
Coding in the FLOW
Structuring your development environment to

promote a state of flow

Caskey L. Dickson
SRE/SWE

@caskey@gmail.com

At the end are the lecture notes for the
three slides we didn’t cover at oscon
describing an application of flow.

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

tl;dw
1. Sprints/SCRUM/Rapid Development metholdology (GT)
2. Revision control with local and feature branches (G)
3. One click build system (F)
4. Test driven development (GF)
5. Tiered testing (unit, smoke, integration) (GFS)
6. Top-down/bottom-up (GS)
7. Defect tracking (GS)
8. Dashboards (FT)
9. Blameless workplace (T)
10. Shared vision (GT)

WARNING: Cargo Culting flow won’t really work.

G = Clear, attainable goals
F = Immediate and relevant feedback
S = Matched Skill and Challenge
T = Team dynamics

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Outline

1. tl;dw
2. Consciousness
3. Intentions
4. Limits of Consciousness
5. Attention
6. Attributes of Flow
7. Prerequisites of Flow
8. Structuring for Flow

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

[citation needed]

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Flow: Definition

In positive psychology, flow, also known as
zone, is the mental state of operation in
which a person performing an activity is
fully immersed in a feeling of energized
focus, full involvement, and enjoyment in
the process of the activity. In essence, flow
is characterized by complete absorption in
what one does.
– Mihaly Csikszentmihalyi

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Consciousness

–Robert A. Heinlein

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Intentions

▪ Sensations and stimuli
▪ Processed by the consciousness
▪ Turned into potential actions
▪ Exogenic
▪ Endogenic
▪ Prioritized (continuously)
▪ Selected for action

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Limits of Consciousness

▪ Maximum of ~7 bits of concurrent information
▪ ‘bit’ varies by experience and subject matter
▪ Rate of recognition and change of bits 55ms
▪ Brain baud rate is therefore 126 bps
▪ Human speech recognition–40bps
▪ In a lifetime, 280Gbits of data
▪ Except

▪ sleeping 20-35%
▪ eating 8%
▪ washing, dressing, toileting 8%

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Attention

▪ Generally your consciousness chooses what to ingest
▪ What you ingest is merged with your intentions
▪ Emotional response occurs when those conflict
▪ External events can trigger natural attention sinks
▪ Every moment gone by is a spent opportunity to

maximize or squander your 126 bits of focus

“Pay Attention” means exactly that.

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

The Self

▪ Consciousness exists

▪ Stimulus drives intentions

▪ Intentions are ranked by the consciousness

▪ Consciousness has finite capacity (126 bits/s of input)

▪ Our attention dictates inputs per the consciousness

▪ Therefore our consciousness dictates our mental state

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

High Flow Activities

▪ Music
▪ Rock Climbing
▪ Dancing
▪ Sailing
▪ Chess
▪ Sports
▪ Reading
▪ We hope: Coding (← You are here.)

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Most Common Attributes of High Flow Activities

▪ Rules

▪ Goals

▪ Feedback

▪ Control

▪ Concentration

▪ Separation from Reality

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Rules

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Goals

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Feedback

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Control

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Concentration

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

HFA Attributes: Separation from Reality

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Three Prerequisites of Flow

▪ Clear Goals

▪ Immediate Feedback

▪ Matched Skill and Challenge

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Clear Goals
You have to know where you are
going

Knowing “Why?” helps too
Journey of 1000 miles

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Immediate Feedback
Emphasis on immediate

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Matched Skill and Challenge

Low SKILL High

H
igh

 C
H

A
LLE

N
G

E
Low

Boredom

Fr
us

tra
tio

n
Flow

 Zon
e

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Clear Goals
▪ Planned work, baby steps

▪ SCRUM
▪ Rapid Development
▪ Agile

▪ Product Vision/Leadership
▪ Local Branches–Commit early and often (yay git!)
▪ Top-Down/Bottom-Up
▪ Test Driven Development
▪ Tiered Testing

▪ Unit
▪ Smoke
▪ Integration

▪ Defect Tracking

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Immediate Feedback
▪ One click build system (F)
▪ Test driven development (GF)
▪ Tiered testing (unit, smoke, integration) (GFS)
▪ Dashboards (FT)
▪ Smart Tools (GF)

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Matched Skill and Challenge
▪ Sprints/SCRUM/Rapid Development metholdology (GT)
▪ Test driven development (GF)
▪ Tiered testing (unit, smoke, integration) (GFS)
▪ Top-down/bottom-up (GS)
▪ Defect tracking (GS)
▪ Blameless workplace (T)
▪ Codecraft

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Summary

Minimize cognitive load (126 bits per second)
Establish Clear Goals (final and intermediate)
Ensure Immediate Feedback (one click build+test, tools)
Match the Skill to the Challenge (increase if need be)

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

FIN

Questions, Comments, Complaints, Hate mail:
caskey@gmail.com
twitter.com/caskey

plus.google.com/+CaskeyDickson

mailto:caskey@gmail.com
mailto:caskey@gmail.com
http://plus.google.com/+CaskeyDickson
http://plus.google.com/+CaskeyDickson
http://plus.google.com/+CaskeyDickson
http://plus.google.com/+CaskeyDickson

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

tl;dw
1. Sprints/SCRUM/Rapid Development metholdology (GT)
2. Revision control with local and feature branches (G)
3. One click build system (F)
4. Test driven development (GF)
5. Tiered testing (unit, smoke, integration) (GFS)
6. Top-down/bottom-up (GS)
7. Defect tracking (GS)
8. Dashboards (FT)
9. Blameless workplace (T)
10. Shared vision (GT)

WARNING: Cargo Culting flow won’t really work.

G = Clear, attainable goals
F = Immediate and relevant feedback
S = Matched Skill and Challenge
T = Team dynamics

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Extras

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Lecture notes for slide 23
There are lots of things that help us with our planning, but even detailed methods like daily standups probably are not narrow enough to be flow inducing.

● fixing a single bug in your system.
● sounds fine grained task

○ flow is about short term tactical gains.
○ Measured in hours, not days/weeks

● fixing the bug is the ultimate goal, but we need to measure progress!
● must, necessarily find finer steps, 2, 3, 10.

1) In my daily standup with my team, pick bug 339 as my main task for today.
in concert with the overall team goal: stabilizing the next feature release

2) Put on my headphones
a) choose music that has a white noise effect dull my auditory senses
b) enables me to focus
c) avoid getting pulled into the discussions
d) Separation from reality

3) one-click build and run environment for this particular work session
a) bookkeeping of creating a new git branch
b) pulled from the appropriate code line or feature branch
c) named for the task at hand with cross references into our bug tracking system
d) resume flow if you go to lunch or get switched off to deal with something urgent
e) enables rapid resumption with minimal cognitive

4) reproducible failing test case (TDD)
a) unambiguously feedback on progress
b) Usually several steps (nested processes)

i) failure isn’t easily testable
ii) refactoring to surface the appropriate components.

5) Critical at each stage: local commit to my working branch
a) ‘refactored class X to make initial state externalizable’
b) ‘fixed the breakage I induced in the integration test when I messed up refactoring class X’
c) ‘added failing unit test for bug 339’

6) Now that I have an environment where I can hit F7 or whatever the appropriate key is, to begin actually solving the problem at hand.
7) work until the failing test case passes.
8) work until smoke tests pass
9) work until integration tests pass

10) Finally, I do the merge with the mainline branch after resolving all those wonderful merge conflicts.
11) Kick myself for not doing a merge after I refactored class X and before I started the bugfix

● Much is existing best practices
○ Applied with an eye toward satisfying the needs of flow

● Even I skip this workflow
○ Often regret it
○ annoyed at my task
○ 4 hours in
○ opened the code base
○ started making changes
○ discovered the class X refactoring
○ started doing that on top of my partial bugfix
○ broke the build horribly
○ can’t unwind my bug fix code from my refactoring code
○ wish I had an intermediate checkpoint even an hour or two old
○ haven’t passed a test in three hours, haven’t successfully built

in two
○ burn it down, start again

● Also, Checklist Manifesto, read it.
○ Discipline is hard, humans are bad at it

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Lecture notes for slide 24
In that discussion about fixing a bug, when I did it the right way, I set up a system where I would get immediate feedback as to
whether or not the problem had been fixed or not, including building parts of the system I would need in the refactoring.

Each step of the way all I needed to do was hit F7 (or whatever your dev environment equivalent is) and it would kick off a build +
run of the relevant unit tests showing a big green or big red box. Bam, immediate feedback. Unit tests, not integration tests
because they run faster (a few seconds at most).

● Even better, for some languages my IDE catches typos for me automatically and underlines them
○ Immediate feedback.

● For other languages, it tells me when I’ve forgotten to initialize a variable
○ Immediate feedback.

● For other languages, my editor automatically navigates me to the line and character of compiler errors while highlighting
the error message in a contrasting color so I can continue working

○ Immediate feedback.
● Sadly for others, I have no type information or even required variable declarations and so I have no idea if my code really

works until a full integration test. Very slow feedback. Given I’m very weak at writing code in this language, I often regret
and put off projects that require it because I subjectively hate the lack of control I feel.

The polar opposite of this kind of immediate feedback is card based batch computing where your feedback loop is handing a
program deck over to an operator, waiting an hour (or a week) and getting back your output deck or just a printout of the core
dump.

Caskey L. Dickson
@caskey@gmail.comOSCON2015: Coding in the FLOW

Lecture Notes for Slide 25
In this area, it mostly comes down to choosing what to work on and, more importantly, choosing HOW to work on it.

● Learning a new system
○ Get it to compile
○ Get it to not crash
○ Get it to pass a trivial unit test

● Multi year wrestling match with Go

● Other languages where I have a couple decades experience
○ Mental effort goes to meta activities

■ clean code structure
■ readability
■ maintainability
■ testability

○ These reduce cognitive load of ongoing work
● Go look at your really old code

○ Try not to cry; cry a lot
○ By the standards at the time, you were doing well

● Enlightened teams
○ actively structure tasks, avoid all urgent work going to fastest/most experienced
○ manage work to promote zone and growth

● Individual contributor
○ Examine your tasks
○ Find ways to adjust the skill level up for the mundane/boring work
○ Focus on your craft, the skill
○ Drudgery always exists (Boredom zone)
○ At the meta, don’t do the drudgery, eliminate it entirely, automate it, write a tool, eliminate the need

■ Adjust your subjective experience and intent
● Proactively decide what kind of work you have and what sort of work you will do. Avoid boredom at all costs.

