
Automated testing using Unix Shell Scripting 
 

Software Testing Conference, Organized by QAI, India 
Prepared by Prasad Patwa and Aniruddha Patwardhan 

 
 
Abstract .............................................................................................................................1 
Unix Introduction ...............................................................................................................2 

Unix architecture diagram .............................................................................................3 
Advantages of using Shell for test automation on Unix.....................................................3 
Some useful shell commands for test automation ............................................................4 
Interactive Application testing using expect ......................................................................6 
Executing shell scripts on Windows using Cygwin............................................................6 
When not to use shell scripts for automated testing .........................................................6 
References........................................................................................................................7 
Appendix A........................................................................................................................8 

Sample bash script to automate installation testing ......................................................8 
Appendix B......................................................................................................................12 

Interactive Application testing using expect sample script ..........................................12 
 
 

Abstract 
Testing is a critical part of software development - and Shell, which is already part of 
Unix can help you do it quickly and easily. This paper, explains advantages of Unix shell 
scripting for test automation on Unix, useful shell commands for test automation, testing 
interactive application using expect, porting shell scripts on Windows, with some 
examples of automated test scripts developed using Shell Scripts. 
 
 
 
 
 
 



Unix Introduction 
Unix is one of the most popular operating systems, It has many advantages like. 

• Multitasking: Unix is designed to do many things at the same time; e.g., printing 
out one file while the user edits another file. This is a major feature for users, 
since users don't have to wait for one application to end before starting another 
one. 

• Multiusers: The same design that permits multitasking permits multiple users to 
use the computer. The computer can take the commands of a number of users -- 
determined by the design of the computer -- to run programs, access files, and 
print documents at the same time. 

• Stability: Robustness and Stability is one of the design goals of Unix and its 
natively stable. Unix doesn’t need to be rebooted periodically to maintain 
performance levels. It doesn’t freeze up or slow down over time due to memory 
leaks and such. Continuous up-times of hundreds of days (up to a year or more) 
are not uncommon. Therefore requires less administration and maintenance.  

• Performance: Unix provides persistent high performance on workstations and on 
networks. It can handle unusually large numbers of users simultaneously. . Also 
we can tune the unix systems in a better way to meet our performance needs 
ranging from embedded systems to SMP systems. 

• Compatibility - Unix can be installed on many different types of machines, 
including main-frame computers, supercomputers and micro-computers. .  Linux- 
A popular variants of Unix run on almost 25 architectures including Alphs/VAX, 
intel, PowerPC etc. Unix also is compatible with windows for file sharing etc via 
smb(samba file system) and NFS(Network File system) 

• Security: Unix is one of the most secure operating systems. “Firewalls” and 
flexible file access permission systems prevent access by unwanted visitors or 
viruses. 

 
Unix is mostly used for high performance server applications. Unix is the leader in 
serving the Web. About 90% of the Internet relies on Unix operating systems running on 
Apache, the world's most widely used Web server. With development of Linux it is also 
being used for desktop applications, and embedded systems.  
 
Today, the combination of inexpensive computers and free high-quality Linux operating 
system and software provide incredibly low-cost solutions for both basic home office use 
and high-performance business and science applications. 
 
With growth in development of Unix applications and the criticality of these application 
Testing of Unix application is also becoming critical.  
 
With so many variants of Unix and increasing build frequency, testing effort has 
increased. Testing if done manually will be effort intensive and time consuming. 
 
Automation of testing activities will help reduce the testing time and also increased the 
reliability of testing. 
 
There are many testing tools in the marketplace that offer a lot of functionality to help 
with the testing efforts. However, they need to be obtained, installed, and configured, 



which could take up valuable time and effort. Also most of the tools are windows specific 
and offer limited help to automating Unix side test efforts. 
 
Shell which is a part of Unix already provides lot of powerful commands which can be 
used for automating the testing efforts. 
 

Unix architecture diagram 
 

 
Fig: Simplified View of Unix Architecture 

 
Shell, which is the ‘command interpreter’ for Unix systems, resides at the base of most 
of the user level Unix programs. All the commands invoked by us are interpreted by shell 
and it loads the necessary programs into memory. Thus being a default command 
interpreter on Unix makes shell a preferred choice to interact with programs and write 
glue code for test scripts. 
 

Advantages of using Shell for test automation on Unix 
Following are some of the advantages of using Shell for test automation on Unix, 

• Free: Most of the popular shells are free and open source (GPL'ed) no additional 
cost. No Additional software required: All the Unix systems have a default shell 
already installed and configured (bash/ksh/csh). So no need to spend extra time 
getting it ready. Thus shell is something native to Unix systems and a native 
always understands the problems pretty well and help solving it. 

• Powerful: Bash provides plenty of programming constructs to develop scripts 
having simple or medium complexity. 

• Extensible: We can extend the shell scripts by using additional useful 
commands/programs to extend the functionality of the scripts 

• We can write shell scripts using default editors available (vi, emacs etc) and can 
run and test it. No specialized tool is needed for the same. 

• Can even generate color-highlighted reports of test case execution, which is of 
great help. 

 



• Portability: Shell scripts are portable to other Unix platforms as well to Windows 
via Cygwin. Cygwin which is a shell on windows allows us to execute shell scripts 
on windows as well 

   

Some useful shell commands for test automation 
For testing we have to mostly do test setup, test procedure steps, validation of actual 
result with expected result, clean up steps to bring the application back to original state, 
scheduling a test, prepare test results log, and report the test results. Shell has many 
commands, which can help achieve automation of these test activities.  
 
Following are some useful Unix Shell commands for automation,  
 
1. Verification and setup testing: 
 When we want to test for installation/ uninstallation etc we can 
 effectively use the file verification functionality of the shell. 
 e.g. if [ -d <dirname> ]; 
      then 
   echo "dir exist" 
      else 
   echo "no such dir" 
      fi 
 On similar lines we can use  
  -f to check whether a file exist 
  -r to check whether a file is readable 
  -w to check whether a file is writeable 
  -x to check whether a file is executable 
  
 We can also invoke external commands and check for their return code  
 for success/failure of execution using predefined variable $? 
  
 e.g.  
      some command 
      if [ $? -eq 0 ]; 
      then 
   echo "successfully executed" 
      else 
   echo "failed while executing" 
      fi 
  

Also availability of common looping constructs like 'for' and 'while' make shell 
obvious choice to automate installation/ uninstallation testing, checking out 
whether commands/programs are executing successfully or not and functionality 
testing as well. 

  
Most of the time we need to setup some environment variables, have some 
proper links (test environment) to set, this task can be automated using shell and 
is of great help. 
 

 



2. Functionality testing: 
Most of the programs in Unix generate some kind of file or update  some existing 
files. Via shell we can use grep (Global Regular Expression Parser) to parse the 
file for required patterns and based on those validate the execution of the 
particular program.  

  
Sell also support sed (stream editor) and awk to manipulate the streams and to 
verify that required patterns are available at required places, this helps test team 
in validating the application 

 
Some more commands like 'cut', 'sort', 'xargs' helps us in validating the required 
functionality of the programs under test. 

 
3. Maintainability and grouping: 

Shell provides 'function' to logically group the test cases. Using functions we can 
have each function for a test case and then we can  call these functions from 
main script. This provides lot of maintainability and grouping support for test 
automation. 

 
Once we have a function for each test case, we can invoke required functions as 
per our requirements, thus can create test sets like sanity test run, full test run 
etc. 

  
Shell also provide the functionality to check for the return code from the functions 
so we can execute the test cases in a controlled way based on success/failure of 
sanity/ base test cases. 

 
4. Scheduling: 

Most of the times requirements say we need to schedule the automation scripts 
for a particular time. We can use 'cron' and 'at' for scheduling the scripts. 

  
Using 'cron' we can schedule the scripts to execute every five minutes, every 
hour, every midnight or practically at any particular time we want. cron is used for 
repeated scheduling. 

 
We can use 'at' if we want to schedule the scripts at a particular time but want to 
execute it only once and not in a repeated way. 

 
5. Reporting: 

We can use 'echo' or 'echo -e'(enhanced capabilities) to generate results after 
executing test cases. We can also generate colorized result reports for better 
understanding. 

  
 We can also use redirection operators '>' to send the output of the  program/ 

script to some file and '>>' operator to append the output to some existing file. 
This helps us in generating reports as well. 

 
We can also use following commands 
‘tee’ - this command is useful for reading from a std input and writing it to both 
std output as well as file. This can be used in a effective way to generate reports 
on the console at the same time save them to a file. 



 
We can also mail the generated reports or errors encountered using the mail 
command. 
mail -s <subject> $MAILTO < $FILE_TO_MAIL 
FILE_TO_MAIL is the file containing the text of the mail with only '.' on the last 
line. 'mail' program can be used to mail this file to user specified in the MAILTO 
variable. 

 
Sample installation testing test script is given in Appendix A. The test results generated 
by this test scripts are also given. 

Interactive Application testing using expect 
Expect is a program that talks to other interactive programs according to a script. We 
need to mention to expect what to expect from the program and what is the response we 
need to send. 
 
When you write an expect script the output from your program is an input to your expect 
script and output of the expect script is input to your program. So now your expect script 
keep on expecting output from the program and keep on feeding input the interactive 
program, thus automating the interactive programs. 
 
Expect is generalized so that it can interact with any of the user level command/ 
program. Expect can also talk to several programs at the same time. In general expect is 
useful for running any program, which requires interaction between user and the 
program. All that is necessary is the interaction can be characterized using a program. 
  
Example of automation interactive programs using Expect is given in Appendix B 
 

Executing shell scripts on Windows using Cygwin 
Cygwin is a Linux like environment for windows. It consists of two parts 
 - A dll, cygwin1.dll which acts as a Linux emulation layer providing 
   Linux API functionality. 
 - A collection of tools, which provide Linux look and feel. 
 
Cygwin is available under GPL (GNU Public License) and is free software. 
Cygwin gives us almost all standard unix shells (bash, ksh, csh etc) so you can run most 
of your scripts on windows as well. 
 
Thus cygwin provides lot of portability to shell scripts. 

When not to use shell scripts for automated testing 
Its not a good idea to use shell scripts in following cases. 
 - Need to generate or manipulate graphics or GUI 
 - Need port or socket I/O  
 - Complex applications with type checking, function prototyping etc 
 - Need data structures like linked lists, trees etc. 
If any of the above is true it’s a good idea to use more powerful languages like C, C++ or 
Perl/ Python for test automation 



 

References 
“Using Bash shell scripts for function testing” by Angel Rivera  
http://www-106.ibm.com/developerworks/linux/library/l-bashfv.html 
 
“Advanced Bash scripting guide from The Linux Documentation Project (TLDP)” 
 
“Unix Shell Programming” by Yashavant Kanetkar, BPB Publication. 



Appendix A 

Sample bash script to automate installation testing 
The program below automates the installation testing of yahoo messenger rpm, a 
commonly needed rpm, which is, not get installed by default. This also validates the 
installation and generates a test report. 
 
Here we are grouping different test cases in function e.g. ym_install() – this functions 
tries to install the rpm and returns 0/1 based on whether its successful or not. Similarly 
ym_install_dir_validate() function validates the creation of required directories. 
 
Now we invoke all this functions via a main script and check for validity of each test 
case. Finally we generate the test report about whether the tests are successful or not. 
 
Bash Shell Script to automate installation testing of yahoo messenger 
---------------------------------------------------------------------------------------------------- 
 
#!/bin/sh 
# Script to install ym and validate its installation 
SRC_RPM=$1 
TARGET_DIR="/opt/ymessenger" 
TARGET_FILE="$TARGET_DIR/bin/ymessenger" 
YM_LIB="$TARGET_DIR/lib/libgtkhtml.so.6" 
 
INSTALL_LOG="ym_install.log" 
 
SETCOLOR_SUCCESS="echo -en \\033[1;32m" 
SETCOLOR_FAILURE="echo -en \\033[1;31m" 
SETCOLOR_WARNING="echo -en \\033[1;33m" 
SETCOLOR_NORMAL="echo -en \\033[0;39m" 
 
ym_install() 
{ 
 echo -n "Installing RPM" 
  
 rpm -Uvh --force $SRC_RPM > /dev/null 
 if [ $? -eq 0 ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 
  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
   
 return 0 
} 
 



ym_install_dir_validate() 
{ 
 echo -n "Checking for Directory $TARGET_DIR" 
  
 if [ -d $TARGET_DIR ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 
  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
 
 echo -n "Checking for Directory $TARGET_DIR/bin" 
  
 if [ -d $TARGET_DIR ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 
  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
 
 echo -n "Checking for Directory $TARGET_DIR/lib" 
  
 if [ -d $TARGET_DIR ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 
  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
 
 
 return 0 
} 
 
ym_install_file_validate() 
{ 
 echo -n "Checking for file permissions on $TARGET_FILE" 
  
 if [ -x $TARGET_FILE ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 



  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
 
 
 return 0 
} 
 
ym_install_lib_validate() 
{ 
 echo -n "Checking for library of $TARGET_FILE" 
  
 if [ -x $YM_LIB ]; then 
  $SETCOLOR_SUCCESS 
  echo -e "\t [OK]" 
  $SETCOLOR_NORMAL 
 else 
  $SETCOLOR_FAILURE 
  echo -e "\t [FAILED]" 
  $SETCOLOR_NORMAL 
 fi 
  
 return 0 
} 
 
echo -e "\t\tAutomated testing of YM install procedure" 
echo -e "\t\t-----------------------------------------" 
 
ym_install 
if [ $? -ne 0 ]; then 
 echo "Error: Install Failed." 
 echo "Error: Aborting Remaining test cases." 
 exit 1 
fi 
   
echo " " 
ym_install_dir_validate 
if [ $? -ne 0 ]; then 
 echo "Error: Check for directory failed." 
 echo "Error: Aborting Remaining test cases." 
 exit 1 
fi 
echo " " 
 
ym_install_file_validate 
if [ $? -ne 0 ]; then 
 echo "Error: Check for files and permissions failed." 
 echo "Error: Aborting Remaining test cases." 
 exit 1 
fi 



echo " " 
 
ym_install_lib_validate 
if [ $? -ne 0 ]; then 
 echo "Error: Install library validation failed" 
 echo "Error: Aborting Remaining test cases." 
 exit 1 
fi 
 
echo " " 
echo -e "Summary:" 
echo -e "--------" 
echo -e "YM Install Succesful." 
echo -e "All Sanity test cases executed successfully without any error." 
 
exit 0 
 
Report Generated by the automation script 
-------------------------------------------------------------- 
 
  Automated testing of YM install procedure 
  -------------------------------------------------------- 
 Installing RPM        [OK] 
 Checking for Directory /opt/ymessenger    [OK] 
 Checking for Directory /opt/ymessenger/bin    [OK] 
 Checking for Directory /opt/ymessenger/lib    [OK] 
 Checking for file permissions on /opt/ymessenger/bin/ymessenger [OK] 
 Checking for library of /opt/ymessenger/bin/ymessenger   [OK] 
 
 Summary: 
 ------------- 
  YM Install Succesful. 
  All Sanity test cases executed successfully without any error. 
 



Appendix B 

Interactive Application testing using expect sample script 
 Program to automate: (test.sh) 
  #!/bin/sh 
  echo "Enter name" 
  read name 
 
  echo "Hi $name. Good morning" 
 
 Expect script to automate: 
  #!/usr/bin/expect -f 
  spawn ./test.sh 
 
  expect "Enter name" 
  send "anix\n" 
 
  interact 


	Abstract
	Unix Introduction
	Unix architecture diagram

	Advantages of using Shell for test automation on Unix
	Some useful shell commands for test automation
	Interactive Application testing using expect
	Executing shell scripts on Windows using Cygwin
	When not to use shell scripts for automated testing
	References
	Appendix A
	Sample bash script to automate installation testing

	Appendix B
	Interactive Application testing using expect sample script


