
Reprinted from the

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Bringing PowerPC Book E to Linux
Challenges in porting Linux to the first PowerPC Book E processor implementation

Matthew D. Porter
MontaVista Software, Inc.

mporter@kernel.crashing.org | mporter@mvista.com

Abstract

The PowerPCBook E1 architecture introduced
the first major change to the PowerPC archi-
tecture since the originalGreen Book2 Pow-
erPC processors were introduced. Central to
the Book Earchitectural changes is the MMU
which is always in translation mode, even dur-
ing exception processing. This presented some
unique challenges for cleanly integrating the
architecture into the Linux/PPC kernel.

In addition to the base PowerPCBook Earchi-
tecture changes, the first IBM PPC440 core im-
plementation included 36-bit physical address-
ing support. Since I/O devices are mapped
above the native 32-bit address space, provid-
ing support for this feature illuminated several
limitations within the kernel resource manage-
ment and mapping system.

1 Overview of PowerPC Book E ar-
chitecture

1.1 Book E MMU

It is important to note thatBook Eis a 64-bit
processor specification that allows for a 32-bit

1Full title of specification isBook E: Enhanced Pow-
erPC Architecture.

2Full title is PowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors.

implementation. Many of the register descrip-
tions in the specification are written describ-
ing 64-bit registers where appropriate. In this
paper, discussions ofBook Earchitecture de-
scribe the 32-bit variants of all registers. Cur-
rently, all announced PowerPCBook Ecom-
pliant processors are 32-bit implementations of
the specification.

In order to understandBook Earchitecture, it
is useful to follow the history of the original
PowerPC architecture. The original PowerPC
architecture was defined at a very detailed level
in theGreen Book. This architecture provides
fine details on how the MMU, exceptions, and
all possible instructions should operate. The
familiar G3 andG4 processor families are re-
cent examples of implementations of theClas-
sic PPC3 architecture.

Book Earchitecture is a result of a collabora-
tion between IBM and Motorola to produce a
PowerPC extension which lends itself to the
needs of embedded systems. One of the driving
forces behind the specification was the desire
for each silicon manufacturer to be able dif-
ferentiate their products. Due to this require-
ment, the specification falls short of providing
enough detail to ensure that system software
can be shared among Book E compliant pro-
cessors.

3An affectionate name bestowed upon all processors
that conform to theGreen Bookspecification.



360 • Linux Symposium

With the bad news out of the way, it can be said
that all Book E processors share some com-
mon architecture features. InBook E, fore-
most is the requirement that MMU translation
is always enabled. This is in sharp contrast to
the Classic PPCarchitecture which uses the
more traditional approach of powering up in
real mode and disabling the MMU upon taking
an exception.

Book E, on the other hand, powers up with
a TLB entry active at the system reset vec-
tor. This insures that the Initial Program Load
(IPL) code can execute to the point of load-
ing additional TLB entries for system software
start up.Book Earchitecture also defines sev-
eral standard page sizes from 1KB through
1TB. In addition,Book Ecalls for the existence
of two unique address spaces, AS0 and AS1.
AS0 and AS1 are intended to facilitate the em-
ulation ofClassic PPCreal mode on aBook E
processor. This property can best be described
by comparing theClassic PPCMMU transla-
tion mechanism to the manner in whichBook
E processors switch address spaces.

A Classic PPC processor has Instruction
Translation (IR) and Data Translation (DR)
bits in its Machine State Register (MSR).
These bits are used to enable or disable MMU
translation. ABook Eprocessor has the same
bits in the MSR but they are called Instruc-
tion Space (IS) and Data Space (DS). The IS
and DS bits are used a little differently since
they are used to control the current 4GB virtual
address space that the processor is executing
within. BothClassic PPCandBook Eproces-
sors set these bits to zero when an exception
is taken. On aClassic PPC, this disables the
MMU for exception processing. On aBook E
processor this switches to AS0. If the kernel
and user space are run in the context of AS1,
then TLB entries for AS0 can be used to emu-
lateClassic PPCreal mode operation.

1.2 Book E exception vectors

The Book E specification allows for a large
number of exception vectors to be imple-
mented. Sixteen standard exceptions are listed
and space is reserved for an additional 48 im-
plementation dependent exceptions.

The Book Eexception model differs from the
Classic PPCmodel in that the exception vec-
tors are not at fixed memory offsets.Classic
PPC exception vectors are each allocated 256
bytes. Using a bit in the MSR, the vectors
can be located at the top or bottom of the PPC
physical memory map.

Book E processors have an Interrupt Vector
Prefix Register (IVPR) and Interrupt Vector
Offset Registers (IVORs) to control the loca-
tion of exception vectors in the system. The
IVPR is used to set the base address of the ex-
ception vectors. Each IVORn register is used
to set the respective offset from the IVPR at
which the exception vector is located.

2 PPC440GP Book E processor

The first PowerPCBook E processor imple-
mentation was the IBM PPC440GP. This pro-
cessor’s PPC440 core was the next evolution-
ary step from the PPC405 cores that were a
cross between aClassic PPCand aBook E
PPC design.

The PPC440 core has a 64 entry unified Trans-
lation Lookaside Buffer (TLB) as its major im-
plementation specific MMU feature. This TLB
design relies on software to implement any de-
sired TLB entry locking, determine appropriate
entries for replacement, and to perform page
table walk and load TLB entries. This ap-
proach is very flexible, but can be performance
limiting when compared to processors that pro-
vide hardware table walk, Pseudo Least Re-
cently Used (PLRU) replacement algorithms,



Linux Symposium 2003 • 361

and TLB entry locking mechanisms.

The PPC440 core also implements a subset of
the allowedBook Epage sizes. Implemented
sizes range from 1KB to 256MB, but exclude
the 4MB and 64MB page sizes.

3 Existing Linux/PPC kernel ports

Linux/PPC already has a number of sub-
architecture families which require their own
head.S implementation. head.S is used
by Classic PPCprocessors,head_8xx.S is
used by the Motorola MPC8xx family, and
head_4xx.S is used by the IBM PPC40x
family of processors. In order to encapsu-
late the unique features of aBook Eproces-
sor, it was necessary to create an additional
head_440.S .

Traditionally, PowerPC has required fixed ex-
ception vector locations, so all ports have fol-
lowed the basicClassic PPChead.S struc-
ture of a small amount of code at the beginning
of the kernel image which branches over the
exception vector code that is resident at fixed
vector locations. This is true even on PPC405’s
head_4xx.S even though the PPC405 offers
dynamic exception vectors in the same man-
ner as aBook Ecompliant processor. With the
standard Linux/PPC linker script,head.S is
guaranteed to be at the start of the kernel im-
age which must be loaded at the base of system
memory.

4 Initial Book E kernel port

4.1 Overview

The first Book Eprocessor kernel port in the
community was done on the Linux/PPC 2.4 de-
velopment tree4. The PPC440GP was the first

4Information on Linux/PPC ker-
nel development trees can be found at

publicly availableBook Ecompliant processor
available to run Linux.

4.2 MMU handling approaches

Several approaches were considered for imple-
menting the basic handling of exception pro-
cessing within the constraints of aBook E
MMU. With the MMU always being enabled,
it is not possible for the processor to access
instructions and data using a physical address
during exception processing. At a minimum, it
is necessary to have a TLB entry covering the
PPC exception vectors to ensure that the first
instruction of a given exception implementa-
tion can be fetched.

One implementation path is to create TLB en-
tries that cover all of kernel low memory within
the exception processing address space (AS0).
These entries would be locked so they could
not be invalidated or replaced by kernel or user
space TLB entries. This is the simplest ap-
proach for the 2.4 kernel where page tables
are limited to kernel low memory. This al-
lows task structs and page tables to be allo-
cated via the normal__get_free_page()
or __get_free_pages() calls using the
GFP_KERNELflag. Unfortunately, this ap-
proach has some drawbacks when applied to
a PPC440 System on a Chip (SoC) implemen-
tation.

The PPC440 core provides large TLB sizes
of 1MB, 16MB, and 256MB. A simple solu-
tion would be to cover all of kernel low mem-
ory with locked 256MB TLB entries. By de-
fault, Linux/PPC restricts maximum kernel low
memory to 768MB. This would only require a
maximum of 3 entries in the TLB to be con-
sumed on a permanent basis. Unfortunately,
this approach will not work since the behav-
ior of the system is undefined in the event that
system memory is not a multiple of 256MB. In

http://penguinppc.org/dev/kernel.shtml



362 • Linux Symposium

practice, this generates speculative cache line
fetches past the end of system memory which
result in a Machine Check exception.

The next logical solution would be to use a
combination of locked large TLB entries to
cover kernel low memory. In this approach, we
quickly run into a situation where the locked
TLB entries consume too much of the 64 entry
TLB. Consider a system with 192MB of sys-
tem RAM. In this system, it would be neces-
sary to lock 12 16MB TLB entries permanently
to cover all of kernel low memory. This ap-
proach would leave only 52 TLB entries avail-
able for dynamic replacement. Artificially lim-
iting the already small TLB would put further
pressure on the TLB and most likely adversely
affect performance.

4.3 Linux 2.4 MMU Solution

A different approach is necessary because there
does not seem to be a good method to lock all
of kernel low memory into the PPC440 TLB.
One possible approach is to limit the area in
which kernel data structures are allocating by
creating a special pool of memory. Implement-
ing the memory pool approach involves the fol-
lowing steps:

1. Force all kernel construct allocation to oc-
cur within a given memory region.

2. Ensure that the given memory region is
covered by a locked TLB within excep-
tion space.

The system is already required to maintain one
locked TLB entry to ensure that instructions
can be fetched from the exception vectors with-
out resulting in a TLB miss. Therefore, the ker-
nel construct memory region can simply be the
pool of free memory that follows the kernel at
the base of system memory. The locked TLB
entry is then set to a size of 16MB to ensure

that it covers both the kernel (including excep-
tion vectors) and some additional free memory.
A TLB entry size of 16MB was chosen because
it is the smallest amount of RAM one could
conceivably find on a PPC440 system.

It was then necessary to create a facility to con-
trol allocation from a given memory region.
The easiest way to force allocation of mem-
ory from a specific address range in Linux is
to make use of theGFP_DMAflag to the zone
allocator calls. The allocation of task structs,
pgds, and ptes was modified to result in an al-
location from the DMA zone. Figure 1 shows
a code fragment demonstrating how this is im-
plemented for PTE allocation.

The PPC memory management initialization
was then modified to ensure that 16MB of
memory is placed intoZONE_DMAand the
remainder ends up inZONE_NORMALor
ZONE_HIGHMEMas appropriate.

With this structure, all kernel stacks and page
tables are allocated withinZONE_DMA. The
single locked TLB entry for the first 16MB of
system memory ensures that no nested excep-
tions can occur while processing an exception.

One complication that resulted from using the
ZONE_DMAzone in this manner is that there
can be many early consumers of low memory
in ZONE_DMA. It was necessary to place an ad-
ditional kludge in the early Linux/PPC mem-
ory management initialization to ensure that
some amount of the 16MB ofZONE_DMAre-
gion would be free after the bootmem allocator
was no longer in control of system memory.
This was encountered when a run with 1GB
of system RAM caused thepage structs
to nearly consume all of theZONE_DMAre-
gion. This, of course, is a fatal condition due to
the allocation of all task structs and page tables
from ZONE_DMA.



Linux Symposium 2003 • 363

static inline pte_t * pte_alloc_one(struct mm_struct *mm, unsigned long address)
{

pte_t *pte;
extern int mem_init_done;
extern void *early_get_page(void);

if (mem_init_done)
#ifndef CONFIG_440

pte = (pte_t *) __get_free_page(GFP_KERNEL);
#else

/* Allocate from GFP_DMA to get entry in pinned TLB region */
pte = (pte_t *) __get_free_page(GFP_DMA);

#endif
else

pte = (pte_t *) early_get_page();
}

Figure 1: pte_alloc_one() implementation

4.4 Virtual exception processing

One minor feature of the PPC440 port is the
use of dynamic exception vectors. As allowed
by theBook Earchitecture, exception vectors
are placed in head_440.S using the following
macro:

#define START_EXCEPTION(label) \
.align 5; \

label:

This is used to align each exception vector
entry to a 32 byte boundary as required by
the PPC440 core. The following code from
head_440.S shows how the macro is used at the
beginning of an exception handler:

/* Data TLB Error Interrupt */
START_EXCEPTION(DataTLBError)
mtspr SPRG0, r20

This code fragment illustrates how each excep-
tion vector is configured based on its link loca-
tion:

SET_IVOR(12, WatchdogTimer);
SET_IVOR(13, DataTLBError);
SET_IVOR(14, InstructionTLBError);

The SET_IVOR macro moves the label address
offset into aBook EIVOR. The first parameter
specifies which IVOR is the target of the move.
Once the offsets are configured and the IVPR
is configured with the exception base prefix ad-
dress, exceptions will then be routed to the link
time specified vectors.

An interesting thing to note is that the Linux
2.4Book Ekernel actually performs exception
processing at the kernel virtual addresses. I.e.,
the exception vectors are located at an offset
from 0xc0000000.

5 New Book E kernel port

5.1 Overview

Working to get theBook Ekernel support into
the Linux/PPC 2.5 development tree resulted in
some discussions regarding the long-term via-
bility of the ZONE_DMAapproach used in the
2.4 port. One of the major issues has been
that the 2.5 kernel moved the allocation of task
structs to generic slab-based kernel code. This
move broke the currentBook Ekernel model
since it is no longer possible to force alloca-
tion of task structs to occur withinZONE_DMA.
Another important reason for considering a



364 • Linux Symposium

change is that the current method is somewhat
of a hack. That is,ZONE_DMAis used in a
manner in which it was not intended.

5.2 In-exception TLB misses

The first method investigated to eliminate
ZONE_DMAusage simply allows nested excep-
tions to be handled during exception process-
ing. Exception processing code can be de-
fined as the code path from when an excep-
tion vector is entered until the processor returns
to kernel/user processing. On a lightweight
TLB miss, this can happen immediately after
a TLB entry is loaded. On heavyweight ex-
ceptions, this may occur whentransfer_
to_handler jumps to a heavyweight han-
dler routine in kernel mode.

Upon examining the exception processing
code, it becomes apparent that the only stan-
dard exception that can occur is the DataTL-
BError exception. This is because exception
vector code must be contained within a locked
TLB entry, so no InstructionTLBError condi-
tions can occur. Further, early exception pro-
cessing accesses a number of kernel data con-
structs. These include kernel stacks, pgds, and
ptes. By writing a non-destructive DataTLBEr-
ror handler it is possible to safely process data
TLB misses within exception processing code.

In order to make the DataTLBError handler
safe, it is necessary not to touch any of the
PowerPC Special Purpose General Registers
(SPRGs) when a DataTLBError exception is
taken. Instead, a tiny stack is created within
the memory region covered by the locked TLB
entry. This stack is loaded with the context
of any register that need to be used during
DataTLBError processing. The following code
fragment shows the conventional DataTLBEr-
ror register save mechanism:

/* Data TLB Error Interrupt */
START_EXCEPTION(DataTLBError)
mtspr SPRG0, r10
mtspr SPRG1, r11
mtspr SPRG4W, r12
mtspr SPRG5W, r13
mtspr SPRG6W, r14
mfcr r11
mtspr SPRG7W, r11
mfspr r10, SPRN_DEAR

In the non-destructive version of the DataTL-
BError, the code looks like following:

START_EXCEPTION(DataTLBError)
stw r10,tlb_r10@l(0);
stw r11,tlb_r11@l(0);
stw r12,tlb_r12@l(0);
stw r13,tlb_r13@l(0);
stw r14,tlb_r14@l(0);
mfcr r11
stw r11,tlb_cr@l(0);
mfspr r11, SPRN_MMUCR
stw r11,tlb_mmucr@l(0);
mfspr r10, SPRN_DEAR

Here, thetlb_* locations within the locked
TLB region are used to save register state
rather than the SPRGs.

If we were to continue to perform exception
processing from native kernel virtual address,
we would have a problem. Thetlb_* loca-
tions allocated withinhead_44x.S would be
at some offset from 0xc0000000. A store to
any address with a non-zero most significant
16 bits would require that an intermediate reg-
ister be used to load the most significant bits of
the address.

This issue made it necessary to make the
switch to emulation ofClassic PPCreal mode.
This is accomplished by placing the dynamic
exception vectors at a virtual address offset
from address zero and providing a locked TLB
entry covering this address space. By doing so
it became possible to access exception stack lo-
cations using zero indexed loads and stores.

In the DataTLBError handler, each access to
kernel data which may not have a TLB entry is



Linux Symposium 2003 • 365

protected. Atlbsx. instruction is used to de-
termine if there is already a TLB entry for the
address that is to be accessed. If a TLB entry
exists, the access is made. However, if the TLB
entry does not exist, a TLB entry is created be-
fore accessing the resource. This method is il-
lustrated in the following code fragment based
on thelinuxppc-2.5 head_44x.S :

/* Stack TLB entry present? */
3: mfspr r12,SPRG3

tlbsx. r13,0,r12
beq 4f
/* Load stack TLB entry */
TLB_LOAD;

/* Get current thread’s pgd */
4: lwz r12,PGDIR(r12)

Using this strategy, the DataTLBError handler
gains the ability resolve any possible TLB miss
exceptions before they can occur. Once it has
performed the normal software page table walk
and has loaded the faulting TLB entry, it can
return to the point of the exception. Of course,
that exception may now be either from a ker-
nel/user context or from an exception process-
ing context. A DataTLBError can now be eas-
ily handled from any context.

5.3 Keep It Simple Stupid

Sometimes one has to travel a long road to
eventually come back to the simple solution.
This project has been one of those cases. An
implementation of the in-exception tlb miss
method showed that the complexity of the TLB
handling code had gone up by an order of mag-
nitude. It is desirable (for maintenance and
quality reasons) to keep the TLB handling code
as simple as possible.

The KISS approach pins all of kernel low
memory with 256MB TLB entries in AS0. The
number of TLB entries is determined from the
discovered kernel low memory size. A high

water mark value is used to mark the highest
TLB slot that may be used when creating TLB
entries in AS1 for the kernel and user space.
The remaining TLB slots are consumed by the
pinned TLB entries.

This approach was previously thrown out due
to the occurrence of speculative data cache
fetches that would result in a fatal machine
check exception. This situation occurs when
the system memory is not aligned on a 256MB
boundary. In these cases, the TLB entries cover
unimplemented address space. The data cache
controller will speculatively fetch past the end
of system memory if any access is performed
on the last cache line of the last system mem-
ory page frame.

The trick to make this approach stable is to
simply reserve the last page frame of system
memory so it may not be allocated by the ker-
nel or user space. This could be done via the
bootmem allocator, but in order to accomplish
it during early MMU initialization it is neces-
sary to utilize the PPC specificmem_pieces
allocation API. Using this trick allows for a
simple (and maintainable) implementation of
PPC440 tlb handling.

5.4 Optimizations

One clear enhancement to the low-level TLB
handling mechanism is to support large page
sizes for kernel low memory. This support is
already implemented5 for the PPC405 family
of processors that implement a subset of the
Book E page sizes. Enabling the TLB miss
handlers to load large TLB entries for kernel
low memory guarantees a lighter volume of
exceptions taken from accesses of kernel low
memory.

Although this is a common TLB handling op-
timization in the kernel, a minor change to

5In the linuxppc-2.5 development tree



366 • Linux Symposium

the KISS approach could eliminate the need to
provide large TLB replacement for kernel low
memory. The change is to simply modify the
KISS approach to run completely from AS0.
AS1 would not longer be used for user/kernel
operation since all code would run from the
AS0 context. This yields the same perfor-
mance gain by reducing TLB pressure as the
large TLB replacement optimization. How-
ever, this variant leverages the TLB entries that
are already pinned for exception processing.

6 36-bit I/O support

6.1 Overview of large physical address support

The PPC440GP processor implementation
supports 36-bit physical addressing on its sys-
tem bus. 36-bit physical addressing has already
been supported on other processors with a na-
tive 32-bit MMU as found in IA32 PAE imple-
mentations. However, the PPC440GP imple-
ments a 36-bit memory map with I/O devices
above the first 4GB of physical memory.

The basic infrastructure by which large physi-
cal addresses are supported is similar to other
architectures. In the case of PPC440GP, we de-
fine a pte to be anunsigned long long
type. In order to simplify the code, we define
our page table structure as the usual two level
layout, but with an 8KB pgd. Rather than allo-
cating a single 4KB page for a pgd, we allocate
two pages to meet this requirement.

In order to share some code between large
physical address and normal physical address
PPC systems, a new type is introduced:

#ifndef CONFIG_440
#include <asm-generic/mmu.h>
#else
typedef unsigned long long phys_addr_t;
extern phys_addr_t
fixup_bigphys_addr(phys_addr_t, phys_addr_t);
#endif

This typedef allows low-level PPC memory
management routines to handle both large and
normal physical addresses without creating a
separate set of calls. On a PPC440-based core
it is a 64-bit type, yet it remains a 32-bit type
on all normal physical address systems.

6.2 Large physical address I/O kludge

The current solution for managing devices
above 4GB is somewhat of a “necessary
kludge.” In a dumb bit of luck, the PPC440GP
memory map was laid out in such a way that
made it easy to perform a simple translation of
a 32-bit physical address (or Linux resource)
into a 36-bit physical address suitable for con-
sumption by the PPC440 MMU.

All PPC440GP on-chip I/O devices and PCI
address spaces were neatly laid out so that their
least significant 32-bits of physical address did
not overlap.

A PPC440 specificioremap() call is created
to allow a 32-bit resource to be mapped into
virtual address space. Figure 2 illustrates the
ioremap() implementation.

This ioremap() implementation works by
calling a translation function to convert a
32-bit resource into a 64-bit physical ad-
dress.fixup_bigphys_addr() compares
the 32-bit resource value to several PPC440GP
memory map ranges. When it matches one dis-
tinct range, it concatenates the most significant
32-bits of the intended address range. This
results in a valid PPC440GP 64-bit physical
address that can then be passed to the local
ioremap64() routine to create the virtual
mapping .

This method works fine for maintaining com-
patibility with a large amount of generic PCI
device drivers. However, the approach quickly
falls apart when a driver implementsmmap() .



Linux Symposium 2003 • 367

void *
ioremap(unsigned long addr, unsigned long size)
{

phys_addr_t addr64 = fixup_bigphys_addr(addr, size);

return ioremap64(addr64, size);
}

Figure 2: PPC440GPioremap() implementation

The core of most drivermmap() implemen-
tations is a call toremap_page_range() .
This routine is prototyped as follows:

int remap_page_range(unsigned long from,
unsigned long to,
unsigned long size,
pgprot_t prot);

The to parameter is the physical address of
the memory region that is to be mapped. The
current implementation assumes that a physi-
cal address size is always equal to the native
word size of the processor. This is obviously
now a bad assumption for large physical ad-
dress systems because it is not possible to pass
the required 64-bit physical address.

Figure 3 shows the implementation of
remap_page_range() for the mmap
compatibility kludge6.

The physical address parameter is now passed
as a phys_addr_t . On large physical
address platforms, thefixup_bigphys_
addr() call is implemented to convert a 32-
bit value (normally obtained from a 32-bit re-
source) into a platform specific 64-bit physi-
cal address. Theremap_pmd_range() and
remap_pte_range() calls likewise have
their physical address parameters passed using
aphys_addr_t .

This implementation allows device drivers im-
plementing mmap() using remap_page_

6Patches for this support can be found at
ftp://source.mvista.com/pub/linuxppc/

range() to run unchanged on a large phys-
ical address system. Unfortunately, this is not
a complete solution to the problem.

The fixup_bigphys_addr() routine
cannot necessarily be implemented for all
possible large physical address space memory
maps. Some systems will require discrete
access to the full 36-bit or larger physical
address space. In these cases, there is a need
to allow themmap() system call to handle a
64-bit value on a 32-bit platform.

6.3 Proper large physical address I/O support

One approach to resolving this issue is to
change the parameters ofremap_page_
range() and friends as was done in the
mmap compatibility kludge. The physical ad-
dress to be mapped would then be manipulated
in aphys_addr_t . On systems with a native
word sizephys_addr_t there is no effect.
The important piece of this approach is that
all callers ofremap_page_range() would
need to do any manipulation of physical ad-
dresses using aphys_addr_t variable to en-
sure portability.

In the specific case of afops->mmap imple-
mentation, a driver must now be aware that a
vma->pgoff can contain an address that is
greater than the native word size. In any case,
the vma->pgoff value would be shifted by
PAGE_OFFSETin order to yield a system spe-
cific physical address in aphys_addr_t .



368 • Linux Symposium

int
remap_page_range(unsigned long from, phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
{

.

.

.
phys_addr = fixup_bigphys_addr(phys_addr, size);
phys_addr -= from;
.
.
.

}

Figure 3: PPC440GPremap_page_range() implementation

Once we allow for 64-bit physical address
mapping on 32-bit systems, it becomes nec-
essary to expand the resource subsystem to
match. In order for standard PCI drivers to re-
main portable across standard and large phys-
ical address systems, it is necessary to ensure
that a resource can represent a 64-bit physi-
cal address on a large physical address sys-
tem. Building on the approach of usingphys_
addr_t to abstract the native system physical
address size, this can now be the native storage
type for resource fields. In doing so, it is also
important to extend the concept to user space to
ensure that common applications like XFree86
can parse 64-bit resources on a 32-bit platform
and cleanlymmap() a memory region.

7 Conclusion

The Linux kernel is remarkably flexible in han-
dling ports to new processors. Despite sig-
nificant architectural changes in the PowerPC
Book Especification, it was possible to enable
the PPC440GP processor within the existing
Linux abstraction layer in a reasonable amount
of time. As with all Linux projects, this one is
still very much a work-in-progress. Develop-
ment in the Linux 2.5 tree offers an opportunity
to explore some new routes for better PowerPC
Book Ekernel support.

During this project, I have had the opportunity

to learn which features of aBook Eprocessor
would be most useful in supporting a Linux
kernel port. Clearly, the most important feature
in this respect is an abundance of TLB entries.
The PPC440 core’s 64 entry TLB is the sin-
gle most limiting factor for producing a simple
Book Eport. If the PPC440 core had 128 or
256 TLB entries, the work on porting Linux to
the processor would have been far easier.

Although these new processors are now run-
ning the Linux kernel, this support does not
yet address 100% of this platform’s new ar-
chitectural features. As with many areas in
the Linux kernel, support for large physical ad-
dress mapping needs to evolve with emerging
processor technologies. Without a doubt, the
increased number of processors implementing
large physical address I/O functionality help to
make the Linux kernel community aware of the
kernel requirements inherent in this technol-
ogy.

8 Trademarks

IBM is a registered trademark of International Busi-
ness Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

MontaVista is a registered trademark of MontaVista
Software, Inc.



Linux Symposium 2003 • 369

Motorola is a registered trademark of Motorola In-
corporated.

PowerPC is a registered trademark of International
Business Machines Corporation. Other company,
product, or service names may be trademarks or
service marks of others.



370 • Linux Symposium


