).
17

So far— so good. Now, try an illegal client request:

8> adder:add(Adder,b).

=ERROR REPORT==== 8-Jul-2002::22:17:12 ===
** Generic server <0.66.0> terminating
** Last message in was {add,b}
** When Server state == 17
** Reason for termination ==
** {badarith,[{adder,handle_call,3},
 {proc_lib,init_p,5}]}
** exited: {badarith,[{adder,handle_call,3},
 {proc_lib,init_p,5}]} **

The above error report, generated by the Generic Server
framework, warns that the server is about to terminate,
then presenting some useful information, such as a
function call trace, the internal state of the server, and the
last message received by the server. This shows us that the
server crashed in the function adder:handle_call/3 (in

order to handle the message {add, b}). The reason for the
crash is listed as ‘badarith’ — clearly from trying to add
‘b’ to 17. What follows below is the standard SASL crash
report, generated by the supervisor once it detects the
death of a child. Here, we are given additional
information, such as process meta-data for the child and
its neighbors.

9>
=CRASH REPORT==== 8-Jul-2002::22:17:12 ===
 crasher:
 pid: <0.66.0>
 registered_name: []
 error_info: {badarith,
 [{adder,handle_call,3},
 {proc_lib,init_p,5}]}
 initial_call: {gen,init_it,
 [gen_server,<0.63.0>,
 <0.63.0>,adder,17,[]]}
 ancestors: [<0.63.0>]
 messages: []
 links: [<0.63.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 610
 stack_size: 23
 reductions: 139
 neighbours:
 neighbour: [{pid,<0.63.0>},
 {registered_name,[]},
 {initial_call,
 {shell,evaluator,3}},
 {current_function,
 {gen,wait_resp_mon,3}},
 {ancestors,[]},
 {messages,[]},
 {links,[<0.22.0>,<0.66.0>]},
 {dictionary,[]},
 {trap_exit,false},
 {status,waiting},
 {heap_size,233},
 {stack_size,22},
 {reductions,293}]

The main bug in this program was of course allowing the client to
send invalid data to the server. At the very least, the client should
die instead of the server. A quick fix is to add a type guard to the
client function:

Example 4c: Modification of client-server program

add(Adder, Value) when integer(Value) ->
 gen_server:call(Adder, {add, Value}).

This will give another type of behavior:

Example 4d: Compile and test of modified program

33> adder:add(Adder,b).

=ERROR REPORT==== 23-Jul-2002::21:44:37 ===
Error in process <0.94.0> with exit value:
{function_clause,[{adder,add,
 [<0.88.0>,b]},
 {erl_eval,expr,3},
 {erl_eval,exprs,4},
 {shell,eval_loop,2}]}

The error report shows that there was no matching
pattern for the function call adder:add(<0.88.0>, b). It
also shows a function call chain — this one is typical for
the shell evaluator.

** exited: {function_clause,
 [{adder,add,[<0.88.0>,b]},
 {erl_eval,expr,3},
 {erl_eval,exprs,4},
 {shell,eval_loop,2}]} **

This is perfectly in line with the philosophy of Erlang
programming: It is acceptable to let the process crash due to a
programming error (in this case, faulty input, presumably from
another program module). The OTP supervision framework (not
used in the above example) takes care of restarting the crashed
process, and the detailed error reports make it straightforward to
find and correct most errors. Through thoughtful use of pattern
matching, the program can be made to clearly describe — and at
the same time assert — the correct behavior. This greatly reduces
the need for error handling code in the program flow.
Programmers accustomed to other languages may find it difficult
to accept this style of programming, but tend to find that it leads
to shorter and clearer programs and greatly simplifies testing.

3.5 Diagnosing faults
Programming faults are usually relatively easy to locate, as long as
error reports are generated. A more difficult class of problem is
when a process consumes too much memory or processing power,
or bottlenecks appear in the system. In the following, a few of the
most basic, and most widely used, diagnostic tools are described.

Figure 3: Process listing in Erlang

Figure 3 illustrates one of the many helper commands available in
the Erlang shell: listing all active processes together with
registered name, current function, message queue length, etc.

Figure 4: Individual process information

Figure 4 illustrates how any given process can be inspected,
revealing plenty of process meta-data. As most processes in a
massively concurrent system are idle most of the time, it often
pays to look at the current function and focus on processes that
seem to wait for something (could be a sign of deadlock). Being
able to inspect the process stack may, even though it is difficult to
interpret, provide a clue (Figure 5):

Figure 5: Example of process stack backtrace

In this case, nothing to worry about. The data structures shown in
the output mainly represent state variables.

Quite often, it is important to locate the “hot spots”: processes
that execute often, or consume large amounts of memory.
Working interactively in the shell of the Erlang VM being studied
tends to disturb the real-time characteristics one wishes to study.
One of the tools developed by AXD 301 System Management is a
small “top-like” program that remotely inspects and displays the
status of the most active processes in an Erlang node (see Figure
6).

More complex tools monitor garbage collection or function calls,
making it possible to do advanced profiling with little effort.
Erlang has extensive support for tracing, and trace filters can be
set interactively in order to limit the trace output. Even sequence
trace exists, allowing a “trace token” to follow a message from
process to process. In our experience, tools that activate a set of
pre-programmed trace functions tend to be favored by our testers
and designers, as they provide much information rather easily.

While a more conventional graphical debugger with breakpoints
and stepwise execution exists, it is often of limited value when
debugging real-time applications.

Figure 6: Erlang-based “distributed top”

4. Characteristics of Test Automation
Programs
Test automation is predominately about running a series of “black
box” test sequences, continuously verifying that the system’s
response to given stimuli falls within specifications.

Regardless of which implementation techniques are selected,
some common requirements can be identified:

� Program control of stimuli on the network is essential

� A lot of activities must be controlled concurrently

� Supervision of tools is needed

� Co-ordination of traffic and synchronisation of timers

� Collection of logs from several sources

� Monitoring the liveness of the System Under Test

4.1 Requirements on Test Automation Tools
4.1.1 General middleware stuff
A framework is needed where several different types of control
data can be handled, in the worst case one type for each tool that
is connected to the System Under Test. This means that a group of
protocol converters must be programmed. The framework must
also be open in the sense that one more protocol converter (for a
new tool) can be added with only minor effects on the existing
converters. In the same vein it must be possible to change existing
converters without having to rewrite all middleware. A modular
approach is preferable.

Several design decisions must be made. One concerns the balance
between a set of library functions and a set of specialised
programs, one for each individual task. This is probably even
more relevant for programming of the Test Cases that are to be
run by the Test Executor. Another important design decision
concerns the choice of programming language. There is no
obvious relation between the programming language in which the
tools, including the Test Executor, are programmed, and the
programming language in which the Test Cases are written. From
a maintenance point of view it is an advantage if they are the
same, provided that there is no penalty in terms of speed or other
performance factors.

In the case of Erlang/OTP and AXD 301, the test environment is
essentially the same as the development and execution
environment for the product. The same language is used for
product, testing framework, and test cases.

4.1.2 Concurrency stuff
It is mandatory that concurrency (both in execution and control) is
provided from the start. The simplest way to achieve this is to
utilise a programming language with native concurrency built-in.
Two examples of such languages are TTCN and Erlang. If
concurrency is not part of the language libraries have to be built
that emulate native concurrency. Or scheduling has to be
programmed from scratch, no small task!

An asynchronous model of communication between the Test
Executor and the Test Tools (and likewise between the whole Test
System and the System Under Test) is preferable. The reason is
that it is generally more robust and also corresponds better to the
real conditions of target telecom and datacom systems. A reactive
system being exposed to stochastically varying traffic conditions.

Erlang was designed to support massive concurrency with
thousands of threads, possibly distributed across multiple virtual
machines. Asynchronous message passing and selective message
reception offer excellent support for design of e.g. protocol
handlers.

4.1.3 Tool supervision stuff
Many tools, like TSS2000, can be controlled and supervised
remotely, most of such control is carried over TCP/IP. For some
tools, like MGTS from Tekelec, which needs emunet, it is
necessary to have additional tools that are used to handle
connections in a network.

Generally it is necessary to have at least a set of Start and Stop
commands available to the Test Executor for each tool. In such
commands it is useful to be able to send a text string that specifies
the name of the program to be executed, perhaps also additional
parameters that may be needed. If such basic communication is
not available a set of predefined programs must be used and the
co-ordination task becomes less flexible. The best situation is that
not only Start and Stop can be controlled but also all operation of
the tool can be monitored continuously, and parameters be
changed at runtime.

With Erlang, all aspects of the system can be controlled and
supervised remotely. The normal way to test the AXD 301 switch
is to attach a test server to the control system (2-32 control
processors) using normal Distributed Erlang mechanisms. This
allows the test server to remotely call any exported function in any

module in the control system, as well as communicate with any
process in the distributed control system.

4.1.4 Traffic coordination stuff
If “both-side-connection” model for a call is used both the A-side
(originating side) and the B-side (terminating side) of the call
must be co-ordinated. Someone must keep control over which
resources are being seized and busy-mark them (or follow some
other algorithm to deliver unused resources to new calls). This
calls for complicated programs, perhaps involving a lot of internal
signalling. This complication can be avoided to some extent by
designating groups of A-subscribers and B-subscribers, as has
been demonstrated by Ericsson Traffic Lab in Hungary[11]. A call
is directed towards such a named group. Simple statistical
methods decide if the call shall be answered or not.

A more radical way is to choose the “half-connection” model first
suggested by Däcker et al. during the POTS experiments[12] that
preceded the birth of Erlang. This is the model used in AXD 301.

4.1.5 Log handling stuff
A set of Text files with logs from the different tools must be
collected, transformed into common notation so that useful data
can be extracted concerning traffic load, link usage, number of
successful calls, cell loss etc. These logs will have to be combined
with data from Test Case Execution and perhaps also with
collected internal data from the System Under Test concerning
such data as control processor load, handling of overload and
congestion.

Erlang/OTP provides comprehensive support for logging,
including support for exporting and browsing logs. Ubiquitous
libraries for efficient data storage, counters, etc, combined with
highly developed tracing support simplify the collection of system
data.

4.1.6 Robustness stuff
The classical problem of Testers and Designers fighting over who
is to blame when an error has occurred (“There is a programming
fault in the switch!” — “No, there is a fault in the Load Tester, it
sends bad protocol data!”) should be avoided. The only way to
avoid this is to look upon Test Programs as vital parts during
Design, parts that must also be thoroughly tested and maintained,
preferably under configuration control like Clearcase.

Regarding the whole Test System it should be based on sound
principles of modularity and fail-safe operation. When faults
appear in one Test Tool controlled by the Test Executor the other
tools should not be affected. The Test Executor should be
designed with extra safety measures so that it can handle
weeklong stability tests. This probably involves Self-Repair and
automatic restarts if too many faults occur.

This is certainly one of Erlang’s strongest points. It was designed
from the ground up to simplify the construction of extremely
robust, self-healing systems. In AXD 301, all test suites are
version-controlled together with the applications.

4.1.7 Maintenance stuff
Configuration Control is key. But also Debug Control must be
possible to add (perhaps by recompilation with additional debug
flags set) if problems occur later, for example during regression
testing.

Erlang/OTP has excellent support for tracing. Function calls,
message passing, process scheduling and garbage collection can
be monitored, and complex filters can be activated in order to
limit the generation of trace messages. All trace output can be
timestamped and directed to the screen, disk or network.

4.1.8 Protocol extensibility stuff
It is a great advantage if the language with which Test Cases are
designed has support for the data description language ASN.1.
That means that drivers and protocol converters can be created
with a minimum of effort, using the protocol definitions directly
to derive parsers. ASN.1 descriptions of many standard protocols
can be found in the public domain or requested from
standardisation bodies.

Erlang/OTP supports ASN.1, IDL and XML5.

4.1.9 Platform and implementation stuff
UNIX (or Linux) is the preferred implementation platform due to
uncontested stability. Multi-platform support is even better. It is
an open question how tools should communicate internally and
with the Test Executor. There were requirements during the early
BRAVE days to use CORBA. For real-time control there is a
penalty to pay with the overhead caused by CORBA.

Erlang runs on several UNIX dialects, as well as on Win32,
VxWorks and (soon) OSE Delta. Object code and distribution
protocol are identical on all platforms, making it possible to
combine platforms into a heterogeneous distributed network.

5. Conclusion
The same features that make Erlang/OTP an excellent
development platform for Telecom products also make it ideal for
development of test automation systems. When using the same
tools for product development and test automation, exciting
synergies between designers and testers can be explored.
Designers, often reluctant to get involved in test suites, suddenly
find themselves writing test cases, and testers can get more
actively involved in fault localization and profiling. Erlang’s
expressive power also helps reduce the need for specification
languages, whose main purpose is to communicate intentions
between system management, design and test.

The addition of powerful support for test automation can be
expected to further increase the leverage provided by Erlang/OTP
for designing complex carrier-class products.

5 XML is supported through a selection of Open Source

contributions.

6. REFERENCES
[1] 1/1056-FCPBT 103 104 Uen, “MAIN

REQUIREMENT SPECIFICATION FOR A TEST
MANAGEMENT SYSTEM”, Simon Hoff’s RS for
TMS, including Test Automation

[2] Report on LXJ/Vs stuff earlier (Phase 7 PDC)

[3] Thomas Arts and Clara Benac Earle, “Development of
a verified Erlang Program for Resource Locking”,
(is available at
http://www.ericsson.com/cslab/~thomas/publ2.shtml)

[4] See http://www.prover.com/research/research-
papers.xml

[5] Magnus Fröberg, “Automatic Code Generation from
SDL to a Declarative Programming Language”,
http://www.ericsson.com/cslab/publications/sdl2erlang.
ps

[6] Ericsson AXD 301, http://www.ericsson.com/datacom/
products/wan_core/axd301/index.shtml

[7] Lucent Meeting 3/2/00, see
http://www.slac.standford.edu/grp/trip/lucent-mar02-
2000.html

[8] “Taqua in the news”,
http://www.taqua.com/news/press_telecomclick.asp

[9] Strata Incorporated,
http://www.stratainc.com/private.htm

[10] Ulf Wiger, “Four-fold increase in productivity and
quality”, FemSYS 2001, München,
http://www.erlang.se/publications/Ulf_Wiger.pdf

[11] ETH/RL-2001:0137, Rev A, “Automated System Test
Environment for GSM on the Net”

[12] B. Däcker, N. Elshiewy, P. Hedeland, C.W. Welin,
M.C. Williams, “Experiments with Programming
Languages and Techniques for Telecommunication
Applications” (6th Intl Conference on Software
Engineering for Telecommunication Switching
Systems, Eindhoven 1986)

