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Note, for example, that (0, ¢; 1, 0), which is the (1, 1) entry of matrix
. (a, B), has the interpretation: team 1 lcses zero women and zero cats and

team 2 loses one man and zero mice.

f A8.6 APPROACHABILITY-EXCLUDABILITY THEORY AND

COMPOUND DECISION PROBLEMS

The asymptotic theory of multicomponent attrition games is based on
Blackwell’s [1956 a] analogue of the minimax theorem for games with
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vector payoffs. In such games, the players have m and n pure strategies as
usual, but the payoff corresponding to the (7, j) strategy pair is a Q-tuple
(or vector in Q-space) of the form c(i, j) = [c1(3, 7), ca(i, 1), - * -, c(i, )]
The multicomponent attrition games are of this form with Q = R + S'and
(%, j) equal to the attrition payoff, but, as we shall see below, quite differ-
ent interpretations of vector games also exist.

Let us denote by C the convex hull of the set of points (in Q-space)
(i, j), where i and j vary over their domains. For example, if Q = 2,
m = 2, and n = 3, then a typical region C is shown in Fig. 2. Blackwell
raises this question: If such a game is repeated in time, can player 1 force the
average payoff to approach a preassigned closed subset T of C?  Equally well, when
can player 2 exclude the average payoff from T?

The following notation will be useful.

Letx = (x1, x2,* * * , *m) be
one of player 1's mixed strategies on a component game; then if player 2




480  Sequential Compounding of Two-Person Games [A8.6
uses pure strategy j, the expected payoff will be

aAN. \.v = M k..nAmu .\v

14

Thus, his expected Payoff when he uses x will lie in the smatlest convex set
containing the » points e(x,),j=1,2 - - - » n; we denote this set by
C(x,"). Exactly Parallel notation [y, c(;, ¥); and C(-, y)] is introduced for
pPlayer 2.  Finally, the average payoff for k trials is denoted

e® = [elini) F elinja) + - - - + elinj)l/k,

where (i3, j5) denotes the strategy pair chosen on trial 4,

We observe that a sufficient condition for T to be excludable by player 2
is the existence of a strategy y(® such that C(-,y®) is disjoint from T, for if
y'? is used at each trial the average payoff will approach C(:, y‘), and so
not 7. Blackwell shows, in essence, that thisis a necessary condition too.
To be more precise: any convex set T is either approachable by 1 or excludable by 2,
and the latter is equivalent to the existence or a y such that T and C(C,y®) are
disjoint. Furthermore, he displays a strategy for player 1 which will force
the average payoff to approach T whenever such a strategy exists.

The idea is simple. If at trial k, the average payoff §® js already in 7,
select any x on trial £ + 1. If, however, &® and T are disjoint, choose x
so that C(x, ) and T lie on the same side of the supporting hyperplane of T
which both passes through the point ¢’ of T that is closest to &® and which
is perpendicular to the line Joining these two points. (See Fig. 3.) Such
an x can be shown to exist if and only if the convex set T is not excludable
by 2. (Roughly the idea is this: Suppose 1 tries to get an expected payoff
which lies as far below the separating hyperplane as possible.  Player 2

. .

€annot guarantee that 1 will not get a point on or below this hyperplane

below the hyperplane.) Since the expected payoff ¢* on trial # +1
will, of course, be in C(x, -), let us, for heuristic reasons, simplify the
argument by supposing that the actual payoff on trial £ + 1 is the point
¢* in C(x, -); then the average payoff €**V will ie on the line joining
&® and c* Ifkis large, &*+ will be much nearer to &® than to c*,
and so it will be nearer to ¢’ than &® jg, This suggests that in time the

Ll
whereas the approachability theorem asserts something about the time

sequence {&®} being true with Probability 1. This gap is bridged by a
probability existence theorem that we will not discuss except to remark
that it is similar in spirit to the martingale theorem which arose in the
section on recursive games.
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Two points about approachability-excludability zﬁon« .zooa clarifica-
tion: why is it related to the study of multicomponent attrition games, and
in what sense is it an analogue of the minimax theory? The first seems to
be a problem since we know that ﬂEEooﬂwvosn:ﬁ games are recursive
games, whereas the present theory is not cast in &ma form. . w:n recall that
Blackwell confined himself to questions about ruin _u_.ovwg__.:om when the
initial resources are held in fixed proportion and increased <.=-.=.EH bound.
It is thus plausible that each player’s ability to oOJ:.o_ the limiting behav-
ior of the time average of the attrition payoffs will govern the outcome,
and in fact it does. . o

Next, let us turn to the sense in which the .EooQ generalizes the mini-
max theorem. Suppose that the payoffs c(7; j) are actually real numbers,

Hyperplane through ¢’ perpendicular
1o line from &* to ¢’

Fig. 3

i.e, Q =1, and that they are interpreted as 1’s payoffs. If we let a
denote the minimum and b the maximum of these mn n.:BUQ.u. the set C
is simply the interval of the real line from a to @. inclusive. If » denotes
the value of the game, player 1 can approach the S:NJB_ [2, 8] mb&. player
2 can approach the interval [4, ]. Or in more familiar words, using the
law of large numbers, the expected value » of ».ﬁﬁo..vn_.mo: Zero-sum mm_dw.
can be given a frequency interpretation as the limiting value of a tempora
average. . .

Earlier we promised a second and important :.:Q.Edﬁﬁos .om the ap-
proachability-excludability theory, and it is now time to fulfill it. Let us
suppose that a two-person game is to be repeated and that player .a__m
solely interested in his long-term average vwwwm.. He -can certainly
secure a limiting average at least equal to the maximum value of the .nQMM
ponent game by playing maximin at each stage. But, as we have point
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out previously, it has long been recognized that such a str i
s e ategy 1s
realistic in any of the following cases: gy 15 not very

i. In a zero-sum game when player 2 is not a conscious minimaxer.
ii. In a non-zero-sum game.

iii. $.~rab player 2 is “nature” in the usual decision problem under
uncertainty—the statistical inference problem.

Ww_ccmam [1951] has emphasized that when a (statistical) decision prob-
lem is movomﬁa in time, e.g., when a stream of individuals must be classified
by their individual test responses, the statistician can often do as well
mmwmﬂ.vﬁomnm:v* with no prior information as when he knows the exact
_:EMSW proportion of times player 2 uses each strategy. To be more
mwonmmn, suppose 1’s payoffs are a;; and that a priori he knows that the pro-
portion of the time player 2 will use strategy j, J=1,2 - nisy*
He can, therefore, achieve the limiting average return ’ PR

py*) = max AM a..?.*v

by playing that strategy { which maximizes the right-hand expression on
each trial. Hannan [1957] shows that asymptotically player 1 can do as
well as p(y *) without knowing y * beforehand provided that he bases his choice
at each trial on his knowledge of 2’s previous choices and on chance
(Actually, he need only consider 2’s empirical mixed strategy over z:w
preceding moves.)

Blackwell [1956 5] shows that this can be concluded from approachabil-
ity-excludability theory. He chooses Q = n + 1 and defines

OAn...\.v"AOvOu Tt .Ov muov v .O.h..u.Vv

swrnno the 1 appears in the jth position and a;; is the (j, J) payoff of the
given game to player 1. This definition may seem strange, but it is less so
when one observes that the first n components of ¢* equal player 2s
empirical mixed strategy over the first £ trials and the last component is
I’s average payoff during those trials. Now, let T" be the set of all
(n + 1)-tuples whose first n components represent a probability vector
call it y, and whose last component, ¢4 1, is at least equal to p(y), i.e., .
,w, = {the set of all (c1, ¢3, * * * , ¢ny Cny1) such that ¢; 2 0,

3
n

forj=1,2,---,n Mnu."uv
jm=1
n
and ¢4 2 M aijcj, fori=1,2, .. , m}.
j=1
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The result is proved if we can show that T is approachable by 1, for, if it is
approachable, then with any limiting distribution y* player 1 receives a
limiting average value of at least p(y*). Note that we do not necessarily
assume that the empirical mixed strategy over the first £ trials, y®,

approaches a limit as £ — «. When the limit does not exist, the result is

‘interpreted roughly as meaning that the average payoff for large £ will be

close to p(y®).
The approachability of T follows from the observation that, for each y,
the set C(-, y) just touches T. This we can see as follows: Ify = (31, ya,

-+, ya), then C(:, y) is the set of (n + 1)-tuples (y1, y3, * = * , yns
¢ny1), where min M ai;9; € eap1 $ max M ai;yj, so it intersects T at the
i 5 i 4

point c.u.. Jo "t s dms bAv«v”_.
The choice of a strategy which leads the average payoff to approach T

is far more subtle than it may seem. For example, player 1’s “obvious”
strategy of playing optimal on trial £ + 1 against 2’s empirical mixed
strategy calculated over the first £ trials need not force the average payoff
to converge to 7. Remember that player 2 may not employ the limiting
mixed strategy y* at every (or indeed, any) of the trials.

Besides this asymptotic result, Hannan [1957] also has a great deal to
say about the rates of convergence for certain reasonable classes of player
1’s strategies. Other papers which extend the pioneering work of
Robbins {1951] on compound statistical decision problems are Hannan
and Robbins [1955], Laderman [1955], and Johns [1956].

AS8.7 DIVIDEND POLICY AND ECONOMIC RUIN GAMES

Most of the games we have encountered in this appendix meet the
following very general description: a known stochastic process is under
way, but at periodic intervals two players, perhaps opposing, can exert
some influence on the process. Shubik [1957] has pointed out that
corporate dividend policy can be looked upon in this way, and he has
begun to examine games suggested by this interpretation.

The simplest case is the degenerate single corporation game in which its
assets fluctuate from period to period according to a simple chance
mechanism. For example, if the capital accumulation is Z units (units
in terms of thousands or tens of thousands of dollars) in one period, we
might assume that in the next period it becomes Z + 1 with probability
p, or Z — 1 with probability ¢ =1 — p. The corporation is ruined if at
any period its capital drops below zero. Clearly, its chance of being
ruined within a specified time period is less the greater the capital at the
beginning of that period, but, on the other hand, money in the corporate

m
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