
WS-Aggregation: Distributed Aggregation of Web Services
Data

Waldemar Hummer, Philipp Leitner, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8, 1040 Vienna, Austria
{lastname}@infosys.tuwien.ac.at

ABSTRACT
Recent trends of Web-based data processing (e.g., service
mashups, Data-as-a-Service) call for techniques to collect
and process heterogeneous data from distributed sources in
a uniform way. In this paper we present WS-Aggregation, a
general purpose framework for aggregation of data exposed
as Web services. WS-Aggregation provides clients with a
single-site interface to execute multi-site queries. The frame-
work autonomously collects and processes the requested data
using a set of cooperative aggregator nodes. The query dis-
tribution is configurable using strategies, e.g., QoS-based or
location-based. We introduce WAQL as a specialized query
language for Web service data aggregation that is based on
XQuery. 3-way querying is a possibility to optimize requests
by reducing the amount of data transferred between aggre-
gator nodes. A Web-based graphical user interface facilitates
composing aggregation requests. Our performance evalua-
tion, which comprises aggregation scenarios with different
settings, shows the good scalability of WS-Aggregation.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based Ser-
vices; H.3.3 [Information Search and Retrieval]: Re-
trieval models

General Terms
Distributed Data Aggregation, Web Services Data

Keywords
Web Services, Aggregation, Distribution, Query Language

1. INTRODUCTION
During the last years, the Web has emerged as a vast col-

lection of resources that provide information or data both
in the form of (static) documents and in the form of ser-
vices [19, 22, 5]. Companies and individuals publish con-
tent on websites, and major search engines store and index

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

the contained information. Enterprises have adopted the
Service Oriented Architecture (SOA) [14] and use Web ser-
vices as the building block for loosely coupled distributed
applications. Ongoing trends in Web-based data processing
focus on combining data from different sources to provide
a new functionality and to generate added value. This cre-
ates the demand for techniques to collect and transform data
from related resources in preparation for a certain business
application. Collection and transformation of data are col-
lectively referred to as data aggregation [20]. In order to
achieve scalability in both the number of data sources and
the size of the provided documents, it is advisable to divide
aggregation problems into a set of sub-tasks, which can be
performed in parallel by individual nodes.

Web data aggregation has previously been tackled in var-
ious ways. In its simplest form, data is collected from a
set of predefined, homogeneous, fixed-location sources and
displayed to the user. For instance, an RSS reader client
application is configured with a set of URLs, from which
it retrieves news feeds (in a well-defined format) in regular
intervals and checks for new and updated content. More so-
phisticated applications, in which users are able to query and
filter the content they are interested in, include distributed
RDF retrieval systems [1, 16], products and services index-
ing systems, or “Data-as-a-Service” [22] providers, which of-
fer financial, demographic and other business relevant data,
usually priced by the amount of queries or analytics run.

Aggregation of Web services data is sometimes achieved
with languages from the Web service composition [7] do-
main (e.g., WS-BPEL). However, service composition usu-
ally targets the process aspect of composite applications and
falls short of providing explicit support for composite data.
As a concept that evolved from service composition, service
mashups [6] are applications that scrape together data from
one or more existing (external) sources in order to create a
new functionality. Contradicting the SOA paradigm, service
mashups are often tightly coupled: developers who manually
combine Web APIs or use a mashup platform such as WSO2
Mashup Server1 mostly hard-code the endpoints of partic-
ipating data resources. This leads to the problem that the
mashup definition may need to be frequently updated for
dynamic scenarios with changing data providers.

We argue that there is still a lack of generic frameworks
that support loosely coupled, distributed aggregation of het-
erogeneous data published in the Web. In this paper we
present the WS-Aggregation framework as a generic solution
to this problem. WS-Aggregation employs a set of intercon-

1http://wso2.org/projects/mashup

nected aggregator nodes, which cooperate with each other
to execute client requests. Following the SOA paradigm,
WS-Aggregation decouples the aggregation platform from
the target data services. The endpoint information of the
system participants is stored in the VRESCo service registry
[12] and service selection and binding takes place dynami-
cally at runtime.

The remainder of this paper is structured as follows. We
define the addressed problem based on three illustrative sce-
narios in Section 2. Section 3 presents a formalization of
our approach to aggregating Web services data. We dis-
cuss conceptual and architectural aspects in Section 4, and
implementation details in Section 5. Section 6 covers a per-
formance evaluation of data aggregation in different settings.
Section 7 discusses existing related work, and Section 8 con-
cludes the paper with an outlook for future work.

2. MOTIVATING SCENARIOS
The concepts of this paper will be discussed in the context

of three illustrative scenarios, which involve collecting and
processing of data from different sources:

1. A portfolio analysis system calculates the combined
value and risk of a set of stocks or other financial in-
struments. To that end, historical prices are queried
from data providers such as xignite2 and Yahoo3.

2. Hotels that participate in a hotel booking system pro-
vide a RESTful Web service [17] to check the avail-
ability of rooms. A booking platform enables users to
search for free rooms among all hotels and returns the
20 best results (e.g., ordered by price or user rating).

3. In an online voting system (e.g., for an international
song contest), users submit their vote to a regional vot-
ing Web service. The votes are aggregated to regional
and national results and the overall result constitutes
the majority decision in favor of a certain participant.

With the goal of creating a generic solution that fits all
three scenarios, we identify and address the following main
challenges.

Multi-site query vs single-site view: The client should
be provided with a single query interface, whereas the exe-
cution comprises several aggregation steps (as in scenario 3)
and involves numerous service endpoints. Aggregation re-
quests specify which data should be queried from which
source(s), and the aggregation platform takes care of the
query distribution.

Heterogeneity: The query process involves various provi-
ders, which publish data sources with diverse data formats
and protocols; scenarios 1 and 3 partly use SOAP Web ser-
vices and partly simple Web documents, and the booking
system in scenario 2 uses RESTful services.

Variable input data: We assume that the services of
scenarios 2 and 3 each receive the same input, whereas dif-
ferent requests (with different stock ticker symbols) have to
be issued in scenario 1 in order to retrieve the prices of all
stocks in the portfolio.

Self-Adaptation: Particularly in scenario 2, new partic-
ipants (hotels) may dynamically join the system and existing
services may be removed. The aggregation platform should
be flexible and able to adapt to these environment changes.

2http://xignite.com
3http://finance.yahoo.com

Performance: All three scenarios demand for scalability
with respect to 1) the number of involved target services, 2)
the size of the transferred documents and 3) the number of
parallel aggregation requests.

3. AGGREGATION MODEL
In the following we present a formalization of our approach

of Web services data aggregation, which serves as the basis
for the discussion of WS-Aggregation. We make use of the
VRESCo service model [12], which uses the notion of Ser-
vices, Operations and Features. A feature is an abstract
description of a capability (e.g., GetStockPrice with inputs
symbol, startDate, endDate), which is implemented by the
operations of one or more concrete Web services (e.g., the
finance services of xignite and Yahoo). In our formaliza-
tion, Fall denotes the set of available features, Sall is the
set of services entered into the VRESCo service registry,
P(Oall) is the power set of available service operations, and
the function o : Fall → P(Oall), f 7→ {o(f,1), ..., o(f,n)} maps
features to implementing service operations. The function
s : Oall → Sall returns the service to which a specific oper-
ation belongs.

The problem addressed in this paper is to aggregate (i.e.,
request, collect and process) XML-formatted data from a set
of service operations Oα = {o(f1,1), .., o(f1,n1), . . . , o(fm,1),

.., o(fm,nm)}, which implement features Fα = {f1, . . . , fm},
over a single-site query interface. We define an execution of
such an aggregation as a function α : (InputsMap, WAQL,

Topology) → XML, (i, q, t) 7→ r that receives a certain in-
put, queries data from all relevant services and produces a
resulting XML document r. The inputs which are used for
issuing the service requests are defined via the input func-
tion i : Fα → P(Input), f 7→ {i(f,1), ..., i(f,n)}. The inputs
may be encoded either in XML (for SOAP and RESTful
Web services) or using URL encoding (for HTTP requests
to websites), and contain an arbitrary number of HTTP
headers. The variable q denotes a WAQL (Web service Ag-
gregation Query Language) query expression. WAQL is a
query language based on XQuery [21], which is used to select
and transform elements from the individual service results
to construct the final aggregation result. The features of
WAQL will be discussed in Section 4.1. Finally, the param-
eter t identifies the topology context information required
for distributed computation of the result. More details on
aggregation topologies is given in Section 4.2.

Figure 1: Aggregation Request Model

Figure 1 illustrates a simplified version of the VRESCo
service model and the data aggregation model (separated
by a dashed line). Note that VRESCo models service ver-
sioning using a Revision element, which we do not consider
in our formalization. One aspect that requires closer con-

sideration is the way in which clients provide the input for
an aggregation α, which requests data from the operations
Oα, which implement the features Fα = {f1, . . . , fm}. Let
us consider some input ix ∈ i(f1) specified by the function i

for the feature f1. We distinguish the following input types:

• Fixed versus Generated : Fixed input is provided as
either XML markup or a URL encoded query string.
On the other hand, input messages in WAQL can also
be generated, which is useful if the sub-requests only
slightly differ from one another (e.g., requests for dif-
ferent stock symbols in the portfolio example). In this
case, the inputs are specified using a WAQL expres-
sion, which, upon execution (χ), generates the actual
input messages χ(ix) = {i1x, ..., ikx}.

• ToAll versus ToSubset / ToOne: This distinction con-
cerns the input distribution strategy. If the input ix is
tagged ToSubset=num, it is sent to a subset of num

(randomly selected) service operations Oix ⊆ o(f1),
|Oix | = num, which implement the feature f1. ToOne
is a special case of ToSubset, where num = 1. Con-
versely, if the input ix is of type ToAll, a request with
this input is sent to all service operations which imple-
ment the feature f1, i.e., Oix = o(f1). Use cases for
ToAll and ToOne are obvious, and ToSubset can be
used in scenarios where data should be queried redun-
dantly from multiple sources to enforce data integrity.

All combinations of the above variants are possible. For in-
stance, the portfolio scenario generates requests for a subset
of service operations implementing a certain feature (gener-
ated, ToSubset), and the voting scenario uses a fixed input to
retrieve votes from all voting services (fixed, ToAll). Section
4.1 provides more details and presents a sample generated
input. The purpose of ToAll and ToSubset is further dis-
cussed in Section 4.2.

4. WS-AGGREGATION FRAMEWORK
As a generic solution for the scenarios presented in Sec-

tion 1, WS-Aggregation constitutes a data aggregation plat-
form that allows clients to run multi-site queries of heteroge-
neous XML data sources against a single-site interface. The
coarse-grained architecture is depicted in Figure 2.

Figure 2: WS-Aggregation Architecture

The Gateway (G) is a Web service that acts as the sin-
gle endpoint the clients communicate with. A number of
Aggregator (A) nodes serve incoming aggregation requests.
The aggregators are depicted in a cloud because they are
invisible to the clients and may be added to and removed
from the system transparently. Besides basic aggregation,
WS-Aggregation focuses on distributed construction of the
final result. As illustrated in Figure 2, distributed aggrega-
tion makes use of a tree topology among aggregator nodes.

The root node in the topology is denoted master aggregator,
AM . Each aggregator retrieves data from one or more tar-
get services and passes the collected, intermediate results on
to its parent node. One reason for distributed aggregation
is to reduce the load imposed on a single aggregator node;
however, WS-Aggregation also considers other distribution
strategies (e.g., location-based), which are further discussed
in Section 4.2.

WS-Aggregation follows the SOA paradigm and focuses
on the use of a service registry, which fosters a decoupled
and flexible architecture. The gateway, aggregator and tar-
get services are published in the VRESCo service registry.
Clients use the registry to discover the gateway instance,
and the gateway finds all active aggregator nodes contained
therein. New aggregator nodes can be seamlessly integrated
and existing nodes can be taken off the system. The ag-
gregators themselves determine the endpoints of the data
services, for which purpose the registry allows to query ser-
vices by feature. Faulty or nonresponsive aggregators are
automatically unregistered when detected by the gateway
or a partner aggregator. Furthermore, the VRESCo registry
stores metadata such as QoS or physical location of services,
which serves as the decision basis for query distribution (see
Section 4.2).

Figure 3: Aggregation in Portfolio Scenario

An aggregation example taken from the portfolio scenario
is depicted in Figure 3. The client provides two fixed inputs
(XML data), which target the xignite market data Web ser-
vice, and one input in the form of a WAQL expression, which
is targeted at the Yahoo Finance feature. The WAQL input
defines the rules to generate the actual inputs that are sent
to the target services. The results of the service invocations
is a mix of SOAP messages and HTML pages, which are
combined into a single XML document and sent back to the
client.

4.1 Requesting and Querying Data with WAQL
In the following we present WAQL, the Web service Ag-

gregation Query Language used to formulate aggregation re-
quests in WS-Aggregation. WAQL is used both for 1) defin-
ing templates and rules for constructing generated request
inputs as defined in Section 3, and 2) expressing how the re-
sponse documents should be combined and transformed into
the final result. WAQL is based on the XML query language

XQuery, which provides powerful functions to arbitrarily se-
lect, transform and generate nodes in XML documents. Ow-
ing to its power and universality, XQuery expressions tend
to grow big and complex even in small scenarios. Hence,
WAQL extends XQuery by a set of convenience language
constructs which we deem important in the context of Web
service data aggregation.

4.1.1 Templates for Generated Inputs
WAQL simplifies the specification of generated inputs that

have a similar structure. The WAQL query in Figure 4 is
used to generate requests for the xignite Web service (port-
folio sample). The user-specified input contains three lists
(starting with a dollar sign, ’$’), which represent alternative
values that should appear in the generated inputs.

Figure 4: WAQL Input Preprocessing

The optional numeric identifier after the dollar sign links
lists that are correlated, which means that the lists’ items at
the same index appear together in the generated inputs. In
the example, BMW.DE is the ticker Symbol of BMW whereas
0001288776 is the CIK code (Central Index Key) of Google,
Inc. For these values to appear in pairs, the two lists are
linked to each other using the identifier ’1’. Using this
very light-weight syntax, value lists can be unambiguously
parsed and detected inside an XML or XQuery expression.
During query preprocessing, all such lists are firstly identi-
fied and grouped. Then an XQuery FLWOR (acronym for
for,let,where,order by,return) expression is generated, which,
upon execution, creates all possible combinations (see Sec-
tion 5 for implementation details). Besides simple values
such as strings or numbers, the lists may also contain com-
plex XML elements.

4.1.2 Expressing Data Dependencies
Each aggregation query is divided into a number of sub-

requests that target different data services. WAQL provides
the possibility to express data dependencies between sub-
requests. Each sub-request has a numeric identifier that
is used as a reference. For instance, an occurrence of the
string $3{/foo} (note the curly brackets) in the input of a
sub-request 1 signifies that the element matching the XPath
/foo needs to be extracted from the result of sub-request 3

and inserted into the input of 1. WS-Aggregation constructs
a dependency graph and ensures 1) that dependent requests
are executed in the right order and 2) that independent re-
quests are executed in parallel. If the identifier is left out
(e.g., ${/foo}) the element is nondeterministically extracted
from the first matching result of any sub-request. The frame-
work is able to identify circular and unresolvable dependen-
cies. The former is checked by analyzing the query’s depen-
dency graph up front, and the latter occurs if no element
can be selected to satisfy a depencency during execution.

4.1.3 Integration of Non-XML Data Sources
WAQL offers a number of data conversion functions to

specify the result output format and to integrate non-XML
data formats into WS-Aggregation. E.g., comma-separated
values (CSV) files are a common means to encode spread-
sheet data. The csvToXML function takes as argument a
CSV-encoded string and transforms it to an XML “table”
structure (i.e., <row> elements containing <column> subele-
ments with text content). Such structures are rendered as
HTML tables using toHTMLTable. Conversely, xmlToCSV

converts table-structured XML to CSV. JSON (JavaScript
Object Notation) is a light-weight data-interchange format
natively supported by JavaScript, often used to retrieve data
in dynamic Web 2.0 applications. A mapping from JSON to
XML is achieved using the function jsonToXML. Moreover,
a huge number of non-XML-compliant HTML pages exist
across the Web, which can be converted to XML via html-

ToXML to be XQuery-processable. The more exotic function
bibtexToXML allows conversion of BibTeX files to XML.

4.2 Aggregator Topologies
In this Section we discuss the aggregator topologies used

in WS-Aggregation. Apart from the general load distri-
bution aspect, distributed aggregation is also useful from
other viewpoints. Examples range from aggregators respon-
sible for data nodes in different regions (see voting scenario),
to specialized aggregators (e.g., high-performance server for
large data conversions or to enforce WS-Security), to sce-
narios with access restrictions or trust issues.

Figure 5: Aggregator Network Topologies

Each aggregation request α is associated with a topology
(t) that determines how the query execution is distributed
among the aggregator nodes Aall = {A1, ..., An}. The topol-
ogy specifies 1) the subset of aggregator nodes At ⊆ Aall

that are responsible for performing an aggregation α, 2)
which partner (child) nodes an aggregator can rely on, and
3) which data service nodes each aggregator is responsi-
ble to collect data from. Figure 5 depicts an exemplary
distributed aggregation scenario with two topologies. Topol-
ogy 1 involves three aggregators and retrieves data from
three (s1, s2, s3) of the four (s1, s2, s3, s4) services provid-
ing feature F1 (ToSubset=3), whereas topology 2 includes
all services implementing features F1, F2 and F3 (ToAll).
The master aggregator of each topology is denoted AM . We
distinguish three types of topologies (basic, predefined, ad-
hoc), which are discussed in the following three paragraphs.

Basic: Each aggregation request is handled by exactly
one aggregator. The single responsible aggregator is selected
by the gateway at runtime according to a load distribution
strategy. The strategies include random choice, round-robin

delegation and metadata based selection (taking into con-
sideration the current load of the aggregators in terms of
request queue length, CPU usage and memory consump-
tion). This approach has the smallest overhead since no
inter-aggregator communication takes place, but obviously
it lacks advantages such as location- or performance-based
aggregation distribution.

Predefined: Prior to issuing a data aggregation query,
clients request the construction of a new topology with cer-
tain characteristics, including the required service features
Ft and the size and structure of the topology (e.g., 7 aggrega-
tors in a tree of height 2 and branching factor 2). The Gate-
way then selects the subset of aggregators At, retrieves the
endpoints of the target services St =

S

∀f∈Ft,of∈o(f) s(of)

and computes a suitable topology model, which maps ag-
gregators to partner nodes (At → At) and aggregators to
target services (At → St). The gateway passes this infor-
mation to the affected aggregator nodes along with a unique
topology identifier (ID). Finally, the client uses the topology
ID in subsequent requests. Advantages of predefined topolo-
gies are the fast lookup of responsible aggregators and the
reusability aspect.

Ad-Hoc: As opposed to predefined topologies, ad-hoc
topologies are dynamically created when handling a request.
The gateway selects a master aggregator just as with basic
aggregation. However, in this case the master may delegate
(parts of) the request to partner aggregators. We distinguish
different ad-hoc distribution strategies. Self-centric strate-
gies consider the current state of the aggregator and dele-
gate requests if, for instance, the own request queue grows
too large or if the memory or CPU usage exceed a certain
threshold. Request-centric approaches analyze the request
itself and determine whether it contains inputs or WAQL
queries that should be processed by certain nodes (e.g., a
powerful aggregator machine should convert large CSVs to
XML). Finally, A target-centric strategy analyzes the num-
ber and characteristics (e.g., location) of the target data ser-
vice nodes. For instance, the system may be configured with
a maximum number of target services that each aggregator
invokes, before the request is split up and delegated.

Implementation details concerning topology construction
are discussed in Section 5. Basically, each aggregator is con-
figured with a list of distribution strategies, which split ag-
gregation requests into atomic parts. For instance, consider
an aggregator with three distribution strategies (S1,S2,S3).
S1 (predefined topology strategy) assigns request parts to
the predefined targets in case the client request contains a
topology ID; if no ID is present, the request is passed on
to S2 (location-based), which filters parts that need to be
routed via a specific aggregator (see voting scenario); the re-
maining parts are handed to S3 (QoS-based) and are either
dealt with immediately or delegated to partner aggregators.

4.3 3-way Result Construction
In many data aggregation scenarios the client is interested

only in a small part of the data. For instance, the portfolio
system calculates the average price of a stock, whose histor-
ical prices are contained in HTML tables on different pages.
First collecting all documents and then applying the avg

function at AM is costly, since large amounts of data need
to be transmitted between the aggregator nodes (indicated
with thick lines in Figure 6). Therefore, WS-Aggregation
offers the possibility to apply 3 queries successively.

• The Preparation Query is applied instantly to every
document an aggregator receives from a target service.

• The Intermediate Query is applied to every partial re-
sult computed by an aggregator, prior to sending the
data to the parent aggregator.

• The Final Query is applied before the master aggre-
gator returns the collected data to the gateway.

Figure 6: 3-way Result Construction

As can be seen from the example, the 3-way querying has
two key advantages. Firstly, building partial aggregation re-
sults can take some load off the inter-aggregator network.
Secondly, the size of the data, to which the XQuery is ap-
plied, gets reduced, which decreases the memory footprint of
the aggregator nodes, particularly the master aggregator. In
Section 6 we compare the performance of both approaches.

5. IMPLEMENTATION
In this section we discuss the prototype implementation

of WS-Aggregation. The system components (client, gate-
way, aggregator) are implemented in Java, the interfaces of
gateway and aggregators are accessible as SOAP Web ser-
vices. The implementation of the gateway comprises mainly
load-balancing, i.e., assigning requests to master aggregator
nodes according to a configured strategy. The core com-
ponent is the aggregator node, whose internal structure is
depicted in Figure 7.

Figure 7: Structure of Aggregator Nodes

The aggregator receives requests via the Aggregation In-
terface and delegates them to the Request Distribution En-
gine. A Strategy Chain allows the aggregator node to be
configured with pluggable distribution strategy components
(S1,S2,S3 in Figure 7), which inspect the request and split it
into atomic parts. Atomic requests are either passed to the
Target Service Invoker, or delegated to partner aggregators

via the Multicast Engine. The Multicast Engine itself makes
use of the Aggregation Interface of partner aggregators.

The Preprocessor of the WAQL Engine detects and pro-
cesses WAQL-specific constructs in aggregation queries. To
that end, first the data dependencies in a request need to be
resolved and replaced with actual values obtained during the
query execution. Note that a complete discussion of WAQL
data dependencies is out of the scope of this paper. As
discussed in Section 4.1.1, generated inputs are then trans-
formed into valid XQuery expressions, which get executed
by the XQuery Engine (third-party engine from Saxon4). To
facilitate the actual parsing of WAQL requests, we defined
the syntax rules using EBNF (Extended Backus Naur Form)
and make use of JavaCC 5, a parser generator for Java.

The Registry Proxy queries and caches service metadata
from the VRESCo service registry. The Performance Moni-
tor continuously measures the system performance (memo-
ry/CPU usage, request queue length, ...). The total memory
used by the Java Virtual Machine (JVM) is determined via
java.lang.Runtime. Our implementation further makes use
of the java.lang.management API, which allows CPU usage
inspection on a per-thread basis. The Performance Monitor
also retrieves the performance data of all other deployed ag-
gregators via their Metadata Interface. This information is
used for ad-hoc load balancing and query distribution. Via
the Management Interface authorized clients are able to ac-
cess the Configurator, which allows online modification of
the aggregator’s behavior (e.g., strategy chain, maximum
queue length, resource limits, etc). A JavaScript-based Web
2.0 user interface (UI) serves as a convenient way to con-
struct, execute and save aggregation queries. The Web UI
uses the XMLHttpRequest object to exchange SOAP mes-
sages with the gateway, and displays the aggregation result
as XML source code or rendered HTML.

6. EVALUATION
To measure the performance of WS-Aggregation we have

set up a comprehensive test environment, which executes
the Web service data aggregation scenarios discussed in Sec-
tion 2. The main aspects of our evaluation are 1) query
distribution, 2) parallel requests and 3) query optimization.
The scenarios are implemented in a configurable manner to
support testing in different settings (e.g., used aggregation
strategy) and sizes (e.g., number of used aggregators, target
services, parallel requests, . . .). The key points describing
the three scenarios are summarized below.

portfolio: The client provides a list of stock symbols to
request the historical prices from finance Web services. The
result contains the sum, count and average of each stock’s
prices. The test is implemented with both a non-optimized
and an optimized 3-way query (see Section 4.3).

hotel booking : This test receives available rooms from ho-
tel booking services. Each service returns 100 entries, results
get sorted by price, an intermediate query is used to trans-
mit only the (locally) best 20 rooms between aggregators.

voting : The system receives voting points (1-10) for 10
candidates from voting services. We simulate 1) regional
aggregators that collect votes from their region, 2) national
aggregators which process the results from a nation’s regions
and 3) a master aggregator which combines all the data.

4http://saxon.sourceforge.net/
5https://javacc.dev.java.net/

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800 900 1000

D
ur

at
io

n
(m

s)

Number of Data Services

1 Aggregator
3 Aggregators
4 Aggregators
7 Aggregators

13 Aggregators

(a) Aggregation Time

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

1 2 3 4 5 6 7 8 9 10111213

Ja
va

 H
ea

p
S

pa
ce

 (
M

B
)

Aggregator ID

13 Aggregators
7 Aggregators
4 Aggregators
3 Aggregators
1 Aggregator

(b) Memory Consumption

Figure 8: Performance of Voting Scenario

We launched 20 Amazon EC2 6 cloud instances (type ’S’)
and deployed 20 aggregator nodes (one per instance) and
1000 data services (50 per instance), which provide the func-
tionalities of the three test scenarios. For the portfolio sce-
nario, we simulated the behavior of the Yahoo Finance and
xignite services in the test environment. All tests have been
run 20 times, and the numbers in the following represent
mean (execution time) and maximum (memory) values.

First we evaluate the performance improvement achieved
by distributing the aggregation query in the voting scenario.
Figures 8(a) and 8(b) show the aggregation duration and
the maximum level of allocated Java heap space, respec-
tively. The number of services stored in the service registry
has been gradually increased (100,200,400,700,1000). The
test uses different predefined tree topologies t with branch-
ing factor b ∈ {2, 3} and height h ∈ {0, 1, 2}, resulting in a
total number of aggregators |At| ∈ {1, 3, 4, 7, 13}. The re-
sults indicate that the execution time decreases with increas-
ing number of involved aggregators, particularly in scenarios
where data from many services is requested. Furthermore,
the memory usage per aggregator is cut from more than
400MB (1 aggregator) to roughly 100MB (13 aggregators).

In Figure 9, basic (a), predefined (b), and ad-hoc (c)
topologies show different performance characteristics when
it comes to parallel requests. The best overall results are in
(a), where each request is handled by a single aggregator. In
(b) we used a predefined topology of height 1 and branching
factor 3. The results indicate that predefined topologies per-
form worse than (a) but are more stable and predictable than
(c). With ad-hoc topologies in (c), each aggregator handles
a maximum of 50 data service requests per aggregation re-
quest and delegates the remaining parts to partners, based
on their current load (memory usage, queue length) and a
random factor. Ad-hoc topologies uniformly distribute the
system load, but entail an overhead for inspecting requests

6http://aws.amazon.com/ec2/

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

re
qu

es
ts

/m
in

)

Number of Parallel Requests

10 Services
50 Services

100 Services
200 Services

(a) Basic

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80 90 100

Number of Parallel Requests

10 Services
50 Services

100 Services
200 Services

(b) Predefined

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 10 20 30 40 50 60 70 80 90 100

Number of Parallel Requests

10 Services
50 Services

100 Services
200 Services

(c) Ad-Hoc

Figure 9: Performance of Booking Scenario – Different Topology Types

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 5 10 15 20

D
ur

at
io

n
(m

s)

Number of Deployed Aggregators

25 Parallel Requests
50 Parallel Requests

100 Parallel Requests

Figure 10: Booking – Nr. of Aggregators

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 10 20 30 40 50 60

D
ur

at
io

n
(m

s)

Number of Data Services

10 Results/Service
100 Results/Service
200 Results/Service

(a) Unoptimized

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 10 20 30 40 50 60

D
ur

at
io

n
(m

s)

Number of Data Services

10 Results/Service
100 Results/Service
200 Results/Service

(b) Optimized

Figure 11: Portfolio Scenario – Unoptimized versus Optimized

and keeping aggregator performance lists up to date.
Figure 10 shows a boxplot of the runtime of the booking

scenario, using 50 services and basic topologies. As the num-
ber of deployed aggregators increases (1,5,10,15,20), max-
imum and median decrease, especially when switching to
5 and to 10 aggregators. The minimum value stays near-
constant since the requests that make it through first are
executed fast and further requests are put to a queue.

Figure 11 compares the portfolio scenario execution time
with a topology of 13 aggregators and using (a) the un-
optimized and (b) the optimized query. The difference is
astoundingly high (up to 16 seconds versus 4 seconds for
60 data services, which each produce 200 stock price re-
sults) and indicates that XQuery-processing and transmit-
ting large documents between aggregators consume a large
portion of the total aggregation time.

To sum up the individual results of the experimentation,
WS-Aggregation provides good scalability with respect to
both the size of aggregation requests and the number of par-
allel executions. Distribution of the query execution to sev-
eral aggregators yields a performance gain, although the dis-
tribution strategies show different characteristics and should
be tailored to the aggregation problem. The capability of
3-way querying helps the user to drastically reduce the exe-
cution time and the load for the inter-aggregator network.

7. RELATED WORK
A number of related approaches to Web service aggrega-

tion [10] and Web data integration [11] have been proposed.
For instance, [9] presents an algorithm to aggregate data
from different Web services. Whereas their approach at-
tempts to perform schema matching among different service
results, WS-Aggregation is a generic framework in which
user-defined XQuery expressions are used to create an in-

tegrated view of different Web data sources. The authors
of [3] present DeXIN, an XQuery-based framework for in-
tegration of Web data sources. Despite some obvious sim-
ilarities to our approach, DeXIN targets the different goal
of integrating SPARQL into XQuery in order to query RDF
and OWL documents. WS-Aggregation, on the other hand,
uses only structural and no semantic queries and focuses
on distributed, cooperative execution of queries. In [15],
the idea of ontology mediated Web service aggregation hubs
(OMWSAH) is presented. An OMWSAH retrieves data
from target services as well as from other OMWSAHs, sim-
ilar to aggregator nodes in WS-Aggregation. In contrast
to our solution of a single interface for generic queries, an
OMWSAH dynamically alters its WSDL interface to cover
all operations provided by the target data services. Lixto [8]
is a platform for scalable Web data extraction processes.
The logic-based language Elog is the basis for a visual spec-
ification framework to express data extraction processes.
Lixto differs from our approach in that it focuses mainly
on HTML documents, analyzes the semantics of documents
(e.g., providing functions to determine whether a text node
contains a date or currency) and provides no control over
distributed execution of data extraction processes.

Besides approaches in academia, a number of commer-
cial data aggregation platforms exist. The ecrion Data Ag-
gregation Server7 allows an integrated view of an organiza-
tion’s heterogeneous data sources. Ecrion is more focused
on the visual mapping of data sources and lacks query dis-
tribution and scalability. Informatica8 employs a multi-step
data aggregation platform including validation, normaliza-
tion, mapping and other features. Also Stylus Studio sup-

7http://www.ecrion.com/Products/DAS/Overview.aspx
8http://www.informatica.com/solutions/data aggregation

ports XQuery based aggregation of Web data [18], based
on a graphical mapper for XQuery expressions. All men-
tioned platforms support Web services (SOAP and REST),
and Informatica and ecrion integrate a palette of non-XML
documents. None of the platforms support strategy-based
query distribution, generated inputs, and SOA-based loose
coupling as provided by WS-Aggregation.

Different approaches exist in the area of Web mashups,
which aim at creating “new Web applications by combin-
ing existing Web resources utilizing data and Web APIs” [4].
The authors of [6] perform a thorough analysis of differ-
ent mashup platforms such as Microsoft Popfly9 and Ya-
hoo Pipes10. The Enterprise Mashup Markup Language11

(EMML) is an effort to unify mashup in a single domain-
specific language (DSL). In contrast to WS-Aggregation,
which solely relies on XQuery for specifying how the ag-
gregation should take place, EMML is a rather heavy-weight
language with resemblance to service composition languages
such as WS-BPEL. Even though EMML programmers may
specify activities that can be executed in parallel, the spec-
ification does not define how data aggregation is performed
collaboratively across several nodes. Furthermore, as op-
posed to most mashup tools, WS-Aggregation supports loose
coupling because the mapping between features and service
operations is defined in the VRESCo registry and endpoints
are dynamically exchangeable.

Wireless Sensor Networks (WSNs) [13, 2] build a net-
work topology among individual sensor nodes, which mon-
itor physical or environmental conditions. The data gener-
ated from the individual source nodes is collected, aggre-
gated and sent to one or more sink nodes. The data flow
occurs mainly event-based in the sense that sensor nodes
send data to the sink in regular intervals or when changes in
the monitored environment occur. This is adverse to WS-
Aggregation, where the single data sources do not send data
themselves, but are queried upon request.

8. CONCLUSION
We have addressed the problem of distributed aggrega-

tion of Web services data. Based on three motivating sce-
narios and a formal description of the aggregation model
in our approach, we presented the architecture and pro-
totype implementation of WS-Aggregation. The discussed
highlights of the framework include the specialized query
language WAQL, distributed query execution using config-
urable aggregator topologies, and user-defined query opti-
mizations. The extensive evaluation targets the main as-
pects of 1) aggregation query distribution, 2) parallel re-
quests and 3) query optimization. Our ongoing work focuses
on modularization and reuse of aggregation queries and on
data dependencies between sub-requests. Moreover, we are
working on aggregation query patterns and new features for
the WAQL query language.

9. REFERENCES
[1] G. Adamku and H. Stuckenschmidt. Implementation

and Evaluation of a Distributed RDF Storage and
Retrieval System. In IEEE/WIC/ACM International
Conference on Web Intelligence, pages 393–396, 2005.

9http://www.popfly.com (discontinued in August, 2009)
10http://pipes.yahoo.com
11http://www.openmashup.org/omadocs/v1.0

[2] K. Akkaya and M. Younis. A survey on routing
protocols for wireless sensor networks. Ad Hoc
Networks, 3(3):325 – 349, 2005.

[3] M. I. Ali, R. Pichler, H. L. Truong, and S. Dustdar.
Dexin: An extensible framework for distributed
xquery over heterogeneous data sources. In 11th
International Conference on Enterprise Information
Systems, pages 172–183, 2009.

[4] D. Benslimane, S. Dustdar, and A. Sheth. Services
mashups: The new generation of web applications.
IEEE Internet Computing, 12(5):13–15, 2008.

[5] A. Dan, R. Johnson, and A. Arsanjani. Information as
a service: Modeling and realization. In SDSOA, 2007.

[6] G. Di Lorenzo, H. Hacid, H. Paik, and B. Benatallah.
Data integration in mashups. ACM SIGMOD Record,
38:59–66, 2009.

[7] S. Dustdar and W. Schreiner. A survey on web
services composition. International Journal of Web
and Grid Services, 1(1):1–30, 2005.

[8] G. Gottlob et al. Lixto data extraction project: back
and forth between theory and practice. In Symposium
on Principles of Database Systems, pages 1–12, 2004.

[9] E. Johnston and N. Kushmerick. Web service
aggregation with string distance ensembles and active
probe selection. Information Fusion, 9(4), 2008.

[10] R. Khalaf and F. Leymann. On Web Services
Aggregation. In Technologies for E-Services, 2003.

[11] M. Lenzerini. Data integration: a theoretical
perspective. In Symposium on Principles of Database
Systems, 2002.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Binding and Mediation in VRESCo.
IEEE Transactions on Services Computing,
3(3):193–205, 2010.

[13] E. Nakamura, A. Loureiro, and A. Frery. Information
fusion for wireless sensor networks: Methods, models,
and classifications. ACM Computing Surv., 39, 2007.

[14] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. Computer, 40, 2007.

[15] G. Piccinelli et al. Dynamic service aggregation in
electronic marketplaces. Computer Networks, 37, 2001.

[16] B. Quilitz and U. Leser. Querying Distributed RDF
Data Sources with SPARQL. In European Semantic
Web Conference, 2008.

[17] L. Richardson and S. Ruby. RESTful web services.
O’Reilly, 2007.

[18] Sonic Software. Building XQuery with Stylus Studio:
Web Service Aggregation and Reporting.
http://www.stylusstudio.com/whitepapers/building
xquery with stylus.pdf, 2003.

[19] H.-L. Truong and S. Dustdar. On analyzing and
specifying concerns for data as a service. In
Asia-Pacific Services Computing Conference, 2009.

[20] R. van Renesse. The importance of aggregation. In
Future Directions in Distributed Computing, 2003.

[21] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, 2007.

[22] F. Zhu et al. Dynamic Data Integration Using Web
Services. In Int. Conference on Web Services, 2004.

