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Abstract

In softwaretesting, it is often desirableto find test inputs
that exercise specific programfeatures. To find these inputs
by hand is extremely time-consuming, especially when the
software is complex. Therefore, many attempts have been
made to automate the process.

Random test data generation consists of generating test
inputs at random, in the hope that they will exercise the
desired software features. Often, the desired inputs must
satisfy complex constraints, and this makes a random ap-
proach seemunlikely to succeed. In contrast, combinatorial
optimization techniques, such as those using genetic algo-
rithms, are meant to solve difficult problems involving the
simultaneous satisfaction of many constraints.

Inthispaper, wediscussexperimentswith test generation
problemsthat are harder than the ones discussed in earlier
literature — we use larger programs and more complex
test adequacy criteria. We find a widening gap between a
technique based on genetic algorithms and those based on
random test generation.

1. Introduction

In software testing, one is often interested in judging
how well a series of test inputs tests a piece of code —
good testing means uncovering as many faults as possible
with a potent set of tests. Thus, a test series that has the
potential to uncover many faults is better than one that can
only uncover a few.

Unfortunately, it is almost impossible to say quantita-
tively how many faults are potentially uncovered by a given
test set. This is not only because of the diversity of the faults
themselves, but because the very concept of a “fault” is only
vaguely defined. This has lead to the development of test
adequacy criteria— criteria that are believed to distinguish
good test sets from bad ones.

Once a test adequacy criterion has been selected, the
question that arises next is how one should go about creating

This material is based upon work supported by the National Science Foundation
under award number DMI-9661393.

Gary E. McGraw

Michael A. Schatz Curtis C. Walton

a test set that is “good” with respect to that criterion. Since
this can be difficult to do by hand, there is an obvious need
for automatic test data generation.

In this paper, we report on an enhancement of a test
data generation paradigm originally proposed by [3]. This
paradigm treats parts of the program as functions that can
be evaluated by executing the program, and whose value is
minimal for those inputs that satisfy the adequacy criterion.
Therefore, the problem of generating test data is reduced to
the well-understood problem of function minimization. [3]
proposed a gradient-descent algorithm to perform this min-
imization, but the problem is naturally amenable to combi-
natorial optimization techniques such as genetic search [1],
simulated annealing [2], or tabu search [5]. Our research
involves the use of genetic search to solve the minimization
problem.

Real test-data generation problems involve the simul-
taneous satisfaction of many constraints, so the small pro-
grams that are traditionally used to benchmark test data gen-
eration algorithms may be too easy. We apply our technique
to more complicated software, and find that the performance
of random test data generation deteriorates. Genetic search
performs considerably better.

2. Experimental results

In this preliminary study, we used our test data genera-
tion algorithm on two moderately-sized programs as well
as a suite of small programs that have frequently been used
as benchmarks for test data generation techniques. The
first of the two larger programs are fuzzy, a component
of a closed-loop high-temperature isostatic press controller
that uses fuzzy logic to control the density of the metal in
the press. The program contains 210 lines of executable
C code and has 35 decision points. The second is b737,
part of an automatic pilot system, which has 69 decision
points and 2046 source lines of code (excluding comments).
We attempted to generate test cases that satisfy condition-
decision coverage: each condition in the code is required to
be true in at least one test case and false in at least one test
case, and in addition each control branch must be executed
at least once. (A conditional statement may contain several



conditions, and condition-decision coverage requires each
of these conditions to take on both possible values. This
is a stronger criterion than branch-adequacy, which only
requires that the true and false branches of the conditional
statement be executed.)

For each program, we attempted to achieve condition-
decision coverage using genetic search, keeping a record of
the number of times the program was executed (the program
is executed each time the fitness function is evaluated for
a new input). Next, we applied random test data genera-
tion to the same program. We permitted the same number
of program executions as was used by the genetic search.
In this way, we allowed random test generation the same
computational resources that genetic search used.

For fuzzy, we found that about 41% of the conditions
in the program were usually covered by random test data
generation. By contrast, genetic search covered 60% of the
conditions. For b737, genetic search acheived about 85%
condition-decision coverage on average, while the random
test-data generator consisently acheived just over 55%.

We attribute the poor performance of random test gener-
ation to the greater complexity of our code and the increased
difficulty of attaining condition-decision coverage, as com-
pared to branch coverage. Although earlier results sug-
gested that random test generation might be quite valuable,
our results indicate that this value may decrease consider-
ably for complex programs and complex coverage criteria.

We also compared random test data generation to genetic
search on a library of small math programs, again with the
goal of acheiving condition-decision coverage. The results
are tabulated below.

Program random |G A
Binary search 53.3 66.7
Bubble sort 1 100 100
Bubble sort 2 44.4 44.4
Number of days between two dates |35.3 39.2
Euclidean GCD 100 100
Insertion sort 100 100
Computing the median 100 100
Quadratic formula 75 75

Warshall’s algorithm 91.7 100
Triangle classification 48.6 84.3

Genetic search outperformed random test data genera-
tion by a considerable margin in most of our experiments,
and always performed at least as well. Still, it did not
perform as well as might have been hoped. However, our
genetic algorithm is only in an early stage of development,
and there are many avenues for further improvement. We
have not yet implemented path selection heuristics, which
were important in [4]’s work. We have not implemented
an intelligent handling of boolean variables, which are cur-

rently treated like {0, 1}-valued variables instead of being
treated as conditions at the point where they are defined.
Finally, we have not yet tuned our genetic algorithm for the
problem of test data generation, although past experience
with GA’s indicates that such tuning is usually needed.

3. Conclusion

In many areas of safety-critical software development,
the ability to achieve test coverage of code is considered
vital. This is especially true of aviation software develop-
ment projects, because the Federal Aviation Administration
currently mandates that safety-critical aviation software be
tested with inputs that satisfy Multiple Condition Cover-
age. Test data is often generated by hand, so demand for
automatic test data generation is high in these sectors.

There has also been an increase in the demand for cover-
age assessment tools elsewhere in the software development
community. This may presage an increased demand for test
data generation tools. No powerful test generation tools are
commercially available today.

We have reported preliminary results from an experiment
comparing random test data generation with a new approach
using genetic search. Random test generation, which in
earlier experiments seemed to be a viable approach, begins
to look less promising in the more difficult setting we used
for our experiment. Genetic search visibly outperformed
random test generation in our small study. It still remains to
compare genetic search to techniques using gradient descent
for test-data generation, such as the one used by [3].
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