
Fold line for front cover, back
cover edge moves depending on
thickness.

> Sun Microsystems Laboratories

Fold line for front cover, back
cover edge moves depending on
thickness.

Scalable Data Storage
in Project Darkstar

Tim Blackman and Jim Waldo

TECHNICAL REPORT

Blank page behind the cover

Scalable Data Storage in Project Darkstar

Tim Blackman
Jim Waldo

SMLI TR-2009-187 September 2009

Abstract:

We present a new scheme for building scalable data storage for Project Darkstar, an
infrastructure for building online games and virtual worlds. The approach promises to
provide data storage with horizontal scaling that is tailored to the special requirements of
online environments and that takes advantage of modern multi-core architectures and high
throughput networking.

After a brief overview of Project Darkstar, we describe the overall architecture for a caching
data store. Then we provide more detail on the individual components used in the solution.
Finally, we suggest some of the additional facilities that will be required to bring the full
experiment to completion.

Sun Labs
16 Network Circle
Menlo Park, CA 94025

email addresses:
tim.blackman@sun.com
jim.waldo@sun.com

mailto:jim.waldo@sun.com
mailto:tim.blackman@sun.com

© 2009 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Java, and Jini are trademarks or registered trademarks
of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. Information subject to change without notice.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to
the source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic,
electronic, or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written
permission of the copyright owner.

For information regarding the SML Technical Report Series, contact Mary Holzer or Nancy Snyder, Editors-in-Chief <Sun-Labs-techrep-
request@sun.com>. All technical reports are available online on our website, http://research.sun.com/techrep/.

mailto:Sun-Labs-techrep-request@sun.com
mailto:Sun-Labs-techrep-request@sun.com
http://research.sun.com/techrep/

1 Introduction

Project Darkstar[1] is an investigation into massive
scaling using modern multi-core architectures and
distributed computing infrastructures. Unlike many other
attempts to exploit these emerging computing
paradigms, which tend to focus on embarrassingly
parallel applications that are optimized for throughput,
the target applications for the infrastructure being
produced by this project are online games and virtual
worlds. We chose these targets because of the particular
set of requirements that must be met. First, such
applications require massive scale, with thousands to
hundreds of thousands of simultaneous users interacting
across large numbers of servers. These applications deal
with relatively small amounts of mutable data, and
require very low latencies in the servers to preserve the
interactive feeling of the applications. Finally, these
applications require that a central facility, under control
of the game administrator, be used to hold the true state
of the game or world, to avoid problems of users
cheating or otherwise “gaming” the system.

The Project Darkstar infrastructure attempts to present a
simple programming model for the developers of the
server-side of such games and virtual worlds. The goal is
to allow these programmers to write their code as if that
code were to be running in a single thread on a single
machine. The code must be structured as a set of tasks
triggered by events sent from the various clients of the
game or world. The infrastructure will then take care of
distributing those tasks over the available machines and

threads, and running those tasks in such a way that
the consistency of the data will not be compromised.

The scaling strategy used by the infrastructure
centers on the properties of these tasks. The tasks are
required to be compiled into JavaTM bytecodes, and
so the code for the tasks can be run on any machine
in the server network without changing the
semantics of that code. All of the tasks are run inside
a transaction, allowing the underlying infrastructure
to detect conflicts in attempts to access and
manipulate shared data. When such a conflict is
detected, one of the competing tasks will be allowed
to continue, while any other task that was in conflict
will be aborted and re-scheduled for running at a
later time. To enable the infrastructure to detect such
data conflicts, all of the data used by a task that
might be visible to another task must be placed in a
data store that is managed by the infrastructure itself.

By having the data store be a resource shared by all
nodes running a game server, we also insure that all
of the data within the store is available on all of
these nodes. This means that we can move tasks
from one machine to another to balance the load
over the network. But this also means that the data
store is a central component of the infrastructure
itself.

1

Scalable Data Storage in Project Darkstar

Tim Blackman, Jim Waldo
Sun Microsystems Laboratories

tim.blackman@sun.com, jim.waldo@sun.com

mailto:jim.waldo@sun.com
mailto:tim.blackman@sun.com

2 Data storage in Project Darkstar

Like many other online applications, online games and
virtual worlds access large quantities of persistent data,
but with some important differences. Although there are
many well known techniques[3][4][5][6][7][8] for
implementing highly scalable databases to support
typical online applications, the special characteristics of
virtual environments make these standard approaches
ineffective. The first difference is that, to support fast
response times for users, the latency of data access is
more important than throughput. Second, unlike most
data-intensive applications, where data reads
predominate, a higher proportion of data accesses in
virtual environments involve data modification. While
no full studies of access patterns have been widely
publicized, our informal measures of typical applications
indicate that modification of half of the data that is
accessed is not unusual. Finally, unlike applications
involving real world goods and payments, users are
more willing to tolerate the loss of data or history due to
a failure in the server, so long as these failures are
infrequent, the amount of data lost is small, and the
recovered state remains consistent. This reduced need
for data durability provides an opportunity to explore
new approaches to scalable persistence that can satisfy
the needs of games and virtual worlds for low latency in
the presence of frequent writes.

Achieving low latencies requires changes to the
persistence implementation, even when running in a
non-distributed environment. When storing data on a
single node, the best way to provide low latency is to
avoid the cost of flushing modifications to disk. Since
online games and virtual worlds can tolerate an
occasional lack of durability, a single-node system can
continue with its processing without waiting to force
data modifications to disk, allowing the modifications to
be flushed in the background. This behavior is
acceptable so long as the system can preserve integrity in
the case that some modifications have not reached the
disk at the point of a node failure. Moving disk flushes
out of the critical path in this way allows the system to

take full advantage of disk throughput. In our tests, a
database transaction that modifies a single data item
takes more than 10 milliseconds if the operation
includes performing a disk flush, but as little as 25
microseconds without flushing.

Long network latencies pose a similar problem for
data storage in multi-node systems. As network
speeds have increased, network throughput has
improved dramatically, but latency continues to be
substantial. In simple tests of network performance
running over an 8 Gigabit Infiniband network, and
using the best software we could find for use in a
Java environment (standard sockets in a prerelease
version of JavaTM Platform, Standard Edition 7 with
Sockets Direct Protocol (SDP) to perform TCP/IP
operations over Infiniband), the best result we were
able to achieve was a network round trip latency of
40 microseconds. Adding this additional 40
microseconds to the 25 microsecond transaction time
possible on a single node threatens to reduce
performance significantly.

Reducing latency is not the only problem that needs
to be addressed to produce a good scaling solution.
To support horizontal scaling, increasing system
capacity should be as simple as adding additional
application nodes as needed. Adding nodes in this
way is only possible if the newly added nodes are
stateless — they should not store vital data that
needs to be maintained to insure the system's
integrity. If an application node fails, it should be
possible to replace it with a new node without
needing to recover data from the failed one. Users
that were connected to the failed node will need to
reconnect to a new node, and may find that some
modest amount of their recent in-world history has
been rolled back, but should otherwise be able to
proceed with their experience.

While individual application nodes should not
maintain definitive copies of any data, all nodes still
need to be able to access all of the information in the
game. This free access to all game data is needed to

2

allow developers to write their game logic as if running
on a single machine, rather than needing to explicitly
partition the game into separate regions running on
different nodes.

The first approach taken to implementing such a scalable
data storage scheme was for nodes to request and store
data using a central data server, without caching any data
locally on the individual nodes. This scheme was easy to
implement, and was introduced a couple of months after
the first release of Project Darkstar's current
architecture. Unfortunately, the need for a network round
trip for each operation in this version resulted in poor
performance due to network latency. Faster networks
with improved throughput would not change these
results significantly.

The original plan had been to improve the scalability of
the no-caching scheme by implementing support for
multiple data servers. If a central data server had
provided good performance, then switching to multiple
data servers would have added the needed scalability.
The prohibitive cost of network latency, though, made
this approach unworkable. A further complication would
have been the need to migrate data explicitly among the
multiple data servers, which would have introduced
further complexity.

Another idea had been to store data on each application
node. That idea had the drawback of requiring backup
and failover redundancy for each application node,
which would have clashed with the desired ability to add
and remove applications nodes on demand. This scheme,
too, would have required explicit migration of data, this
time among application nodes.

This document describes a new approach: using write
caching with a central data server. The idea is to cache
data locally on each node, including modified data, so
long as it is only being used by that node. If local
modifications need to be made visible to another
application node because the node wants to access the
modified data, then all local changes need to be flushed
back to the central server, to insure consistency.

This new scheme avoids network latency so long as
the system can arrange for transactions that modify a
particular piece of data to be performed on the same
node. It avoids the need for explicit object
migration: objects will be cached on demand by the
local node. It also permits adding and removing
application nodes, and avoids the need for
redundancy and backup, since application nodes do
not store globally important data.

3 Architecture

The overall architecture is similar to a standard
client/server caching scheme with callbacks, but
with some changes to support caching modifications.
Each application node has its own Data Cache,
which maintains local copies of recently used items.
Data caches communicate with the central Data
Server, which maintains persistent storage for items.
The data server also keeps track of which items are
stored in which data caches, and makes callback
requests to those caches to request the return of
items that are needed elsewhere. We assume that the
central data server and all of the application nodes
on which data caches are located are mutually
trusting, and that there are dependable network links
among the nodes. In the common case, the central
data server and the nodes on which the caches reside
will be co-located in a single data center, but this is
not required for the design.

3.1 Data Cache

When an application node asks the data cache for
access to a data item, the cache first checks to see if
the item is present. If the item is present and is not
being used in a conflicting mode (write access by
one local transaction blocks all other local access),
then the cache provides the item to the application
immediately. If a conflicting access is being made by
another transaction, the access request is queued in
the data cache's lock manager and blocks until all
current transactions with conflicting access, as well

3

as any other conflicting accesses that appear earlier in
the queue, have completed.

If the item is not present in the cache, or if write access
is needed but the item is only cached for read, then the
data cache contacts the data server to request the desired
access. The request either returns the requested access,
or else throws an exception if a timeout is detected. If
additional transactions request an item for reading from
the cache while an earlier read request to the server is
pending, the additional access waits for the results of the
original request, issuing an additional request as needed
if the first one fails.

Because data stored in the data cache can be used by
multiple transactions on the application node, requests to
the data server are not made on behalf of a particular
transaction. The lack of a direct connection between
transactions and requests means there needs to be a way
determine the proper timeout for a request. One
possibility would be to provide a specific timeout for
each request, based on the time remaining in the
transaction that initiated the request. Another approach
would be to use a fixed timeout, similar to timeout that
the system applies to each transaction, to better model
the fact that a request may be shared by multiple
transactions. A fixed timeout increases the chance that a
request will succeed so that its results can be used by
other transactions on the application node, even if the
transaction initiating the request has timed out. For this
reason, we have taken this approach, and the system has
a fixed timeout for all calls to the server.

When a transaction commits, the commit updates the
data cache with the new values, insuring that the cache
updates appear atomically. The changes are then stored
in the Change Queue, which forwards the updates, in
order, to the data server. Ordering the updates by
transaction insures that the persistent state of the data
managed by the data server represents a view of the data
as seen by the application node at some point in time.
The system does not guarantee that all modifications will
be made durable, but it does guarantee that any durable
state will be consistent with the state of the system as

seen at some earlier point in time. Since transactions
commit locally before any associated modifications
are made persistent on the server, application
developers need to be aware of the fact that a failure
of an application node can result in committed
modifications made by that node being rolled back.

If an item needs to be evicted from the data cache,
either to make space for new items or in response to
a callback request from the data server, the data
cache waits to remove the item until any
modifications made by transactions that accessed
that item have been sent to the data server. This
requirement insures the integrity of transactions by
making sure that the node does not release locks on
any transactional data until the transaction has
completed by storing its modifications.

Strictly speaking, the change queue would not need
to send changes to the data server immediately in
order to maintain integrity, so long as changes were
sent before an item was evicted from the cache.
There is no obvious way to predict when an eviction
will be requested, though, and the speed of eviction
will affect the time needed to migrate data among
application nodes. To reduce the time needed for
eviction, the best strategy is probably to send
changes to the data server as the changes become
available. The node need not wait for the server to
acknowledge the updates, but it should make sure
that the backlog of changes waiting to be sent does
not get too large. This strategy takes advantage of
the large network throughput typically available
without placing requirements on latency, a key
advantage over the no-caching scheme. There are
various possibilities for optimizations, including
reordering unrelated updates, coalescing small
updates, and eliminating redundant updates.

The data cache provides a Callback Server to handle
callback requests from the data server for items in
the cache. If an item is not in use by any current
transactions, and was not used by any transactions
whose changes have not been flushed to the server,

4

then the cache removes the item, or write access to the
item if the request is for a downgrade from write to read
access, and responds affirmatively. Otherwise, the
callback server responds negatively. If the item is in use,
the callback server queues a request to access the cached
item. When access is granted, or if the item was not in
use, the callback server queues the callback
acknowledgement to the change queue. Once the
acknowledgement has been successfully sent to the data
server, then the change queue arranges to remove the
access from the cache.

The data cache assigns a monotonically increasing
identifier to transactions that access data. Items that were
used during a transaction are marked with the ID of the
transaction with the highest ID for which they were
used. This ID is used to determine when an item can be
evicted in response to a callback request, as well as for
the algorithm the cache uses to select old items for
eviction.

The data cache needs a way to determine when it is full
and should evict old items. The simplest approach is to
specify a fixed number of entries as a way of limiting the
amount of data held in the cache. Another approach
would be to include the size of the item cached in the
estimate of cache space used. A still more complicated
approach would involve making an estimate of the actual
number of bytes consumed by the data structures needed
to store a particular cache entry, and computing the
amount of memory available as a proportion of the total
memory limit for the virtual machine. We are currently
using the first approach, as we have found that the added
information of the other approaches does not make up
for the additional complexity.

Our previous experience with Berkeley DB, reinforced
by published research[2], suggests that the data cache
should perform deadlock detection whenever a blocking
access occurs, and should choose either the youngest
transaction or the one holding the fewest locks when
selecting the transaction to abort. Since the previous
research found the two approaches comparable, we have
adopted the approach of aborting the youngest

transaction, again because of the simplicity of the
code needed to implement that approach.

3.2 Data Server

The central data server maintains information about
which items are cached in the various data caches,
and whether they are cached for read or write. Nodes
that need access to items that are not available in
their cache send requests to the data server to obtain
the items or to upgrade access. If a requested item
has not been provided to any data caches, or if the
item is only cached for read and has been requested
for read, then the data server obtains the item from
the underlying persistence mechanism, makes a note
of the new access, and returns it to the caller.

If there are conflicting accesses to the item in other
data caches, the data server makes requests to each
of those caches in turn to call back the conflicting
access. If all those requests succeed, then the server
returns the result to the requesting node immediately.
If any of the requests are denied, then the server
arranges to wait for notifications from the various
data caches that access has been relinquished, or
throws an exception if the request is not satisfied
within the required timeout.

When the data server supplies an item to a data
cache, it might be useful for the server to specify
whether conflicting requests for that item by other
data caches are already queued. In that case, the data
cache receiving the item could queue a request to
flush the item from the cache after the requesting
transaction was complete. This scheme would
probably improve performance for highly contended
items.

3.3 Networking and Locking

The data caches and the data server communicate
with each other over the network, with the
communication at least initially implemented using
JavaTM Remote Method Invocation (Java RMI), for

5

simplicity. In the future, it might be possible to improve
performance by replacing Java RMI with a simpler
facility based directly on sockets. For the data cache's
callback queue, it might also be possible to improve
performance by pipelining requests and using
asynchronous acknowledgements.

Both the data cache and the data server have a common
need to implement locking, with support for shared and
exclusive locks, upgrading and downgrading locks, and
blocking. The implementation of these facilities is
shared as much as possible. Note that, because the server
does not have information about transactions, there is no
way for it to check for deadlocks.

4 Localizing data access

The caching scheme described here will work best when
access to a particular set of data items is localized on a
single node. In such a case, the data cache on that node
can be used by all local tasks that access those items,
with only the need for asynchronous writes to the central
data server. The worst case for this scheme is when all
data is being accessed for write on multiple nodes. Such
an access pattern will result in pathological behavior
leading to poor performance where the data being
accessed on multiple nodes will need to be evicted from
local caches repeatedly. In this case, the performance of
the cache would revert to the behavior of the non-
caching implementation, but with additional overhead to
maintain the cache.

We are currently experimenting with mechanisms
that will allow for the proper clustering of data
access on a single node. To get the kind of
performance needed, the clustering does not have to
be perfect, but merely sufficient to avoid the
pathological cases.

References
[1] Project Darkstar.
http://www.projectdarkstar.com/
[2] R. Agrawal, M.J. Carey, and L.W. McVoy.
December 1987. “The Performance of
Alternative Strategies for Dealing with
Deadlocks in Database Management Systems”,
IEEE Transactions on Software Engineering 13,
no. 12: 1348-1363.
[3] Memcached.
http://www.danga.com/memcached/
[4] Jboss Cache.
http://www.jboss.org/jbosscache/
[5] Wikipedia. Partition (database).
http://en.wikipedia.org/wiki/Partition_
%28database%29
[6] B. Nitzberg and V. Lo. 1991. “Distributed
Shared Memory: A Survey of Issues and
Algorithms”, IEEE Computer: 24, issue 8: 52-60.
[7] C. Lamb, G. Landis, J. Orenstein, and D.
Weinreb. 1991. “The ObjectStore Database
System”, Communications of the ACM: 34, no.
10: 50-63.
[8] Oracle. Oracle Berkeley DB: Replication.
http://www.oracle.com/technology/products/ber
keley-db/db/index.html

6

http://www.projectdarkstar.com/
http://www.oracle.com/technology/products/berkeley-db/db/index.html
http://www.oracle.com/technology/products/berkeley-db/db/index.html
http://en.wikipedia.org/wiki/Partition_(database)
http://en.wikipedia.org/wiki/Partition_(database)
http://www.jboss.org/jbosscache/
http://www.danga.com/memcached/

7

About the Authors

Tim Blackman is a Staff Engineer for Sun Microsystems Laboratories, working on Project Darkstar. His research
interests include Databases, Distributed Systems and Java. Prior to joining Sun Labs, he was a member of the Sun
JiniTM Technology Group, working primarily on security and configuration facilities for the Jini 2.0 release. Before
joining Sun, he worked on object-oriented databases and electronic CAD tools.

Jim Waldo is a Distinguished Engineer with Sun Microsystems, where he is the technical lead of the Darkstar
project. Prior to (re)joining Sun Labs, Jim was the lead architect for Jini, a distributed programming system based
on Java. While at Sun, Jim has done research and product development in the areas of object-oriented
programming and systems, distributed computing, and user environments. Before joining Sun, Jim spent eight
years at Apollo Computer and Hewlett Packard working in the areas of distributed object systems, user interfaces,
class libraries, text and internationalization. While at HP, he led the design and development of the first Object
Request Broker, and was instrumental in getting that technology incorporated into the first OMG CORBA
specification. He edited the book The Evolution of C++: Language Design in the Marketplace of Ideas (MIT
Press), and was one of the authors of The Jini Specification (Addison Wesley).

Scalable D
ata Storage in

 Project D
arkstar

Tim
 B

lackm
an

 an
d Jim

 W
aldo

SM
LI TR-2009-187

Sun Microsystems Laboratories
16 Network Circle
Menlo Park, CA 94025

	Cover: Scalable Data Storage in Project Darkstar
	Abstract: TR-2009-187
	Copyright
	1. Introduction
	2. Data storage in Project Darkstar
	3. Architecture
	3.1 Data Cache
	3.2 Data Server
	3.3 Networking and Locking

	4. Localizing data access
	References
	About the Authors: Tim Blackman and Jim Waldo
	Back Cover

