Minimization

Guido Tack

2004

1 Graphs and Regular Trees

So far, trees are defined formally as "tree domains" (TDom $\subseteq \mathcal{P}(\mathcal{L}(\mathbb{N}))$). Informally, we know that graphs can model some trees.
To reason about properties of trees, we define the following functions:
$\operatorname{sub}(T, i) \in T D o m \times \mathbb{N}-$ TDom $:=\{l \mid(i:: l) \in T\}$
$\operatorname{sub}(T, p) \in T D o m \times \mathcal{L}(\mathbb{N})-T D o m:=\{l \mid(p @ l) \in T\}$
$\operatorname{Sub}(T) \in \operatorname{TDom} \rightarrow \mathcal{P}($ TDom $):=\{\operatorname{sub}(T, p) \mid p \in \mathcal{L}(\mathbb{N})\}$
These functions compute the n-th direct subtree, the subtree reached on path p, and the set of all subtrees of some tree domain T. This leads us to the central definition:

Definition 1.1 (Regular Tree) A tree domain T is called regular iff $\operatorname{Sub}(T)$ is finite, i.e. there are only finitely many different subtrees.

To talk about graphs, we need to define them formally:
Definition 1.2 (Graph) A graph $G=(V, E)$ consists of a set $V \subseteq \mathbb{N}$ of nodes and an edge function $E \in V \times \mathbb{N}-V$ such that $\forall v \in V \exists n \in N:\{m \in \mathbb{N} \mid(v, m) \in$ $\operatorname{Dom}(E)\}=\{0, \ldots, n-1\}$. A graph is called finite if its node set V is finite.
You might know this definition of graphs from automata theory: V is usually called the set of states, and E the transition function.
Let's connect our definitions of trees and graphs now.
We can define the extension of the transition function E :
$. \in V \times \mathcal{L}(\mathbb{N}) \rightarrow V \cup\{\perp\}$
Let $m \in \mathbb{N}, p \in \mathcal{L}(\mathbb{N})$. Then

$$
\begin{aligned}
& v . \epsilon \quad:=v \\
& \begin{array}{ll}
v .(m:: p):=E(v, m) \cdot p & \text { if }(v, m) \in \operatorname{Dom}(E) \\
& \\
& \\
\Rightarrow & v \cdot p \text { is the node reached from } v \text { on path } p \\
\Rightarrow & \{p \in \mathcal{L}(\mathbb{N}) \mid v \cdot p \neq \perp\} \in \text { TDom }
\end{array}
\end{aligned}
$$

Definition 1.3 (Closed Node Set) A set $X \subseteq V$ is called closed iff $\forall v \in X, p \in \mathcal{L}(\mathbb{N})$: $v . p \neq \perp \Longrightarrow v . p \in X$

Definition 1.4 (Tree defined by graph node) $\mathcal{T} \in(V \cup\{\perp\}) \rightarrow \mathcal{P}(\mathcal{L}(\mathbb{N}))$

```
\(\mathcal{T}(\perp):=\varnothing\)
\(\mathcal{T}(v):=\{p \in \mathcal{L}(\mathbb{N}) \mid v \cdot p \neq \perp\}\)
```

For $U \subseteq V$, let $\mathcal{T}(U):=\{\mathcal{T}(u) \mid u \in U\}$.
Definition 1.5 (Graph Equivalence) Two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are equivalent iff $\mathcal{T}(V)=\mathcal{T}\left(V^{\prime}\right)$.

Now we can formulate the following
Proposition 1.1 Every regular tree can be represented by a node of a finite graph.
As a proof, we construct a graph $G=(V, E)$ for a regular tree T as follows:
Let $\operatorname{Sub}(T)=\left\{t_{1}, \ldots, t_{n}\right\}$ (finite, as T is regular). Then
$V \quad:=\{1, \ldots, n\}$
$E(v, m):=i \quad$ if $\operatorname{sub}\left(t_{v}, m\right)=t_{i}$
undefined otherwise
Then G is a finite graph, and $\mathcal{T}(i)=t_{i}$ for every i. One of the t_{i} must be T itself, so this node i in the graph represents the regular tree T.

Example:

The tree on the right is $\mathcal{T}(1)$.
Figure 1: Tree and Graph

2 Relations on Graphs

The canonical and natural relation we can define on graphs now is the following:
$u \sim_{T} v \quad \Leftrightarrow \quad \mathcal{T}(u)=\mathcal{T}(v)$
This relation is an equivalence relation on the nodes of the graph that puts those nodes in the same class which denote the same tree. This gives us a simple
Definition 2.1 (Minimal Graph) A graph is called minimal iff $\forall u, v \in V: u=v \Longleftrightarrow$ $u \sim_{T} v$.
Our goal will be to compute \sim_{T} for an arbitrary graph, and then transform that graph into an equivalent one which is minimal. For this we need to define some more relations:

Definition 2.2 (Congruence) A congruence on a graph is an equivalence relation $\sim \in$ $V \times V$ such that
$u \sim v \wedge u . n \neq \perp \Longrightarrow v . n \neq \perp \wedge u . n \sim v . n$
i.e, an equivalence relation that is "compatible" with E. Another formulation is
$u \sim v \Rightarrow \mathcal{T}(u)=\mathcal{T}(v)$.
The set of all congruences is called Cong.
The finest congruence is $u \sim v \Longleftrightarrow u=v$.
The opposite relation is the following:
Definition 2.3 (Distinction) A distinction on a graph is an equivalence relation $\sim \in$ $V \times V$ such that
$\forall \sim^{\prime} \in$ Cong: $\sim^{\prime} \subseteq \sim$
This is equivalent to
$\mathcal{T}(u)=\mathcal{T}(v) \Longrightarrow u \sim v$.
The set of all distinctions is called Dist.
The coarsest distinction is $\sim=V \times V$.
Proposition $2.1 \sim_{T}$ is both the coarsest congruence and the finest distinction.

3 Partition Refinement

Idea: Take any equivalence relation \sim and compute the coarsest congruence that is a refinement of \sim. As an equivalence relation can always be seen as a partition of the nodes into equivalence classes, this generic algorithm is called partition refinement.

These graphs are all equivalent, the rightmost graph is minimal.
Figure 2: Equivalent graphs

Historically, this is exactly automaton minimization, an algorithm developed by Hopcroft [3]. Cardin and Crochemore [1] generalize the idea to arbitrary graphs, and Habib et al. [2] describe a generic and efficient implementation. Mauborgne [4] gives a minimization algorithm that works incrementally. Horbach and Hop [6] give a good formal description of both the original and the incremental algorithm - these lecture notes are based on their work. The author [5] describes how graph minimization can be applied to arbitrary data structures.

3.1 Refinement

Definition 3.1 (Refinement) We define a function R computing the refinement of a relation on graph nodes:
$R \in \mathcal{P}(V \times V) \times \mathcal{P}(V) \times \mathbb{N} \rightarrow \mathcal{P}(V \times V)$
$R(\sim, X, n):=(\sim) \cap\{(u, v) \in V \times V \mid u . n \in X \Longleftrightarrow v . n \in X\}$
If \sim, \sim^{\prime} are equivalence relations, we define

$$
\sim \succ \sim^{\prime} \Leftrightarrow \exists X \in V_{/ \sim}, n \in \mathbb{N}: \sim^{\prime}=R(\sim, X, n) \neq \sim
$$

Proposition 3.1 (Refinement preserves congruences) Let $X \in V_{/ \sim}$. Then $\sim^{\prime} \in$ Cong $\wedge \sim^{\prime} \subseteq \sim$ $\Rightarrow \sim^{\prime} \subseteq R(\sim, X, n)$.

The proof is left to you as an exercise.
Proposition 3.2 (The fixed point of \mathbf{R} is a congruence) $\left(\forall X \in V_{/ \sim}, n \in \mathbb{N}: R(\sim, X, n)=\sim\right.$) $\Rightarrow \sim$ is a congruence
The proof is left to you as an exercise.
Corollary 3.1 (Partition refinement computes \sim_{T}) Let $\sim_{0} \succ_{\sim_{1}} \succ \cdots \succ_{n}$ be a chain of distinction relations. Then

- this chain is finite.
- if there is no \sim_{n+1} such that $\sim_{n} \succ \sim_{n+1}$, then $\sim=\sim_{T}$.

3.2 Runtime

Let k be the maximum arity of all the nodes in V.
Pseudo-code of the generic algorithm:

$$
\begin{array}{ll}
i=0: & \text { agenda }_{0}=\left(V_{/ \sim_{0}}\right) \times\{0, \ldots, k-1\} \\
i \rightarrow i+1: & \text { if agenda }{ }_{i}=\varnothing \text { then return } \sim_{i} \\
& \text { else }\left[\left(X_{i}, n_{i}\right), \ldots\right]=\text { agenda } i \\
& \text { let } \\
& \sim_{i+1}=R\left(\sim_{i}, X_{i}, n_{i}\right) \\
& \text { agenda } a_{i+1}=\text { updated agenda } a_{i}
\end{array}
$$

The naive algorithm procedes as follows: Every time an equivalence class Y is "split" into Y_{1} and Y_{2}, for every n remove (Y, n) from the agenda and put $\left(Y_{1}, n\right)$ and $\left(Y_{2}, n\right)$ on the agenda. This gives a complexity of $O\left(n^{2}\right)$, where $n=|V|$.

Hopcroft improved this to $O(k n \log n)$, for k the maximum arity of any node in the graph. He noticed that if (Y, n) is not on the agenda, only the smaller one of Y_{1} and Y_{2} has to be put there.

Both algorithms assume a clever representation of the graph and the equivalence classes to make computation of R efficient. Habib [2] gives a detailed and yet simple description of how to achieve this.

3.3 Minimization

Given a graph $G=(V, E)$ and the relation \sim_{T} on G, we can easily construct the minimal graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ that is equivalent to G.

Let $\left\{\left[v_{1}\right]_{\sim_{T}}, \ldots,\left[v_{n}\right]_{\sim_{T}}\right\}$ be the equivalence classes of \sim_{T}.
$V^{\prime}:=\left\{v_{1}, \ldots, v_{n}\right\}$
$E^{\prime}\left(v^{\prime}, m\right):=E(v, m)$ for $v \in\left[v^{\prime}\right]_{\sim_{T}}$
Convince yourself that this is well-defined.

3.4 Labelled Trees and Graphs

Adding labels to trees and graphs is easy. Assuming that we have a set Labl of labels, a tree now is a function $t \in$ Tree $\subseteq T D o m \rightarrow$ Lab. Graphs become tripels: $G=(V, E, L)$, where $L \in V \rightarrow L a b$.

The denotation of a graph node has to be adjusted:
$\mathcal{T}(\perp)=\varnothing$
$\mathcal{T}(v)(p)=L(v \cdot p)$ if $v \cdot p \neq \perp$
The canonical equivalence relation of graph nodes has to be aware of labels:
$u \sim_{T L} v \Leftrightarrow L(u)=L(v) \wedge u \sim_{T} v$
The minimization algorithm doesn't have to be changed at all, only the initial distinction relation must be at least \sim_{L}, defined as $u \sim_{L} v \Longleftrightarrow L(u)=L(v)$ (which is a distinction).

4 Application to Types

Recursive types can be seen as regular, labelled trees with the label set $L a b=$ $\{+, \times, \rightarrow\}$, for example. They can therefore be modelled (and implemented!) as finite graphs.
Computing the minimal graph representing a type has some advantages:

- Type equivalence is decidable in $O(1)$.
- If the type is also needed at runtime, its representation is compact, i.e. memoryefficient.

References

[1] A. Cardon and M. Crochemore. Partitioning a graph in $O\left(|A| \log _{2}|V|\right)$. Theoretical Computer Science, 19(1):85-98, July 1982.
[2] M. Habib, Ch. Paul, and L. Viennot. Partition refinement techniques: An interesting algorithmic tool kit. International Journal of Foundations of Computer Science, 10(2):147-170, 1999.
[3] J. Hopcroft. An $n \log n$ algorithm for minimizing states in a finite automaton. In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 189-196. Academic Press, 1971.
[4] L. Mauborgne. An incremental unique representation for regular trees. Nordic Journal of Computing, 7(4):290-311, 2000.
[5] Guido Tack. Linearisation, minimisation and transformation of data graphs with transients. Diploma thesis, Programming Systems Lab, Universität des Saarlandes, Saarbrücken, May 2003.
[6] S. Woop and M. Horbach. Incremental algorithms and a minimal graph representation for regular trees.
Available from http://www.ps.uni-sb.de/~horbach/fopra.htm7 2002.

