
Minimization

Guido Tack

2004

1 Graphs and Regular Trees

So far, trees are defined formally as “tree domains” (TDom ⊆ P(L(N))). Informally,

we know that graphs can model some trees.

To reason about properties of trees, we define the following functions:

sub(T , i) ∈ TDom×N⇀ TDom := {l | (i :: l) ∈ T}

sub(T ,p) ∈ TDom×L(N) ⇀ TDom := {l | (p@l) ∈ T}

Sub(T) ∈ TDom→ P(TDom) := {sub(T ,p) | p ∈ L(N)}

These functions compute the n-th direct subtree, the subtree reached on path p, and

the set of all subtrees of some tree domain T . This leads us to the central definition:

Definition 1.1 (Regular Tree) A tree domain T is called regular iff Sub(T) is finite,

i.e. there are only finitely many different subtrees.

To talk about graphs, we need to define them formally:

Definition 1.2 (Graph) A graph G = (V, E) consists of a set V ⊆ N of nodes and an

edge function E ∈ V × N ⇀ V such that ∀v ∈ V ∃n ∈ N : {m ∈ N | (v,m) ∈

Dom(E)} = {0, . . . , n− 1}. A graph is called finite if its node set V is finite.

You might know this definition of graphs from automata theory: V is usually called

the set of states, and E the transition function.

Let’s connect our definitions of trees and graphs now.

We can define the extension of the transition function E:

. ∈ V ×L(N) → V ∪ {⊥}

Let m ∈ N, p ∈ L(N). Then

1

v.ε := v

v.(m :: p) := E(v,m).p if (v,m) ∈ Dom(E)

⊥ otherwise

⇒ v.p is the node reached from v on path p

⇒ {p ∈ L(N) | v.p ≠ ⊥} ∈ TDom

Definition 1.3 (Closed Node Set) A set X ⊆ V is called closed iff ∀v ∈ X,p ∈ L(N) :

v.p ≠ ⊥ =⇒ v.p ∈ X

Definition 1.4 (Tree defined by graph node) T ∈ (V ∪ {⊥}) → P(L(N))

T (⊥) := ∅

T (v) := {p ∈ L(N) | v.p ≠ ⊥}

For U ⊆ V , let T (U) := {T (u) | u ∈ U}.

Definition 1.5 (Graph Equivalence) Two graphs G = (V, E) and G′ = (V ′, E′) are

equivalent iff T (V) = T (V ′).

Now we can formulate the following

Proposition 1.1 Every regular tree can be represented by a node of a finite graph.

As a proof, we construct a graph G = (V, E) for a regular tree T as follows:

Let Sub(T) = {t1, . . . , tn} (finite, as T is regular). Then

V := {1, . . . , n}

E(v,m) := i if sub(tv ,m) = ti
undefined otherwise

Then G is a finite graph, and T (i) = ti for every i. One of the ti must be T itself, so

this node i in the graph represents the regular tree T .

Example:

1

2

. . .
The tree on the right is T (1).

Figure 1: Tree and Graph

2

2 Relations on Graphs

The canonical and natural relation we can define on graphs now is the following:

u ∼T v ⇐⇒ T (u) = T (v)

This relation is an equivalence relation on the nodes of the graph that puts those

nodes in the same class which denote the same tree. This gives us a simple

Definition 2.1 (Minimal Graph) A graph is called minimal iff∀u,v ∈ V : u = v ⇐⇒

u ∼T v .

Our goal will be to compute ∼T for an arbitrary graph, and then transform that

graph into an equivalent one which is minimal. For this we need to define some

more relations:

Definition 2.2 (Congruence) A congruence on a graph is an equivalence relation ∼∈

V × V such that

u ∼ v ∧ u.n ≠ ⊥ =⇒ v.n ≠ ⊥∧u.n ∼ v.n

i.e, an equivalence relation that is “compatible” with E. Another formulation is

u ∼ v =⇒ T (u) = T (v).

The set of all congruences is called Cong.

The finest congruence is u ∼ v ⇐⇒ u = v .

The opposite relation is the following:

Definition 2.3 (Distinction) A distinction on a graph is an equivalence relation ∼∈

V × V such that

∀ ∼′∈ Cong : ∼′⊆∼

This is equivalent to

T (u) = T (v) =⇒ u ∼ v .

The set of all distinctions is called Dist.

The coarsest distinction is ∼= V × V .

Proposition 2.1 ∼T is both the coarsest congruence and the finest distinction.

3 Partition Refinement

Idea: Take any equivalence relation ∼ and compute the coarsest congruence that is

a refinement of ∼. As an equivalence relation can always be seen as a partition of the

nodes into equivalence classes, this generic algorithm is called partition refinement.

3

1

2

3

1

2

3

4 1

These graphs are all equivalent, the rightmost graph is minimal.

Figure 2: Equivalent graphs

Historically, this is exactly automaton minimization, an algorithm developed by

Hopcroft [3]. Cardon and Crochemore [1] generalize the idea to arbitrary graphs,

and Habib et al. [2] describe a generic and efficient implementation. Mauborgne [4]

gives a minimization algorithm that works incrementally. Horbach and Woop [6]

give a good formal description of both the original and the incremental algorithm

– these lecture notes are based on their work. The author [5] describes how graph

minimization can be applied to arbitrary data structures.

3.1 Refinement

Definition 3.1 (Refinement) We define a function R computing the refinement of a

relation on graph nodes:

R ∈ P(V × V)×P(V)×N → P(V × V)

R(∼, X,n) := (∼)∩ {(u,v) ∈ V × V | u.n ∈ X ⇐⇒ v.n ∈ X}

If ∼,∼′ are equivalence relations, we define

∼�∼′ ⇐⇒ ∃X ∈ V/∼ , n ∈ N : ∼′= R(∼, X,n) ≠∼

Proposition 3.1 (Refinement preserves congruences) Let X ∈ V/∼ . Then∼′∈ Cong∧ ∼′⊆∼

=⇒ ∼′⊆ R(∼, X,n).

The proof is left to you as an exercise.

Proposition 3.2 (The fixed point of R is a congruence) (∀X ∈ V/∼ , n ∈ N : R(∼, X,n) =∼

) =⇒ ∼ is a congruence

The proof is left to you as an exercise.

Corollary 3.1 (Partition refinement computes ∼T) Let ∼0�∼1� · · · �∼n be a chain

of distinction relations. Then

• this chain is finite.

4

• if there is no ∼n+1 such that ∼n�∼n+1, then ∼=∼T .

3.2 Runtime

Let k be the maximum arity of all the nodes in V .

Pseudo-code of the generic algorithm:

i = 0: agenda0 = (V/∼0)× {0, . . . , k− 1}

i → i+ 1: if agendai = ∅ then return ∼i
else [(Xi, ni), . . .] = agendai

let

∼i+1= R(∼i, Xi, ni)

agendai+1 = updated agendai

The naive algorithm procedes as follows: Every time an equivalence class Y is “split”

into Y1 and Y2, for every n remove (Y ,n) from the agenda and put (Y1, n) and

(Y2, n) on the agenda. This gives a complexity of O(n2), where n = |V |.

Hopcroft improved this to O(kn logn), for k the maximum arity of any node in the

graph. He noticed that if (Y ,n) is not on the agenda, only the smaller one of Y1 and

Y2 has to be put there.

Both algorithms assume a clever representation of the graph and the equivalence

classes to make computation of R efficient. Habib [2] gives a detailed and yet simple

description of how to achieve this.

3.3 Minimization

Given a graph G = (V, E) and the relation ∼T on G, we can easily construct the

minimal graph G′ = (V ′, E′) that is equivalent to G.

Let {[v1]∼T , . . . , [vn]∼T } be the equivalence classes of ∼T .

V ′ := {v1, . . . , vn}

E′(v′,m) := E(v,m) for v ∈ [v ′]∼T

Convince yourself that this is well-defined.

3.4 Labelled Trees and Graphs

Adding labels to trees and graphs is easy. Assuming that we have a set Labl of

labels, a tree now is a function t ∈ Tree ⊆ TDom → Lab. Graphs become tripels:

G = (V, E, L), where L ∈ V → Lab.

5

The denotation of a graph node has to be adjusted:

T (⊥) = ∅

T (v)(p) = L(v.p) if v.p ≠ ⊥

The canonical equivalence relation of graph nodes has to be aware of labels:

u ∼TL v ⇐⇒ L(u) = L(v)∧u ∼T v

The minimization algorithm doesn’t have to be changed at all, only the initial dis-

tinction relation must be at least ∼L, defined as u ∼L v ⇐⇒ L(u) = L(v) (which is

a distinction).

4 Application to Types

Recursive types can be seen as regular, labelled trees with the label set Lab =

{+,×,→}, for example. They can therefore be modelled (and implemented!) as finite

graphs.

Computing the minimal graph representing a type has some advantages:

• Type equivalence is decidable in O(1).

• If the type is also needed at runtime, its representation is compact, i.e. memory-

efficient.

References

[1] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). Theoreti-

cal Computer Science, 19(1):85–98, July 1982.

[2] M. Habib, Ch. Paul, and L. Viennot. Partition refinement techniques: An inter-

esting algorithmic tool kit. International Journal of Foundations of Computer

Science, 10(2):147–170, 1999.

[3] J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton.

In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages

189–196. Academic Press, 1971.

[4] L. Mauborgne. An incremental unique representation for regular trees. Nordic

Journal of Computing, 7(4):290–311, 2000.

[5] Guido Tack. Linearisation, minimisation and transformation of data graphs with

transients. Diploma thesis, Programming Systems Lab, Universität des Saarlan-

des, Saarbrücken, May 2003.

6

[6] S. Woop and M. Horbach. Incremental algorithms and a minimal graph represen-

tation for regular trees.

Available from http://www.ps.uni-sb.de/~horbach/fopra.html , 2002.

7

http://www.ps.uni-sb.de/~horbach/fopra.html

	Graphs and Regular Trees
	Relations on Graphs
	Partition Refinement
	Refinement
	Runtime
	Minimization
	Labelled Trees and Graphs

	Application to Types

