
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



The 7 dwarves: debugging information beyond gdb

Arnaldo Carvalho de Melo
Red Hat, Inc.

acme@redhat.com
acme@ghostprotocols.net

Abstract

The DWARF debugging information format has been so
far used in debuggers such as gdb, and more recently in
tools such as systemtap and frysk.

In this paper the author will show additional scenarios
where such information can be useful, such as:

• Showing the layout of data structures;

• Reorganizing such data structures to remove align-
ment holes;

• Improving CPU cache utilization;

• Displaying statistics about inlining of functions;

• Re-creating structs and functions from the debug-
ging information;

• Showing binary diffs to help understand the effects
of any code change.

And much more.

1 Introduction

This paper talks about new ways to use the DWARF de-
bugging information inserted into binaries by compilers
such as gcc.

The author developed several tools that allow:

• Extracting useful information about data structures
layout;

• Finding holes and padding inserted by the compiler
to follow alignment constraints in processor archi-
tectures;

• To find out possibilities for reduction of such data
structures;

• Use of information about function parameters and
return types to generate Linux kernel modules for
obtaining data needed for generation of callgraphs
and values set to fields at runtime;

• A tool that given two object files shows a binary
diff to help understanding the effects of source
code changes on size of functions and data struc-
tures.

Some use cases will be presented, showing how the tools
can be used to solve real world problems.

Ideas discussed with some fellow developers but not yet
tried will also be presented, with the intent of hopefully
having them finally tested in practice by interested read-
ers.

2 DWARF Debugging Format

DWARF [3] is a debugging file format used by many
compilers to store information about data structures,
variables, functions and other language aspects needed
by high level debuggers.

It has had three major revisions, with the second being
incompatible with the first, the third is an expansion of
the second, adding support for more C++ concepts, pro-
viding ways to eliminate data duplication, support for
debugging data in shared libraries and in files larger than
4 GB.

The DWARF debugging information is organized in
several ELF sections in object files, some of which will
be mentioned here. Please refer to the DWARF [3] spec-
ification for a complete list. Recent developments in
tools such as elfutils [2] allow for separate files with the

• 35 •



36 • The 7 dwarves: debugging information beyond gdb

debugging information, but the common case is for the
information to be packaged together with the respective
object file.

Debugging data is organized in tags with attributes.
Tags can be nested to represent, for instance, variables
inside lexical blocks, parameters for a function and other
hierarchical concepts.

As an example let us look at how the ubiquitous hello
world example is represented in the “.debug_info” sec-
tion, the one section that is most relevant to the subject
of this paper:

$ cat hello.c

int main(void)

{
printf("hello, world!\n");

}

Using gcc with the -g flag to insert the debugging infor-
mation:

$ gcc −g hello.c −o hello

Now let us see the output, slightly edited for brevity,
from eu-readelf, a tool present in the elfutils package:

$ eu−readelf −winfo hello

DWARF section ‚.debug_info‚ at offset

0x6b3:

[Offset]

Compilation unit at offset 0:

Version: 2, Abbrev section offset: 0,

Addr size: 4, Offset size: 4

[b] compile_unit

stmt_list 0

high_pc 0x0804837a

low_pc 0x08048354

producer "GNU C 4.1.1"

language ISO C89 (1)

name "hello.c"

comp_dir "~/examples"

[68] subprogram

external

name "main"

decl_file 1

decl_line 2

prototyped

type [82]

low_pc 0x08048354

high_pc 0x0804837a

frame_base location list [0]

[82] base_type

name "int"

byte_size 4

encoding signed (5)

Entries starting with [number] are the DWARF tags that
are represented in the tool’s source code as DW_TAG_
tag_name. In the above output we can see some: DW_
TAG_compile_unit, with information about the
object file being analyzed, DW_TAG_subprogram,
emitted for each function, such as “main” and DW_
TAG_base_type, emitted for the language basic
types, such as int.

Each tag has a number of attributes, represented in
source code as DW_AT_attribute_name. In the
DW_TAG_subprogram for the “main” function we
have some: DW_AT_name (“main”), DW_AT_decl_
file, that is an index into another DWARF section
with the names for the source code files, DW_AT_
decl_line, the line in the source code where this
function was defined, DW_AT_type, the return type
for the “main” routine. Its value is a tag index, that in
this case refers to the [82] tag, which is the DW_TAG_
base_type for “int,” and also the address of this func-
tion, DW_AT_low_pc.

The following example exposes some additional
DWARF tags and attributes used in the seven dwarves.
The following struct:

struct swiss_cheese {
char a;

int b;

};

is represented as:

[68] structure_type

name "swiss_cheese"

byte_size 8

[7d] member

name "a"

type [96]

data_member_location 0

[89] member

name "b"

type [9e]

data_member_location 4

[96] base_type

name "char"

byte_size 1



2007 Linux Symposium, Volume Two • 37

[9e] base_type

name "int"

byte_size 4

In addition to the tags already described we have now
DW_TAG_structure_type to start the representa-
tion of a struct, that has the DW_AT_byte_size
attribute stating how many bytes the struct takes (8
bytes in this case). There is also another tag, DW_
TAG_member, that represents each struct member. It
has the DW_AT_byte_size and the DW_AT_data_
member_location attribute, the offset of this mem-
ber in the struct. There are more attributes, but for
brevity and for the purposes of this paper, the above are
enough to describe.

3 The 7 dwarves

The seven dwarves are tools that use the DWARF
debugging information to examine data struct layout
(pahole), examine executable code characteristics
(pfunct), compare executables (codiff), trace exe-
cution of functions associated with a struct (ctracer),
pretty-print DWARF information (pdwtags), list
global symbols (pglobal), and count the number of
times each set of tags is used (prefcnt).

Some are very simple and still require work, while oth-
ers, such as pahole and pfunct, are already being
helpful in open source projects such as the Linux kernel,
xine-lib and perfmon2. One possible use is to pretty-
print DWARF information accidentally left in binary-
only kernel modules released publicly.

All of these tools use a library called libdwarves,
that is packaged with the tools and uses the DWARF
libraries found in elfutils [2]. By using elfutils, many of
its features such as relocation, reading of object files for
many architectures, use of separate files with debugging
information, etc, were leveraged, allowing the author to
concentrate on the features that will be presented in the
next sections.

Unless otherwise stated, the examples in the following
sections use a Linux kernel image built for the x86-64
architecture from recent source code.1

The Linux kernel configuration option CONFIG_

DEBUG_INFO has to be selected to instruct the compiler

1circa 2.6.21-rc5.

to insert the DWARF information. This will make the
image much bigger, but poses no performance impact on
the resulting binary, just like when building user space
programs with debug information.

3.1 pahole

Poke-a-hole, the first dwarf, is used to find alignment
holes in structs. It is the most advanced of all the tools
in this project so far.

Architectures have alignment constraints, requiring data
types to be aligned in memory in multiples of their
word-size. While compilers do automatically align data
structures, careful planning by the developer is essential
to minimize the paddings (“holes”) required for correct
alignment of the data structures members.

An example of a bad struct layout is in demand to better
illustrate this situation:

struct cheese {
char name[17];

short age;

char type;

int calories;

short price;

int barcode[4];

};

Adding up the sizes of the members one could expect
that the size of struct cheese to be 17 + 2 + 1 + 4 + 2 +
16 = 42 bytes. But due to alignment constraints the real
size ends up being 48 bytes.

Using pahole to pretty-print the DWARF tags will
show where the 6 extra bytes are:

/∗ <11b> ∼/examples/swiss_cheese.c:3 ∗/
struct cheese {

char name[17]; /∗ 0 17 ∗/

/∗ XXX 1 byte hole, try to pack ∗/

short age; /∗ 18 2 ∗/
char type; /∗ 20 1 ∗/

/∗ XXX 3 bytes hole, try to pack ∗/

int calories; /∗ 24 4 ∗/
short price; /∗ 28 2 ∗/



38 • The 7 dwarves: debugging information beyond gdb

/∗ XXX 2 bytes hole, try to pack ∗/

int barcode[4]; /∗ 32 16 ∗/
}; /∗ size: 48, cachelines: 1 ∗/

/∗ sum members: 42, holes: 3 ∗/
/∗ sum holes: 6 ∗/
/∗ last cacheline: 48 bytes ∗/

This shows that in this architecture the alignment rule
state that short has to be aligned at a multiple of 2
offset from the start of the struct, and int has to be
aligned at a multiple of 4, the size of the word-size on
the example architecture.

Another alignment rule aspect is that a perfectly ar-
ranged struct on a 32-bit architecture such as:

$ pahole long

/∗ <67> ∼/examples/long.c:1 ∗/
struct foo {

int a; /∗ 0 4 ∗/
void ∗b; /∗ 4 4 ∗/
char c[4]; /∗ 8 4 ∗/
long g; /∗ 12 4 ∗/

}; /∗ size: 16, cachelines: 1 ∗/
/∗ last cacheline: 16 bytes ∗/

has holes when built on an architecture with a different
word-size:

$ pahole long

/∗ <6f> ∼/examples/long.c:1 ∗/
struct foo {

int a; /∗ 0 4 ∗/

/∗ XXX 4 bytes hole, try to pack ∗/

void ∗b; /∗ 8 8 ∗/
char c[4]; /∗ 16 4 ∗/

/∗ XXX 4 bytes hole, try to pack ∗/

long g; /∗ 24 8 ∗/
}; /∗ size: 32, cachelines: 1 ∗/

/∗ sum members: 24, holes: 2 ∗/
/∗ sum holes: 8 ∗/
/∗ last cacheline: 32 bytes ∗/

This is because on x86-64 the size of pointers and long
integers is 8 bytes, with the alignment rules requiring
these basic types to be aligned at multiples of 8 bytes
from the start of the struct.

To help in these cases, pahole provides the
--reorganize option, where it will reorganize the
struct trying to achieve optimum placement regarding
memory consumption, while following the alignment
rules.

Running it on the x86-64 platform we get:

$ pahole −−reorganize −C foo long

struct foo {
int a; /∗ 0 4 ∗/
char c[4]; /∗ 4 4 ∗/
void ∗b; /∗ 8 8 ∗/
long g; /∗ 16 8 ∗/

}; /∗ size: 24, cachelines: 1 ∗/
/∗ last cacheline: 24 bytes ∗/
/∗ saved 8 bytes! ∗/

There is another option, --show_reorg_steps that
sheds light on what was done:

$ pahole −−show_reorg_steps
−−reorganize −C foo long

/∗ Moving ’c’ from after ’b’ to after ’a’ ∗/
struct foo {

int a; /∗ 0 4 ∗/
char c[4]; /∗ 4 4 ∗/
void ∗b; /∗ 8 8 ∗/
long g; /∗ 16 8 ∗/

}; /∗ size: 24, cachelines: 1 ∗/
/∗ last cacheline: 24 bytes ∗/

While in this case there was just one step done, us-
ing this option in more complex structs can involve
many steps, that would have been shown to help un-
derstanding the changes performed. Other steps in the
--reorganize algorithm includes:

• Combining separate bit fields

• Demoting bit fields to a smaller basic type when the
type being used has more bits than required by the
members in the bit field (e.g. int a:1, b:2;
being demoted to char a:1, b:2;)

• Moving members from the end of the struct to fill
holes

• Combining the padding at the end of a struct with
a hole



2007 Linux Symposium, Volume Two • 39

Several modes to summarize information about all the
structs in object files were also implemented. They will
be presented in the following examples.

The top ten structs by size are:

$ pahole −−sizes vmlinux | sort −k2 −nr
| head
hid_parser: 65784 0

hid_local: 65552 0

kernel_stat: 33728 0

module: 16960 8

proto: 16640 2

pglist_data: 14272 2

avc_cache: 10256 0

inflate_state: 9544 0

ext2_sb_info: 8448 2

tss_struct: 8320 0

The second number represents the number of alignment
holes in the structs.

Yes, some are quite big and even the author got im-
pressed with the size of the first few ones, which is one
of the common ways of using this tool to find areas that
could get some help in reducing data structure sizes. So
the next step would be to pretty-print this specific struct,
hid_local:

$ pahole −C hid_local vmlinux

/∗ <175c261>

∼/net-2.6.22/include/linux/hid.h:300 ∗/
struct hid_local {

uint usage[8192]; // 0 32768
// cacheline 512 boundary (32768 bytes)
uint cindex[8192]; // 32768 32768
// cacheline 1024 boundary (65536 bytes)
uint usage_index; // 65536 4
uint usage_minimum; // 65540 4
uint delimiter_depth; // 65544 4
uint delimiter_branch;// 65548 4

}; /∗ size: 65552, cachelines: 1025 ∗/
/∗ last cacheline: 16 bytes ∗/

So, this is indeed something to be investigated, not a bug
in pahole.

As mentioned, the second column is the number of
alignment holes. Sorting by this column provides an-
other picture of the project being analyzed that could
help finding areas for further work:

$ pahole −−sizes vmlinux | sort −k3 −nr
| head
net_device: 1664 14

vc_data: 432 11

tty_struct: 1312 10

task_struct: 1856 10

request_queue: 1496 8

module: 16960 8

mddev_s: 672 8

usbhid_device: 6400 6

device: 680 6

zone: 2752 5

There are lots of opportunities to use --reorganize
results, but in some cases this is not true because the
holes are due to member alignment constraints specified
by the programmers.

Alignment hints are needed, for example, when a set of
fields in a structure are “read mostly,” while others are
regularly written to. So, to make it more likely that the
“read mostly” cachelines are not invalidated by writes in
SMP machines, attributes are used on the struct mem-
bers instructing the compiler to align some members at
cacheline boundaries.

Here is one example, in the Linux kernel, of an align-
ment hint on the struct net_device, that appeared on
the above output:

/∗
∗ Cache line mostly used on receive
∗ path (including eth_type_trans())
∗/
struct list_head poll_list

____cacheline_aligned_in_smp;

If we look at the excerpt in the pahole output for this
struct where poll_list is located we will see one of
the holes:

/∗ cacheline 4 boundary (256 bytes) ∗/
void ∗dn_ptr; /∗ 256 8 ∗/
void ∗ip6_ptr; /∗ 264 8 ∗/
void ∗ec_ptr; /∗ 272 8 ∗/
void ∗ax25_ptr; /∗ 280 8 ∗/

/∗ XXX 32 bytes hole, try to pack ∗/

/∗ cacheline 5 boundary (320 bytes) ∗/
struct list_head poll_list;

/∗ 320 16 ∗/



40 • The 7 dwarves: debugging information beyond gdb

These kinds of annotations are not represented in the
DWARF information, so the current --reorganize
algorithm can not be precise. One idea is to use the
DWARF tags with the file and line location of each
member to parse the source code looking for alignment
annotation patterns, but this has not been tried.

Having stated the previous possible inaccuracies in the
--reorganize algorithm, it is still interesting to use
it in all the structs in an object file to present a list of
structs where the algorithm was successful in finding a
new layout that saves bytes.

Using the above kernel image the author found 165
structs where holes can be combined to save some bytes.
The biggest savings found are:

$ pahole −−packable vmlinux | sort −k4
−nr | head
vc_data 432 176 256

net_device 1664 1448 216

module 16960 16848 112

hh_cache 192 80 112

zone 2752 2672 80

softnet_data 1792 1728 64

rcu_ctrlblk 128 64 64

inet_hashinfo 384 320 64

entropy_store 128 64 64

task_struct 1856 1800 56

The columns are: struct name, current size, reorga-
nized size and bytes saved. In the above list of structs
only a few clearly, from source code inspection, do not
have any explicit alignment constraint. Further analy-
sis is required to verify if the explicit constraints are
still needed after the evolution of the subsystems that
use such structs, if the holes are really needed to isolate
groups of members or could be reused.

The --expand option is useful in analyzing crash
dumps, where the available clue was an offset from a
complex struct, requiring tedious manual calculation to
find out exactly what was the field involved. It works by
“unfolding” structs, as will be shown in the following
example.

In a program with the following structs:

struct spinlock {
int magic;

int counter;

};

struct sock {
int protocol;

struct spinlock lock;

};

struct inet_sock {
struct sock sk;

long daddr;

};

struct tcp_sock {
struct inet_sock inet;

long cwnd;

long ssthresh;

};

the --expand option, applied to the tcp_sock
struct, produces:

struct tcp_sock {
struct inet_sock {

struct sock {
int protocol; /∗ 0 4 ∗/
struct spinlock {

int magic; /∗ 4 4 ∗/
int counter; /∗ 8 4 ∗/

} lock; /∗ 4 8 ∗/
} sk; /∗ 0 12 ∗/
long daddr; /∗ 12 4 ∗/

} inet; /∗ 0 16 ∗/
long cwnd; /∗ 16 4 ∗/
long ssthresh; /∗ 20 4 ∗/

}; /∗ size: 24 ∗/

The offsets are relative to the start of the top level struct
(tcp_sock in the above example).

3.2 pfunct

While pahole specializes on data structures, pfunct
concentrates on aspects of functions, such as:

• number of goto labels

• function name length

• number of parameters

• size of functions

• number of variables



2007 Linux Symposium, Volume Two • 41

• size of inline expansions

It also has filters to show functions that meet several cri-
teria, including:

• functions that have as parameters pointers to a
struct

• external functions

• declared inline, un-inlined by compiler

• not declared inline, inlined by compiler

Also, a set of statistics is available, such as the number
of times an inline function was expanded and the sum
of these expansions, to help finding candidates for un-
inlining, thus reducing the size of the binary.

The top ten functions by size:

$ pfunct −−sizes vmlinux | sort −k2 −nr
| head
hidinput_connect: 9910

load_elf32_binary: 6793

load_elf_binary: 6489

tcp_ack: 6081

sys_init_module: 6075

do_con_write: 5972

zlib_inflate: 5852

vt_ioctl: 5587

copy_process: 5169

usbdev_ioctl: 4934

One of the attributes of the DW_AT_subprogram
DWARF tag, that represents functions, is DW_AT_
inline, which can have one of the following values:

• DW_INL_not_inlined – Neither declared in-
line nor inlined by the compiler

• DW_INL_inlined – Not declared inline but in-
lined by the compiler

• DW_INL_declared_not_inlined – De-
clared inline but not inlined by the compiler

• DW_INL_declared_inlined – Declared in-
line and inlined by the compiler

The --cc_inlined and --cc_uninlined options in
pfunct use this information. Here are some examples
of functions that were not explicitly marked as inline by
the programmers but were inlined by gcc:

$ pfunct −−cc_inlined vmlinux | tail
do_initcalls

do_basic_setup

smp_init

do_pre_smp_initcalls

check_bugs

setup_command_line

boot_cpu_init

obsolete_checksetup

copy_bootdata

clear_bss

For completeness, the number of inlined functions was
2526.

3.3 codiff

An object file diff tool, codiff, takes two versions of a
binary, loads from both files the debugging information,
compares them and shows the differences in structs and
functions, producing output similar to the well known
diff tool.

Consider a program that has a print_tag function,
handling the following struct:

struct tag {
int type;

int decl_file;

char ∗decl_line;
};

and in a newer version the struct was changed to this
new layout, while the print_tag function remained
unchanged:

struct tag {
char type;

int decl_file;

char ∗decl_line;
int refcnt;

};

The output produced by codiff would be:

$ codiff tag−v1 tag−v2
tag.c:



42 • The 7 dwarves: debugging information beyond gdb

struct tag | +4

1 struct changed

print_tag | +4

1 function changed, 4 bytes added

It is similar to the diff tool, showing how many bytes
were added to the modified struct and the effect of this
change in a routine that handles instances of this struct.

The --verbose option tells us the details:

$ codiff −V tag−v1 tag−v2

tag.c:

struct tag | +4

nr_members: +1

+int refcnt /∗ 12 4 ∗/

type

from: int /∗ 0 4 ∗/

to: char /∗ 0 1 ∗/

1 struct changed

print_tag | +4 # 29 → 33

1 function changed, 4 bytes added

The extra information on modified structs includes:

• Number of members added and/or removed

• List of new and/or removed members

• Offset of members from start of struct

• Type and size of members

• Members that had their type changed

And for functions:

• Size difference

• Previous size -> New size

• Names of new and/or removed functions

3.4 ctracer

A class tracer, ctracer is an experiment in creating
valid source code from the DWARF information.

For ctracer a method is any function that receives as
one of its parameters a pointer to a specified struct. It
looks for all such methods and generates kprobes en-
try and exit functions. At these probe points it collects
information about the data structure internal state, sav-
ing the values in its members in that point in time, and
records it in a relay buffer. The data is later collected
in userspace and post-processed, generating html + CSS
callgraphs.

One of the techniques used in ctracer involves cre-
ating subsets of data structures based on some criteria,
such as member name or type. This tool so far just fil-
ters out any non-integer type members and applies the
--reorganize code2 on the resulting mini struct to
possibly reduce the memory space needed for relaying
this information to userspace.

One idea that probably will be pursued is to generate
SystemTap [1] scripts instead of C language source files
using kprobes, taking advantage of the infrastructure
and safety guards in place in SystemTap.

3.5 pdwtags

A simple tool, pdwtags is used to pretty-print DWARF
tags for data structures (struct, union), enumerations and
functions, in a object file. It is useful as an example of
how to use libdwarves.

Here is an example on the hello world program:

$ pdwtags hello

/∗ <68> /home/acme/examples/hello.c:2 ∗/
int main(void)

{
}

This shows the “main” DW_TAG_subprogram tag, with
its return type.

In the previous sections other examples of DWARF tag
formatting were presented, and also tags for variables,
function parameters, goto labels, would also appear if
pdwtags was used on the same object file.

2Discussed in the pahole section.



2007 Linux Symposium, Volume Two • 43

3.6 pglobal

pglobal is an experimentation to print global vari-
ables and functions, written by a contributor, Davi Ar-
nault.

This example:

$ cat global.c
int variable = 2;

int main(void)
{

printf("variable=%d\n",
variable);

}

would present this output with pglobal:

$ pglobal −ve hello
/∗ <89> /home/acme/examples/global.c:1 ∗/
int variable;

which shows a list of global variables with their types,
source code file, and line where they were defined.

3.7 prefcnt

prefcnt is an attempt to do reference counting on
tags, trying to find some that are not referenced any-
where and could be removed from the source files.

4 Availability

The tools are maintained in a git repository that can
be browsed at http://git.kernel.org/?p=
linux/kernel/git/acme/pahole.git, and
rpm packages for several architectures are avail-
able at http://oops.ghostprotocols.net:
81/acme/dwarves/rpm/.

Acknowledgments

The author would like to thank Davi Arnault for pglobal,
proving that libdwarves was not so horrible for a tool
writer; all the people who contributed patches, sug-
gestions, and encouragement on writing these tools;
and Ademar Reis, Aristeu Rozanski, Claudio Mat-
suoka, Glauber Costa, Eduardo Habkost, Eugene Teo,
Leonardo Chiquitto, Randy Dunlap, Thiago Santos, and
William Cohen for reviewing and suggesting improve-
ments for several drafts of this paper.

References

[1] Systemtap.
http://sourceware.org/systemtap.

[2] Ulrich Drepper. elfutils home page.
http://people.redhat.com/drepper.

[3] DWARF Debugging Information Format
Workgroup. Dwarf debugging information format,
December 2005. http://dwarfstd.org.



44 • The 7 dwarves: debugging information beyond gdb


