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Abstract:

We present  a  new scheme for  building  scalable data storage for  Project  Darkstar, an 
infrastructure  for  building  online  games  and  virtual  worlds.  The approach  promises  to 
provide data storage with horizontal scaling that is tailored to the special requirements of 
online environments and that takes advantage of modern multi-core architectures and high 
throughput networking. 

After a brief overview of Project Darkstar, we describe the overall architecture for a caching 
data store. Then we provide more detail on the individual components used in the solution. 
Finally, we suggest some of the additional facilities that will be required to bring the full 
experiment to completion. 
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1  Introduction

Project Darkstar[1] is an investigation into massive 
scaling using modern multi-core architectures and 
distributed computing infrastructures. Unlike many other 
attempts to exploit these emerging computing 
paradigms, which tend to focus on embarrassingly 
parallel applications that are optimized for throughput, 
the target applications for the infrastructure being 
produced by this project are online games and virtual 
worlds. We chose these targets because of the particular 
set of requirements that must be met. First, such 
applications require massive scale, with thousands to 
hundreds of thousands of simultaneous users interacting 
across large numbers of servers. These applications deal 
with relatively small amounts of mutable data, and 
require very low latencies in the servers to preserve the 
interactive feeling of the applications. Finally, these 
applications require that a central facility, under control 
of the game administrator, be used to hold the true state 
of the game or world, to avoid problems of users 
cheating or otherwise “gaming” the system.

The Project Darkstar infrastructure attempts to present a 
simple programming model for the developers of the 
server-side of such games and virtual worlds. The goal is 
to allow these programmers to write their code as if that 
code were to be running in a single thread on a single 
machine. The code must be structured as a set of tasks 
triggered by events sent from the various clients of the 
game or world. The infrastructure will then take care of 
distributing those tasks over the available machines and 

threads, and running those tasks in such a way that 
the consistency of the data will not be compromised.

The scaling strategy used by the infrastructure 
centers on the properties of these tasks. The tasks are 
required to be compiled into JavaTM bytecodes, and 
so the code for the tasks can be run on any machine 
in the server network without changing the 
semantics of that code. All of the tasks are run inside 
a transaction, allowing the underlying infrastructure 
to detect conflicts in attempts to access and 
manipulate shared data. When such a conflict is 
detected, one of the competing tasks will be allowed 
to continue, while any other task that was in conflict 
will be aborted and re-scheduled for running at a 
later time. To enable the infrastructure to detect such 
data conflicts, all of the data used by a task that 
might be visible to another task must be placed in a 
data store that is managed by the infrastructure itself.

By having the data store be a resource shared by all 
nodes running a game server, we also insure that all 
of the data within the store is available on all of 
these nodes. This means that we can move tasks 
from one machine to another to balance the load 
over the network. But this also means that the data 
store is a central component of the infrastructure 
itself.
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2  Data storage in Project Darkstar

Like many other online applications, online games and 
virtual worlds access large quantities of persistent data, 
but with some important differences. Although there are 
many well known techniques[3][4][5][6][7][8] for 
implementing highly scalable databases to support 
typical online applications, the special characteristics of 
virtual environments make these standard approaches 
ineffective. The first difference is that, to support fast 
response times for users, the latency of data access is 
more important than throughput. Second, unlike most 
data-intensive applications, where data reads 
predominate, a higher proportion of data accesses in 
virtual environments involve data modification. While 
no full studies of access patterns have been widely 
publicized, our informal measures of typical applications 
indicate that modification of half of the data that is 
accessed is not unusual. Finally, unlike applications 
involving real world goods and payments, users are 
more willing to tolerate the loss of data or history due to 
a failure in the server, so long as these failures are 
infrequent, the amount of data lost is small, and the 
recovered state remains consistent. This reduced need 
for data durability provides an opportunity to explore 
new approaches to scalable persistence that can satisfy 
the needs of games and virtual worlds for low latency in 
the presence of frequent writes.

Achieving low latencies requires changes to the 
persistence implementation, even when running in a 
non-distributed environment. When storing data on a 
single node, the best way to provide low latency is to 
avoid the cost of flushing modifications to disk. Since 
online games and virtual worlds can tolerate an 
occasional lack of durability, a single-node system can 
continue with its processing without waiting to force 
data modifications to disk, allowing the modifications to 
be flushed in the background. This behavior is 
acceptable so long as the system can preserve integrity in 
the case that some modifications have not reached the 
disk at the point of a node failure. Moving disk flushes 
out of the critical path in this way allows the system to 

take full advantage of disk throughput. In our tests, a 
database transaction that modifies a single data item 
takes more than 10 milliseconds if the operation 
includes performing a disk flush, but as little as 25 
microseconds without flushing.

Long network latencies pose a similar problem for 
data storage in multi-node systems. As network 
speeds have increased, network throughput has 
improved dramatically, but latency continues to be 
substantial. In simple tests of network performance 
running over an 8 Gigabit Infiniband network, and 
using the best software we could find for use in a 
Java environment (standard sockets in a prerelease 
version of JavaTM Platform, Standard Edition 7 with 
Sockets Direct Protocol (SDP) to perform TCP/IP 
operations over Infiniband), the best result we were 
able to achieve was a network round trip latency of 
40 microseconds. Adding this additional 40 
microseconds to the 25 microsecond transaction time 
possible on a single node threatens to reduce 
performance significantly.

Reducing latency is not the only problem that needs 
to be addressed to produce a good scaling solution. 
To support horizontal scaling, increasing system 
capacity should be as simple as adding additional 
application nodes as needed. Adding nodes in this 
way is only possible if the newly added nodes are 
stateless — they should not store vital data that 
needs to be maintained to insure the system's 
integrity. If an application node fails, it should be 
possible to replace it with a new node without 
needing to recover data from the failed one. Users 
that were connected to the failed node will need to 
reconnect to a new node, and may find that some 
modest amount of their recent in-world history has 
been rolled back, but should otherwise be able to 
proceed with their experience.

While individual application nodes should not 
maintain definitive copies of any data, all nodes still 
need to be able to access all of the information in the 
game. This free access to all game data is needed to 
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allow developers to write their game logic as if running 
on a single machine, rather than needing to explicitly 
partition the game into separate regions running on 
different nodes.

The first approach taken to implementing such a scalable 
data storage scheme was for nodes to request and store 
data using a central data server, without caching any data 
locally on the individual nodes. This scheme was easy to 
implement, and was introduced a couple of months after 
the first release of Project Darkstar's current 
architecture. Unfortunately, the need for a network round 
trip for each operation in this version resulted in poor 
performance due to network latency. Faster networks 
with improved throughput would not change these 
results significantly.

The original plan had been to improve the scalability of 
the no-caching scheme by implementing support for 
multiple data servers. If a central data server had 
provided good performance, then switching to multiple 
data servers would have added the needed scalability. 
The prohibitive cost of network latency, though, made 
this approach unworkable. A further complication would 
have been the need to migrate data explicitly among the 
multiple data servers, which would have introduced 
further complexity.

Another idea had been to store data on each application 
node. That idea had the drawback of requiring backup 
and failover redundancy for each application node, 
which would have clashed with the desired ability to add 
and remove applications nodes on demand. This scheme, 
too, would have required explicit migration of data, this 
time among application nodes.

This document describes a new approach: using write 
caching with a central data server. The idea is to cache 
data locally on each node, including modified data, so 
long as it is only being used by that node. If local 
modifications need to be made visible to another 
application node because the node wants to access the 
modified data, then all local changes need to be flushed 
back to the central server, to insure consistency.

This new scheme avoids network latency so long as 
the system can arrange for transactions that modify a 
particular piece of data to be performed on the same 
node. It avoids the need for explicit object 
migration: objects will be cached on demand by the 
local node. It also permits adding and removing 
application nodes, and avoids the need for 
redundancy and backup, since application nodes do 
not store globally important data. 

3  Architecture

The overall architecture is similar to a standard 
client/server caching scheme with callbacks, but 
with some changes to support caching modifications. 
Each application node has its own Data Cache, 
which maintains local copies of recently used items. 
Data caches communicate with the central Data 
Server, which maintains persistent storage for items. 
The data server also keeps track of which items are 
stored in which data caches, and makes callback 
requests to those caches to request the return of 
items that are needed elsewhere. We assume that the 
central data server and all of the application nodes 
on which data caches are located are mutually 
trusting, and that there are dependable network links 
among the nodes. In the common case, the central 
data server and the nodes on which the caches reside 
will be co-located in a single data center, but this is 
not required for the design. 

3.1  Data Cache

When an application node asks the data cache for 
access to a data item, the cache first checks to see if 
the item is present. If the item is present and is not 
being used in a conflicting mode (write access by 
one local transaction blocks all other local access), 
then the cache provides the item to the application 
immediately. If a conflicting access is being made by 
another transaction, the access request is queued in 
the data cache's lock manager and blocks until all 
current transactions with conflicting access, as well 
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as any other conflicting accesses that appear earlier in 
the queue, have completed.

If the item is not present in the cache, or if write access 
is needed but the item is only cached for read, then the 
data cache contacts the data server to request the desired 
access. The request either returns the requested access, 
or else throws an exception if a timeout is detected. If 
additional transactions request an item for reading from 
the cache while an earlier read request to the server is 
pending, the additional access waits for the results of the 
original request, issuing an additional request as needed 
if the first one fails.

Because data stored in the data cache can be used by 
multiple transactions on the application node, requests to 
the data server are not made on behalf of a particular 
transaction. The lack of a direct connection between 
transactions and requests means there needs to be a way 
determine the proper timeout for a request. One 
possibility would be to provide a specific timeout for 
each request, based on the time remaining in the 
transaction that initiated the request. Another approach 
would be to use a fixed timeout, similar to timeout that 
the system applies to each transaction, to better model 
the fact that a request may be shared by multiple 
transactions. A fixed timeout increases the chance that a 
request will succeed so that its results can be used by 
other transactions on the application node, even if the 
transaction initiating the request has timed out. For this 
reason, we have taken this approach, and the system has 
a fixed timeout for all calls to the server.

When a transaction commits, the commit updates the 
data cache with the new values, insuring that the cache 
updates appear atomically. The changes are then stored 
in the Change Queue, which forwards the updates, in 
order, to the data server. Ordering the updates by 
transaction insures that the persistent state of the data 
managed by the data server represents a view of the data 
as seen by the application node at some point in time. 
The system does not guarantee that all modifications will 
be made durable, but it does guarantee that any durable 
state will be consistent with the state of the system as 

seen at some earlier point in time. Since transactions 
commit locally before any associated modifications 
are made persistent on the server, application 
developers need to be aware of the fact that a failure 
of an application node can result in committed 
modifications made by that node being rolled back.

If an item needs to be evicted from the data cache, 
either to make space for new items or in response to 
a callback request from the data server, the data 
cache waits to remove the item until any 
modifications made by transactions that accessed 
that item have been sent to the data server. This 
requirement insures the integrity of transactions by 
making sure that the node does not release locks on 
any transactional data until the transaction has 
completed by storing its modifications.

Strictly speaking, the change queue would not need 
to send changes to the data server immediately in 
order to maintain integrity, so long as changes were 
sent before an item was evicted from the cache. 
There is no obvious way to predict when an eviction 
will be requested, though, and the speed of eviction 
will affect the time needed to migrate data among 
application nodes. To reduce the time needed for 
eviction, the best strategy is probably to send 
changes to the data server as the changes become 
available. The node need not wait for the server to 
acknowledge the updates, but it should make sure 
that the backlog of changes waiting to be sent does 
not get too large. This strategy takes advantage of 
the large network throughput typically available 
without placing requirements on latency, a key 
advantage over the no-caching scheme. There are 
various possibilities for optimizations, including 
reordering unrelated updates, coalescing small 
updates, and eliminating redundant updates.

The data cache provides a Callback Server to handle 
callback requests from the data server for items in 
the cache. If an item is not in use by any current 
transactions, and was not used by any transactions 
whose changes have not been flushed to the server, 
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then the cache removes the item, or write access to the 
item if the request is for a downgrade from write to read 
access, and responds affirmatively. Otherwise, the 
callback server responds negatively. If the item is in use, 
the callback server queues a request to access the cached 
item. When access is granted, or if the item was not in 
use, the callback server queues the callback 
acknowledgement to the change queue. Once the 
acknowledgement has been successfully sent to the data 
server, then the change queue arranges to remove the 
access from the cache.

The data cache assigns a monotonically increasing 
identifier to transactions that access data. Items that were 
used during a transaction are marked with the ID of the 
transaction with the highest ID for which they were 
used. This ID is used to determine when an item can be 
evicted in response to a callback request, as well as for 
the algorithm the cache uses to select old items for 
eviction.

The data cache needs a way to determine when it is full 
and should evict old items. The simplest approach is to 
specify a fixed number of entries as a way of limiting the 
amount of data held in the cache. Another approach 
would be to include the size of the item cached in the 
estimate of cache space used. A still more complicated 
approach would involve making an estimate of the actual 
number of bytes consumed by the data structures needed 
to store a particular cache entry, and computing the 
amount of memory available as a proportion of the total 
memory limit for the virtual machine. We are currently 
using the first approach, as we have found that the added 
information of the other approaches does not make up 
for the additional complexity.

Our previous experience with Berkeley DB, reinforced 
by published research[2], suggests that the data cache 
should perform deadlock detection whenever a blocking 
access occurs, and should choose either the youngest 
transaction or the one holding the fewest locks when 
selecting the transaction to abort. Since the previous 
research found the two approaches comparable, we have 
adopted the approach of aborting the youngest 

transaction, again because of the simplicity of the 
code needed to implement that approach. 

3.2  Data Server

The central data server maintains information about 
which items are cached in the various data caches, 
and whether they are cached for read or write. Nodes 
that need access to items that are not available in 
their cache send requests to the data server to obtain 
the items or to upgrade access. If a requested item 
has not been provided to any data caches, or if the 
item is only cached for read and has been requested 
for read, then the data server obtains the item from 
the underlying persistence mechanism, makes a note 
of the new access, and returns it to the caller.

If there are conflicting accesses to the item in other 
data caches, the data server makes requests to each 
of those caches in turn to call back the conflicting 
access. If all those requests succeed, then the server 
returns the result to the requesting node immediately. 
If any of the requests are denied, then the server 
arranges to wait for notifications from the various 
data caches that access has been relinquished, or 
throws an exception if the request is not satisfied 
within the required timeout.

When the data server supplies an item to a data 
cache, it might be useful for the server to specify 
whether conflicting requests for that item by other 
data caches are already queued. In that case, the data 
cache receiving the item could queue a request to 
flush the item from the cache after the requesting 
transaction was complete. This scheme would 
probably improve performance for highly contended 
items.

3.3  Networking and Locking

The data caches and the data server communicate 
with each other over the network, with the 
communication at least initially implemented using 
JavaTM Remote Method Invocation (Java RMI), for 
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simplicity. In the future, it might be possible to improve 
performance by replacing Java RMI with a simpler 
facility based directly on sockets. For the data cache's 
callback queue, it might also be possible to improve 
performance by pipelining requests and using 
asynchronous acknowledgements.

Both the data cache and the data server have a common 
need to implement locking, with support for shared and 
exclusive locks, upgrading and downgrading locks, and 
blocking. The implementation of these facilities is 
shared as much as possible. Note that, because the server 
does not have information about transactions, there is no 
way for it to check for deadlocks. 

4  Localizing data access

The caching scheme described here will work best when 
access to a particular set of data items is localized on a 
single node. In such a case, the data cache on that node 
can be used by all local tasks that access those items, 
with only the need for asynchronous writes to the central 
data server. The worst case for this scheme is when all 
data is being accessed for write on multiple nodes. Such 
an access pattern will result in pathological behavior 
leading to poor performance where the data being 
accessed on multiple nodes will need to be evicted from 
local caches repeatedly. In this case, the performance of 
the cache would revert to the behavior of the non-
caching implementation, but with additional overhead to 
maintain the cache.

We are currently experimenting with mechanisms 
that will allow for the proper clustering of data 
access on a single node. To get the kind of 
performance needed, the clustering does not have to 
be perfect, but merely sufficient to avoid the 
pathological cases.
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