
LARGE-SCALE LINKED DATA PROCESSING:
CLOUD COMPUTING TO THE RESCUE?

Michael Hausenblas1, Robert Grossman2, Andreas Harth3 and Philippe Cudré-Mauroux4

1Digital Enterprise Research Institute, NUI Galway, Ireland
2University of Chicago & Open Cloud Consortium, USA

3Institute AIFB, Karlsruhe Institute of Technology, Germany
4eXascale Infolab, Department of Informatics, University of Fribourg, Switzerland

michael.hausenblas@deri.org, robert.grossman@uchicago.edu, harth@kit.edu, pcm@unifr.ch

Keywords: Linked Data

Abstract: Processing large volumes of Linked Data requires sophisticated methods and tools. In the recent years we have
mainly focused on systems based on relational databases and bespoke systems for Linked Data processing.
Cloud computing offerings such as SimpleDB or BigQuery, and cloud-enabled NoSQL systems including
Cassandra or CouchDB as well as frameworks such as Hadoop offer appealing alternatives along with great
promises concerning performance, scalability and elasticity. In this paper we state a number of Linked Data-
specific requirements and review existing cloud computing offerings as well as NoSQL systems that may be
used in a cloud computing setup, in terms of their applicability and usefulness for processing datasets on a
large-scale.

1 Motivation

Although there are more and more data sources
that are available over the Web, it is still relatively
rare that a dataset is linked to another one. An im-
portant trend over the past decade has been the grow-
ing awareness of the importance of “light-weight”
approaches to integrating data. The argument for
lightweight approaches was best made in (Franklin
et al., 2005). With these approaches the goal is to
create loosely integrated “dataspaces” instead of com-
pletely integrated databases or distributed databases.

Early approaches for the lightweight integration
of data using Web protocols include (Grossman and
Mazzucco, 2002), which advocated using Universal
Keys (columns of data identified by a Uniform Re-
source Identifier) and Web protocols to link columns
of data in one table, identified by a Uniform Resource
Identifier (URI), to columns in another table (identi-
fied by another Uniform Resource Identifier).

The most successful effort to date for light-weight
Web data integration is based upon Tim Berners-Lee’s
Linked Data principles (Berners-Lee, 2006):

1. Use URIs to identify data elements.

2. Using HTTP URIs allows looking up a data ele-
ments identified through the URI.

3. When someone looks up a URI, provide useful in-
formation using standards, such as RDF.

4. Include links to URIs in other datasets to enable
the discovery of more data elements.

In a nutshell, Linked Data is about applying the
general architecture of the WWW (Jacobs and Walsh,
2004) to the task of sharing structured data on a global
scale. Technically, Linked Data is about employing
URIs, the Hypertext Transfer Protocol (HTTP) and
the Resource Description Framework (RDF) to pub-
lish and access structured data on the Web and to
connect related data that is distributed across multi-
ple data sources.

The goal is to create a Web of Data broadly similar
to the Web of Documents. Instead of using hyperlinks
to connect documents, RDF links (in case of Linked
Data) or Universal Keys (Grossman and Mazzucco,
2002) are used to connect data elements in different
data sources. In this way, distributed data sources are
easily integrated into a single global data space (Bizer
et al., 2009; Bizer, 2009), enabling a new class of
applications (Hausenblas, 2009) where the data inte-
gration effort is shared between data publisher, third-
party services and data consumers.

Increasing numbers of data providers have begun
to adopt Linked Data (Bizer et al., 2009). The most

As of September 2010

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

Poké-
pédia

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

Open
Calais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy

UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

Figure 1: Topology of the Linked Open Data cloud with
more than 200 datasets.

prominent example of the Linked Data principles ap-
plied to open data sources is the Linked Open Data
(LOD) cloud1 depicted in Figure 1. It currently con-
tains over 200 datasets that contribute around 30+ bil-
lion RDF triples and over 400 million cross-data set
links (Bizer et al., 2010). In the visualisation of the
LOD cloud in Figure 1, each node represents a dis-
tinct dataset and arcs indicate the existence of links
between data elements in the two data sets.

Another project that will be linking large amounts
of data is the Open Science Data Cloud (OSDC)
(Grossman et al., 2010). By the end of 2012, the
OSDC plans to make available approximately 1 PB
of scientific data across a variety of scientific disci-
plines, and then assign digital IDs and links to this
data.

With projects like these, given the size of the
data, selecting an appropriate data management in-
frastructure for loading, managing and processing the
data is critical. In this paper, we consider some of the
requirements, options, and issues that arise.

We illustrate some of the problems that arise with
an example taken from our work in the LOD-Around-
The-Clock (LATC) Support Action2 and the Plan-
etData Network of Excellence3. Linked Data sup-
ports live querying (Umbrich et al., 2011); however,
in typical usage scenarios, the time needed to load
the remote data often makes it more practical to load
the respective datasets into a central data store for
processing. Take for example the case where data
from DBpedia, Geonames, as well as statistical data
from data.gov.uk—totalling some billion triples—
are used in an application: one is likely better off to
process this volume in place, rather than using the
data live.

Currently, there exist three options to process
Linked Data in a central location:

1http://lod-cloud.net/
2http://latc-project.eu/
3http://planet-data.eu/

• Dedicated triple stores4, such as 4store, Al-
legroGraph, BigData, BigOWLIM, Virtuoso or
YARS2, as well as triple stores in the cloud like
the Talis platform5 or Dydra6.

• Relational databases along with i) built-in
RDF support, for example Oracle 11g7, or ii)
RDB2RDF mappings, currently under W3C stan-
dardisation8.

• NoSQL offerings.

In this paper, we focus on the last category. Some-
times the term cloud computing is used instead of
NoSQL, since in practice, many cloud computing of-
ferings (Armbrust et al., 2010) are NoSQL solutions
and many NoSQL solutions are cloud-enabled. A
good starting point for Linked Data processing with
the cloud is Arto Bendiken’s write-up on “How RDF
Databases Differ from Other NoSQL Solutions”9 as
well as Sandro Hawke’s “RDF meets NoSQL”10.

We emphasise that this paper is concerned with
the question to what extent NoSQL systems can be
used to process Linked Data in a cloud computing
setup. The more general question of the appropriate
data management infrastructure for distributed data or
science clouds is out of scope for the work at hand.

The remainder of the paper is structured as fol-
lows: in Section 2 we state requirements concerning
Linked Data processing, then, in Section 3 we review
systems in terms of their Linked Data processing ca-
pabilities and in Section 4 we compare the systems
against the requirements stated earlier. Eventually, in
Section 5, we conclude our survey and report on next
steps.

2 Requirements

Based on the interactions with researchers and
practitioners in the realm of various projects as well
as drawing from own experience in the field of Linked
Data processing in the past four years, we have iden-
tified a number of requirements in addition to the
“hard” requirements performance, throughput, scal-

4http://www.w3.org/wiki/LargeTripleStores
5http://www.talis.com/platform/
6http://dydra.com/
7http://www.oracle.com/technetwork/

database/options/semantic-tech/
8http://www.w3.org/2001/sw/rdb2rdf/
9http://blog.datagraph.org/2010/04/

rdf-nosql-diff
10http://decentralyze.com/2010/03/09/

rdf-meets-nosql/

ability and elasticity (Armbrust et al., 2010; Cooper
et al., 2010; Dory et al., 2011):

URIs as Identifiers
Supporting URIs as primary keys. The first
Linked Data principle (see above) suggests the use
of URIs to name entities. The processing plat-
forms must thus be able to use URIs as identi-
fiers natively, or to map URIs to their own internal
identifiers efficiently.

RDF Support
Importing and Exporting RDF datasets. The abil-
ity to import RDF data both in small chunks (for
example, as RDF/XML files) and as large data
dumps (for example, bulk loading of large N-
Triples or N-Quads files) is essential, since in the
LOD cloud data is typically exposed in an RDF
serialisation.

Interface
The ability to serve information as HTTP, which
is often used when browsing Linked Data sets and
dereferencing URIs to get additional information
about arbitrary data elements.

Partitioning
Support for logical partitions, for example via
Named Graphs11 (also sometimes referred to as
“context”) for managing the dataspace.

Update
Providing update facilities, for example via
HTTP PUT/POST over an HTTP interface or via
SPARQL update12 to perform arbitrary inserts and
updates on data.

Indexing
Support for a modular indexing sub-system that
allows to use specialised indexing services, such
as text indexing via the Semantic Information
Retrieval Engine (SIREn)13. The ability to of-
fer those indexes is important in many LOD
applications, for example to support full-text
search interfaces and co-reference services such
as SameAs.org14.

Inferencing
Support for reasoning, for example taking into
account equivalence statements via owl:sameAs
axioms as well as other logical constructs pro-
vided by RDFS and OWL (e.g., subclasses,
transitive properties, etc.).

11http://www.w3.org/2011/rdf-wg/wiki/
TF-Graphs

12http://www.w3.org/TR/sparql11-update/
13http://siren.sindice.com/
14http://sameas.org/

Rich Data Processing
Providing query facilities which can range, de-
pending on the functionality and scalability re-
quirements of the application, from simple Linked
Data look-ups over triple pattern look-ups to
conjunctive queries and finally full-fledged gen-
eral SPARQL query15 facilities (joins, aggregates,
property paths, etc.) in order to perform rich,
structured queries.

Efficient Graph Processing
Efficient support for path or transitive closure
queries. As entities are interlinked on the LOD
cloud, it is often necessary to follow series of links
iteratively to resolve a given query. Such graph
queries are very common in our context, however
can be extremely expensive on some platforms,
for example, on relational platforms where they
often boil down to multi-joins.

In Section 4 we discuss the above listed, Linked Data-
specific requirements along with the findings of this
paper.

3 Data processing systems review

Following Cattel’s terminology (Cattell, 2011) we
understand data stores to include cloud computing as
well as NoSQL offerings. In the following, we re-
view several data stores, in alphabetic order, in terms
of their capabilities to perform large-scale processing
of Linked Data processing perspective. A number of
runner-ups are discussed as well in the following.

3.1 BigQuery

BigQuery16 is a cloud computing offering by Google,
supposed to complement MapReduce jobs in terms
of interactive query processing, introduced together
with Google Storage and the Google Prediction API
in early 2010. In late 2010 we looked into utilising
BigQuery for Linked Data processing by developing
the BigQuery Endpoint (Hausenblas, 2010a), an ap-
plication deployed on Google App Engine that allows
to load RDF/N-Triples content into Google Storage
as well as exposing an endpoint allowing to query the
data.

3.2 Cassandra

Apache Cassandra is a second-generation distributed
database, bringing together Dynamo’s (DeCandia

15http://www.w3.org/TR/sparql11-query/
16https://code.google.com/apis/bigquery/

et al., 2007) fully distributed design and Bigtable’s
column-family-based data model (Chang et al., 2006).
Cassandra is an established NoSQL system used by
some relevant companies17 including Cisco, Face-
book and Rackspace. There is a Cassandra storage
adaptor for RDF.rb (Bendiken, 2010b) available, de-
veloped by Arto Bendiken and we developed Cu-
mulusRDF (Ladwig and Harth, 2010), which uses
Apache Cassandra as a storage back-end. Brisk18 is a
Hadoop-style data processing framework built on top
of the Apache Cassandra data store.

3.3 CouchDB

Apache CouchDB is a distributed, document-oriented
database written in the Erlang; it can be queried and
indexed in a MapReduce fashion. It manages the
data as a collection of JSON documents and is used
by Ubuntu, Couchbase and many more. Greg Lap-
pen has provided a CouchDB storage adaptor for
RDF.rb (Lappen, 2011). CouchDBs native language
is JSON, hence it seems that efforts like JavaScript
Object Notation for Linked Data (JSON-LD)19 are
a good fit for the data representation part. Only re-
cently, a discussion took place on the CouchDB users
list regarding “CouchDB vs. RDF databases” (Nunes,
2011).

3.4 Hadoop/Pig

Apache Hadoop is a software framework written in
Java that supports reliable, scalable, distributed com-
puting. Apache Pig20 is a high-level data analy-
sis language on top of Hadoop’s MapReduce frame-
work. The community discusses (Castagna, 2010)
best practices for processing RDF data with MapRe-
duce/Hadoop. Mika and Tummarello experimented
with a system using Hadoop and Pig for SPARQL
query processing (Mika and Tummarello, 2008). Tan-
imura et. al. (Tanimura et al., 2010) have reported
on an extensions to the Pig data processing plat-
form for scalable RDF data processing using Hadoop,
somewhat related to what Sridhar et. al. (Sridhar
et al., 2009) have suggested in their RAPID system.
Arto Bendiken has developed RDFgrid (Bendiken,
2010a), a framework for batch-processing RDF data
with Hadoop, as well as Amazon’s Elastic Map Re-
duce (Amazon, 2011).

17http://wiki.apache.org/cassandra/
CassandraUsers

18http://www.datastax.com/products/brisk
19http://json-ld.org/
20http://pig.apache.org/

3.5 HBase

Apache HBase is a distributed, versioned, column-
oriented store modelled after Google’ Bigtable, writ-
ten in Java. A couple of institutions like Mende-
ley, Facebook and Adobe are using HBase. Gabriel
Mateescu has provided an article (Mateescu, 2009)
on how to process RDF data using HBase and Paolo
Castagna has developed an experimental HBase-RDF
implementation (Castagna, 2011). Sun and Jin (Sun
and Jin, 2010) have proposed a scalable RDF store
based on HBase.

3.6 MongoDB

MongoDB is a schema-free, (JSON) document-
oriented database written in C++. It is used by
an array of sites and providers including Source-
Forge, CERN, and Foursquare. Rob Vesse has re-
ported (Vesse, 2010) on experiments he conducted
with MongoDB as an RDF store and William Waites
has provided a write-up on “Mongo as an RDF
store” (Waites, 2010). Further, Antoine Imbert has
developed MongoDB::RDF for Perl (Imbert, 2010).

3.7 Pregel

Pregel is a system for graph processing developed at
Google (Malewicz et al., 2009). Similar to Hadoop,
Pregel uses a set of nodes in a cluster to distribute
work which is executed in parallel, with defined
synchronization points to allow for exchange of in-
termediate results between the parallel processes.
Unlike the MapReduce framework, for which an
open source implementation is available in Apache
Hadoop, Pregel is currently not available outside
Google.

3.8 SimpleDB

Amazon SimpleDB is a distributed database/web-
service written in Erlang. It is often used together
with other Amazon Web Services (AWS) offerings
such as the Simple Storage Service (S3), for example
by Alexa, Livemocha or Netflix. Stein and Zacharias
have summarised (Stein and Zacharias, 2010) their
experiences with RDF processing in SimpleDB in
their open source project Stratustore21.

3.9 Riak

Riak is a Dynamo-inspired key-value store with a
distributed database network platform and built-in

21http://code.google.com/p/stratustore/

MapReduce support. It supports high availability and
is used in production by institutions such as Com-
cast, Wikia or Opscode. Andrew McKnight has
shared (McKnight, 2010) his thoughts concerning
SPARQL query processing on the Riak platform and
we had a look into storing an RDF graph in Riak using
HTTP Link headers (Hausenblas, 2010b) allowing for
graph traversing.

3.10 Other Systems

There are a number of systems that would be capable
of processing Linked Data in the cloud, however we
are not aware of a cloud deployment or the features
are not yet available; for sake of completeness, we
list these systems in the following:

3.10.1 Distributed graph databases

• Neo4j is a graph database implemented in Java
that has built-in RDF processing support, in-
cluding indexing (Neo4jWiki, 2011). Further,
Gremlin22 is a graph traversal language that
works over graph databases implementing the
Blueprints interface23, such as Neo4j or Ori-
entDB24 and Graphbase25 is an implementation
of the Blueprints interface on top of HBase.

• Microsoft’s Trinity (Microsoft, 2011b) is a graph
database over distributed memory cloud, provid-
ing computations on large scale graphs; it can re-
portedly be deployed on hundreds of machines.
Further, Microsoft is building a graph library (Mi-
crosoft, 2011a) on top of their cloud computing
framework Orleans that targets hosting very large
graphs with billions of nodes and edges.

• GoldenOrb26 is a cloud-based open source
project for massive-scale graph analysis, build-
ing upon Hadoop, modelled after Googles
Pregel (Malewicz et al., 2010) architecture.

3.10.2 Hybrid systems

• MonetDB27 has support for RDF processing in the
queue.

• Sindice (Oren et al., 2008), a semantic indexer,
uses Hadoop and Lucence/SIREn to processes bil-
lions of triples.

22https://github.com/tinkerpop/gremlin/wiki
23http://tinkerpop.com/
24http://www.orientechnologies.com/orient-db
25https://github.com/dgreco/graphbase
26http://www.goldenorbos.org/
27http://www.monetdb.org/Home

• The Large Knowledge Collider project is work-
ing on a Web-scale Parallel Inference Engine28, a
MapReduce-based, distributed RDFS/OWL infer-
ence engine.

• Peter Hizalev reported (Hizalev, 2011) on a Redis-
based triple database.

• Andy Seaborne reported (Seaborne, 2009) run-
ning TDB, a native persistent storage layer for the
RDF processing framework Jena, on a cloud stor-
age system.

• SARQ29 is an open source text indexing system
for SPARQL using a remote Solr server.

4 Discussion

Table 1 lists our Linked Data-specific require-
ments from Sec. 2 over the identified systems from
Sec. 3.

The practical applicability of the systems sur-
veyed varies: some systems represent first steps in
mapping the RDF triple structure into a key/value-
based storage layout, while others focus on optimis-
ing join processing capabilities.

Similarly, while some systems provide defined in-
terfaces for insert, update and query, other systems are
still in the prototype status which custom interfaces,
often resembling those of the underlying processing
system.

5 Conclusion

We have identified a number of requirements for
cloud-based Linked Data management systems, sur-
veyed existing offerings and analysed their capabil-
ities with regard to the specified requirements. We
have provided a first survey of the still evolving large-
scale Linked Data processing landscape.

As becomes apparent from the plethora of sys-
tems surveyed and listed in Table 1, the burgeon-
ing field of cloud-based Linked Data management
is still fractured. Community-built benchmarks can
serve as catalysts and help to unify a field. While
the Wisconsin Benchmark (DeWitt, 1993) can be
considered as the prototypical benchmark for paral-
lel databases, it is rather outdated. In (Pavlo et al.,
2009) Pavlo et. al. compared MapReduce with par-
allel databases, providing useful insights and guid-
ance on what are important metrics. Most relevantly,

28http://www.few.vu.nl/˜jui200/webpie.html
29https://github.com/castagna/SARQ

System Backend Identifiers Interface Partition Update Index Query Inference
(Hausenblas, 2010a) BigQuery URIs Linked

Data
quads + fixed custom -

(Ladwig and Harth,
2010)

Cassandra URIs Linked
Data

quads + multiple Linked
Data
lookups

-

(Tanimura et al., 2010) Pig/Hadoop URIs custom triples - fixed SPARQL rules
(Sridhar et al., 2009) Pig/Hadoop URIs custom triples - fixed RAPID -
(Mika and Tummarello,
2008)

Pig/Hadoop URIs custom triples - fixed SPARQL forward-
chaining
rules

(Huang et al., 2011) RDF-
3X/Hadoop

URIs custom triples - fixed SPARQL -

(Sun and Jin, 2010) HBase URIs custom triples - fixed SPARQL -
(Vesse, 2010) MongoDB URIs custom triples - multiple SPARQL -
(Stein and Zacharias,
2010)

SimpleDB URIs custom triples + multiple SPARQL -

(Hausenblas, 2010b) Riak URIs HTTP triples - fixed custom -

Table 1: Coverage of Linked Data processing capabilities.

Cooper et. al. (Cooper et al., 2010) introduced the Ya-
hoo! Cloud Serving Benchmark (YCSB). Although
generic and extensible by design, the YCSB is not di-
rectly suited for Linked Data benchmarking. Only
recently, Dory et. al. (Dory et al., 2011) reported
on elasticity and scalability measurements of cloud
databases.

Our current work focuses on establishing a bench-
mark for Linked Data processing with cloud comput-
ing offerings30.

We believe that a common, community-built
benchmark could help to further identify and organ-
ise requirements, and in the process unite a fractured
field towards a common goal.

REFERENCES

Amazon (2011). Elastic MapReduce. http://aws.
amazon.com/elasticmapreduce/.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53:50–58.

Bendiken, A. (2010a). RDFgrid. https://github.com/
datagraph/rdfgrid.

Bendiken, A. (2010b). RDF.rb storage adapter for Apache
Cassandra. https://github.com/bendiken/
rdf-cassandra.

Berners-Lee, T. (2006). Linked Data, Design Issues.
Bizer, C. (2009). The Emerging Web of Linked Data. IEEE

Intelligent Systems, 24(5):87–92.

30https://github.com/mhausenblas/nosql4lod

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
Data—The Story So Far. Special Issue on Linked
Data, International Journal on Semantic Web and In-
formation Systems (IJSWIS), 5(3):1–22.

Bizer, C., Jentzsch, A., and Cyganiak, R. (2010). State of
the LOD Cloud. http://www4.wiwiss.fu-berlin.
de/lodcloud/state/.

Castagna, P. (2010). Best practices for processing
RDF data using MapReduce. http://j.mp/
processing-rdf-data-using-mapreduce-via-hadoop.

Castagna, P. (2011). HBase-RDF. https://github.com/
castagna/hbase-rdf.

Cattell, R. (2011). Scalable SQL and NoSQL data stores.
SIGMOD Rec., 39:12–27.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wal-
lach, D. A., Burrows, M., Chandra, T., Fikes, A., and
Gruber, R. E. (2006). Bigtable: a distributed stor-
age system for structured data. In Proceedings of the
7th USENIX Symposium on Operating Systems De-
sign and Implementation - Volume 7, OSDI ’06, pages
15–15, Berkeley, CA, USA. USENIX Association.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM
symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA. ACM.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: ama-
zon’s highly available key-value store. SIGOPS Oper.
Syst. Rev., 41:205–220.

DeWitt, D. J. (1993). The Wisconsin Benchmark: Past,
Present, and Future. In Gray, J., editor, The Bench-
mark Handbook. Morgan Kaufmann.

Dory, T., Mejias, B., Roy, P. V., and Tran, N.-L. (2011).
Comparative elasticity and scalability measurements

of cloud databases. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SoCC ’11, New
York, NY, USA. ACM.

Franklin, M. J., Halevy, A. Y., and Maier, D. (2005). From
databases to dataspaces: a new abstraction for infor-
mation management. SIGMOD Record, 34(4):27–33.

Grossman, R. and Mazzucco, M. (July/August, 2002).
Dataspace - a web infrastructure for the exploratory
analysis and mining of data. IEEE Computing in Sci-
ence and Engineering, pages 44–51.

Grossman, R. L., Gu, Y., Mambretti, J., Sabala, M., Sza-
lay, A., and White, K. (2010). An overview of the
open science data cloud. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing (HPDC ’10). ACM.

Hausenblas, M. (2009). Exploiting Linked Data to
Build Web Applications. IEEE Internet Computing,
13(4):68–73.

Hausenblas, M. (2010a). BigQuery Endpoint. http://
code.google.com/p/bigquery-linkeddata/.

Hausenblas, M. (2010b). Toying around with Riak for
Linked Data. http://webofdata.wordpress.com/
2010/10/14/riak-for-linked-data/.

Hizalev, P. (2011). Redis based triple database.
http://petrohi.me/post/6114314450/
redis-based-triple-database.

Huang, J., Abadi, D., and Ren, K. (2011). Scalable sparql
querying of large rdf graphs. In Proceedings of the
37st International Conference on Very Large Data
Bases.

Imbert, A. (2010). MongoDB-RDF. https://github.
com/ant0ine/MongoDB-RDF.

Jacobs, I. and Walsh, N. (2004). Architecture of the World
Wide Web, Volume One. W3C Recommendation 15
December 2004, W3C Technical Architecture Group
(TAG).

Ladwig, G. and Harth, A. (2010). An RDF Storage
Scheme on Key-Value Stores for Linked Data Publish-
ing. Technical Report, Karlsruhe Institute of Technol-
ogy (KIT).

Lappen, G. (2011). RDF.rb storage adapter for CouchDB.
https://github.com/ipublic/rdf-couchdb.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. (2009).
Pregel: a system for large-scale graph processing -
”abstract”. In Proceedings of the 28th ACM sympo-
sium on Principles of distributed computing, PODC
’09, pages 6–6, New York, NY, USA. ACM.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. (2010).
Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 international conference on
Management of data, SIGMOD ’10, pages 135–146,
New York, NY, USA. ACM.

Mateescu, G. (2009). Finding the way through the semantic
Web with HBase. developerWorks article, IBM.

McKnight, A. (2010). Sparql on Riak. http:
//andrewmcknight.blogspot.com/2010/12/
sparql-on-riak.html.

Microsoft (2011a). Horton. http://research.
microsoft.com/en-us/projects/ldg/.

Microsoft (2011b). Trinity. http://research.
microsoft.com/en-us/projects/trinity/.

Mika, P. and Tummarello, G. (2008). Web semantics in the
clouds. IEEE Intelligent Systems, 23:82–87.

Neo4jWiki (2011). Neo4j RDF/SPARQL Quickstart
Guide. http://wiki.neo4j.org/content/RDF_/_
SPARQL_Quickstart_Guide.

Nunes, D. (2011). CouchDB x RDF databases compar-
ison. http://comments.gmane.org/gmane.comp.
db.couchdb.user/2334.

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn,
H., and Tummarello, G. (2008). Sindice.com: A
document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics and On-
tologies, 3(1).

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt,
D. J., Madden, S., and Stonebraker, M. (2009). A
comparison of approaches to large-scale data analy-
sis. In Proceedings of the 35th SIGMOD international
conference on Management of data, SIGMOD ’09,
pages 165–178, New York, NY, USA. ACM.

Seaborne, A. (2009). Running TDB on a cloud storage sys-
tem. http://seaborne.blogspot.com/2009/12/
running-tdb-on-cloud-storage-system.html.

Sridhar, R., Ravindra, P., and Anyanwu, K. (2009). RAPID:
Enabling Scalable Ad-Hoc Analytics on the Semantic
Web. In Proceedings of the 8th International Semantic
Web Conference, ISWC ’09, pages 715–730, Berlin,
Heidelberg. Springer-Verlag.

Stein, R. and Zacharias, V. (2010). RDF on Cloud Number
Nine. In Workshop on New Forms of Reasoning for
the Semantic Web (NeFoRS).

Sun, J. and Jin, Q. (2010). Scalable RDF store based on
HBase and MapReduce. In Advanced Computer The-
ory and Engineering (ICACTE), 2010 3rd Interna-
tional Conference on, volume 1, pages V1–633–V1–
636.

Tanimura, Y., Matono, A., Lynden, S., and Kojima, I.
(2010). Extensions to the Pig data processing platform
for scalable RDF data processing using Hadoop. In
Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on, pages 251 –256.

Umbrich, J., Hose, K., Karnstedt, M., Harth, A., and
Polleres, A. (2011). Comparing data summaries for
processing live queries over Linked Data. World Wide
Web, pages 1–50.

Vesse, R. (2010). Experimenting with MongoDB as an RDF
Store . Blog post, University of Southampton.

Waites, W. (2010). Mongo as an RDF
store. http://wwaites.posterous.com/
mongo-as-an-rdf-store.

