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Abstract 
We present a novel scheme based on the 
Tomasulo algorithm to implement out-of-order 
execution in stack machines. This scheme not 
only reduces redundant data movement within 
the processor core, but also eliminates the stack 
cache and the associated problem of managing 
it. We present some preliminary quantitative 
evaluation of the proposed technique. For a 
suite of scientific benchmarks we obtain 
performance that appears to be competitive with 
out-of-order superscalar GPR processors. 

1. Introduction 
Stack machines are not popular among computer 
architects – the presence of a single architectural 
bottleneck, namely the stack, is viewed as a 
significant obstacle in the dynamic extraction of 
instruction-level parallelism. This project is an 
attempt at designing a scheme to uncover the 
latent parallelism in the sequential stack code at 
runtime. Although this project began as a 
somewhat academic exercise, we believe that 
our technique is not impractical and can serve as 
the basis for future high performance computer 
architectures. 
 
Stack machines have a certain minimalist 
elegance about them. However, the absence of 
registers provides more than conceptual 
economy. By implicitly referring to operands, 
stack code is often shorter than general-purpose 
register code.  Koopman estimates that stack 
machine programs are at least 3.75 times smaller 
than RISC code [1], though it must be noted that 
any measure of program size strongly depends 
on the language and compiler used.  A less 
obvious reason for a stack machine having 
compact code is that they efficiently support 
code with frequently used subroutines.  Since all 

working parameters are always present on the 
stack, procedure call overhead is minimal, 
requiring no memory cycles for parameter 
passing.  Another advantage of stack machines 
is that on interrupts there is no need to save 
registers. Thus interrupt response latencies are 
low, making stack architectures ideal for real-
time systems. Stack machines also support 
modular code that has many short function calls 
(such as object-oriented programs) better than 
GPR (General Purpose Register) machines, 
since registers need not be saved before every 
function call. 
 
Critics of stack machines argue that these 
features come at a price.  One of the largest of 
the criticisms is the lack of random access – all 
data must be computed on the top-of-stack.  This 
excessive traffic to move operands in position to 
be worked on wastes data memory bandwidth.  
The stack cache is another issue discussed.  
Most of the stack machines reported previously 
in the literature have some sort of stack cache on 
the processor which serves as the architectural 
analogue of the register file in GPR machines. 
Therefore, even though the programmer need 
not explicitly save registers, the underlying 
processor still has to ensure that the stack cache 
“follows” the instruction stream. Architecturally, 
it maybe useful, as the processor can optimize 
when and how it writes out the stack cache to 
memory instead of relying on the programmer 
(or the compiler) to specify it explicitly as in the 
case of GPR machines1.  Finally, as mentioned, 
the stack acts as a serialization point; since each 
instruction has to work on the top of the stack, it 
is not semantically possible to have two 
                                                      
1 Observe that the “sliding window” register file in 
the SPARC architecture is an attempt to provide a 
similar behind-the-scenes register management, at the 
cost of making the architecture more complicated. 
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instructions of a single thread to simultaneously 
run at one moment.  This seemingly removes the 
possibility of exploiting parallelism in the code. 
 
Our goal is to remove the apparently inherent 
inefficiencies of the stack machine.  Taking a 
page from the industry-standard GPR machine, 
we have developed a new stack architecture that 
implements the Tomasulo algorithm to create a 
micro-data flow engine.  With our scheme, we 
are able to issue multiple instructions out-of-
order, remove the stack cache, and remove the 
need for excessive movement of data objects.  
We further show that it is possible to extract a 
large amount of  parallelism within stack code, 
up to a point that it is comparable to GPR 
machines. 
 
In the next section, we further motivate our 
work, looking at past stack machines for 
comparison.  In Section 3, we discuss the details 
of our proposed BOOST architecture.  We 
describe our simulation efforts as well as the 
results we found, in Section 4.  Finally, in the 
last section, we interpret our findings, discussing 
the possible consequences of our research.  

2. Motivation and Previous Work 
There have been many different stack micro-
architectures reported in the literature [1, 2, 4]. 
In this section, we attempt to identify some 
commonalities of those architectures. Rather 
than referring to stack architectures in general, 
we use the SUN Microsystems picoJava-II core 
as a concrete example of the class of traditional 

stack micro-architectures [5, 6, 7]. Since this is a 
recent, yet traditional design, it incorporates 
most of the advances and salient features of 
stack machines. The high-level architecture 
diagram of the picoJava-II core is presented in 
Figure 1.   
 
The picoJava-II is a typical 0-operand, single 
issue, single stack processor. Like other 
traditional stack architectures, it uses a stack 
cache to cache the topmost entries in the stack. 
However, the stack cache is not organized as a 
hardware stack. Instead, it is built much like a 
traditional GPR machine register file. It has 
multiple read and write ports and supports 
random access to the data. The OPTOP register 
keeps track of the current top of stack. When the 
stack is modified by an instruction (such as a 
pop), this register is updated to reflect the new 
top of stack and no data is actually moved in the 
stack cache. The processor uses the OPTOP to 
keep track of the operands for the instructions. 
The VARS register contains the base of the 
current operand stack. Data values can be 
accessed/stored relative to the VARS register 
and moved to/from the OPTOP.  The OPTOP, 
VARS and PC (program counter) are the only 
explicit storage locations in the system.   

Figure 1 Block diagram of the picoJava-II 
                processor core. 

 
There are certain conceptual and practical 
problems with this scheme. Conceptually, the 
stack cache appears redundant, keeping track of 
data already present in the L1-cache and the 
store buffers. (Store buffers keep track of stores 
not yet written back to the L1-cache.) In 
addition, this mechanism doesn’t eliminate all 
unnecessary data movement. Consider a stack 
instruction such as dup which duplicates the 
datum at the top of stack. As far as the stack 
program is concerned, the dup instruction is only 
a means of telling the processor that the element 
at the top of the stack will be used by some other 
instruction. No actual movement of data is 
necessary, but a stack cache-like implementation 
requires that the data be copied from one register 
in the stack cache to another. 
 
On a practical level, there is the problem of 
keeping the stack cache current with the top-of-
stack. For example, when the stack grows 
beyond the stack cache, some of the bottom 
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entries need to be written out to memory. This is 
often in the critical path of the program 
requiring subsequent instructions to be stalled 
until this happens. PicoJava has a workaround 
for this. The programmer can set high- and low-
watermarks that prompt the flushing out (or 
reading in) of a certain number of cache 
elements to (or from) memory proactively. Note 
that this setting has to be done statically, and 
fails to use any dynamic, auto-tuning mechanism 
that naturally adapts to the dynamic program 
behavior. 
 
One of the advances in the picoJava-II 
architecture is the use of instruction-folding [2, 
3]. In this technique, certain sequences of 
instructions (such as say load load add

store) are collapsed into a single RISC like 
instruction during decode. An example of 
instruction-folding for a sequence of eight 
instructions is shown in Figure 2.  
 
Instruction-folding is done to exploit the random 
access provided by the stack cache and to reduce 
movement of data for the most common groups 
of instructions. Unfortunately, the permissible 

groups of instructions that can be folded in this 
manner are limited in number and scope. In 
addition, not all redundant data moves are 
avoided. Although redundant moves between 
instructions in a group are avoided, there is still 
forwarding of data through the registers in the 
stack cache between groups.  
 
The approach we propose is a generalization of 
instruction folding based on the Tomasulo 
algorithm [9]. By using a forwarding scheme 
through reservation stations, we are able to get 
rid of the stack cache. The reservation stations 
along with the store buffers serve as the 
mechanism for data forwarding between 
instructions. Since there is no explicit stack 
cache, there is no need to explicitly keep it 
consistent with the instruction flow. The 
reservation stations, the regular load-store 
mechanism (especially hoisting loads over 
outstanding stores) and the data cache work in a 
concerted manner to automatically manage the 
stack in a dynamic fashion. In the following 
section we describe this scheme in greater detail.  

3. The BOOST Micro-architecture 
The Boost micro-architecture seeks to 
incorporate a basic Tomasulo-like micro-data 
flow engine into a stack core to dynamically 
extract instruction-level parallelism. The 
sequential semantics of stack machines makes 
this a challenging problem. 

3.1. Description of the 
BOOST architecture 

The Boost architecture extends the basic 
picoJava-II processor core with features to 
support out-of-order execution.  A block 
diagram of the architecture is presented in 
Figure 3.   
 

iload b 
iloadc 
isub 

iload d 
iload e 
isub 

iadd 
istore a 

iload b, iloadc, isub 

iload d, iload e, isub 

iadd, istore a 

# of cycles = 3

# of cycles = 8 

Figure 2 An example illustrating instruction folding. 
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The basic pipeline decomposition of BOOST is 
very similar to that of picoJava-II.  Two notable 
additions are reservation stations (to store 
instructions waiting to execute) and a stack map 
(to associate memory addresses with reservation 
station entries).  Reservation stations in the 
Boost architecture play a role similar to their 
function in superscalar RISC machines.  An 
instruction is ready to execute if all its data 
operands are ready and a functional unit is 
available.   
 
The stack map is a table that associates a stack 
address with a reservation station entry.  The 
destination address of each instruction 
corresponds to a reservation station entry for that 
instruction, and this association is stored in the 
stack map.  Its analogous counterpart in the 
superscalar RISC framework would be the 
architected register file.  Traditionally, register 
files have been thought of as an area of storage 
for fast access to data that is most frequently 
accessed for computation.  However, with the 
inception of superscalar architectures, the actual 
data is hardly ever present in the registers 
themselves.  Rather, most of the data is 
constantly in flight and passed between 
dependent instructions through reservation 
station entries.  The register file instead serves as 
a mapping to associate absolute data addresses 
(as specified in the instruction as source and 

destination registers) and their corresponding 
aliased address (the reservation station entry that 
will produce the data for that register).  The 
architected register file contains actual data only 
when there is a need to preserve state before an 
interrupt or context switch.   

I-CACHE FETCH 

DECODE 

 STACK MAP 
In BOOST, the stack map plays this role of 
mapping memory addresses to their 
corresponding reservation station entry, similar 
to the function of the architected register file in 
RISC.  This way, the stack map facilitates 
‘address renaming’, an important aspect of out-
of-order execution.  The register file in RISC 
additionally serves to capture state of the 
execution before a context switch.  However, 
this is not required of the stack map since 
context state is inherently preserved in the stack.   
 
The load/store buffer in BOOST is similar to its 
role in typical RISC processors.  It is a buffer for 
outstanding loads and stores from/to the D-
cache.  However, potentially every instruction 
can cause a load or store since all operations are 
memory transactions in the BOOST stack 
architecture.  Further, a majority of the 
instructions in stack programs are explicit loads 
and stores.  Hence, the role of the load/store 
buffer is critical to efficient execution.  A good 
percentage of memory accesses are bypassed 
through the reservation stations and stack map 
without hitting the load/store unit or D-cache.  
For those instructions that miss in the stack map, 
the store buffer is checked to determine if the 
required data is present.  The D-cache is visited 
only when a miss in both the stack map and the 
store buffer occurs. 
 
With out-of-order execution comes the potential 
to issue multiple instructions in parallel and 
improve throughput of the architecture. 
However, this significantly increases the 
complexity of the DECODE stage to decode 
these instructions.  This problem is further 
complicated due to the fact that the 
dependencies between these instructions are 
implicit in the stack framework.  In the RISC 
paradigm, dependencies are explicitly specified 
through the absolute location (register or 
memory) where instruction operands can be 
found.  However, with stacks, all operand

Figure 3 Block diagram of the BOOST micro-architecture

ISSUE L/S D-CACHE 

EXEC 

RES. 
STATIONS 

CDB 
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The Adolescence of an Instruction - An Illustrative Decode example 
(P): Parallel operation (S): Sequential operation 

 
Instruction Package: 

Load 2 Store 0 Add Load 3 Load 0 Add Add Store 0

 
Starting Parameters: OPTOP = aaaa0010H VARS = aaa90000H (word addressing used) 
 

Step 1: Lookup relative change to OPTOP for each instruction (P)
+1 -1 -1 +1 +1 -1 -1 -1

Step 2: Compute absolute change to OPTOP for each instruction (S)
+1 0 -1 0 +1 0 -1 -2

Step 3: Compute OPTOP for each instruction (P)
aaaa0010 aaaa0011 aaaa0010 aaaa000f aaaa0010 aaaa0001 aaaa0010 aaaa000f

OPTOP at start of next package equals aaaa000eH 

Step 4: Calculate absolute addresses of Sources and Destination (P)
Source 1: 
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2: 
- - aaaa000e - - aaaa000f aaaa000e -

Destination: 
aaaa0010 aaa90000 aaaa000e aaaa000f aaaa0010 aaaa000f aaaa000e aaa90000

Step 5: Find dependences (P)
Each instruction is preassigned a token - the number of a free reservation station.  If an instruction 
does not have a destination (such as instructions that modify control registers), the preassigned 
token is unused, free for future use. 

t0 t1 t2 t3 t4 t5 t6 t7

A priority mux is used to assign each source the token (if available) of the closest preceding 
instruction in the package writing to the source address. (This is similar to hardware used in GPRs.) 
Source 1: 
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2: 
- - aaaa000e - - aaaa000f aaaa000e -

Destination: 
aaaa0010 aaa90000 aaaa000e aaaa000f aaaa0010 aaaa000f aaaa000e aaa90000

t0 t1 t2 t3 t4 t5 t6 t7
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Step 6: Stack Map lookup (P) 

If source isn’t found within the package, the address is looked up in the stack map. 
Source 1: 
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2: 
- - aaaa000e - - aaaa000f aaaa000e -

 
Stack Map

address Res Station #

aaa90002 t28

aaa9f040 t37

aaaa0000 t30

aaaa000f t63

aaa9e200 t53

...

Step 7: Issue Loads (P) 

If source address isn’t found in the stack map, an implicit load is issued to the load store unit with a 
uniquely generated virtual token (vt).  Special optimization for loads: use the destination token itself 
instead of the virtual token. 
Source 1: 
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2: 
- - aaaa000e - - aaaa000f aaaa000e -

 
Load/Store Buffer

address value

aaaa0005 68536

aaa90005 2818

aaaa0003 9156

aaa9d068 2

aaa9c890 88453234

...

 

 

assigned vt14

??? 

t2

???
unresolved
go to cache

Common Data Bus

 

resolved

vt14, 9156
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dependencies are based on variable positions 
relative to the top of stack.  Additionally, the 
number of instructions that can be issued in 
parallel is also limited by the amount of 
instruction level parallelism (ILP) that be 
extracted from a stack program.  To make the 
BOOST architecture feasible, we propose an 
efficient scheme for decoding multiple 
instructions and resolving operand dependencies 
in parallel to attain a reasonable degree of ILP.   
 
A comprehensive example of instruction 
execution in the BOOST datapath is illustrated 
in Figure 4.  Specifically, the strategy for 
resolving operand dependencies in the decode 
stage is illustrated.  A micro-architect may split 
DECODE into multiple pipeline stages; we 
partitioned DECODE into two stages in our 
design: DECODE and STACK MAP.  There are 
two kinds of dependencies handled in 
DECODE: (a) dependencies between 
instructions issued in the same packet (a packet 
is all instructions issued in parallel at the same 
cycle) and (b) inter-packet dependencies 
between instructions issued at multiple cycles.  
Once the instruction has been issued to the 
reservation station, the subsequent processes of 
execution and write-back is very similar to the 
style of RISC. 
 
The major advantage of register and memory-
memory architectures is the random access to 
data.  However, in stack machines, all operations 
are restricted to the top two operands on the 
stack.  The bottleneck this creates is the constant 
movement of data values to/from the top of 
stack before any interesting computation is 
performed on them.  For example, 47 % of the 
instructions executed on the JVM stack are local 
variable load/stores [2]. The folding 
optimization discussed earlier reduces 6 % of all 
instructions on average.  Nevertheless, it is clear 
that this movement of data to/from top of stack 
dominates overall percentage of bytecodes 
executed.   
 
The introduction of reservation stations and 
stack map as a means for out-of-order execution 
simultaneously alleviates this problem of data 
traffic in stack architectures.  Combined with 
the load/store buffer, these three entities provide 

a powerful abstraction of the stack itself.  They 
are a way to store and address operands for 
execution and can effectively replace the stack 
cache used in traditional stack architectures.   

4. Evaluation 
The most important question that we wanted to 
answer is how much parallelism could our 
algorithm extract from a stack instruction 
stream. In order to do that, we could either 
define our own stack instruction set architecture 
or use a pre-existing one. Although with the first 
approach we could have had some flexibility 
with respect to defining the instruction 
semantics, we chose to go with the latter; by 
using an existing set-up, we had access to 
working compilers, and possible benchmark 
programs. Given the near-absence of 
commercial stack machines, the Java Virtual 
Machine (JVM) seemed like a good ISA. 
Unfortunately, since the JVM is primarily 
designed to be executed on a software machine, 
quite a few of the common instructions do not 
map well to hardware. Luckily for us, the 
PicoJava project at Sun had a working tool chain 
and a trace generator that had the trap emulation 
routines for these instructions. 

4.1. Simulation Framework 
To test the viability of our proposed architecture 
we turned to simulation. At first, we decided to 
write a micro-architectural simulator, but while 
designing the simulator we realized that we 
would have to make many arbitrary decisions 
about the micro-architectural details (for 
example deciding how many common data 
buses to have and how to arbitrate among the 
competing functional units). These decisions 
would not be germane to the basic feasibility 
study that we were hoping to do and furthermore 
would be quite meaningless outside the context 
of actually building such a processor. Therefore, 
we settled on a less accurate but more flexible 
simulation scheme.  
 
The idea was to design a trace simulator to 
capture logical dependencies between 
instructions in the program trace and examine 
the limit on the instructions per cycle (IPC) 
possible.  The BOOST architecture from Figure 
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3 was modeled in this simulator based on many 
assumptions about micro-architectural features.  
The major limitation in our model was the 
assumption of no structural hazards; this 
implied infinite reservation stations and 
functional units, and no contention for the 
common data bus.  From a practical standpoint, 
this is a serious limitation since such structural 
hazards are a constraining factor on the limit of 
ILP that can be extracted.  Hence, the result of 
our simulation studies only find an upper bound 
on the parallelism possible.  Other parameters in 
our model were set to emulate the picoJava-II 
core.  Some other less constraining assumptions 
were (a) constant 10 cycle miss penalty in L1 
cache (b) 100 % hit rate in L2 cache (c) 
branches predicted with 100% accuracy (d) the 
fetch stage only accesses one cache-line at a 
time. 

4.2. Benchmark Suite 
Choosing a benchmark suite turned out to be 
harder than we thought. Most of the commercial 
Java benchmarks are designed to evaluate the 
performance of Java Virtual Machines. They 
tend to exercise the graphics libraries, the 
networking layer, threads, etc. Since the 
PicoJava environment doesn’t have even a 
operating system, we could not use the standard 
JVM benchmarks. 
 

Hence, some benchmarks from the SciMark 
(Java) 2.0 suite (SOR, Sparse, LU, and Monte 
Carlo simulations) were used to evaluate our 
model [8].  Apart from this, we tested our model 
on some hand-written micro-benchmarks 
comprising of Fibonacci computation (iterative 
and recursive) and array manipulation (without 
any loop-carried dependence). 

4.3. Simulation Results 
The first parameter investigated was the amount 
of instruction level parallelism (ILP) possible as 
a function of the issue width.  The number of 
instructions committed per cycle (IPC) is an 
approximate measure of the number of 
instructions executed in parallel (ILP).  A graph 
of IPC as a function of the issue width for the 
three micro-benchmarks is displayed in Figure 5. 
 
As expected, there is a bound on the amount of 
ILP possible in all the three programs.  This is 
due to the inherent logical dependencies 
between instructions that constrain how many of 
them can be executed simultaneously.  The IPC 
of the programs saturate beyond a certain 
instruction issue width.  The array manipulation 
and iterative Fibonacci benchmark are highly 
parallelizable code and hence reach a greater 
IPC compared to recursive Fibonacci.  The IPC 
levels obtained for these programs are decently 
high; but it must be noted these are micro-
benchmarks and the simulation model is not 
realistic. 
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Typically, one RISC instruction corresponds to 
approximately 1.88 stack instructions [1].  
Modern superscalar RISC machines allow upto 
3 parallel instructions per cycle without 
complicating the decode logic.  To be 
compatible with RISC machines in this measure, 
stack machines must expect to commit up to 5.7 
instructions per cycle.  To achieve this IPC, the 
number of instruction issues required per cycle 
must be between 7 and 8 (from Figure 5).  Based 
on this statistic, we have incorporated an 8-wide 
instruction issue for the BOOST architecture.  
The ability of an 8-wide instruction issue to 
support a IPC of around 6 was confirmed for 

various benchmarks in the SciMark 2.0 suite 
(Figure 6).  This is a reasonable issue width that 
can be efficiently handled by our decode 
mechanism presented in Figure 4.  The presence 
of structural hazards in practical designs will 
restrict the maximum IPC possible – a 
constraint we have not been able to currently 
analyze due to the limitations in our simulation 
model.  Nevertheless, pending further 
investigation, we believe it is possible to 
achieve parallelism compatible to modern 
superscalar machines in stack architectures.   

Loa d- t o- S t or e  D i st a nc e  H i st ogr a m ( LU)

Load-to-Store Distance Histogram (MonteCarlo)
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The strategy to introduce out-of-order execution 
to extract parallelism in stack architectures also 
provides a solution to the data traffic to/from 
top-of-stack, as data dependencies can now be 
bypassed via address renaming and reservation 
stations.  This significantly improves system 
performance by obviating redundant memory 
transfers (considering that 50% of executed 
instructions are memory transfers to/from top of 
stack).  This is an architecturally elegant 
solution compared to instruction folding used in 
picoJava-II.  The stack is now abstracted into the 
reservation station, stack map and load/store 
buffer and the overhead due to management of a 
hardware stack cache is avoided.   
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In order to verify this, we analyzed the relative 
distance (clock cycles) between the commit of a 
data store and the corresponding issue of a 
dependent data load in the SciMark 2.0 
programs (Sparse, Monte Carlo, SOR and LU 
simulations).  Most stack instructions do a load 
to or store from memory and the dependency 
between memory addresses is inherent in stack 
programs.  The results of this analysis are 
illustrated in the graphs presented in Figures 7 
and 8. 

Figures 7 and 8  
Histogram of distances between dependent instructions 

 
These graphs represent the percentage of 
instructions for different values of distance 
between a data load and a previous store (the 
area under the curve is effectively 1).  It is 
observed that in all these benchmarks, the 
maximum percentage of instructions exhibit a 
distance less than or equal to zero.  For instance, 
a distance of –20 cycles means that the source 
operand for that particular instruction will be 
available only 20 cycles in future, implying that 
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the operand is currently being computed or 
waiting in a reservation station.  This denotes 
that most operands can be bypassed between 
reservation stations without any invocation to 
memory.  The instructions with distances greater 
than zero imply that their operands have already 
been computed and hence cannot be passed via 
reservation stations.  It is only in these cases that 
instructions have to fetch their operands from 
lower levels of memory, namely the store buffer 
or the D-cache (if miss in the store buffer).  
However, the percentage of such instructions 
significantly less, endorsing the reduction in 
memory traffic due to unneeded loads and 
stores.   

5. Conclusion and Future Work 
In this paper we have presented a novel scheme 
to implement out-of-order execution in stack 
machines. To our knowledge this is the first such 
scheme proposed in the literature. We believe 
that the proposed scheme not only exposes the 
instruction-level parallelism in the stack code, 
but also provides an elegant solution to two 
problems in existing stack machines: namely, 
the problems of redundant data movement and 
of having to manage a separate stack cache. 
 
Our preliminary experiments with a suite of 
numerical benchmarks show that it is possible to 
extract significant parallelism from stack code. 
Furthermore, this parallelism (quantified in 
terms of IPC) appears large enough to make out-
of-order stack machines competitive with 
general-purpose-register machines (which have 
a lower instruction count than stack machines).  
 
There are a couple of obvious ways of extending 
this work. One would be to refine the simulator 
to make it more accurate (perhaps even design a 
preliminary micro-architecture). Another would 
be to run the simulations over a larger variety of 
benchmarks form different application domains. 
A harder task would be to quantitatively 
compare out-of-order stack machines with GPR 
machines in some generalized setting. 
 
Finally, to put this paper in perspective, it might 
help to consider the following. Over the past 
decade, the unrivalled success of the x86 

architecture has convinced many that the 
particular choice of ISA in designing a 
microprocessor doesn’t matter anymore. The 
internal organization of the microprocessor has 
little to do with the façade that the instruction set 
exposes. Extending this principle, there is no 
reason why a microprocessor that exposes a 
stack instruction set should internally be 
organized as a stack machine. Indeed, one of the 
contributions of this paper is that not organizing 
it as a stack machine allows us to extract more 
instruction-level parallelism and obtain 
performance competitive with GPR machines. 
Given the inherent elegance of stack ISAs (in 
terms of conceptual economy) and the practical 
advantages (denser code, more ‘natural’ code2, 
faster context switches, etc.), we tentatively 
suggest that perhaps stack ISAs might be the 
ISA of choice for future processor designers. 
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