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Summary
We will soon be able to exhaustively sequence the DNA and RNA of entire communities of bacteria, as well
as every individual cell of a tumor. Both of these very different applications of sequencing share in the need
to rapidly and efficiently sort through large amounts of noisy sequence data (dozens to 100s of terabases) to
separate signal from noise and produce biological insight. However, current bioinformatic approaches for
extracting information from this data cannot easily handle the vast amounts of data being acquired.

The primary challenges in processing this sequence data are twofold: the relatively high error rate of 0.1-
1%, per base, and the volume of data we can now easily acquire with sequencers such as Illumina HiSeq. For
years, sequencing capacity has been doubling every 6 months – significantly faster than compute capacity.
Since almost all extant bioinformatic analysis approaches require multiple passes across the primary data,
and many analysis algorithms have not been parallelized, bioinformatic analysis capacity continues to lag
ever further behind data generation capacity. In addition, many of the existing software packages cannot
easily be retooled to take advantage of manycore or GPU algorithms, and hence will not take advantage of
expected advances in compute capacity and cyberinfrastructure

We propose to develop and implement novel streaming approaches for lossy compression and error
correction in shotgun sequencing data. Our algorithms are few-pass (< 2), require no sample-specific
information, and can be implemented in fixed or low memory; moreover, they are amenable to parallelization
and can run efficiently in manycore environments. When implemented as a prefilter to existing analysis
packages, our approaches will eliminate or correct the majority of errors in data sets, dramatically reducing
the computational space and time requirements for downstream analysis using existing packages. Moreover,
we will provide novel capability by extending error correction approaches to mRNAseq and metagenomic
data sets.

Intellectual Merit: We will develop a range of algorithms for space- and time-efficient compression and
error correction of short-read DNA and RNA sequence data. These strategies will substantially increase the
scalability of many downstream analysis applications, ranging from community analysis of metagenomes to
resequencing analysis of humans. We will provide analyses describing the tradeoffs between space and time
efficiency and sensitivity, and deliver tested, documented reference implementations of our approaches that
can be used by the community for practical evaluation and incorporation into analysis tools. Our approaches
will significantly impact short-read sequence analysis by introducing efficient and effective streaming ap-
proaches to the two most common types of short-read analysis, mapping and assembly.

Broader Impacts: As with our previous work, we will maximize the utility and reusability of our ap-
proaches by: publishing in open-access journals using the ipython notebook ”executable paper” format
to maximize reproducibility; making our software available under a BSD-like open source license, on
github.com, with automated tests and documentation; providing tutorials and accessible online discussions
of our approach; and blogging regularly about our work. We will also engage with the authors of potential
downstream analysis packages to ensure that our algorithms and output formats interface well with their
software. The PI also periodically runs workshops on hands-on sequence analysis techniques for biology
graduate students and summer undergraduates from biology majors, in which our approaches will be dis-
cussed in the context of major bioinformatics challenges.



Background and Significance
The vast increase in DNA sequencing capacity over the last decade is quickly turning biology into a data-
intensive science. Areas as diverse as human medicine, microbial ecology, and evolutionary developmental
biology are undergoing a rapid transformation as DNA and RNA sequencing becomes quick, easy, and
inexpensive[Metzker, 2010].

This transformation is not without its costs and challenges. The general lack of computational culture
in many areas of biology, including molecular and organismal biology, has left many biologists on the
other side of a training gap – unable to make full use of this new data. A tandem challenge is that the
size and cost of these sequencing data sets are dramatically outpacing computational capacity, making it
ever more difficult to complete an analysis [Stein, 2010]. Faster and more efficient computational tools
are critically important, not only to make better use of existing compute capacity but also to democratize
sequence analysis by enabling individual labs, and biologists within those labs, to make use of the data they
are generating. Several recent papers have shown that the primary data analysis now costs significantly more
than simply generating the data in the first place [Angiuoli et al., 2011, Sboner et al., 2011].

These large data sets offer the potential for insight on an incredibly wide range of biological problems.
Sequencing is increasingly serving studies in biomedical diagnostics, trait association studies, gene ex-
pression analysis, population ecology and speciation, experimental evolution, drug resistance, environ-
mental change, complex microbial ecosystems, and developmental biology, as well as basic molecular
biology[Metzker, 2010]. All of these fields make use of sequence in different ways, and all of them are
drowning in sequence data.

Sequence analysis has now settled on a small number of primary workflows. For biomedical and agri-
cultural research, genome resequencing analysis detects genetic markers that are associated with various
phenotypes, including genetic diseases and cancer mutations [Meyerson et al., 2010], while digital RNA se-
quencing “counts” gene expression and can discover novel genes and gene fusions [Trapnell et al., 2010]. In
ecology, longitudinal and latitudinal studies of population structure focus on targeted resequencing to find
markers, as well as de novo assembly of entire genomes and transcriptomes [Ekblom and Galindo, 2011]. In
microbial ecology, researchers are focused on targeted gene analysis and de novo assembly of genomes and
transcriptomes [Wooley et al., 2010]. And in evolution, both resequencing analysis and de novo assembly-
based approaches discover novel mutations and genome rearrangements [Barrick and Lenski, 2009]. While
there are many additional uses for next-gen sequencing including ChIP-seq and others, in practice the ma-
jority of analyses rely on two underlying approaches: mapping sequence reads back to a reference sequence
to identify variants or count reads, and constructing a new reference sequence based solely on reads using
de novo assembly [Metzker, 2010, Miller et al., 2010]. By improving the efficiency of mapping and de
novo assembly, we could improve essentially all sequence analysis.

The data set sizes involved are immense, and growing. As exemplars, we consider two extremes: single-
cell tumor resequencing, and environmental microbial community analysis. For single-cell human tumor
cell resequencing, our goal is to detect novel mutations and genome rearrangements in many individual
cells [Navin et al., 2011]. This will eventually involve the resequencing of thousands of human genomes
per sample, which must be sequenced with high sensitivity; in practice, this requires 10x to 100x coverage
of a 6 Gbp diploid genome, or 60-600 Gbp per cell – at a minimum, then, 60 Tbp for 1000 cells. Microbial
community analysis is in similar straits: to thoroughly sample the microbes present in a gram of soil, we
estimate that 50 Tbp of sequencing must be generated in order to see potential keystone species at the
observed frequency of 1 in a million [Brown and Tiedje, 2011]. These data sets are already coming – for a
recently funded Amazon Rainforest Microbial Observatory Community Sequencing Project at JGI, we are
obtaining a Tbp of sequence in exploratory sequencing for one transect with 10 samples.

The size of these data sets is, in some sense, surprising. Why are we generating so much data from
human samples, for example, where we already know 99% or more of the source genome? And why do



soil samples require so much sequencing? The answer is rooted in the nature of the dominant sequencing
approach, known as shotgun sequencing, in which sequence reads are sampled randomly from the popu-
lation of DNA [Myers et al., 2000]. For example, an Illumina HiSeq machine can generate over 6 billion
individual sequence reads of length 100 from a single DNA sample. However, the ability to target this
sequencing at specific genomes or loci within the genomes is limited by throughput of experimental tech-
niques: techniques such as array capture can enrich for known sequences, and a panoply of experimental
isolation or enrichment approaches can be applied, but these are expensive, technically tricky, and limited
to specific uses [Turner et al., 2009, Mamanova et al., 2010]. In practice it is faster and less complicated
to simply sequence everything and let bioinformaticians sort it out (see e.g. [Cooper and Shendure, 2011].
Correspondingly, in shotgun sequencing the sensitivity of detection of a signal is limited by the dilution of
that signal within the sample, so for example to detect one nucleotide variant in the human genome we must
sequence the entire genome to 10-100x, or 30-300 Gbp, depending on the desired confidence!

The high error rates of sequencing are another complication. Illumina, perhaps the dominant sequencing
technology, has per-nucleotide error rates of up to 1%, so on average each 100-bp read has one error in it.
To discern true sequence variants from errors, typically the entire data set must be analyzed, e.g. to find
statistically significant consensus signals at each location
[Cooper and Shendure, 2011]. Approaches for doing so are typically rather heavyweight, involving either
large on-disk files or substantial working memory usage [Li et al., 2009, Iqbal et al., 2012]
[Conway and Bromage, 2011, Kelley et al., 2010].

In the face of these growing Big Data sequence analysis challenges, many approaches have been de-
veloped to scale mapping and assembly techniques. An array of fast mapping and assembly techniques,
largely relying on the Burrows-Wheeler transform and downstream indexing approaches, have made it
possible to map 2 million reads in 6 minutes, and assemble human genomes in under 200 GB of RAM
[Langmead and Salzberg, 2012, Gnerre et al., 2011, Simpson and Durbin, 2012]. Efficient error correction
techniques have further improved assembly and mapping efficiency
[Pevzner et al., 2001, Kelley et al., 2010]. A wide variety of lossless approaches to compress raw sequenc-
ing data have been developed as part of the Pistoia Sequence Squeeze competition (unpublished). And even
newer sparse graph techniques continue to be developed [Ye et al., 2012].

More recently, several approaches to scalable sequence compression and analysis have emerged that are
based on efficient probabilistic data structures, online or streaming algorithms, or alternative compute ar-
chitectures [Muthukrishnan, 2005, Shi et al., 2010]). For mapping and mRNAseq quantification, eXpress
provides an online implementation of an EM algorithm for estimating abundances [Pachter, 2012]. The
“quip” software uses d-left counting bloom filters to efficiently and losslessly compress raw sequence
files and quality scores [Jones et al., 2012]. Our group has recently published a compressible graph rep-
resentation using Bloom filters that enables efficient storage and partitioning of metagenome assembly
graphs, and has been extended by others to enable human genome assembly in under 6 GB of RAM
[Pell et al., 2012, Chikhi and Rizk, 2012]. One intriguing result is that when compared to maximally ef-
ficient entropic encoding, probabilistic data structures can yield significant improvements over exact repre-
sentations; for example, storing an implicit de Bruijn graph can be done 10-fold more efficiently with Bloom
filters than with any possible exact data structure [Pell et al., 2012, Conway and Bromage, 2011].

However, despite these advances, the central Big Data challenge remains in short-read sequence analysis.
Almost all extant short-read resequencing analysis tools and assemblers depend on multiple passes of large
short-read data sets. As data sizes continue to increase – Illumina is rumored to be planning a 1 Tbp/week
upgrade within the next 6 months! – we cannot merely rely on the existing algorithmic strategies to scale.
Yet, at the same time, a large body of effective software has already been developed to deal with short-read
sequencing data. How to use these tools to process increasingly large amounts of sequencing data, in the
service of addressing biological questions, is one of the most critical challenges facing biology today.



Research Plan

Preliminary Results

The goal of our bioinformatics research is to make de novo assembly and resequencing analysis fast, ef-
ficient, and available on a wide range of cyberinfrastructure and for a wide range of biological samples.
We are focused on short-read data from Illumina machines because it offers by far the deepest sampling:
many of our scientific problems, such as mRNAseq studies of non-model organisms, splice variant anal-
ysis of diseases, and shotgun metagenomics, depend on sensitive quantitative analysis of deep sampling
[Metzker, 2010]. Moreover, even the current long-read technologies such as PacBio make use of Illumina
sequence for error correction [Koren et al., 2012]. Illumina is also by far the biggest challenge in terms of
scalability: the recent growth in sequence data generation has been largely driven by Illumina, and labs
routinely generate 2-300 Gbp in a single experiment.

In this context, we have been investigating efficient data structures and algorithms for next-gen sequence
data analysis for several years. In large part because of the youth of the field – extremely large volumes
of sequence data only started to become readily available within the last 5 years – there are many oppor-
tunities for improved analysis strategies. Our work has focused particularly on sketch data structures,
ultra-efficient data structures for representing some subset of information; on streaming and online algo-
rithmic approaches that can efficiently process large volumes of data; on lossy compression and error detec-
tion within large data sets; and on prefiltering approaches that scale or improve downstream approaches
by compressing or correcting their input data, without requiring reimplementing existing software. One
particularly relevant aspect of our work has been our focus on scaling sequence assembly approaches into
the cloud: much of our work has been motivated by our own perennial lack of access to sufficiently large
dedicated compute infrastructure.

We have previously published a compression approach for de Bruijn assembly graphs with which we
scaled down memory usage in metagenome assembly by an order of magnitude [Pell et al., 2012]. Below,
we describe an orthogonal suite of prefiltering approaches that enable dramatic and substantial increases in
analysis efficiency by taking advantage of the deep sampling and well-mixed reads from short-read shotgun
sequencing.

The basic problems

Illumina machines currently produce millions to billions of DNA reads, 100-150 bp sequences of DNA
sampled from a collection of DNA or RNA molecules; these reads can be individual, or “paired” – taken
from either end of a single, longer sequence of a specified size [Metzker, 2010]. The reads also generally
have some basic per-base quality information associated with them.

The dominant sample preparation strategy for generating these reads is known as “shotgun sequencing”, in
which the biological sample is fragmented randomly and then sampled at random [Myers et al., 2000]. With
deep enough sampling, quantitative information about the abundances of molecules in the sample can be in-
ferred, and entire genomes can be reconstructed computationally [Trapnell et al., 2010, Miller et al., 2010];
in fact, all of the genomes sequenced in the last 10 years have been sequenced using this approach. The ad-
vantages of shotgun sequencing are many: sample preparation is generally cheap and easy, organisms need
only to be available in sufficient quantity to feed them into a sample preparation, and depth of sampling is
limited only by the money available. The good news is that sequencing is growing cheaper and cheaper; the
bad news is that this is resulting in more and more data analysis challenges!

The two primary analysis strategies applied to these reads are mapping and de novo assembly (see Figure
1). In mapping, reads are searched against a reference sequence to identify their likely source location; all
of the reads can then be “piled up” against the reference sequence to identify potential sequence variants,
or they can be counted to quantitate the presence of the reference sequence in the original sample, e.g. in
studies of gene expression or allele frequency [Trapnell et al., 2010, Cooper and Shendure, 2011]. In terms
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Figure 1: Mapping and assembly are the two most common sequence analysis challenges for short-read sequencing.
In mapping (see (A) and (B) the reads (short black lines) are aligned against known reference sequence in the presence
of errors (red Xs) and true sequence variants (blue Xs). One purpose of mapping is to distinguish true sequence variants
from errors, and it can also be used to estimate the relative abundance of (A) and (B) in the population of molecules
being sequenced. For de novo assembly (see (C)) the source sequences are unknown and must be reconstructed using
overlaps between the sequencing reads; errors in sequencing complicate this process as well.

of scaling, mapping is generally amenable to scatter-gather scaling approaches like MapReduce, because the
reference sequence is usually small enough to be distributed to multiple machines, and reads can be mapped
individually and then gathered for downstream variant or quantitative analysis. One major computational
challenge in mapping is in error correction: the ability of mappers to find the correct reference location is
reduced 5-15% by even a fairly low error rate [Kelley et al., 2010], and error correction is not amenable to
simple distributed processing; online error correction approaches do not yet exist in the literature, to our
knowledge.

The second analysis strategy used is de novo assembly, which is used in non- or semi-model systems where
no high quality reference sequence is available [Miller et al., 2010]. This includes many plants, animals, and
microbes of ecological and evolutionary interest, as well as many host-associated microbial communities.
The ultimate goal of assembly is to reconstruct the source reference sequence(s) in the sample, be they
genomes or transcriptomes from individuals or populations; this is generally done by building “contigs”, or
contiguous DNA sequences, based on overlaps between shotgun sequencing reads. De novo assembly is a
notoriously challenging offline problem that generally involves the storage and analysis of large graphs; it
has, so far, been intrinsically viewed as an all-by-all analysis problem that is not amenable to distribution
to the lack of locality in the graph. The current dominant assembly paradigm is to use de Bruijn graphs to
build contigs by breaking reads down into easily hashed fixed-length sequences, or k-mers, that can then
be connected by overlap and traversed as a graph [Compeau et al., 2011]. De Bruijn graphs have the clear
advantage of scaling in memory usage with the number of k-mers present in the data as opposed to the data
set size; unfortunately, de Bruijn graphs are sensitive to errors in the original reads, and often the majority of
the k-mers present in de Bruijn graphs are due to errors in the original reads [Conway and Bromage, 2011].

Error detection, removal, and/or correction is thus central to both mapping and assembly approaches, and
many packages exist for doing error trimming or correction (see references in [Kelley et al., 2010]). K-mer
based approaches have been especially fruitful: most use an approach first introduced as the Spectral Align-
ment Problem, in which high abundance k-mers from deeply sequenced samples are considered “trusted”,
and low-abundance k-mers that likely overlap with errors are trimmed or corrected to match the trusted k-
mers [Pevzner et al., 2001]. However, error detection and correction approaches are generally offline: they
require multiple passes across the data, and hold large amounts of data in memory. This has become an
increasing challenge for short-read data sets, which are outpacing compute capacity, and in particular are
outgrowing readily available memory [Kelley et al., 2010].

Efficiently and effectively dealing with these vast sequencing data sets is an ongoing challenge. In addi-
tion to the basic cultural and technological challenges discussed in the introduction, many biologists cannot
analyze even relatively small samples on the compute infrastructure available to them. This is partly be-
cause the problems are hard, and also partly because most existing bioinformatic analysis software has been
designed and developed at centers with significant cyberinfrastructure, while most biologists do not have



ready access to large CI. (A reviewer of our digital normalization paper, discussed below, stated “this looks
like a good approach for people who don’t have the money to buy real computers”, which highlights the
problem perfectly...) Efficiency in computation, especially with respect to memory, has therefore been the
focus of our bioinformatic research.

A memory-efficient data structure for counting k-mers.

We started by developing and implementing an efficient probabilistic data structure for counting k-mers.
The counting method is based on our successful use of Bloom filters to represent de Bruijn graphs with
high efficiency [Pell et al., 2012], and is essentially identical to a CountMin Sketch or Counting Bloom
filter [Cormode and Muthukrishnan, 2005]. Briefly, to increment the count for a k-mer, we hash it into
multiple hash tables, and increment the corresponding entry in each table; then, to retrieve the count for
a given k-mer we select the minimum count across all of the hash entries. This results in a very mem-
ory efficient data structure, albeit one with slightly incorrect counts: if multiple k-mers hash to the same
location, then an incorrect count may be retrieved for each of those k-mers. Nonetheless, because NGS
data sets are dominated by low-count k-mers from sequencing errors, these miscount values are generally
low [Melsted and Pritchard, 2011]; also (Zhang and Brown, in prep). Both theoretically and practically our
implementation is substantially lower memory than other k-mer counting implementations.

Unlike exact k-mer counting packages, our CountMinSketch’s memory usage is also independent of the
k-mer size used; this is because it does not need to store k-mers explicitly, but rather uses only a hash. Our
current implementation supports up to k=32, although we are working to extend this to arbitrary k.

Our k-mer hashing, counting, and graph analysis implementation is written in C++ and wrapped in
Python, and available on github under a BSD license: github.com/ged-lab/khmer/. It has been used in
[Pell et al., 2012] as well as digital normalization, discussed below, and is currently in use by several dozen
groups. The khmer package comes with documentation, tutorials, and automated tests (Zhang and Brown,
in prep), and has a community mailing list.

A streaming data reduction approach for prefiltering reads for de novo assembly

Driven by the need to assemble multiple very large genomic, metagenomic, and mRNAseq data sets, we
next developed a single-pass streaming algorithm for lossy compression of Illumina data prior to assembly
[Brown et al., 2012]. Our approach, which we term “digital normalization”, relies on an online construction
of a de Bruijn graph to select a subset of informative reads using locus-specific graph analysis. The key
observation that lies behind digital normalization is that most short-read sequencing data sets are massively
redundant, because they contain many reads that have been sampled from overlapping locations; by devel-
oping a simple estimator of sampling depth, we can detect and eliminate much of this redundancy online.
Our current implementation relies on a simple fixed-memory estimator of coverage, median k-mer count per
read; see [Brown et al., 2012] for details.

The core algorithm is a single-pass approach in which each read is decomposed into k-mers, which are
then sorted by their abundance within the retained read set thus far; the median of this abundance is used
as a proxy for locus coverage, and examined to see if it is above a specified abundance cutoff C. If it is
above C, then the read is discarded as redundant, and otherwise the read is judged informative and added to
the retained read set. This results in a single-pass streaming algorithm that retains a subset of reads that is
informative for assembly.

Digital normalization (“diginorm”) is an extraordinarily effective data reduction technique. On a typical
100x E. coli sequencing sample for which 100x coverage has been obtained (e.g. 5m Illumina reads of length
100), we can eliminate 95% of the reads prior to de novo assembly and achieve an essentially identical
assembly based on the remaining 5x coverage. For high-coverage mRNAseq and single-cell sequencing
data sets, data reduction rates approach 98% or more, due to the presence of many very high abundance
components in the data set.
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Figure 2: Digital normalization is an efficient approach for locus-specific downsampling of shotgun data sets. Given
reads (short red and black lines) from multiple unknown source sequences, digital normalization chooses reads that
provide coverage for independent loci up to a specified point (here, a coverage of 5; solid red lines) and discards reads
past that coverage as redundant (dashed red lines). This allows less expensive reconstruction of the source sequences
by using a only subset of the data. Both (A) simple and (B) more complex graph structures are retained.

Diginorm is also extraordinarily effective at removing errors. Because diginorm selects only a subset of
reads to represent each region of the de Bruijn graph, only errors within those reads are retained; errors
within rejected reads are discarded. This leads to a dramatic reduction in the number of errors in both
simulated and real data.

Between the data reduction and error removal, digital normalization can scale genome assembly by a
factor of 100x or more in both time and space, although this of course depends on the application and the
data set; see Table 1 for effects on genomes, and [Brown et al., 2012] for details. Moreover, diginorm scales
assembly without losing information: comparisons of assemblies from unnormalized data with assemblies
from normalized data show near-identity (> 98%), and k-mer composition is nearly identical.

One significant point is that digital normalization changes the scaling behavior of assembly: the number
of k-mers in the data, and hence the memory required to assemble it, no longer scales with the data set size;
instead, it scales with the underlying complexity of the sample being sequenced, together with a dependency
on some power of the error rate due to the accumulation of multiple errors in single reads. Another signif-
icant point is that digital normalization and derivative approaches are always lower memory than offline
approaches, because they never collect the majority of errors - they are either discarded (by diginorm) or
fixed (by error correction; below). Finally, digital normalization need only be done once, following which
parameter exploration can be done with downstream analysis packages.

Table 1: Three-pass digital normalization reduces assembly time and memory. Digital normalization required a single
pass in 2 GB of RAM.

Data set Assembly time pre/post Assembly memory pre/post
E. coli 1040s / 63s (16.5x) 11.2gb / 0.5 gb (22.4x)
S. aureus single-cell 5352s / 35s (153x) 54.4gb / 0.4gb (136x)
Deltaproteobacteria single-cell 4749s / 26s (182.7x) 52.7gb / 0.4gb (131.8x)

Critically, digital normalization is a prefilter: it does not perform any assembly itself, although it is trivial
to implement within the context of an assembler such as Velvet [Zerbino and Birney, 2008]. It simply a
subset of reads that can then be fed into any downstream application. Because digital normalization reduces
data using basic principles of de Bruijn graphs, we have found that it performs well with the majority of
commonly used assemblers. We are working to thoroughly evaluate digital normalization on ALLPATHS-



LG, SOAPdenovo, and a variety of other assemblers [Gnerre et al., 2011, Li et al., 2010].
We have used digital normalization successfully on microbial and mRNAseq data sets

[Brown et al., 2012], small and large metagenomes, and several nematode genomes (Schwarz, Brown, and
Sternberg, unpublished). Our crowning achievement thus far has been to reduce a 300 Gbp soil metagenome
assembly from needing 3 TB of RAM to needing only 300 GB of RAM when using digital normalization
and partitioning (Howe and Brown, in preparation); but our own experiences and those of collaborators and
the community suggest that digital normalization can provide solution to the majority of assembly scaling
problems.

We are currently working to improve the speed of digital normalization in khmer. Our current imple-
mentation is single-threaded and has not been optimized for multi-core CPUs. However, because it relies
only on hashing, it can easily be parallelized: preliminary results from introducing spinlocks into the count-
ing structure and using threads to load and insert the data suggest that on commodity Dell machines our
implementation becomes I/O bound with 2-4 threads.

Despite the effectiveness of digital normalization, it does have a number of drawbacks. One significant
challenge is that in normalizing the data to a standard coverage, it eliminates quantitative information that
would allow the data to be used for e.g. transcript counting. While this information can be retrieved from
the prefiltered data, this can be inconvenient given the large volumes of data involved. This change in quan-
titative information also can cause problems in running assemblers, which rely on the Lander-Waterman
coverage statistics to determine heuristic cutoffs [Lander and Waterman, 1988]. Finally, the current imple-
mentation also eliminates repeats and truncates the very ends of contigs due to sampling bias, which we
address below.

A streaming few-pass error detection method based on digital normalization.

We have further adapted the digital normalization algorithm to detect and trim likely sequencing errors
within short-read data sets. Our method builds on the error elimination pass described in the diginorm
paper, in which low-abundance k-mers are after normalization to a specific coverage. Essentially, we com-
bine the online graph-based coverage estimation used by digital normalization with the k-mer abundance
approach commonly used to detect errors [Pevzner et al., 2001, Kelley et al., 2010]. These approaches ob-
serve that because errors are random and uncorrelated with the true sequence, k-mers containing errors will
generally be low abundance; thus, in high-coverage data sets, low-abundance k-mers can be used to identify
errors (see Figure 3). This has proven to be extremely effective for error detection and correction in genomic
sequence data sets, but has not been as useful in mRNAseq and metagenomics, where uniform coverage as-
sumptions do not generally hold [Keegan et al., 2012, Grabherr et al., 2011]. Moreover, current approaches
are multipass: all of the k-mers in sequencing reads must be counted first, and only then can the reads be
analyzed in the context of those counts.

We have implemented a < 2-pass approach that uses the diginorm algorithm to determine when a partic-
ular region of the de Bruijn graph has accrued enough coverage to be used to do error detection (Figure 4).
For example, once a region of the graph has 20x coverage, then reads from this region that contain k-mers
with abundance of 1 are likely to be erroneous and can be trimmed or (potentially) corrected. Because we
must observe some minimum number of reads in order to accumulate sufficient coverage to do error detec-
tion, at least some of the reads must be analyzed more than once, unlike diginorm; however, for deep data
sets, the majority of reads will only need to be seen once, making it a < 2 pass approach. It is also streaming
and online.

Interestingly, this algorithm provides solutions for a number of the problems with diginorm and existing
error correction approaches: it preserves “correct” reads, so the filtered data can be used in quantification; it
does not rely on uniform coverage to determine k-mer abundance cutoffs, and so can be used on genomic,
metagenomic, and mRNAseq data sets; and it is few-pass. Moreover, because we have implemented the
approach using khmer’s CountMin Sketch data structure, it remains extremely efficient in memory use.
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Figure 3: One common strategy for error detection and correction in short reads is to examine the abundances of
k-mers chosen from the read within the entire data set. 20-mers taken from 100-base reads with no errors reflect the
overall coverage of the data set (blue), while 20-mers that contain errors such as single nucleotide substitutions are
novel within the data set and present as low-abundance (green) – here, an error is located at position 42. Our error
detection strategy uses this signature to localize likely erroneous bases, while our proposed error correction strategy
will seek base changes that result in the most consistent k-mer coverage across the read.
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Figure 4: Few-pass error detection and correction. In a first pass, reads that add coverage to a locus below a specified
threshold are loaded into the graph but not error-corrected, for lack of sufficient information; reads that belong to
already high-coverage loci are immediately error-corrected. In the second pass, those reads that were used to build
the graph are inspected to see if their source loci have sufficient coverage to error correct them. For a 100x coverage
genomic shotgun sample with a read collection threshold of 20, this approach would be approximately 1.2-pass: about
20% of the reads would be collected on the first pass, and then examined and error-corrected on the second pass.



On both simulated and real genomic and metagenomic data, our current approach identifies and eliminates
more than 90% of errors (and the majority of erroneous k-mers) using a collection threshold of 20 and a
hardcoded error threshold of 1. We propose to improve this below.

Unfortunately, this is not a data reduction approach like digital normalization, because quantitative in-
formation needs to be retained for downstream mapping and variant analysis approaches. However error
removal (and error correction) can dramatically decrease memory requirements for assembly and assembly-
graph based algorithms (e.g. see [Simpson and Durbin, 2012] and [Iqbal et al., 2012]), as well as result in
increased sensitivity of mapping [Kelley et al., 2010].

Summary of Preliminary Results

We have built an efficient k-mer counting implementation, based on the adaptation of a well-known proba-
bilistic data structure, the CountMin Sketch. We have also demonstrated an effective compression approach
that relies on locus-specific downsampling of genomic data using only a single approach. Moreover, we
have extended this algorithm to implement k-mer based error detection within a streaming framework. The
following Specific Aims will build on this framework to provide a range of useful Big Data reduction and
error correction approaches.

Specific Aims:

Aim 1. Improve and extend digital normalization, an efficient streaming strategy for lossy compres-
sion of DNA sequence, to enable more scalable downstream analyses. Digital normalization provides
an extraordinarily efficient and effective approach to data reduction prior to de novo assembly. It has been
successfully applied to microbial genomes, to transcriptomes, and to metagenomes, as well as to some small
eukaryotic genomes, and a number of groups are using it on a regular basis. However, there are several chal-
lenges that must be overcome in order for a diginorm-based approach to become more widely used. These
include adding handling of repeats by using paired-end and mate-pair data types; developing an understand-
ing of how coverage mean and variance is transformed by digital normalization; and adapting diginorm to
sensitively retain data from diploid genomes and mixed populations.

Subaim 1a. Incorporate paired-end and mate-pair information into the digital normalization algo-
rithm and implementation. Digital normalization currently ignores paired-end and mate-pair informa-
tion: if one end of a pair has high coverage, it may be discarded as redundant. However, pairing information
is used by assemblers to build scaffolds by linking contigs across repetitive regions, and it is an important
step in the assembly of repeat-rich eukaryotic genomes.

We will provide an option in the digital normalization algorithm that considers pairs as either end of a
longer read, such that if either end is below the coverage threshold for normalization, both read pairs are
kept. This will retain the linkage information between the pairs for downstream assemblers.

To evaluate the effect of repeat retention on assembly of eukaryotic genomes, we will repeat the bench-
marking done with the SGA algorithm on the C. elegans and human genomes
[Simpson and Durbin, 2012]. Specifically, we will compare ABySS, SGA, Velvet, and SOAPdenovo output
and performance on unnormalized C. elegans data, data normalized to a coverage of 20 with and without
paired end retention, and data normalized to a coverage of 5, with and without paired end retention. A k-mer
parameter sweep for the normalized data sets will be conducted between 21 and 71 for each package, choos-
ing the best N50 from each. We will use the same benchmarks as the SGA paper to compare the assemblies
against the known reference, including substring coverage, assembly contiguity, and assembly completeness
and accuracy. We will also compare k-mer content at k=20 and k=32, as in the diginorm paper, to assess
whether any information is being irreversibly lost during the digital normalization procedure. Once we de-
velop an empirical understanding of the best parameters for the smaller C. elegans data set, we will repeat
the analysis for the far larger human genome data set.
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Figure 5: A graph showing the transformation in coverage caused by digital normalization for simulated (blue)
and real E. coli (red) data. The X axis shows the number of reads covering a given base in the (known) reference
genomes, and the Y axis shows the number of bases with that read coverage. Digital normalization shifts the mean
and decreases the variance of the original coverage distribution (dashed lines) to the normalized distribution (solid
lines). (From Brown et al.)

Subaim 1b. Develop a theoretical model for average and variance of coverage of digital normalized
data. Although the basic theory behind digital normalization and our specific implementation using the
median k-mer abundance is laid out in [Brown et al., 2012], much of our actual work with digital normal-
ization has been empirical and driven by work with simulated and real data sets. In particular we lack an
understanding of the relationship between the k-mer size used, the coverage desired, the read length, and the
sensitivity with which low-coverage data is retained. This information is important for assemblers, which
rely on theoretical models of coverage and variance around average coverage to determine which paths to
traverse and how to identify repetitive sequence [Miller et al., 2010, Zerbino and Birney, 2008].

Empirical observation suggests that the variance of the normalized data is based on the variance of k-
mer coverage within each read, which corresponds to the process by which we retain reads with digital
normalization. However, we know of no theoretical models for how within-read k-mer coverage varies,
although surely it will depend on both coverage and read length.

We will therefore develop a simple theoretical model based around Poisson-random sampling of reads
of different lengths of a random genome without error, and compare with simulation results. We will
then extend these results with a simple error model, and finally compare these results and performance
on real data from known genomes. We successfully used this combined theory + simulation approach in
[Pell et al., 2012].

Subaim 1c. Implement retention of diploid and lower-frequency alleles within digital normalization.
Digital normalization currently works very well on several microbial genomes and RNAseq, but its effects
on genomes and transcriptomes with significant internal variation (from diploid heterozygosity or strain
variation) has not been systematically assessed. We would naively expect digital normalization to choose
reads randomly from the distribution of true variants, which would lead to the retention of variants in pro-
portion to their true frequency in the data set; this is one reason why digital normalization may eliminate
low-frequency splice variants in mRNAseq [Brown et al., 2012]. However, digital normalization does retain
low-frequency variants with a slight preference, because they are more likely to present as novel within the
de Bruijn graph.

The current implementation of digital normalization uses median k-mer count within a read to estimate its
coverage. However, by choosing the coverage of a lower-ranked (and hence lower abundance) k-mer than
the median to estimate coverage of a read, it is possible to retain more low-abundance variants while still
eliminating many redundant and erroneous reads. For example, simulations of a population sample with a



1-in-10 minor allele frequency showed that we could easily retain all of the true k-mers while eliminating
over 50% of erroneous k-mers and 80% of the reads.

We propose to extend the digital normalization algorithm and theory to sensitively retain diploid (50/50)
and lower-frequency variants in shotgun data from genome resequencing and mixed population samples.
Specifically, we will extend the theory from Subaim 1b to incorporate read abundance estimators more
sensitive to variants than the median, such as the abundance of the k-th ranked k-mer, and then apply it
to simulated and real data. We will further provide “tuned” parameter sets that relate retention of alle-
les at specified minor allele frequencies to digital normalization k-mer size and coverage parameters; this
will allow better algorithmic performance and data reduction on e.g. diploid samples with 50/50 alelelic
frequencies, while offering explicit tradeoffs on data from more complex samples.

We will evaluate this sensitivity with simulated data as well as with population data from the Cortex re-
sequencing analysis paper [Iqbal et al., 2012]. Briefly, after tuning digital normalization to retain diploid
and lower-frequency alleles, we will run our modified normalization procedure with various parameters
on the simulated, individual and pooled data from [Iqbal et al., 2012], and then execute Cortex on the re-
tained reads. Variant retention sensitivity will be compared to the known SNP-based calls also used in
[Iqbal et al., 2012].

This modification will allow digital normalization error and data reduction to be combined with resequenc-
ing analysis packages such as Cortex, which use the de Bruijn graph formalism to identify novel genomic
regions with great sensitivity. As with the standard median-count-based digital normalization, quantitative
information about alleles will be lost with this approach due to the downsampling; Aim 2 will provide a way
to retain this quantitative information.

We note in passing that reference-based subtraction is trivial to implement within this revised digital
normalization framework: known reference sequence can simply be loaded in prior to streaming in the
reads, and only reads containing alternative alleles will be kept. This also raises the interesting idea of doing
online streaming variant calling in future work.

Aim 2. Develop efficient streaming strategies for error detection and error correction of DNA sequenc-
ing data. Perhaps the primary challenge in scaling assembly and resequencing analysis of large DNA data
sets is efficiently distinguishing signal from noise; current approaches to error detection and correction use
high quality but less-than-scalable offline and multipass techniques [Kelley et al., 2010]. In our preliminary
results we show that a streaming, memory-efficient few-pass approach can be implemented to efficiently de-
tect errors, and we propose to adapt existing error-correction approaches to use this streaming model. Note:
we know of no other streaming or online approaches to error correction in short-read DNA sequencing data.

Subaim 2a. Develop streaming error correction for shotgun sequences using k-mer abundance mod-
els. In the Preliminary Results, we showed that it was straightforward to adapt digital normalization to
detect errors based on k-mer abundance, providing a streaming few-pass approach to error trimming. We
propose to combine this locus-specific error detection approach with the expectation-maximization (EM)-
based algorithm used by the Quake error correction model. This will result in a time- and space-efficient
error correction algorithm with high accuracy.

The Quake EM algorithm uses a complex model of k-mer coverage to determine likely locations for
single-base errors as well as the most probable set of changes to remove the errors. At its core, however,
it relies on the same information as most other k-mer based error correction algorithms: correcting errors
based on “trusted” high abundance k-mers.

We will reimplement the Quake algorithm within the khmer package, based on its published algorithm.
(Note that the Quake license does not permit us to include Quake source code within khmer.) In many ways
our implementation will in fact be simpler, as the expected k-mer distribution of “trusted” k-mers can be
determined according to the analytic model developed in Subaim 1(b), and the error models will be sharply
1-biased and largely static for digitally normalized data.



One interesting consequence of reimplementing Quake on top of our streaming error detection approach
is that the Quake algorithm will now be directly usable on transcriptomic and metagenomic data: high
coverage data will be corrected, and low coverage data will be untouched. This is a substantial benefit with
significant implications for many data sets!

Another interesting consideration is that, with efficient online error correction, counting applications such
as mRNAseq expression analysis could use the de Bruijn graph model to determine transcript abundance.
This is a potential future direction for our research.

We will evaluate our approaches on the same data sets used by Quake as well as on the microbial data
sets used in [Brown et al., 2012] and the human data sets from Cortex [Iqbal et al., 2012]. This will provide
an array of short-read data sets from microbes and humans for which we have solid reference sequences, on
which to evaluate sensitivity (% reads mapped) and specificity (% errors introduced).

To evaluate metagenomics and RNAseq error correction that is only possible with our approach, we will
use the Human Microbiome Project “mock community” data sets (for metagenomics) and the Trinity data
sets for mouse and yeast [HMP, 2012, Grabherr et al., 2011]. In both cases we have excellent reference data
sets with which to assess sensitivity and specificity of error corrected reads by using mapping.

Subaim 2b. Implement a variant of q-mer counting within digital normalization. Quake uses a q-mer
counting model that takes into account quality values for each base, i.e. metadata about sequence quality.
This works by weighting k-mers based on their constituent bases’ quality scores.

We will implement q-mer counting by quantizing floating point values within k-mer counting bins. For
example, within an 8-bit bin, we can provide quantization down to a decimal point for a coverage cutoff
of 20. This will downgrade the effect that k-mers from poor-quality reads have on error correction. Note
that this could also increase the quality of digital normalization by explicitly retaining more copies of graph
regions represented only by low-quality reads. Evaluation of improvements will be done in comparison with
the results achieved in Subaim 2(a).

Subaim 2c. Adapt error detection approaches to preferentially retain minor alleles. While the Quake
algorithm performs well on diploid genomes, by design it cannot properly handle lower-frequency variants
from mixed population sequencing. This is important for samples where we are DNA limited and must
sequence multiple individuals, e.g. in insect studies; and for strain variation analysis in metagenomic data
sets, where multiple strains of very similar bacteria may be present in the same sample, with some low-
frequency strains possessing novel traits (e.g. drug resistance) due to a few nucleotide changes.

We propose to incorporate the theoretical framework for digital normalization developed in Subaim 1(c)
to provide an understanding of how to tune parameters to robustly distinguish sequencing errors from low-
frequency alleles above a certain abundance. While there is clearly no way to completely separate errors
from low-frequency alleles, even a 50% decrease in errors can yield a significant increase in sensitivity of
mapping and resequencing analysis.

Evaluation of sensitivity and specificity will be performed using Cortex and GATK on the Cortex data sets
as well as additional data sets taken from the 1000 Human Genomes project [Iqbal et al., 2012, McKenna et al., 2010].
We expect Cortex memory usage to decrease significantly with no degradation in sensitivity or specificity,
and we expect no change in sensitivity or specificity with GATK.

Aim 3. Explore algorithm and data structure improvements for HPC and cloud environments. Our
current algorithmic approaches use the CountMin Sketch data structure in khmer, which is implemented as
a set of large hash tables. Updates and access can be efficiently parallelized for multicore shared-memory
machines; our next release of khmer is multithreaded and I/O bound for > 4 threads on commodity Dell
hardware. However, for large data sets, and especially for data from samples with high real k-mer diversity
such as metagenomes, we are increasingly memory limited. Moreover, existing commodity architectures
such as Non-Uniform Memory Access (NUMA) limit the increases in efficiency we can get with parallelism.
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Figure 6: Strategies for distributing diginorm-like approaches. Both strategies rely on the assumption that the data is
well mixed. The first strategy, left, divides the data up across multiple machines and performs digital normalization
independently in several different passes. This only incrementally reduces the data set sizes and requires substantial
communication between nodes at the end of each pass, but is straightforward to implement. The second strategy, right,
uses Z independent workers, of which all but the first node discards high-abundance reads; in the second pass, all of
the low-abundance reads are combined and normalized, and then combined with the high-abundance reads from the
first node.

Within our current framework of the CountMin Sketch, we have reached the limits of memory efficiency
[Cormode and Muthukrishnan, 2005]. We propose to exploit potential improvements to the underlying data
structures as well as benchmark several distributed algorithms to provide options appropriate to HPC envi-
ronments, as well as low-memory or low-bandwidth distributed environments such as the Amazon cloud.

Subaim 3a. Incorporating d-left Counting Bloom Filters Recently, d-left Counting Bloom Filters (dl-
CBFs), improved constructions of CBFs, have emerged that rely on near-perfect “d-left” hashing
[Bonomi et al., 2006b]. We propose to implement this as an alternative counting store within khmer, which
would simplify the use of khmer on small memory machines. We will implement dlCBFs within khmer as
an alternate storage mechanism and evaluate it in the context of the above applications. We are also inter-
ested in trying out dlCBFs with dynamic bit reassignment, or ddlCBFs, which allow variable use of memory
but are not as efficient under high load [Bonomi et al., 2006a]. We expect that ddlCBFs will be an excellent
replacement for our current implementation in lightly loaded counting situations, e.g. transcriptomes and
microbial genomes.

Subaim 3b. Progressive filtering algorithms While our goal is to produce efficient few-pass algorithms
for data reduction and error correction, in memory-limited situations there should be straightforward multi-
pass approaches to digital normalization-based algorithms (see Figure 6 (a)). The essential idea is to monitor
the CBF data structure until it reaches an unacceptably high false positive rate, and then stop loading in new
data. The data structure can still be used to filter data for loci with sufficient coverage, however, and for
data sets with many high-abundance source components this would still result in substantial data reduction
or error-correction. This partly-predigested data set could then be passed on to a larger memory machine for
additional processing. We will implement and benchmark this approach in the context of HPC and cloud
environments.

Subaim 3c. Distributed digital normalization By construction, large shotgun data sets are well-mixed:
reads are in essentially random order. Distributed digital normalization for extremely large data sets could
potentially be done efficiently by distributing the data across Z machines, collecting the low and high abun-
dance reads on one designated node, and then collecting only the low-abundance reads on the other Z-1
nodes; see Figure 6 (b). This minimizes the collation of common components across workers by assuming
that common components will be collected by the designated node.



We will build a trial implementation and explore the parameter space for Z, per-node memory, and abun-
dance threshold in both HPC and Amazon cloud computing environments.

Summary of Proposed Research Aims

In summary, we propose to extend, improve, and develop several conceptually simple streaming algorithms
for prefiltering of sequence data, including an existing lossy compression approach, digital normalization,
and a novel error detection and correction approach. We will base data structure and algorithm extensions on
simple, well-understood approaches from bioinformatics and other fields. The net output of our work will
be a suite of efficient and effective prefiltering implementations that will scale and improve the majority of
downstream short-read analysis tools. The effect of these tools will be to dramatically reduce the time and
memory required for first-pass error correction and data analysis and reduction in the biological sciences,
without affecting sensitivity or specificity of the results.

Broader Impacts and PI’s Research Plan

The PI’s group is both generating their own data and collaborating with a number of other researchers on
data analysis. The research plan described above has emerged from our larger interest in making sequence
analysis as broadly available and effective as possible for hypothesis generation in science; accordingly,
in addition to our actual research, we engage in many activities, including: doing and teaching effective
software development; enhancing reproducibility in research by example; training computationally naive
biology students in bioinformatics; generating tutorials and online materials to support training; recruiting
and training underrepresented minorities; and contributing to MSU-local and online communities through
workshops, courses, and blogging.

Software development, “executable papers”, and reproducible research

Dr. Brown has been developing software for over 25 years in commercial, academic, and open source
environments; he is the author of a number of open source packages, including several utilities for automated
testing in Python. Our group uses version control, automated tests, code coverage analysis of the tests,
and continuous integration practices as a daily part of software development, in an attempt to ensure code
accuracy. We also teach this mode of development in regularly held workshops at MSU and elsewhere.

In the interests of reproducible science, we have also been making our complete source code and data
sets available via github.com and Amazon Web Services such that anyone can replicate our results with
their own virtual machine. We have also begun to distribute IPython notebooks [Pérez and Granger, 2007]
for data analysis and figure generation, which makes our papers “executable”, in the sense that all of the
primary computational analyses can be rerun with only a few commands (see e.g. [Brown et al., 2012] for
an example).

Outreach, education, and training

Our lab engages in many outreach, education, and training activities. Specifically,

• Dr. Brown runs the yearly MSU Analyzing Next-Generation Sequencing Data workshop. This course
is run for grad students, postdocs, and faculty, and has attracted over 300 applicants in 3 years. It
is currently funded by an NIH R25 grant (through 2013). Our goal in this workshop is to provide
biologists with an opportunity to learn basic bioinformatics skills.

The course materials, at http://ged.msu.edu/angus/, are available under a Creative Commons license
permitting remixing and adaptation, and we provide instructions on how to reuse them. Approxi-
mately 60,000 unique visitors per year visit the primary site, according to Google Analytics.

This site contains detailed tutorials on how to do de novo assembly, mRNAseq differential expression
analysis, and variant discovery on the Amazon cloud. Over the past year we have added tutorials



on using digital normalization and partitioning, and we will continue to do so as we develop new
techniques.

• For the past two summers we have participated in the Summer Research Opportunity Program for
underrepresented minorities. In 2011 we trained two UMs in bioinformatics, and in 2012 we trained
three. In 2013 we are proposing a more general model in which we will train a large group of SROP
undergrads in general computation, supplanting an ineffective statistics workshop; the students will
then go on to their individual research labs, but with regular touchback meetings with our group. This
grant will support several such undergrads (see Budget Justification and Work Plan).

• Dr. Brown runs an introductory graduate course on computational science for biologists under the
auspices of the MSU BEACON NSF STC on “Evolution in Action”. The course is teleconferenced
across U. Idaho, UW Seattle, and UT Austin. This course includes a module focusing on sequence
analysis considerations for evolutionary biologists and ecologists, where software including our tools
and approaches are discussed, demonstrated, and then executed by the students.

• Members of the lab, including the PI, regularly participate in “Software Carpentry” workshops fo-
cusing on computational science skills (http://software-carpentry.org/). These workshops are held at
MSU and elsewhere.

• All publications in the lab are posted to github.com/ged-lab/ and arXiv.org upon submission, and we
intend to publish them all as Open Access.

• All source code in the lab is made available via the github.com/ged-lab/ version control archive, under
the Open Source BSD license that permits maximal use and reuse of the code.

Capacity Building

We propose to integrate our work on prefiltering data with education and training efforts, with specific
respect to using cloud-enabled computing for small-lab/Big Data analysis. This is a natural extension of our
existing activities in training and outreach on the cloud and is organic to our proposal above.

In addition to teaching, training, and writing tutorials, we will track expected and actual costs for Amazon
cloud usage and include it in our publications.

Evaluation Plan

Details of technology evaluation are included in each individual section. Conveniently, because we are
building prefiltering approaches that apply to published analysis packages, for sensitivity and accuracy we
will compare our prefiltering approaches to the published results. This will also be combined with cost
tracking of the analysis of unfiltered and prefiltered data on HPC and Amazon resources as mentioned
above.

Results of Prior NSF Support
Project Proposal Title: Symbiont Separation and Investigation of the Novel Heterotrophic Osedax Symbiosis
using Comparative Genomics; NSF 09-23812 (PI Brown); Project Location: Michigan State University;
Total Award Amount: $50k; Starting Date: 01/01/10; Ending Date: 12/31/12.

This project is a collaborative project with Dr. Shana Goffredi at Occidental College, in which we are
participating in bioinformatic analysis of MDA-amplified metagenomic samples. These samples originated
from a bead-based enrichment of Oceanospirallales sp. symbionts taken from an Osedax bone eating worm.
We received our first Illumina samples in May, and applied the digital normalization technique described
above to the data sets. We obtained an est. 85% complete genome assembly of the desired microbe, a better
than 2-fold increase over a pre-normalized result. A manuscript on the metabolic analysis of these microbes
based on their genome content is in preparation.



Facilities, Equipment, and Other Resources

Facilities

Dr. Brown has both computational and wet lab space.
The wet lab space consists of 1000 sq ft with a hood, benches for 6 students, and several freezers. The lab

is equipped for chick embryology work with a fluorescent dissecting scope, two egg benches, and two incu-
bators. The lab is also fully equipped with microcentrifuges, PCR machines, water baths, and a microwave.

The computational space consists of 2500 sq ft shared with another computational biology lab. There are
offices for 10 students and postdocs, two faculty, and a large central collaboration space.

Equipment

The lab has three Dell/Intel servers, each with 16 GB of RAM, on which primary development work and
testing is done. We also have access to the High Performance Compute facility at MSU, which possesses
over 4,000 CPUs in chassis each with up to 24 GB of RAM, and several high memory computers available
on a scheduled basis.
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