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Abstract

The conventional approach for building pervasive
environments relies on middleware to integrate differ-
ent systems. Instead, we have built a system that can
deal with these environments by exporting system re-
sources through distributed virtual file systems. This
requires no middleware, simplifies interoperation, and
permits applying general purpose tools to any system
resource. A constraint-based file system import mech-
anism allows the system to adapt to changes in the en-
vironment and permits users to customize the environ-
ment and tailor adaptation according to their needs.
The system has been in use for over a year to carry out
our daily work and is underlying the smart space that
we built for our department.

1. Introduction

The problem we address is how to provide a con-
venient operating system for a ubiquitous computing
environment [33], which includes multiple machines
per user, small devices attached to the network, and
new services like location and context handling that
are necessary for its applications. The environment is
also highly dynamic, and includes mobile users and
devices. Therefore, the system must enable adapta-
tion.

Most other systems use middleware to provide
new abstractions designed for this kind of environ-
ment. We do not. Our approach, Plan B, is to
split the system to export all its resources to the net-

work using abstract interfaces that are mapped to
file system operations. Demonstrations of the result-
ing system (and our smart space) can be found at
http://lsub.org/ls/planb.html.

All resources are seen as files, following the ideas
in Plan 9 [25] (our implementation derives from Plan
9, indeed). A network file system protocol, 9P [25],
is used to interconnect the system. The computing en-
vironment is built for each user by importing the re-
quired resources from the network. Any machine that
knows how to use/export remote files can interoperate
and be integrated in our environment, and even mo-
bile phones can do so using OBEX on bluetooth or In-
frared links. On the other hand, systems that use mid-
dleware need to deploy additional services, e.g. Gaia’s
microserver [11], into devices to interoperate well.

We do not have to introduce specific languages to
simplify the programming of the system, e.g. Olympus
[28] for Gaia [30], we can use the shell, C, and any
other language that knows how to use files.

The import mechanism is built in a way that per-
mits users to specify what they want yet lets the system
choose what resources to use depending on which ones
are available to satisfy the requests of the users. This
makes adaptation to changes easier: If a resource be-
comes unavailable, another one, which must still com-
ply with what the user requested, may be used instead.

Resource interfaces have been designed from the
ground up to be of a high-level of abstraction, to toler-
ate a high heterogeneity of resources. Their high-level
of abstraction is also an enormous aid for interoper-
ability. For example, we use MP3 as the format for
audio output because players are ubiquitous.



The main contribution of this paper is the descrip-
tion of a way to organize the operating system that
avoids the need for middleware in platforms for per-
vasive computing and smart spaces. The consequence
is that we can use general purpose and existing system
tools, and we can keep the system simple.

More precisely, in this paper we describe the Plan B
resource import mechanism, and the design of several
important system services including application exe-
cution, user interfaces, context handling, event deliv-
ery, audio and voice facilities, and (physical) environ-
ment automation.

2. System architecture

The overall organization of the system is depicted
in figure 1. Initially, each machine (i.e., all its devices
and resources) is owned by the user who boots it. Once
booted, a machine exports all its resources to the net-
work. Each resource is exported as a tiny file system
that has an associated name and a set of attributes. We
refer to each one of these tiny file systems as a resource
volume, and to the set of attributes as its constraints.

Most of the files in resource volumes are not real
files, but virtual ones. This is similar to the /proc
[19] in modern UNIX systems and to most files in
Plan 9 [25]. For example, the kbd (keyboard) vol-
ume appears to be a single directory with two files
on it: cons, and kbdctl. Reading from cons
retrieves runes (characters, usually) from the corre-
sponding keyboard. Writing to kbdctl permits is-
suing control operations to it, e.g., to redirect the key-
board for use with another GUI.

Volume names are strings that identify the resource
exported in a global name space. The names for
volumes are used to advertise them and to identify
the volumes that are to be bound on import requests.
For example, all audio output volumes have the name
/devs/audio. Our convention is to name each vol-
ume after the path where it uses to be mounted, but any
other convention can be used as long as it is consistent.

Along with the name, each volume has constraints.
The constraint set for each particular volume contains
a set of attribute/value pairs that identifies properties of
interest. The constraints are used both to advertise the
properties of the volumes along with its names, and to
request desired properties while importing resources.

Unlike other systems, e.g., INS [4], we do this for all
resources.

Constraints are represented by a string that con-
tains attribute/value pairs separated by a ! character.
For example, !Hnautilus!Unemo!Tmp3!Cbad.
Each attribute/value pair is represented by an ini-
tial upper-case rune that identifies the attribute and a
lower-case string that represents its value. In the ex-
ample, H is the attribute that names the machine pro-
viding the service, and nautilus is its value. We
call !Hnautilus a constraint.

All the machines are considered peers in that they
run the same system software and their purpose is the
same: To export volumes. Users interact with the sys-
tem by means of the volumes they own (or they bor-
rowed). A typical user operates with multiple screens,
keyboards, mouses, DVD readers, and other various
devices. All the resources can be freely combined and
used from anywhere by means of file I/O.

Once an application is started, it is bound to the
machine where it was created. Usually, the machine
where the application is created is the one where the
request was issued from. Most machines have plenty
of processing capacity to permit this. For the cases
when a machine has limited processing capacity, the
requests to start new applications are delivered to an-
other machine owned by the same user. Process man-
agement is therefore exactly like that of a centralized
system. There is no process migration nor code ship-
ping (other than paging a binary through the network).
As a result, unlike other systems [27], we do not have
to face the issues raised by such techniques, most no-
tably security problems.

Each process has a name space that binds names to
resources, i.e., to files and volumes [5]. This feature
permits the user to adjust the environment of the pro-
cess. Some of the binds refer to a concrete file at a par-
ticular file tree, and they work like traditional network-
mounted file systems. Other binds refer to volumes
and request the system to bind to a file name whatever
volume (or set of volumes) satisfies a given volume
name and constraints.

The environment seen by an application is the set of
files imported into its name space. The environment
seen by a user is that seen by all the applications that
belong to him/her. This is similar to what happens in
Plan 9 [26], if we forget about the different interfaces
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Figure 1. A Plan B computing environment is built out of individual networked resources.
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Figure 2. Architecture of the system software at a single node.

for system resources that we use and forget also about
the environment changing underfeet (e.g., when a de-
vice is replaced with another, or when switching off
the network in a laptop).

The system software running at a Plan B machine
is shown in figure 2. The boxes represent kernel com-
ponents and the circles represent user processes. Most
of the kernel is that of a Plan 9 machine. In fact, the
implementation of Plan B (3rd edition) is a Plan 9 de-
scendant. Process and memory management is exactly
the same. Drivers for I/O devices that are not exported
verbatim to the network are kept within the kernel as
well, including the network protocol stacks.

An important driver is vols, or the volume device,
that keeps the kernel aware of the set of known vol-
umes. The driver exports a single file /dev/vols
that can be read to see what idea the kernel has of exist-
ing volumes. A write to the file can be used to ask the
kernel to add or delete volumes. This task is usually
performed by vold, a user process that implements a
volume discovery protocol similar to any other found
in the literature.

The central part of the kernel is the network file sys-
tem multiplexor. It implements the name spaces used
by the processes and permits using 9P to reach the
files and volumes bound to names in the space. File

names are hierarchical paths similar to those in Plan 9
or UNIX. Processes use well known file operations,
i.e. open, close, read, and write, to operate
on the files that conform their environment. To im-
plement these operations, the file system multiplexor
maps them to volume operations and 9P RPCs.

3. Importing volumes

The core of the system is the mechanism used to
import volumes into the name space of the application.
The elements involved are shown in figure 3.

� Each volume server exports its files and registers
with the discovery service to export the name,
constraints, and network address where it can be
reached.

� The volume daemon (or any other user program)
informs the kernel of volumes discovered and
probes them for availability. When a volume be-
comes unreachable, the volume daemon informs
the kernel as well.

� The volume driver keeps a table of known vol-
umes.



� The name space implementation translates path
names to files. Some of the files correspond to
files within volumes imported.

� The user programs rely on the mount system call
both to mount file systems and to import volumes.
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9P user
process
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file I/O

Figure 3. Elements involved in the volume im-
port mechanism.

The mount system call can be used in three ways.
The first one is similar to that used in Plan 9, and in-
stalls a new entry in the name space to map a name to
the root of the file tree serviced at the other end of a
given network connection. The second way to use the
call is analogous, but imports volumes instead. For ex-
ample, mount -V /devs/audio!Unemo!L136 /my/audio

adds a mount entry that binds the name /my/audio
to any volume named /devs/audio whose con-
straints satisfy !Unemo!L136 (the owner must be
nemo and the location for the device must be 136).

To satisfy this request, the kernel scans the volume
table kept in the volume device for any matching vol-
ume. A volume matches if the name is the same and
the constraints have at least the requested attributes
and values. The first volume found is automatically
mounted on behalf of the user. If, later, the kernel is
informed that the device is gone (or suffers an I/O er-
ror trying to reach a file in the volume), the volume
is unmounted and the volume table is searched again
looking for another volume that also satisfies the name
and constraints. Should such a volume be found, it is
mounted without any intervention of the user. When
no volume satisfies the mount request, an empty direc-
tory is mounted instead (while waiting for a matching
volume to be available).

The last way to use mount is to request a union of
volumes instead of importing a single one. For exam-
ple,

mount -U /devs/ui!Unemo /my/uis

requests all known volumes with name /devs/ui
(i.e., any user interface service), and a constraint
matching !Unemo (i.e. owned by nemo), to be im-
ported at the name /my/uis. After the call, the
mount point appears to be the union of all root direc-
tories for the volumes mounted. Note that the set of
volumes mounted may change due to volume avail-
ability. Initially, the kernel scans the volume table and
mounts all matching volumes. Later, volumes known
to be gone are unmounted automatically. Also, any
new volumes found in the future that match the request
will be added to the union without user intervention.

Processing for both mounting volumes and mount-
ing volume unions happens on demand, as processes
try to resolve names. A serial number attached to both
the volume table and the name space(s) data structure
is used to determine if the latter must be updated. Sys-
tem calls resolving names perform this check and any
further updating of the name space.

Each one of these modes of using mount may
be further qualified by using two other flags to re-
quest mounting before or after the previous contents
of the mount point. Indeed, mounting something
above/below creates a union. The new mount entry is
added before or after the previous ones depending on
the flags. This permits the user to override contents of
a given directory depending on the volume availability.
For example, these requests

mount -V /devs/audio!L136 /my/audio
mount -bV /devs/audio!L136!Unemo /my/audio

create a union of two volume mount entries. The
first request imports any audio device at location 136.
The second one imports, before the previous one,
any audio volume that besides the desired location is
owned by nemo. This idiom permits the user to spec-
ify that the preferred volume is that identified by the
second call. It also specifies that when the preferred
one is not available, any one identified by the first call
suffices as well. Note that this works because the a
mount that has no matching volumes works very much
like an empty directory.

Each process, like in Plan 9, provides a textual rep-
resentation of its name space that can be read from its



corresponding /proc/$pid/nsfile. This makes the
user aware of the concrete resources (i.e. volumes) be-
ing used, which is necessary to avoid paranoia regard-
ing volumes changing underfeet.

3.1. File descriptors and errors

When the kernel updates the name space for a pro-
cess, file descriptors kept open by the application are
untouched. File I/O is kept to going to the same file
even if the volume containing the file is being replaced
in the mount table with another one. If the old volume
is really gone, file I/O will fail and an error is returned
to the application. If what happens is that a preferred
volume has been discovered, file I/O will continue in
the old volume until the file descriptor is closed.

Two new system calls1, readf and writef, re-
ceive file names instead of file descriptors. It is up to
the applications to keep file descriptors open, or to use
two new calls to get/put all the file contents. For ex-
ample, audio players use writef to write (portions
of) MP3 files to audio devices. This is reasonable be-
cause when an audio device is gone it is sensible to
try with another one. Compilers, on the other hand,
use write, and keep the object file open. If the vol-
ume containing the compiled files becomes unreach-
able, the user can see that the compilation failed (and
why) and take an appropriate action.

4. System services services revisited

In this section we describe several of the system ser-
vices. Those not mentioned here are designed along
the same lines. For example, see [6] for a description
of our prototype for a network programming service.
Further information can be found at [1].

4.1. Application I/O and user I/O

The set of I/O devices used by applications is de-
termined by the volumes mounted, which may change
during the execution of the application. This provides
a mechanism to redirect I/O to appropriate devices
based on volume names and constraints.

1Not real system calls, because they are implemented within
the C library.

Pointing devices and keyboards have respective vol-
ume servers to be exported to the network. Mouse vol-
umes accept calls from the network from peer mouse
volumes. The resulting connections are used to for-
ward mouse events from one mouse volume to another.
The user may control mouse forwarding by writing to
the mousectl file supplied on each mouse volume.
A click in the upper left corner of the screen reclaims
the mouse and breaks any redirection being made. The
keyboard volume speaks a similar protocol, and can
forward runes to a peer server. In this case, a escape
key can be used to reclaim the keyboard.

As a result, in Plan B we can easily handle mul-
tiple screens either using a single keyboard/mouse or
using multiple ones. All of the text/pointing input de-
vices become now similar. They provide input to the
environment. To which screen, it depends on the pref-
erences of the user at any time.

4.2. Audio devices

Audio devices are managed by the in-kernel driver
and are exported through volumes that present a higher
level of abstraction. Currently we use MP3, speech
recognition and synthesis volumes. This makes it easy
to build new useful applications.

For example, the tell program accepts a user
name and a text message. It imports any of the speech
volumes sharing the location with the given user name,
and speaks the message there. The involved com-
mands are shown here.

# $user and $msg given as arguments.
# set $location to the user location
location=‘{cat /who/$user/where}
# import a speech vol. from there
mount -V /devs/voice!L$location /devs/voice
# deliver the message
echo ‘{who am i} to $user: $msg >/devs/voice/out

4.3. User interfaces

User interfaces are provided by UI volumes. The
preferred implementation for the service is a program
called omero [7], and we use this name to refer to
an UI volume. Omero handles a given screen and
provides graphical widgets on it. It takes its mouse
and keyboard from other volumes. This program sub-
sumes the functionality of a window server, a window
manager, and a graphics component toolkit. Figure 4



Figure 4. A typical Plan B screen, serviced by the omero UI volume.

shows a typical omero screen (multiple such screens
are usually available).

In omero, each widget is represented or exported by
a directory that appears to contain a ctl and a data
file. Rows and columns contain (sub)directories for
the widgets they contain. This leads to a file tree that
mimics the tree of widgets seen on the screen. To cre-
ate a widget, a program creates a directory. Removing
it, removes the widget from the screen. The name of
the directory determines the type of the widget. For
example, rows have names that start with row:, col-
umn names start with col:, and so on.

Omero permits the user to split and recombine por-
tions of the user interface using commands or the
mouse language to cut, copy, and paste. This mouse
language is composed by button chords and is simi-
lar to the one used by the Acme editor [24]. In fact,
omero does not make a distinction between widgets
that belong to different applications. Because the state
of each widget is self-describing, the files of a widget
can be copied to a different place (perhaps into a dif-
ferent UI volume) to move or replicate all or part of a
UI. Figure 4 shows replicated controls for the player
program (one replica is within the player UI, the other
is just above the Go board shown by oban). This is

further described in [7].
For most widgets, the data file contains a textual

representation of its contents. The control files con-
tain the attributes of the widget (and permit updating
them). Most editing is handled by omero itself, the
events seen by the application are of a high level of
abstraction. But for the graphic widgets, events mostly
consist on requests to look for a string or to execute a
string. This makes many applications unaware of the
mouse and permits a low bandwidth connection be-
tween omero and the applications using it.

4.4. Sensors and actuators

Our approach for handling these devices is exem-
plified by the X10 volume [8]. It provides files to han-
dle X10 movement sensors and power switches. The
Plan B X10 driver is a volume server that runs at a
machine with an attached X10/CM11 controller, and
exports the interface for other machines. Client ma-
chines can simply mount the X10 volume(s) to use it.
Each file in the volume (e.g., pwr:136light) repre-
sents an appliance and appears to contain the string on
if it is switched on, and the string off otherwise. The
file names used by the volume are configured when



X10 devices are installed, they correspond to appli-
ances controlled by the X10 devices. Their ownership
is set to correspond to the owner of the physical space
(who could be a user group).

4.5. Context handling

The framework for context handling is simply a set
of volumes that contain files to describe context for
users, places, and things. The overall organization is
described in [8]. There are three types of volumes
for maintaining context information: /who, /where,
and /what. Each one is imported into a union of
volumes that is bound to the file of the same name.
Permanent context is kept in actual file systems, and
volatile context uses to come from file systems kept in
RAM. Unlike in other approaches [9], the constraints
mechanism to import volumes is kept separate from
the context framework and works on any system re-
source. Also, defining new context can be as simple as
creating it with the editor.

A /who volume contains a single directory with
the user name, and several files inside that hold
separate pieces of context. Most notably, the file
/who/user/where reports the last known location
for user, and the file /who/user/status reports
the user status using a description similar to the one
used in the Instant Messenger. The who application
seen in figure 4 (i.e., the faces) shows the list of users
in the system, like the UNIX program of the same
name. The context volume permits the tool to show
users in the space, and not just in the system. Some of
the users do not even use Plan B, but we collect context
for them as well.

Context for places is kept in /where volumes.
This includes the list of users known to be there, kept
in a file named who, and a visit file that appears to
contain the string yes if the owner of the space is be-
ing visited. The context kept for things, in /what vol-
umes, includes things of interest about machines. For
example, their screen sizes, their location, their owner,
the roles assigned to them by their users, etc.

Using context is fairly simple in Plan B: We read
files. Listing /what gives an idea of the machines
present in the environment. Using a program like
grep permits a user to find who is busy and present
in the environment, or which users are located where.

We already saw how tell used /who to locate a user.
But we did not show that the script can actually refuse
to work if the target user is busy.

To extract and combine the context information var-
ious tools are used. Users start their preferred tools
either manually or from their profiles. Our fcom-
pose program [3] implements a very simple pattern
language to generate strings depending on the contents
of existing files. This suffices to generate context de-
rived from existing information in most simple cases.

More elaborate context is usually extracted by
means of heuristics that are implemented in tiny tools.
For example, movement in the visitor’s area of a room
(reported by X10 volumes) uses to mean that the room
has visits and the owner is busy (attending the vis-
its). A public view of part of the context for our
users, including unread physical mail, can be found
at http://lsub.org/who.

An important piece of context for machines is which
role do they have for their user. The roles are stored as
strings that, among other things, are used by the user’s
profile and user commands to determine which appli-
cations should start where. Roles are determined by
executing programs in Prolog and Gofer that use con-
text for machines to determine the role for each one.

As an example of how we use roles, we use to start
file viewers on the main screen (the largest one avail-
able). Editing uses to take place on the primary screen
(the largest one that is known to be in the desktop), and
other screens are considered auxiliary. The particular
roles are important only for the user that owns the de-
vices, which makes it easy to let different users assign
different sets of roles to machines.

4.6. Location

Location is kept both in context volumes for the in-
volved users and things, and also in constraints for vol-
umes. Composing and generating location information
is done in the same way used for other context. We
keep the information in files. There are several tools
to update location information and users choose which
ones they use or write their own ones. The point is not
which tool is used or how does it work. The impor-
tant point is the system organization, i.e., how using
volumes makes it easy to use and combine tools.

The X10 [8] service is being used to locate the own-



ers of several rooms that are not shared. These users
consider that when there is movement in their rooms,
it has to be them. A simple shell script updates loca-
tion by looking at files in the X10 volume. Other users
consider that their location is that of their laptops, and
a single script that pings for them updates their loca-
tion files (in the who directories). Another script ex-
ists for users wearing RFIDs/badges, because using the
mouse or the keyboard requires being physically close
to the machine, and the badge location service reports
the location for the user. This service uses hexamite
hardware [2], and uses a file system as its interface.

The machine boot process asks for the location if
there is no location configured. When a machine
changes its location, the user must update it either
manually or using a program started from the user’s
profile.

4.7. Events

A general purpose event delivery volume, portfs,
provides ports that can be used as event channels. Each
message written to a port file is delivered to all the
readers of the file. Besides notifying events of interest,
e.g. mail arrival, this service is used to request visu-
alization of URLs, reproduction of songs, edition of
files, and execution of programs. The scheme is simi-
lar to the Plan 9’s plumbing service [23], but has been
heavily modified for Plan B.

Most name spaces use to import to /mnt/plumb a
union of port volumes that share the location with the
machine where the involved process(es) runs. In this
way, /mnt/plumb contains all the files used to de-
liver events to any of the programs sharing the physical
space. It is customary to import the local port volume
before importing remote ones. This gives priority to
local ports over remote ones.

The API for the event system is provided by a sepa-
rate file system, netplumber, that provides a single
send file. This file system is not a volume, and runs
for each machine involved. Its purpose is to process
event messages written to it and then choose an appro-
priate port to deliver the message. The send file is
local, but the port used may come from any user de-
vice.

The configuration file used to start the net-
plumber may instruct the service to start the appro-

priate application when no-one is listening at a given
port. For example, the first time a song is requested
to be reproduced, a player is started because the song
port does not exist yet. The player creates the port
and listens for messages coming from it. Any further
request to play a song, from any terminal sharing the
location with the player, will be delivered to the song
port that is now being serviced by its program.

An interesting port is exec. It accepts messages
sent from user interfaces to request the execution of
programs. Most of the times, the port is serviced
by the local portfs, which means that the pro-
gram is started locally. However, when it is conve-
nient, we don’t service the port locally, which makes
/mnt/plumb/exec to be resolved to a remote port
instead. The result is that applications are started at a
remote machine. On very slow modem connections,
this is useful to start the user interface at the remote
machine, and execute all the commands on a machine
better connected to the rest of the system.

5. Common tools and environment automation

Our approach permits using general purpose tools to
operate on a wide variety of things. For example, tar
or zip can be used to store the state of X10 power
switches, or omero user interfaces, and restore them
later either at the same place or at a different one [7,
8]. This works because the interfaces for the involved
services have been designed very carefully to be self-
describing. For example, should omero have included
an events file for each widget, using tools like tar,
grep, and the like would not be feasible: They would
block reading the events file.

The simplicity for the interfaces permits doing
things like using the Windows Notepad to switch off
the lights of a different room, just by editing the X10
file for the corresponding power switch (writing the
text off into it).

This is important for environment automation. We
have found that the appropriate way to make the envi-
ronment intelligent is not to implement a big applica-
tion automating many things, but implementing many
small tools instead. Each tool inspects the environ-
ment, makes a choice, and updates the environment.
Some of the tools are one-shoot while others stay run-
ning to adjust the system every once in a while. To



construct such tools, it is very convenient to be able to
use general purpose programs.

We can write very simple scripts to do things like
lowering the volume level of a room if there are visits,
or pausing any player and switching off the lights if
no user is in the room.2 Being all resources files, all
the system is available for inspection and use, without
requiring any middleware.

6. Security and protection

Using files solves much of the needs for security
and protection. This differs from using middleware to
export new services, which usually leads to new secu-
rity issues.

Authentication is performed by the file servers in-
volved and the kernels of the client machines. We use
the Plan 9 authentication service [25]. This service
relies on a central authentication server to secure con-
nections between clients and servers. We are now de-
veloping a peer to peer security architecture, intended
to provide a decentralized authentication service cen-
tered around humans.

Regarding authorization and access control,
the ownership and access control lists pro-
vided by the file systems are the mechanism
we use. For example, to allow public reading
of a user’s status, he can run this command:

chmod o+r /who/nemo/status
Ownership is assigned by the users who start the
services. For services shared among users ownership
is assigned depending on who is using the resources.

7. Interoperability

For the most part, interoperability is granted be-
cause most machines today are capable of remotely
using files. Because 9P is not a widely used protocol,
some of the Plan B machines run gateways that export
Plan B files through CIFS or NFS. This adds Windows
and UNIX to the list of systems that can use our files.
Authentication with these systems is performed in the

2To pause any player, the script scans the user interface vol-
umes for Pause buttons, and issues a control request to the wid-
get to press the button. This is not a 100% accurate, because the
interface may be controlling players outside the room, but it works
most of the times.

same way used for sharing real (i.e., on disk) file sys-
tems. Space visitors may also use guest accounts.

Using services provided by other systems from Plan
B machines is feasible as well. For several services,
volume file servers are available to be run on UNIX
and export some of its devices to the Plan B network.
Most notably, mouse, keyboard, clipboard, and event
delivery use to be available. It is customary to service
the message port used to view web pages from a pro-
gram running on a tablet PC using Windows.

As of today, we have Linux systems that use ser-
vices from Plan B, and most of the department uses
the files for our context service exported by the web.
Besides, our speech synthesis and recognition volumes
rely both on Windows and Linux tools. The I/O device
redirection facility, the event service, and shared files
for user directories give the illusion of using a single
system.

8. Problems and drawbacks

System conventions must be respected for the sys-
tem to work. Anyone using existing services must ad-
here to their conventions. The one who introduces a
new service is the one who defines such conventions.
For example, the only place to obtain the location for
a user is the where file in the /who volume, and all
programs must respect this. If a new piece of context,
say user disabilities , is needed, a new convention will
be established to determine how to store it. But note
that this happens also for any other system.

Type checking while using resources is mostly re-
duced to the hierarchy of files used for each one. Con-
trol operations use to be codified as text, as is status
information. Therefore, there is no type check for con-
trol operations. Nevertheless, years of experience with
Plan 9 and Plan B have shown that this is not a problem
in practice. When a erroneous control operation is is-
sued to a control file, the file system uses to complaint
with a unknown request diagnostic, and the user
corrects the mistake.

9. Experience and evaluation

There are several demonstrations at
http://lsub.org. Our experience says that files
are powerful. Specifically when they are used for



devices and not for data on a disk. Tiny programs each
one performing a single job well, together with means
to combine them, can be more powerful than big
software frameworks. They are simple to implement,
easy to use, and need no further system services.

It does not make much sense to perform quantitative
experiments to compare the performance of Plan B to
other systems mentioned in the related work section,
because most differences are qualitative and are not
introduced for performance improvements. Neverthe-
less, we include some measures made to give a glance
of the performance of the overall system and compare
with Plan 9 running on the same platform (Compar-
ing with other systems would measure differences in
the application code more than changes in the system).
Measures are the mean of 5 experiments performed on
a 2.4Mhz Pentium Xeon PC with 512 Mbytes of main
memory and a 100Mbps ethernet connection.

The time to compile the kernel source is 31.28s
when using Plan B, and 30.36s when using Plan 9 on
the same hardware. The source was approximately
100.000 lines of C code, including the drivers. This
shows a 3% of slow down for Plan B with respect to
Plan 9. Taking into account that we used the same bi-
naries for the compilers, the difference is due to the
changes introduced in the system.
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Figure 5. Time in ms to stat all files in the root
of N unioned volumes.

The average system load is 15.2% on a Plan B sys-
tem and 1% on a Plan 9 system, where 100% means
that the CPU is always busy. This corresponds to a
system running the window system, an editor, a mail
reader, a load meter, and standard system processes,
but idle otherwise. The increased load is the price we
pay for having processes that monitor the environment,

and for changing the interfaces for services.
Figure 5 shows the time in milliseconds to list the

contents for a union of volumes (i.e. to read their
root directories). It can be seen how adding more vol-
umes to the union increases the time needed in a linear
way. This is what could be expected, because reading
a union of N volumes requires reading N root directo-
ries across the network. The time needed to search for
a given file depends on the position of the file’s vol-
ume in the union. All the volumes are searched in or-
der until one is found. Measurements show exactly the
same values for Plan 9 file mounts, which means that
the volume mechanism did not add a significant per-
formance penalty to the name resolution mechanism.

In the light of these experiments, we think that the
3% of slowdown seen while compiling the system ker-
nel is due to additional mounts performed by the Plan
B profile (with respect to the one used for Plan 9), and
also to a higher system load while idle (due to the extra
server processes used by Plan B). We consider that it
is worth paying the slowdown to buy the extra services
provided by the system.

10. Related work

Related work is too abundant to be appropriately de-
scribed here. We mention here only the most relevant
and focus just on the main differences.

Plan 9 [25] is a distributed system that is built by
exporting all resources as files and allowing those files
to be accessed through the network. Plan B borrows
many of the Plan 9 ideas and much of its code. There
are some important differences though. Plan 9 does
not adapt to changes in the environment. Many times,
changes require user intervention, and some times they
require rebooting the machine. Plan B uses dynamic
volumes to adapt to the environment. Furthermore, we
have redesigned important system services with porta-
bility and adaptation in mind. Besides, Plan 9 lacks a
mechanism similar to the constraints we use to select
which resources to use and lacks services like context
or location.

Some systems permit flexible access to network re-
sources, such as Odyssey [21] and Khazana [10]. Al-
though some of them consider disconnected operation
and adapt to changes in the connection status of the
client machine, it is not clear how they can adapt to



other changes in the environment, i.e., changes in the
availability of a certain device or service.

Unlike Plan 9 and Plan B, none of the systems men-
tioned tried to use file interfaces as the primary inter-
face for all the system services. None of the systems
mentioned below did either.

Systems like the the Semantic File system [14],
Gaia’s Context File System (CFS) [9] and the name
service in Globe [17] are able to select resources that
present a set of properties by means of attribute-based
queries. However, they use a very different approach
for exporting system services, usually through typed
interfaces or distributed objects. Using general pur-
pose tools is harder for them than it is for us. CFS is
closer in that it provides a file interface to perform con-
text based queries. We use files for all system services
instead.

Globe [20] and many other systems, like Speakeasy
[13], Ninja [15], Gaia [30, 29], IWS [18] and
One.World [16] rely heavily on middleware as the
means to implement and distribute their services. A
big difference between middleware based systems and
the approach shown in this paper is that we use well-
known and well-understood distributed file system
technology. An important consequence is that we in-
teroperate with any system able to exchange or to re-
motely access files. Unlike in middleware based ap-
proaches, ours permits a native Windows or Symbian
application to access the new services just by using the
file system interface. For example, Gaia had to intro-
duce a scripting tool [30, 29] and a programming lan-
guage [28] to simplify the use of their system, we can
simply use the OS shell. Ninja (whose architecture for
services is called SEDA) and One.world are designed
to provide services by interconnecting small special-
purpose devices through the internet. Although Plan B
considers that there might be many small devices ex-
porting services, it has been built as a general purpose
computing environment.

There is plenty of work about how to use XML and
related markup languages to exchange data and sup-
port interoperation. See for example [12, 31, 22]. The
main difference between our work and them is that we
use text based interfaces from the beginning. Our hier-
archies are provided by the file system, not by the lan-
guage tags. Furthermore, they usually focus on how to
adapt one kind of data to another, and we are focus-

ing instead on how to export and use the new services
required for a pervasive computing environment.

WebOS [32] is close to our approach in that they
tried to use a file system, the Web, to provide all
necessary system services. However, their system is
designed for large scale and not for a departmental
service. It is also unclear what is their implemen-
tation status and how they would allow to program
distributed applications. We could have used a web
based interface. However, that does not solve prob-
lems like authentication, access control, and synchro-
nization. Using a file system interface solves all of
them.

11. Conclusions and future work

In this paper we have described an approach for
building systems to support ubiquitous computing
without using any middleware. We have described the
system we built, and its most important mechanisms,
as well as the design of important system services and
several usage examples.

Plan B is the first system that we used that made us
think that all the machines and the environment are in-
deed a single computer. New machines brought online
are quickly seen as integrated in the environment, be-
cause they start using the services already started in the
space (e.g. voice notifications, sensors and actuators,
etc).

There is much yet to be done. Servers to export
drivers from other systems into Plan B will be devel-
oped as they are needed. The system should undergo
fine tuning, to determine the precise reasons for the in-
crease in the system load and reduce it. Peer-to-peer
security is ongoing work.
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