
BOOST: Berkeley’s Out-of-Order Stack Thingy

Steve Sinha, Satrajit Chatterjee and Kaushik Ravindran
Department of Electrical Engineering and Computer Science

University of California, Berkeley
{ssinha, satrajit, kaushikr}@eecs.berkeley.edu

Abstract
We present a novel scheme based on the
Tomasulo algorithm to implement out-of-order
execution in stack machines. This scheme not
only reduces redundant data movement within
the processor core, but also eliminates the stack
cache and the associated problem of managing
it. We present some preliminary quantitative
evaluation of the proposed technique. For a
suite of scientific benchmarks we obtain
performance that appears to be competitive with
out-of-order superscalar GPR processors.

1. Introduction
Stack machines are not popular among computer
architects – the presence of a single architectural
bottleneck, namely the stack, is viewed as a
significant obstacle in the dynamic extraction of
instruction-level parallelism. This project is an
attempt at designing a scheme to uncover the
latent parallelism in the sequential stack code at
runtime. Although this project began as a
somewhat academic exercise, we believe that
our technique is not impractical and can serve as
the basis for future high performance computer
architectures.

Stack machines have a certain minimalist
elegance about them. However, the absence of
registers provides more than conceptual
economy. By implicitly referring to operands,
stack code is often shorter than general-purpose
register code. Koopman estimates that stack
machine programs are at least 3.75 times smaller
than RISC code [1], though it must be noted that
any measure of program size strongly depends
on the language and compiler used. A less
obvious reason for a stack machine having
compact code is that they efficiently support
code with frequently used subroutines. Since all

working parameters are always present on the
stack, procedure call overhead is minimal,
requiring no memory cycles for parameter
passing. Another advantage of stack machines
is that on interrupts there is no need to save
registers. Thus interrupt response latencies are
low, making stack architectures ideal for real-
time systems. Stack machines also support
modular code that has many short function calls
(such as object-oriented programs) better than
GPR (General Purpose Register) machines,
since registers need not be saved before every
function call.

Critics of stack machines argue that these
features come at a price. One of the largest of
the criticisms is the lack of random access – all
data must be computed on the top-of-stack. This
excessive traffic to move operands in position to
be worked on wastes data memory bandwidth.
The stack cache is another issue discussed.
Most of the stack machines reported previously
in the literature have some sort of stack cache on
the processor which serves as the architectural
analogue of the register file in GPR machines.
Therefore, even though the programmer need
not explicitly save registers, the underlying
processor still has to ensure that the stack cache
“follows” the instruction stream. Architecturally,
it maybe useful, as the processor can optimize
when and how it writes out the stack cache to
memory instead of relying on the programmer
(or the compiler) to specify it explicitly as in the
case of GPR machines1. Finally, as mentioned,
the stack acts as a serialization point; since each
instruction has to work on the top of the stack, it
is not semantically possible to have two

1 Observe that the “sliding window” register file in
the SPARC architecture is an attempt to provide a
similar behind-the-scenes register management, at the
cost of making the architecture more complicated.

 1

instructions of a single thread to simultaneously
run at one moment. This seemingly removes the
possibility of exploiting parallelism in the code.

Our goal is to remove the apparently inherent
inefficiencies of the stack machine. Taking a
page from the industry-standard GPR machine,
we have developed a new stack architecture that
implements the Tomasulo algorithm to create a
micro-data flow engine. With our scheme, we
are able to issue multiple instructions out-of-
order, remove the stack cache, and remove the
need for excessive movement of data objects.
We further show that it is possible to extract a
large amount of parallelism within stack code,
up to a point that it is comparable to GPR
machines.

In the next section, we further motivate our
work, looking at past stack machines for
comparison. In Section 3, we discuss the details
of our proposed BOOST architecture. We
describe our simulation efforts as well as the
results we found, in Section 4. Finally, in the
last section, we interpret our findings, discussing
the possible consequences of our research.

2. Motivation and Previous Work
There have been many different stack micro-
architectures reported in the literature [1, 2, 4].
In this section, we attempt to identify some
commonalities of those architectures. Rather
than referring to stack architectures in general,
we use the SUN Microsystems picoJava-II core
as a concrete example of the class of traditional

stack micro-architectures [5, 6, 7]. Since this is a
recent, yet traditional design, it incorporates
most of the advances and salient features of
stack machines. The high-level architecture
diagram of the picoJava-II core is presented in
Figure 1.

The picoJava-II is a typical 0-operand, single
issue, single stack processor. Like other
traditional stack architectures, it uses a stack
cache to cache the topmost entries in the stack.
However, the stack cache is not organized as a
hardware stack. Instead, it is built much like a
traditional GPR machine register file. It has
multiple read and write ports and supports
random access to the data. The OPTOP register
keeps track of the current top of stack. When the
stack is modified by an instruction (such as a
pop), this register is updated to reflect the new
top of stack and no data is actually moved in the
stack cache. The processor uses the OPTOP to
keep track of the operands for the instructions.
The VARS register contains the base of the
current operand stack. Data values can be
accessed/stored relative to the VARS register
and moved to/from the OPTOP. The OPTOP,
VARS and PC (program counter) are the only
explicit storage locations in the system.

Figure 1 Block diagram of the picoJava-II
 processor core.

There are certain conceptual and practical
problems with this scheme. Conceptually, the
stack cache appears redundant, keeping track of
data already present in the L1-cache and the
store buffers. (Store buffers keep track of stores
not yet written back to the L1-cache.) In
addition, this mechanism doesn’t eliminate all
unnecessary data movement. Consider a stack
instruction such as dup which duplicates the
datum at the top of stack. As far as the stack
program is concerned, the dup instruction is only
a means of telling the processor that the element
at the top of the stack will be used by some other
instruction. No actual movement of data is
necessary, but a stack cache-like implementation
requires that the data be copied from one register
in the stack cache to another.

On a practical level, there is the problem of
keeping the stack cache current with the top-of-
stack. For example, when the stack grows
beyond the stack cache, some of the bottom

 2

entries need to be written out to memory. This is
often in the critical path of the program
requiring subsequent instructions to be stalled
until this happens. PicoJava has a workaround
for this. The programmer can set high- and low-
watermarks that prompt the flushing out (or
reading in) of a certain number of cache
elements to (or from) memory proactively. Note
that this setting has to be done statically, and
fails to use any dynamic, auto-tuning mechanism
that naturally adapts to the dynamic program
behavior.

One of the advances in the picoJava-II
architecture is the use of instruction-folding [2,
3]. In this technique, certain sequences of
instructions (such as say load load add

store) are collapsed into a single RISC like
instruction during decode. An example of
instruction-folding for a sequence of eight
instructions is shown in Figure 2.

Instruction-folding is done to exploit the random
access provided by the stack cache and to reduce
movement of data for the most common groups
of instructions. Unfortunately, the permissible

groups of instructions that can be folded in this
manner are limited in number and scope. In
addition, not all redundant data moves are
avoided. Although redundant moves between
instructions in a group are avoided, there is still
forwarding of data through the registers in the
stack cache between groups.

The approach we propose is a generalization of
instruction folding based on the Tomasulo
algorithm [9]. By using a forwarding scheme
through reservation stations, we are able to get
rid of the stack cache. The reservation stations
along with the store buffers serve as the
mechanism for data forwarding between
instructions. Since there is no explicit stack
cache, there is no need to explicitly keep it
consistent with the instruction flow. The
reservation stations, the regular load-store
mechanism (especially hoisting loads over
outstanding stores) and the data cache work in a
concerted manner to automatically manage the
stack in a dynamic fashion. In the following
section we describe this scheme in greater detail.

3. The BOOST Micro-architecture
The Boost micro-architecture seeks to
incorporate a basic Tomasulo-like micro-data
flow engine into a stack core to dynamically
extract instruction-level parallelism. The
sequential semantics of stack machines makes
this a challenging problem.

3.1. Description of the
BOOST architecture

The Boost architecture extends the basic
picoJava-II processor core with features to
support out-of-order execution. A block
diagram of the architecture is presented in
Figure 3.

iload b
iloadc
isub

iload d
iload e
isub

iadd
istore a

iload b, iloadc, isub

iload d, iload e, isub

iadd, istore a

of cycles = 3

of cycles = 8

Figure 2 An example illustrating instruction folding.

 3

The basic pipeline decomposition of BOOST is
very similar to that of picoJava-II. Two notable
additions are reservation stations (to store
instructions waiting to execute) and a stack map
(to associate memory addresses with reservation
station entries). Reservation stations in the
Boost architecture play a role similar to their
function in superscalar RISC machines. An
instruction is ready to execute if all its data
operands are ready and a functional unit is
available.

The stack map is a table that associates a stack
address with a reservation station entry. The
destination address of each instruction
corresponds to a reservation station entry for that
instruction, and this association is stored in the
stack map. Its analogous counterpart in the
superscalar RISC framework would be the
architected register file. Traditionally, register
files have been thought of as an area of storage
for fast access to data that is most frequently
accessed for computation. However, with the
inception of superscalar architectures, the actual
data is hardly ever present in the registers
themselves. Rather, most of the data is
constantly in flight and passed between
dependent instructions through reservation
station entries. The register file instead serves as
a mapping to associate absolute data addresses
(as specified in the instruction as source and

destination registers) and their corresponding
aliased address (the reservation station entry that
will produce the data for that register). The
architected register file contains actual data only
when there is a need to preserve state before an
interrupt or context switch.

I-CACHE FETCH

DECODE

 STACK MAP
In BOOST, the stack map plays this role of
mapping memory addresses to their
corresponding reservation station entry, similar
to the function of the architected register file in
RISC. This way, the stack map facilitates
‘address renaming’, an important aspect of out-
of-order execution. The register file in RISC
additionally serves to capture state of the
execution before a context switch. However,
this is not required of the stack map since
context state is inherently preserved in the stack.

The load/store buffer in BOOST is similar to its
role in typical RISC processors. It is a buffer for
outstanding loads and stores from/to the D-
cache. However, potentially every instruction
can cause a load or store since all operations are
memory transactions in the BOOST stack
architecture. Further, a majority of the
instructions in stack programs are explicit loads
and stores. Hence, the role of the load/store
buffer is critical to efficient execution. A good
percentage of memory accesses are bypassed
through the reservation stations and stack map
without hitting the load/store unit or D-cache.
For those instructions that miss in the stack map,
the store buffer is checked to determine if the
required data is present. The D-cache is visited
only when a miss in both the stack map and the
store buffer occurs.

With out-of-order execution comes the potential
to issue multiple instructions in parallel and
improve throughput of the architecture.
However, this significantly increases the
complexity of the DECODE stage to decode
these instructions. This problem is further
complicated due to the fact that the
dependencies between these instructions are
implicit in the stack framework. In the RISC
paradigm, dependencies are explicitly specified
through the absolute location (register or
memory) where instruction operands can be
found. However, with stacks, all operand

Figure 3 Block diagram of the BOOST micro-architecture

ISSUE L/S D-CACHE

EXEC

RES.
STATIONS

CDB

 4

The Adolescence of an Instruction - An Illustrative Decode example
(P): Parallel operation (S): Sequential operation

Instruction Package:

Load 2 Store 0 Add Load 3 Load 0 Add Add Store 0

Starting Parameters: OPTOP = aaaa0010H VARS = aaa90000H (word addressing used)

Step 1: Lookup relative change to OPTOP for each instruction (P)
+1 -1 -1 +1 +1 -1 -1 -1

Step 2: Compute absolute change to OPTOP for each instruction (S)
+1 0 -1 0 +1 0 -1 -2

Step 3: Compute OPTOP for each instruction (P)
aaaa0010 aaaa0011 aaaa0010 aaaa000f aaaa0010 aaaa0001 aaaa0010 aaaa000f

OPTOP at start of next package equals aaaa000eH

Step 4: Calculate absolute addresses of Sources and Destination (P)
Source 1:
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2:
- - aaaa000e - - aaaa000f aaaa000e -

Destination:
aaaa0010 aaa90000 aaaa000e aaaa000f aaaa0010 aaaa000f aaaa000e aaa90000

Step 5: Find dependences (P)
Each instruction is preassigned a token - the number of a free reservation station. If an instruction
does not have a destination (such as instructions that modify control registers), the preassigned
token is unused, free for future use.

t0 t1 t2 t3 t4 t5 t6 t7

A priority mux is used to assign each source the token (if available) of the closest preceding
instruction in the package writing to the source address. (This is similar to hardware used in GPRs.)
Source 1:
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2:
- - aaaa000e - - aaaa000f aaaa000e -

Destination:
aaaa0010 aaa90000 aaaa000e aaaa000f aaaa0010 aaaa000f aaaa000e aaa90000

t0 t1 t2 t3 t4 t5 t6 t7

 5

Figure 4 Illustrative Decode example

Step 6: Stack Map lookup (P)

If source isn’t found within the package, the address is looked up in the stack map.
Source 1:
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2:
- - aaaa000e - - aaaa000f aaaa000e -

Stack Map

address Res Station #

aaa90002 t28

aaa9f040 t37

aaaa0000 t30

aaaa000f t63

aaa9e200 t53

...

Step 7: Issue Loads (P)

If source address isn’t found in the stack map, an implicit load is issued to the load store unit with a
uniquely generated virtual token (vt). Special optimization for loads: use the destination token itself
instead of the virtual token.
Source 1:
aaa90002 aaaa0010 aaaa000f aaa90003 aaa90000 aaaa0010 aaaa000f aaaa000e

Source 2:
- - aaaa000e - - aaaa000f aaaa000e -

Load/Store Buffer

address value

aaaa0005 68536

aaa90005 2818

aaaa0003 9156

aaa9d068 2

aaa9c890 88453234

...

assigned vt14

???

t2

???
unresolved
go to cache

Common Data Bus

resolved

vt14, 9156

 6

Figure 4 Illustrative Decode example, cont.

dependencies are based on variable positions
relative to the top of stack. Additionally, the
number of instructions that can be issued in
parallel is also limited by the amount of
instruction level parallelism (ILP) that be
extracted from a stack program. To make the
BOOST architecture feasible, we propose an
efficient scheme for decoding multiple
instructions and resolving operand dependencies
in parallel to attain a reasonable degree of ILP.

A comprehensive example of instruction
execution in the BOOST datapath is illustrated
in Figure 4. Specifically, the strategy for
resolving operand dependencies in the decode
stage is illustrated. A micro-architect may split
DECODE into multiple pipeline stages; we
partitioned DECODE into two stages in our
design: DECODE and STACK MAP. There are
two kinds of dependencies handled in
DECODE: (a) dependencies between
instructions issued in the same packet (a packet
is all instructions issued in parallel at the same
cycle) and (b) inter-packet dependencies
between instructions issued at multiple cycles.
Once the instruction has been issued to the
reservation station, the subsequent processes of
execution and write-back is very similar to the
style of RISC.

The major advantage of register and memory-
memory architectures is the random access to
data. However, in stack machines, all operations
are restricted to the top two operands on the
stack. The bottleneck this creates is the constant
movement of data values to/from the top of
stack before any interesting computation is
performed on them. For example, 47 % of the
instructions executed on the JVM stack are local
variable load/stores [2]. The folding
optimization discussed earlier reduces 6 % of all
instructions on average. Nevertheless, it is clear
that this movement of data to/from top of stack
dominates overall percentage of bytecodes
executed.

The introduction of reservation stations and
stack map as a means for out-of-order execution
simultaneously alleviates this problem of data
traffic in stack architectures. Combined with
the load/store buffer, these three entities provide

a powerful abstraction of the stack itself. They
are a way to store and address operands for
execution and can effectively replace the stack
cache used in traditional stack architectures.

4. Evaluation
The most important question that we wanted to
answer is how much parallelism could our
algorithm extract from a stack instruction
stream. In order to do that, we could either
define our own stack instruction set architecture
or use a pre-existing one. Although with the first
approach we could have had some flexibility
with respect to defining the instruction
semantics, we chose to go with the latter; by
using an existing set-up, we had access to
working compilers, and possible benchmark
programs. Given the near-absence of
commercial stack machines, the Java Virtual
Machine (JVM) seemed like a good ISA.
Unfortunately, since the JVM is primarily
designed to be executed on a software machine,
quite a few of the common instructions do not
map well to hardware. Luckily for us, the
PicoJava project at Sun had a working tool chain
and a trace generator that had the trap emulation
routines for these instructions.

4.1. Simulation Framework
To test the viability of our proposed architecture
we turned to simulation. At first, we decided to
write a micro-architectural simulator, but while
designing the simulator we realized that we
would have to make many arbitrary decisions
about the micro-architectural details (for
example deciding how many common data
buses to have and how to arbitrate among the
competing functional units). These decisions
would not be germane to the basic feasibility
study that we were hoping to do and furthermore
would be quite meaningless outside the context
of actually building such a processor. Therefore,
we settled on a less accurate but more flexible
simulation scheme.

The idea was to design a trace simulator to
capture logical dependencies between
instructions in the program trace and examine
the limit on the instructions per cycle (IPC)
possible. The BOOST architecture from Figure

 7

0

1

2

3

4

5

6

7

I P C

SOR M onteCar l o Spar se LU

B e n c h ma r k
0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

I s s u e W i d t h

Ar r ay

Fi bI ter

Fi bRec

Figure 6 IPC for 4 SciMark 2.0 Benchmarks
with 8-wide instruction issue. Figure 5 IPC vs. Issue Width for Micro-benchmarks

3 was modeled in this simulator based on many
assumptions about micro-architectural features.
The major limitation in our model was the
assumption of no structural hazards; this
implied infinite reservation stations and
functional units, and no contention for the
common data bus. From a practical standpoint,
this is a serious limitation since such structural
hazards are a constraining factor on the limit of
ILP that can be extracted. Hence, the result of
our simulation studies only find an upper bound
on the parallelism possible. Other parameters in
our model were set to emulate the picoJava-II
core. Some other less constraining assumptions
were (a) constant 10 cycle miss penalty in L1
cache (b) 100 % hit rate in L2 cache (c)
branches predicted with 100% accuracy (d) the
fetch stage only accesses one cache-line at a
time.

4.2. Benchmark Suite
Choosing a benchmark suite turned out to be
harder than we thought. Most of the commercial
Java benchmarks are designed to evaluate the
performance of Java Virtual Machines. They
tend to exercise the graphics libraries, the
networking layer, threads, etc. Since the
PicoJava environment doesn’t have even a
operating system, we could not use the standard
JVM benchmarks.

Hence, some benchmarks from the SciMark
(Java) 2.0 suite (SOR, Sparse, LU, and Monte
Carlo simulations) were used to evaluate our
model [8]. Apart from this, we tested our model
on some hand-written micro-benchmarks
comprising of Fibonacci computation (iterative
and recursive) and array manipulation (without
any loop-carried dependence).

4.3. Simulation Results
The first parameter investigated was the amount
of instruction level parallelism (ILP) possible as
a function of the issue width. The number of
instructions committed per cycle (IPC) is an
approximate measure of the number of
instructions executed in parallel (ILP). A graph
of IPC as a function of the issue width for the
three micro-benchmarks is displayed in Figure 5.

As expected, there is a bound on the amount of
ILP possible in all the three programs. This is
due to the inherent logical dependencies
between instructions that constrain how many of
them can be executed simultaneously. The IPC
of the programs saturate beyond a certain
instruction issue width. The array manipulation
and iterative Fibonacci benchmark are highly
parallelizable code and hence reach a greater
IPC compared to recursive Fibonacci. The IPC
levels obtained for these programs are decently
high; but it must be noted these are micro-
benchmarks and the simulation model is not
realistic.

 8

Typically, one RISC instruction corresponds to
approximately 1.88 stack instructions [1].
Modern superscalar RISC machines allow upto
3 parallel instructions per cycle without
complicating the decode logic. To be
compatible with RISC machines in this measure,
stack machines must expect to commit up to 5.7
instructions per cycle. To achieve this IPC, the
number of instruction issues required per cycle
must be between 7 and 8 (from Figure 5). Based
on this statistic, we have incorporated an 8-wide
instruction issue for the BOOST architecture.
The ability of an 8-wide instruction issue to
support a IPC of around 6 was confirmed for

various benchmarks in the SciMark 2.0 suite
(Figure 6). This is a reasonable issue width that
can be efficiently handled by our decode
mechanism presented in Figure 4. The presence
of structural hazards in practical designs will
restrict the maximum IPC possible – a
constraint we have not been able to currently
analyze due to the limitations in our simulation
model. Nevertheless, pending further
investigation, we believe it is possible to
achieve parallelism compatible to modern
superscalar machines in stack architectures.

Loa d- t o- S t or e D i st a nc e H i st ogr a m (LU)

Load-to-Store Distance Histogram (MonteCarlo)

-0.05

0

0.05

0.1

0.15

0.2

0.25

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

Distance (in cycles)

Pe
rc

en
ta

ge

The strategy to introduce out-of-order execution
to extract parallelism in stack architectures also
provides a solution to the data traffic to/from
top-of-stack, as data dependencies can now be
bypassed via address renaming and reservation
stations. This significantly improves system
performance by obviating redundant memory
transfers (considering that 50% of executed
instructions are memory transfers to/from top of
stack). This is an architecturally elegant
solution compared to instruction folding used in
picoJava-II. The stack is now abstracted into the
reservation station, stack map and load/store
buffer and the overhead due to management of a
hardware stack cache is avoided.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-80 -60 -40 -20 0 20 40

Di st ance (i n cycl es)

In order to verify this, we analyzed the relative
distance (clock cycles) between the commit of a
data store and the corresponding issue of a
dependent data load in the SciMark 2.0
programs (Sparse, Monte Carlo, SOR and LU
simulations). Most stack instructions do a load
to or store from memory and the dependency
between memory addresses is inherent in stack
programs. The results of this analysis are
illustrated in the graphs presented in Figures 7
and 8.

Figures 7 and 8
Histogram of distances between dependent instructions

These graphs represent the percentage of
instructions for different values of distance
between a data load and a previous store (the
area under the curve is effectively 1). It is
observed that in all these benchmarks, the
maximum percentage of instructions exhibit a
distance less than or equal to zero. For instance,
a distance of –20 cycles means that the source
operand for that particular instruction will be
available only 20 cycles in future, implying that

 9

the operand is currently being computed or
waiting in a reservation station. This denotes
that most operands can be bypassed between
reservation stations without any invocation to
memory. The instructions with distances greater
than zero imply that their operands have already
been computed and hence cannot be passed via
reservation stations. It is only in these cases that
instructions have to fetch their operands from
lower levels of memory, namely the store buffer
or the D-cache (if miss in the store buffer).
However, the percentage of such instructions
significantly less, endorsing the reduction in
memory traffic due to unneeded loads and
stores.

5. Conclusion and Future Work
In this paper we have presented a novel scheme
to implement out-of-order execution in stack
machines. To our knowledge this is the first such
scheme proposed in the literature. We believe
that the proposed scheme not only exposes the
instruction-level parallelism in the stack code,
but also provides an elegant solution to two
problems in existing stack machines: namely,
the problems of redundant data movement and
of having to manage a separate stack cache.

Our preliminary experiments with a suite of
numerical benchmarks show that it is possible to
extract significant parallelism from stack code.
Furthermore, this parallelism (quantified in
terms of IPC) appears large enough to make out-
of-order stack machines competitive with
general-purpose-register machines (which have
a lower instruction count than stack machines).

There are a couple of obvious ways of extending
this work. One would be to refine the simulator
to make it more accurate (perhaps even design a
preliminary micro-architecture). Another would
be to run the simulations over a larger variety of
benchmarks form different application domains.
A harder task would be to quantitatively
compare out-of-order stack machines with GPR
machines in some generalized setting.

Finally, to put this paper in perspective, it might
help to consider the following. Over the past
decade, the unrivalled success of the x86

architecture has convinced many that the
particular choice of ISA in designing a
microprocessor doesn’t matter anymore. The
internal organization of the microprocessor has
little to do with the façade that the instruction set
exposes. Extending this principle, there is no
reason why a microprocessor that exposes a
stack instruction set should internally be
organized as a stack machine. Indeed, one of the
contributions of this paper is that not organizing
it as a stack machine allows us to extract more
instruction-level parallelism and obtain
performance competitive with GPR machines.
Given the inherent elegance of stack ISAs (in
terms of conceptual economy) and the practical
advantages (denser code, more ‘natural’ code2,
faster context switches, etc.), we tentatively
suggest that perhaps stack ISAs might be the
ISA of choice for future processor designers.

Acknowledgements
We thank David Culler for guiding us in the
direction of this work and for having faith in
architecture.

References
[1] P. Koopman Jr., “Stack Computers – The New

Wave”. © 1989, Mountain View Press.

[2] N. VijayKrishnan, “Issues in the Design of a

JAVA Processor Architecture”. PhD
dissertation, University of South Florida, Tampa,
FL-33620. December 1998.

[3] R. Radhakrishnan, D. Talla, and L. K. John.

Allowing for ILP in an embedded Java
processor. In Proceedings of the 27th
International Symposium on Computer
Architecture, pages 294--305, June 2000.

[4] R. Radhakrishnan, N. Vijaykrishnan, L. John and

A. Sivasubramanium, "Architectural issues in
java runtime systems," Tech. Rep. TR-990719,
1999.

2 Since most compiler generate stack-based code for
languages such as C with re-entrant functions, most
GPR machines wind up emulating stack machines to
a significant extent.

 10

[5] “picoJava-IITM Microarchitecture Guide”, Part
No.: 960-1160-11, March 1999, © 1999, Sun
MicroSystems.

[6] “picoJava-IITM Programmer’s Reference

Manual”, Part No.: 805-2800-06, March 1999, ©
1999, Sun MicroSystems.

[7] Harlan McGhan and Mike O'Connor. “PicoJava:

A direct execution engine for Java bytecode”.
Computer, 31(10):22--30, October 1998. (p 106)

[8] “SciMark 2.0 Benchmarks”,
 http://math.nist.gov/scimark2/.

[9] R. Tomasulo. “An efficient algorithm for

exploiting multiple arithmetic units”, IBM J.
Research and Development, 11:1, January, 1967.
(p 25-33).

 11

http://math.nist.gov/scimark2/

	BOOST: Berkeley’s Out-of-Order Stack Thingy
	Abstract
	Introduction
	Motivation and Previous Work
	The BOOST Micro-architecture
	Description of the�BOOST architecture

	Evaluation
	Simulation Framework
	Benchmark Suite
	Simulation Results

	Conclusion and Future Work
	Acknowledgements
	References

