Minimization
Guido Tack

2004

1 Graphs and Regular Trees

So far, trees are defined formally as “tree domains” (TDom < P(L(N))). Informally,
we know that graphs can model some trees.

To reason about properties of trees, we define the following functions:
sub(T,i) € TDomxN — TDhom := {l| (i:l) e T}

sub(T,p) € TDomx L(N) — TDom = {l| (p@l) € T}

Sub(T) € TDom — P(TDom) := {sub(T,p) | p € L(N)}

These functions compute the n-th direct subtree, the subtree reached on path p, and
the set of all subtrees of some tree domain T. This leads us to the central definition:

Definition 1.1 (Regular Tree) A tree domain T is called regular iff Sub(T) is finite,
i.e. there are only finitely many different subtrees.

To talk about graphs, we need to define them formally:

Definition 1.2 (Graph) A graph G = (V,E) consists of a set V < N of nodes and an
edge function E € VXN — V such that Vv € Vin e N: {m € N| (v,m) €
Dom(E)} = {0,...,n — 1}. A graph is called finite if its node set V is finite.

You might know this definition of graphs from automata theory: V is usually called
the set of states, and E the transition function.

Let’s connect our definitions of trees and graphs now.
We can define the extension of the transition function E:
.eVXLIN)-VuU{L}

Let m € N, p € L(N). Then



V.€ =v
v.im:p) :=E(v,m).p if (v, m) € Dom(E)
1 otherwise

= v.p is the node reached from v on path p
= {pe LN) |v.p+ 1} € TDom

Definition 1.3 (Closed Node Set) A set X < V is called closed iff Vv € X,p € L(N) :
vp+Fl = vpeX

Definition 1.4 (Tree defined by graph node) 7 € (VU {L}) — P(L(N))

T(1L):=0
Tw):={peL(N)|v.p=+ L}

ForucV,letT(U):={T (u) |ueU}.

Definition 1.5 (Graph Equivalence) Two graphs G = (V,E) and G' = (V',E') are
equivalent iff T (V) = T (V').

Now we can formulate the following

Proposition 1.1 Every regular tree can be represented by a node of a finite graph.
As a proof, we construct a graph G = (V, E) for a regular tree T as follows:

Let Sub(T) = {t1,...,ty} (finite, as T is regular). Then

\% ={1,...,n}
E(v,m) =1 if sub(t,, m) = t;
undefined otherwise

Then G is a finite graph, and 7 (i) = t; for every i. One of the t; must be T itself, so
this node i in the graph represents the regular tree T.

Example:

The tree on the right is 7 (1).

Figure 1: Tree and Graph



2 Relations on Graphs

The canonical and natural relation we can define on graphs now is the following:
u~rv << T(u)=T W)

This relation is an equivalence relation on the nodes of the graph that puts those
nodes in the same class which denote the same tree. This gives us a simple

Definition 2.1 (Minimal Graph) A graph is called minimal iff Vu,v e V: u=v <
u~r1v.

Our goal will be to compute ~7 for an arbitrary graph, and then transform that
graph into an equivalent one which is minimal. For this we need to define some
more relations:

Definition 2.2 (Congruence) A congruence on a graph is an equivalence relation ~¢&
V X'V such that

U~V AUNFL = VNELAUN~V.N

i.e, an equivalence relation that is “compatible” with E. Another formulation is
u~v = T(u)="T(w).

The set of all congruences is called Cong.

The finest congruenceis u ~v < u = v.

The opposite relation is the following:

Definition 2.3 (Distinction) A distinction on a graph is an equivalence relation ~¢&
V x V such that

V ~'e€ Cong: ~'c~

This is equivalent to

Tu)=T{w) = u~v.

The set of all distinctions is called Dist.
The coarsest distinction is ~=V X V.

Proposition 2.1 ~7 is both the coarsest congruence and the finest distinction.

3 Partition Refinement

Idea: Take any equivalence relation ~ and compute the coarsest congruence that is
arefinement of ~. As an equivalence relation can always be seen as a partition of the
nodes into equivalence classes, this generic algorithm is called partition refinement.



: 0

These graphs are all equivalent, the rightmost graph is minimal.

Figure 2: Equivalent graphs

Historically, this is exactly automaton minimization, an algorithm developed by
Hopcroft [3]. Cardon and Crochemore [1]] generalize the idea to arbitrary graphs,
and Habib et al. [2] describe a generic and efficient implementation. Mauborgne [4]]
gives a minimization algorithm that works incrementally. Horbach and Woop [6]
give a good formal description of both the original and the incremental algorithm
- these lecture notes are based on their work. The author [[5] describes how graph
minimization can be applied to arbitrary data structures.

3.1 Refinement

Definition 3.1 (Refinement) We define a function R computing the refinement of a
relation on graph nodes:

ReP(VxV)xP(V)xN->P(VxV)

R(~,X,n) = (~)n{(u,v)eVxvVijiuneX < v.necX}

If ~,~" are equivalence relations, we define

~>~"<= IX eV, _neN:~"=R(~,X,n) #~

Proposition 3.1 (Refinement preserves congruences) Let X € V,_. Then ~'€ Congn ~'c~
= ~'c R(~,X,n).

The proof is left to you as an exercise.

Proposition 3.2 (The fixed point of R is a congruence) (VX €V, ,n e N:R(~,X,n) =~
) = ~ is a congruence

The proof is left to you as an exercise.

Corollary 3.1 (Partition refinement computes ~7) Let ~g>~1> - - - >~y be a chain
of distinction relations. Then

e this chain is finite.



e if there is no ~n+1 such that ~,>~n+1, then ~=~r.

3.2 Runtime

Let k be the maximum arity of all the nodes in V.
Pseudo-code of the generic algorithm:

i=0: agenda0=(V/N0)><{0,...,k—1}
i—1i+1: if agenda; = @ then return ~;
else [(Xi,n;),...] = agenda;
let
~i+1= R(~4, Xj,ny)
agenda;; ; = updated agenda,;
The naive algorithm procedes as follows: Every time an equivalence class Y is “split”
into Y; and Y», for every n remove (Y,n) from the agenda and put (Y;,n) and
(Y>,n) on the agenda. This gives a complexity of O (n?), where n = |V/|.

Hopcroft improved this to O (knlog n), for k the maximum arity of any node in the
graph. He noticed that if (Y, n) is not on the agenda, only the smaller one of Y; and
Y> has to be put there.

Both algorithms assume a clever representation of the graph and the equivalence
classes to make computation of R efficient. Habib [2]] gives a detailed and yet simple
description of how to achieve this.

3.3 Minimization

Given a graph G = (V,E) and the relation ~7 on G, we can easily construct the
minimal graph G’ = (V’,E") that is equivalent to G.

Let {[vi]~s,...,[Un]~;} be the equivalence classes of ~7.

V' i={v1,...,Un}

E'(v',m):=E(v,m) forv e[v'].,

Convince yourself that this is well-defined.

3.4 Labelled Trees and Graphs

Adding labels to trees and graphs is easy. Assuming that we have a set Labl of
labels, a tree now is a function t € Tree = TDom — Lab. Graphs become tripels:
G = (V,E,L), where L € V — Lab.



The denotation of a graph node has to be adjusted:

T(L) =0

T()(p)=Lv.p)ifv.p+ L

The canonical equivalence relation of graph nodes has to be aware of labels:
U~V < L(uw)=LWw)Au~17v

The minimization algorithm doesn’t have to be changed at all, only the initial dis-
tinction relation must be at least ~;, defined as u ~; v < L(u) = L(v) (which is
a distinction).

4 Application to Types

Recursive types can be seen as regular, labelled trees with the label set Lab =
{+, %, =}, for example. They can therefore be modelled (and implemented!) as finite
graphs.

Computing the minimal graph representing a type has some advantages:
e Type equivalence is decidable in O(1).

o If the type is also needed at runtime, its representation is compact, i.e. memory-
efficient.

References

[1] A. Cardon and M. Crochemore. Partitioning a graph in O(|A|log, |V]). Theoreti-
cal Computer Science, 19(1):85-98, July 1982.

[2] M. Habib, Ch. Paul, and L. Viennot. Partition refinement techniques: An inter-
esting algorithmic tool kit. International Journal of Foundations of Computer
Science, 10(2):147-170, 1999.

[3] J. Hopcroft. An nlogn algorithm for minimizing states in a finite automaton.
In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages
189-196. Academic Press, 1971.

[4] L. Mauborgne. An incremental unique representation for regular trees. Nordic
Journal of Computing, 7(4):290-311, 2000.

[5] Guido Tack. Linearisation, minimisation and transformation of data graphs with
transients. Diploma thesis, Programming Systems Lab, Universitdt des Saarlan-
des, Saarbriicken, May 2003.



[6] S. Woop and M. Horbach. Incremental algorithms and a minimal graph represen-
tation for regular trees.
Available from http://www.ps.uni-sb.de/~horbach/fopra.html, 2002.


http://www.ps.uni-sb.de/~horbach/fopra.html

	Graphs and Regular Trees
	Relations on Graphs
	Partition Refinement
	Refinement
	Runtime
	Minimization
	Labelled Trees and Graphs

	Application to Types

