
Modeling Multiple Class Loaders
by a Calculus for Dynamic Linking∗

Sonia Fagorzi
DISI - Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy

fagorzi@disi.unige.it

Elena Zucca
DISI - Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy
zucca@disi.unige.it

Davide Ancona
DISI - Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy
davide@disi.unige.it

ABSTRACT
In a recent paper we proposed a calculus for modeling dy-
namic linking independently of the details of a particular
programming environment.

Here we use a particular instantiation of this calculus to
encode a toy language, called MCL, which provides an ab-
stract view of the mechanism of dynamic class loading with
multiple loaders as in Java.

The aim is twofold. On one hand, we show an example of
application of the calculus in modeling existing loading and
linking policies, showing in particular that Java-like loading
with multiple loaders can be encoded without exploiting the
full expressive power of the calculus. On the other hand, we
provide a simple formal model which allows a better un-
derstanding of Java-like loading mechanisms and also shows
an intermediate solution between the rigid approach based
only on the class path and that which allows arbitrary user-
defined loaders, which can be intricate and error-prone.

Keywords
Dynamic linking, multiple loaders, Java

1. INTRODUCTION
In a recent paper [1] we proposed a calculus (called CDL

for Calculus for Dynamic Linking in the sequel) for modeling
dynamic linking independently of the details of a particular
programming environment.

The calculus distinguishes at the language level the two
phases of software configuration and execution, by intro-
ducing separate syntactic notions of linkset expression and
command, respectively. More precisely, terms of CDL are

∗Partially supported by Dynamic Assembly, Reconfigu-
ration and Type-checking - EC project IST-2001-33477,
APPSEM II - Thematic network IST-2001-38957, and Murst
NAPOLI - Network Aware Programming: Oggetti, Lin-
guaggi, Implementazioni.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04 March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

configurations, which are pairs consisting of a linkset ex-
pression and a command. Configurations can evolve in two
ways: either by simplifying the linkset expression (that is,
performing a configuration step) or by performing a step
in the execution of the command. However, configuration
and execution phases are interleaved: an execution step may
trigger a configuration step (for instance, when a not yet
linked fragment is needed) and modify the execution con-
text (for instance, updating a fragment).

Here we use a particular instantiation of this calculus to
encode a toy language, called MCL, which provides an ab-
stract view of the mechanism of dynamic class loading with
multiple loaders as in Java [8, 7, 9].

The aim is twofold. On one hand, we show an example of
application of the calculus for modeling existing loading and
linking policies, showing in particular that Java-like loading
with multiple loaders can be encoded without exploiting the
full expressive power of the calculus (see the Conclusion).
On the other hand, we provide a simple formal model which
allows to understand Java-like loading mechanisms.

Terms in MCL model intermediate steps in the execution
of an application. Execution consists in the evaluation of
an expression in a very simple functional Java subset, where
classes only contain static methods and there is no inheri-
tance. Indeed, the only features we are interested in model-
ing here are the following: class loading is dynamically trig-
gered whenever the first reference to a class name is needed
(in our simple language, an instance creation or a static
method invocation), and the actual class which is loaded is
not uniquely determined by the class name, since different
class loaders can be used in the same application. In addi-
tion to considering a very simple language, we also do not
model bytecode verification, and the Java approach based
on reflection which allows the programmer to use arbitrary
class loaders by defining subclasses of the class ClassLoader.

One motivation is that, as done in previous papers for
other Java features (e.g., inheritance and late binding in [6],
checked exceptions in [2]), we want to study just one aspect
in isolation.

Moreover, we want to show an alternative stratified ap-
proach, distinguishing between the language at the user level
and a configuration language consisting in a fixed set of load-
ers, formally modeled by what we call a loading environment.
This approach is less flexible w.r.t. the Java behavior, where
both aspects are part of the language, hence loaders might
change during execution; here, instead, program execution
cannot affect the loading environment. On the other side,

this approach looks simpler, safer and less error-prone, so
we believe it can be a compromise between a rigid approach
based only on the class path and a total freedom in writing
user-defined loaders.

The rest of the paper is organized as follows. In Section
2 we formally define MCL (in 2.1 the syntax, in 2.2 the re-
duction rules modeling execution). In Section 3 we briefly
recall the calculus CDL introduced in [1]. In Section 4 we
define a translation from MCL into CDL and show that this
translation preserves the semantics. Finally in the Conclu-
sion we summarize the contribution of the paper and outline
further work.

2. A LANGUAGE WITH MULTIPLE CLASS
LOADERS

Notations
We denote by A

fin
→ B the set of the partial functions f from A to

B with finite domain, written dom(f); a1 : b1, . . . , an : bn denotes

the function which returns bi on ai, is undefined otherwise. We

write finite sequences in the form either a1, . . . , an or a1∈1..n
i .

2.1 Syntax
The syntax of the language is given in Fig.1.
Metavariables ` ∈ Loader, c ∈ CName, m and x range over

primitive sets of loaders, class names, method names, and
variables, respectively.

A loading environment λ is a function that, given a loader
` and a class name c (that is, a symbolic reference to a class
which appears in code), returns a pair consisting of another
loader `d and a class definition cd. We denote `d and cd
by λLoader(`, c) and λCDef(`, c), respectively. The mapping
from ` into `d abstractly models the delegation relationship
between the initiating and the defining loader for a class.
Indeed, in Java, when a class name which has not been
resolved yet is encountered, the current loader (called the
initiating loader), that is, that which has been used to load
the code currently in execution, can delegate the task to
another loader, until a loader (called the defining loader)
actually loads the class. The mapping from ` into cd models
the actual loading step (method defineClass in user-defined
loaders, see [7]).

Of course, if the defining loader `d obtained for a certain
class name c is taken as initiating loader for c, then we ex-
pect to obtain the same defining loader and class definition.
Formally we have the following requirement on λ:

if λLoader(`, c) = `d, then λ(`d, c) = λ(`, c).

Snapshots of the execution of an application are mod-
eled by configurations, which consist of three components: a
stack of loaders, where the top of the stack corresponds to
the loader which has been used to load the code currently
in execution, a loaded class cache which is a mapping of
the same kind of the loading environment which records the
encountered loading requests [8, 7, 9], and the expression
currently in execution.

A class definition consists of a class name and a sequence
of static method declarations, each one specifying the return
type, name, parameters and body of the method. Method
headers contain types for keeping a Java-like syntax (we do
not consider primitive types for simplicity, so types are just
class names); however, in this paper we do not deal with
type-checking.

Expressions which appear in user-defined code are of four
kinds: variable, instance creation,(static) method invoca-
tion, and let-in. As usual, in reduction semantics we will also
use expressions modeling intermediate steps of the evalua-
tion, in this case expressions of the form ret (e) representing
the evaluation of a method body inside an invoking expres-
sion (see rules (M2) and (R2) in Fig.2).

Values (that is, expressions which cannot be reduced, see
next section) are instance creation expressions.

2.2 Semantics
The semantics of MCL is modeled by a rewriting relation

on configurations, parameterized by a loading environment
assumed to be be fixed during the execution, formally:

λ
> ⊆ Conf × Conf.

In Java, execution of an application starts by invoking a class
name, say c. The effect is that the initial loader, say ` (typi-
cally the system loader), initiates the loading of c, an initial
class is loaded with defining loader `d (possibly coinciding
with `), and the body of the main method of this class, say e,
is executed, with current loader `d. Here for simplicity we do
not model main methods and assume that execution starts
from an initial configuration where these preliminary steps
have already been performed, hence the stack of loaders just
contains `d, and the domain of the loaded class cache con-
tains two elements (possibly coinciding), (`, c) and (`d, c).

Formally, initial configurations will have shape (`d; L; e),
with

• either L of the form (`d, c) : cd, with
λ(`d, c) = (`d, cd)

• or L of the form (`d, c) : cd, (`, c) : cd, with
λ(`, c) = λ(`d, c) = (`d, cd) and ` 6= `d.

Reduction rules are shown in Fig.2.
Rule (C) models a class loading step, which is performed

when a class name c is encountered with current loader ` and
the loading request (`, c) has not been considered yet (the
only two cases are instance creation and method invocation).
In this case, the loaded class cache L is updated, by adding
the association from (`, c) into the corresponding defining
loader `d and class definition cd in λ, and, if (`d, c) is not
already present (this means that it was not present in L and
that `d is different from `), the same association from (`d, c).

Rules (M1) and (M2) deal with invocation of a method
of an already loaded class. Rule (M1) models evaluation of
arguments from left to right. Rule (M2) models the method
invocation step: first, the loaded class cache is used to get
the defining loader `d and the class definition associated to
the current loader ` and the class name c; then, the current
expression to be evaluated is updated to the body of the in-
voked method where formal parameters have been replaced
by arguments, and the ret operator has been applied (see
rule (R2)). The current loader is updated to the defining
loader of the class to which the invoked method belongs,
that is, `d is put on top of the stack of loaders.

Rules (R1) and (R2) deal with method evaluation. Rule
(R1) is just a propagation rule. Rule (R2) models the end
of the evaluation of a method body, when we obtain a value.
In this case, a pop operation is performed on the stack of
loaders, so that the current loader comes back to that at the
time of the method invocation.

λ : Loader × CName
fin
→ Loader × CDef loading environments

γ ∈ Conf ::= (S; L; e) with configurations

S
∆
= `i

i∈1..n loaders stack

L : Loader × CName
fin
→ Loader × CDef loaded class cache

cd ∈ CDef ::= class definitions
class c {

static cj mj

�
c1
j x1

j , . . . , c
nj

j x
nj

j � {ej}
j∈1..p

}
e ∈ Exp ::= expressions

x variable
| new c() instance creation
| c.m(ei

i∈n) method invocation
| let x = e1 in e2 let-in
| ret (e) method evaluation

v ∈ Val ::= new c() values

Figure 1: MCL syntax

Rules (L1) and (L2) are the standard rules for the let-in
construct with a call-by-value semantics.

3. A CALCULUS OF LINKSETS
In this section we briefly present the calculus CDL which

we will use for encoding MCL. The reader can refer to [1] for
all technical details and an extended discussion on motiva-
tions.

Terms of the calculus are called configurations, model
snapshots in the lifetime of a software system, and are pairs
consisting of a linkset and a command, corresponding to
two different phases called configuration phase and execution
phase, respectively. The configuration phase corresponds to
the process of obtaining an executable application by com-
bining in various ways different pieces of software. This
phase may be interleaved with the execution phase, even
though it typically takes place before execution; for instance,
it can correspond to what is performed by a (static) linker.
In CDL, this phase is modeled by the fact that the linkset
is, in general, a complex expression, which must be reduced
to a normal form for performing some kind of command;
after that, it is possible to start reducing the command, in
the context provided by the linkset.

Basic linksets are collections of named, interdependent
code fragments, and operators for composing linksets corre-
spond to operations one can perform during configuration.
In particular, an important operation one can perform on
a linkset is to link a fragment, say X, that is, to resolve
the dependencies on X. Static linking (as modeled, e.g., by
Cardelli [4]) requires fully linked linksets in order to start
the execution of any command, so that all dependencies have
been resolved before the execution phase starts. In CDL,
instead, linking can take place at run-time too. Hence, ex-
ecution can start also when the linkset is not fully linked;
during execution of the command, we can find references to
other fragments which have not been resolved yet, hence
they need to be dynamically linked. Two forms of run-
time linking are considered: in the first form (permanent
dynamic linking), a fragment is permanently linked to the
executing program the first time it is needed. In the second
form (volatile dynamic linking), a fragment is made avail-

able to the executing program when its code is needed, but
not permanently linked, so that when a later reference to
the same fragment is encountered the linking must be per-
formed again, and in case the code of the fragment has been
changed thereafter the new version is used.

An important feature of CDL is that it is parametric in
the particular language used for writing code in single frag-
ments (the core language following the terminology used in
module systems). In the next section, in order to encode
MCL, we will define a particular instantiation of the calcu-
lus.

3.1 Syntax
The syntax of the calculus is given in Fig.3.
The metavariables X ∈ Name and x ∈ Var range over

(fragment) names X and variables x, respectively. Elements
of Exp are (core) expressions, that is, the expressions of the
underlying language used for defining single code fragments.
Intuitively, names are used to refer to fragments from out-
side a linkset, whereas variables are used in code within a
linkset (indeed, expressions are assumed to be built on top
of variables, see the production for Exp).

A basic linkset consists of three components. The ι com-
ponent is a mapping from variables into names and corre-
sponds to the input linkset fragments; the o component is
a mapping from names into expressions and corresponds to
the output fragments; finally, the ρ component is a mapping
from variables into expressions and represents the local (that
is, already linked) fragments. Variables in the domain of ι

and ρ are called the deferred and the local variables of the
basic linkset, respectively. The sets of deferred and local
variables must be disjoint.

There are four operators on linksets: the sum operator,
which allows merging of two linksets, and three different
link operators: link for static linking, dlinkp for permanent
dynamic linking and dlinkv for volatile dynamic linking. We
will explain linkset operators in more detail when introduc-
ing reduction rules for linksets and configurations.

The linkset expression dlink
K1

X1
(. . . (dlinkKn

Xn
(l)) . . .), where

n ≥ 0, Ki ∈ {p, v}, is abbreviated by dlink[P ;V] (l), where
P = {Xi | Ki = p} and V = {X1, . . . , Xn}\P (so, in the case
n = 0, dlink[∅;∅] (l) obviously coincides with l). This is sound

(C)
(`,S; L; e)

λ
> (`,S; L′; e)

e ::= new c() | c.m(vi
i∈1..n)

(`, c) 6∈ dom(L)

where, setting `d = λLoader(`, c), L′ is defined by:

L′ = � L, (`, c) : λ(`, c), (`d, c) : λ(`, c) if ` 6= `d and (`d, c) 6∈ dom(L′)
L, (`, c) : λ(`, c) otherwise

(M1)
(S; L; ei)

λ
> (S ′; L′; e′i)

(S; L; c.m(v1, . . . , vi−1, ei, . . . , en))
λ
> (S ′; L′; c.m(v1, . . . , vi−1, e

′
i, . . . , en))

(M2) �
`,S; L; c.m(vi

i∈1..n) � λ
> � `d, `,S; L; ret � ek{x

i
k : vi

i∈1..n
} ��� (`, c) ∈ dom(L)

where:

– LLoader(`, c) = `d

– LCDef(`, c) = class c {

static cj mj

�
c1
j x1

j , . . . , c
nj

j x
nj

j � {ej}
j∈1..p

}

– m = mk and n = nk, k ∈ 1..p

(R1)
(S; L; e)

λ
> (S ′; L′; e′)

(S; L; ret (e))
λ
> (S ′; L′; ret (e′))

(R2)
(`,S; L; ret (v))

λ
> (S; L; v)

(L1)
(S; L; e1)

λ
> (S ′; L′; e′1)

(S; L; let x = e1 in e2)
λ
> (S ′; L′; let x = e′1 in e2)

(L2)
(S; L; let x = v in e2)

λ
> (S; L; e2{x : v})

Figure 2: MCL reduction rules

since semantics of a linkset expression is invariant w.r.t. to
permutations and repetitions in a sequence of application
of the dynamic link operators, and, moreover, in case of
application of both a permanent and a volatile dynamic link
operator for the same name, only the permanent one is taken
into account (see the reduction rules in Fig.5).

Intuitively, commands model actions which can be per-
formed in the execution phase, which include standard exe-
cution of the underlying core expressions (hence expressions
are included into commands) and metaoperations on frag-
ments which can be interleaved with standard execution.
Examples of metaoperations are a set operation which up-
dates the code of an existing fragment, a get operation which
loads the code of some fragment, and the operation stop for
execution termination.

Expressions of the core language are not specified; we only
assume that they contain variables. In the next section we
will provide a definition of Exp for the particular instantia-
tion of CDL we use for translating MCL.

A configuration is a pair consisting of a linkset and a com-
mand. Note that the command in a configuration may con-
tain both variables (since expressions may contain variables)

and names of the current linkset. Indeed, on one hand an
execution step can be a standard execution step, that is, an
evaluation step of an expression. Code in execution can refer
to internal names of fragments, either already resolved (local
variables in ρ), or still to be resolved (deferred variables in ι).
In modeling concrete languages, as in the translation of next
section, variables will correspond to identifiers appearing in
code, e.g., class names (for a given current loader), and a
class name not loaded yet will be a deferred variable. On
the other hand, an execution step can be a metaoperation
which manipulates the fragment “from the outside”, hence
through names. Names will correspond to physical names
(in the file system or on the web) and ι to the mechanism
used by a loader for associating to a symbolic name a phys-
ical name. A set command, for instance, models the fact
that the code contained in some file is modified, either by
effect of an external agent or even by the application itself.

3.2 Semantics
We define two different reduction relations

conf
> and

exec
> , corresponding to the configuration and execution

l ∈ Linkset ::= linksets
[ι; o; ρ] with dom(ι) ∩ dom(ρ) = ∅ basic linkset

| l1 + l2 sum
| linkX (l) link
| dlink

p
X (l) (permanent) dynamic link

| dlinkv
X (l) volatile (dynamic) link

ι : Var
fin
→ Name input assignment

o : Name
fin
→ Exp output assignment

ρ : Var
fin
→ Exp local assignment

c ∈ Com ::= e | set(X, e) | get(X) | stop | . . . commands
e ∈ Exp ::= x | . . . (core) expressions

γ ∈ Conf ::= (l, c) configurations

Figure 3: CDL syntax

phase, respectively. By definition, these two relations are
defined over well-formed terms, so we have omitted all side
conditions ensuring well-formedness of terms.

The reduction rules for the configuration phase are given
in Fig.4 (we omit rules for contextual closure which can be
found in [1]). In this phase only the linkset expression in a
configuration is reduced.

The reduction rule for the sum is similar to those of mod-
ule and link calculi (see, e.g., [3]). This operation has the
effect of gluing together two linksets. The deferred and lo-
cal variables of one linkset must be disjoint from those of
the other and, moreover, the sets of output fragments of the
two linksets must be disjoint (dom(o1)∩dom(o2) = ∅). Both
these conditions are implicit, since reduction is defined only
over well-formed terms; the first condition can always be
satisfied by an appropriate α-conversion, while in the sec-
ond case the conflict cannot be resolved by an α-conversion
and the reduction gets stuck. The sets of input fragments
of the two linksets can have a non empty intersection and
the resulting set of input fragments of the sum is simply the
union of them; this means that imported fragments with the
same name in the two linksets are shared.

Finally, in the sum the sets of fragment names dynam-
ically linked is obtained by taking the union of the corre-
sponding sets in the two linksets, and taking only the per-
manent operator into account when both permanent and
volatile linking turn out to be applied to the same name.

In rule (link), the effect of linking fragment X is that this
fragment name is resolved, hence it disappears from the in-
put names and all the variables mapped by ι into it are now
linked, that is, they become local. Here ι\L denotes the
restriction of the partial function ι to the variables which
are not in L. These variables are associated with the defini-
tion of X in the output assignment, which must exist (side-
condition). Moreover, the name X also disappears from
those for which a dynamic linking operator is applied.

Note that there are no reduction rules for the dynamic
link operators; indeed, the intuition for these operators is
that they are not performed during the configuration phase,
but they will be performed on demand only after execution
is started (see reduction rules for configurations in Fig.5).
As a consequence, normal forms w.r.t. the configuration re-

lation are obtained by a sequence of dynamic linking op-
erators applied to a basic linkset, that is, are of the form
dlink[P ;V] ([ι; o; ρ]).

The reduction rules for the execution phase are given in
Fig.5 (we omit rules for contextual closure which can be
found in [1]).

The reduction relation
exec

> is parametric on the relation

core
> which corresponds to evaluation of core expressions.

The (linkset) and (core) rules express that an execution
step can consist in a configuration step of the linkset or, if
the command is a core expression, in an evaluation step at
the core level.

The subsequent three rules can only be applied when the
linkset is in normal form.

The (set) rule expresses that an execution step can consist
in updating the definition of an existing output fragment;
note that this execution step modifies both the linkset and
the command in the current configuration.

The (get) rule expresses that an execution step can con-
sist in obtaining as command to be executed the current
definition of an existing fragment.

The (var) rule shows how dynamic and volatile linking
work. If a variable x is defined in ρ, then its corresponding
code is already available and does not need to be linked;
on the other hand, if x is deferred (that is, the correspond-
ing fragment, say X, has not been linked yet), then, in the
command, the variable is replaced by the current definition
of X. Moreover, if the linking is dynamic, then the corre-
sponding fragment X is permanently linked in the linkset,
so that further occurrences of x will always refer to the same
definition, while this is not the case if the linking is volatile.

4. TRANSLATION
As target language we consider a particular instantiation

of CDL (see Fig.6).
We assume that, for each pair consisting of a loader and

a class name, there exist a distinguished variable x(`, c) and
a distinguished name X(`, c).

Core expressions include core variables (which encode
pairs consisting of a loader and a class name), instance cre-
ations, method invocations, let-in expressions and class defi-

(sum)
dlink[P1;V1] (l1) + dlink[P2;V2] (l2)

conf
> dlink[P ;V \P] ([ι1, ι2; o1, o2; ρ1, ρ2])

V = V1 ∪ V2

P = P1 ∪ P2

li ≡ [ιi; oi; ρi], i ∈ {1, 2}

(link)
linkX

�
dlink[P ;V] ([ι; o; ρ]) � conf

> dlink[P\{X};V \{X}] � [ι\L; o; ρ, x : o(X)x∈L] � L = {x | ι(x) = X}
L 6= ∅ =⇒ X ∈ dom(o)

Figure 4: CDL reduction rules for the configuration phase

(linkset)
l

conf
> l′

(l, c)
exec

> (l′, c)
(core)

e
core

> e′

(l, e)
exec

> (l, e′)

(set)
�
dlink[P ;V] ([ι; o; ρ]) , set(X, e) � exec

>
�
dlink[P ;V] ([ι; o{X : e}; ρ]) , stop � , X ∈ dom(o)

(get)
�
dlink[P ;V] ([ι; o; ρ]) , get(X) � exec

>
�
dlink[P ;V] ([ι; o; ρ]) , o(X) � , X ∈ dom(o)

(var)
�
dlink[P ;V] ([ι; o; ρ]) , x � exec

> �� � �
dlink[P ;V] ([ι; o; ρ]) , ρ(x) � if x ∈ dom(ρ)�
linkX

�
dlink[P ;V] ([ι; o; ρ]) � , o(X) � if ι(x) = X ∧ X ∈ (dom(o) ∩ P)�

dlink[P ;V] ([ι; o; ρ]) , o(X) � if ι(x) = X ∧ X ∈ (dom(o) ∩ V)

Figure 5: CDL reduction rules for the execution phase

nitions. Class definitions are included since in the encoding,
whenever a class named c is loaded with initiating loader `,
the variable x(`, c) is replaced by the actual class definition,
by applying rule (var) of CDL. Note that class definitions
contain the name of the class being declared for keeping a
Java-like syntax; however, this information is useless since
we do not deal with verification. Core rules include method
invocation and let-in (values v are new applications to class
definitions).

The translation is defined in Fig.7. We use the super-
scripts MCL and CDL to denote syntactic categories of MCL

and CDL, respectively, when there is ambiguity.
A MCL configuration is translated into a CDL configu-

ration (linkset expression and command); the translation is
parameterized on a fixed loading environment.

The linkset expression consists of a linkset in normal form
dlink

p
P ([ι; o; ρ]) defined as follows.

Input fragments The input part of the linkset keeps trace
of the loading requests which are not yet in the cache.
For each (variable corresponding to) a loading request
(`, c) not in L, there is an input component which maps
x(`, c) into the name X(`d, c) with `d defining loader
for this request.

Output fragments The output part of the linkset keeps
trace of the existing classes, corresponding to pairs
(`d, c) with `d defining loader. For each (name cor-
responding to) a loading request (`d, c) with `d defin-
ing loader, there is an output component mapping the
name X(`d, c) into a class definition. This class defini-
tion is obtained from that in λ, by replacing each class
name1 c′ by (the variable corresponding to) c′ and its

1The function CName returns all class names appearing in
a class definition.

initiating loader, which is the defining loader for the
loading request (`d, c).

Local fragments The local part of the linkset keeps trace
of the loading requests which are already in the cache.
For each (variable corresponding to) a loading request
(`, c) in L, there is a local component which maps
x(`, c) into the class definition associated in L with
this loading request, where the same substitution de-
scribed above for output components is applied.

Dynamically linked names All output names are dynam-
ically linked (by using dlinkp).

The command to be executed is obtained from the ex-
pression e in the MCL configuration, by replacing each class
name by the variable corresponding to the class name and its
defining loader. The defining loader is obtained from λLoader

using, as usual, the class name and the appropriate initiat-
ing loader. In order to determine the initiating loader, recall
that loaders are pushed onto the stack each time the eval-
uation of a method body starts and that, during this eval-
uation, method body is boxed into a ret operator. Hence,
the initiating loader must be determined starting from the
bottom of the stack and going up to the next (upper) one
in S each time a ret (e) expression is encountered (this is
obtained, in the case ret (e) of the Com definition, depriving
the stack S of its bottom element in the recursive call on e).

The following theorem states that the translation pre-
serves the semantics.

Theorem 4.1. If (S; L; e)
λ
> (S ′; L′; e′), then

Tλ(S; L; e)
∗

exec
> Tλ(S ′; L′; e′).

Proof. By induction on the derivation of the premise
(case analysis on the last MCL reduction rule applied).

• Var = {x(`, c) | ` ∈ Loader, c ∈ Class}, Name = {X(`, c) | ` ∈ Loader, c ∈ Class}

• e ∈ Exp ::= x(`, c) | new e() | e.m(e1, . . . en) | let x = e1 in e2 |

class c {static cj mj

�
c1
j x1

j , . . . , c
nj

j x
nj

j � {ej}
j∈1..p

}

v ∈ Val ::= new class c {static cj mj

�
c1
j x1

j , . . . , c
nj

j x
nj

j � {ej}
j∈1..p

}()

•
class c {static cj mj

�
c1
j x1

j , . . . , c
nj

j x
nj

j � {ej}
j∈1..p

}.m(vi
i∈1..n)

core
> ek{x

1
k : v1, . . . x

nk

k : vn}
m = mk, k ∈ 1..p

nk = n

let x = v in e
core

> e{x : v}

Figure 6: CDL instantiation

5. CONCLUSION
We have presented a toy language, called MCL, which em-

bodies the following features of Java: class loading is dy-
namically triggered whenever the first reference to a class
name is needed, and the actual class which is loaded is not
uniquely determined by the class name, since different class
loaders can be used in the same application.

Formal descriptions of Java class loading are given already
in, e.g., the already cited [9], and in [10, 5]. With respect to
these models, the aim of this paper is different for at least
two reasons.

First, in the same spirit as in previous papers on selected
Java features [6, 2], we wanted to model just the two features
mentioned above in isolation, abstracting from the complex-
ity of the language and other orthogonal aspects such as
bytecode verification and reflection. Indeed, we believe these
two features constitute, in a sense, the essence of the way
dynamic linking of fragments is allowed in Java.

Second, our aim here is also partly on the design side; in-
deed, we have shown in MCL that, besides a rigid approach
where all classes are loaded by a unique loader whose behav-
ior just depends on a user defined class path, and one where
arbitrary loaders can be defined by the user, an intermedi-
ate solution is also possible based on stratification, in the
sense that the configuration language can influence the exe-
cution of the user program, but not conversely. We believe
that this possibility is interesting since it allows to statically
check safety while retaining some flexibility, and should be
further investigated in the context of real programming lan-
guages.

Then, we have defined an encoding of MCL into a ker-
nel calculus CDL [1] which models various forms of linking,
and proved that the translation is correct in the sense that it
preserves the language semantics. In this way we have pro-
vided a first application showing the effectiveness of CDL

for modeling linking policies of real languages.
Of course the aim of the translation given in this paper is

not to show the full expressiveness of CDL, since only some
features of the calculus are actually needed for the encod-
ing, but rather, to analyze Java-like linking within a general
framework with different linking operators. In particular,
this shows the following two facts:

• As expected, Java-like linking can be encoded by a
permanent dynamic link operator, where a fragment is

dynamically but permanently linked to the executing
program the first time is needed.

• More important, the current encoding serves as a basis
for studying and comparing possible variations of the
Java-like mechanism.

An extended version of this paper is in preparation, includ-
ing also a type system for MCL and a result of preservation
of the static semantics.

6. REFERENCES
[1] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for

dynamic linking. In C. Blundo and C. Laneve, editors,
Italian Conf. on Theoretical Computer Science 2003,
number 2841 in Lecture Notes in Computer Science,
pages 284–301, 2003.

[2] D. Ancona, G. Lagorio, and E. Zucca. A core calculus
for Java exceptions. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA 2001), SIGPLAN Notices.
ACM Press, October 2001.

[3] D. Ancona and E. Zucca. A calculus of module
systems. Journ. of Functional Programming,
12(2):91–132, 2002.

[4] L. Cardelli. Program fragments, linking, and
modularization. In ACM Symp. on Principles of
Programming Languages 1997, pages 266–277. ACM
Press, 1997.

[5] S. Drossopoulou. Towards an abstract model of Java
dynamic linking and verfication. In R. Harper, editor,
TIC’00 - Third Workshop on Types in Compilation
(Selected Papers), volume 2071 of Lecture Notes in
Computer Science, pages 53–84. Springer, 2001.

[6] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1999, pages
132–146, November 1999.

[7] S. Liang and G. Bracha. Dynamic class loading in the
Java Virtual Machine. In ACM Symp. on
Object-Oriented Programming: Systems, Languages
and Applications 1998, volume 33(10) of SIGPLAN
Notices, pages 36–44. ACM Press, October 1998.

Tλ : ConfMCL → ConfCDL

Tλ(S; L; e) = (dlink
p
P ([ι; o; ρ]) , Tλ,S (e)), with:

• ι = {x(`, c) : X(λLoader(`, c), c) | (`, c) ∈ dom(λ) \ dom(L)}

• o = {X(`d, c) : Tλ,`d
(cd) | λ(`d, c) = (`d, cd)}

• ρ = {x(`, c) : Tλ,`d
(cd) | L(`, c) = (`d, cd)}

• P
∆
= dom(o)

Tλ,` : CDef → ExpCDL

Tλ,` (cd)
∆
= cd{c : x(λLoader(`, c), c) | c ∈ CName(cd)}

Tλ,S : ExpMCL → Com

• Tλ,S (x) = x

• Tλ,(S,`) (new c()) = new x(λLoader(`, c), c)()

• Tλ,(S,`)

�
c.m(ei

i∈n) � = x(λLoader(`, c), c).m(e′i
i∈n

), with Tλ,(S,`) (ei) = e′i, i ∈ 1..n

• Tλ,(S,`) (ret (e)) = ret (e′), with Tλ,S (e) = e′

• Tλ,S (let x = e1 in e2) = let x = e′1 in e′2, with Tλ,S (ei) = e′i, i ∈ {1, 2}

Figure 7: Translation

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley,
Second edition, 1999.

[9] Z. Qian, A. Goldberg, and A. Coglio. A formal
specification of Java class loading. In ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA
2000), volume 35(10) of SIGPLAN Notices, pages
325–336. ACM Press, October 2000.

[10] A. Tozawa and M. Hagiya. Formalization and analysis
of class loading in Java. Higher-Order and Symbolic
Computation, 15:7–55, March 2002.

