
Stochastic Models for Restart, Rejuvenation and Checkpointing

Habilitationsschrift
zur Erlangung der Lehrbefähigung
für das Fach

Informatik

vorgelegt dem Rat der Mathematisch-Naturwissenschaftlichen Fakultät II
der Humboldt-Universität zu Berlin
von

Dr. Katharina Wolter

geboren am 27. April 1968 in Nürtingen

.
Präsident/Präsidentin

der Humboldt-Universität zu Berlin

.
Dekan/Dekanin

Berlin, den

. .

Gutachter:

1.

2.

3.

Stochastic Models for Restart,
Rejuvenation and Checkpointing

Habilitation Thesis

Katinka Wolter

Humboldt-Universität Berlin

Institut für Informatik

Unter den Linden 6, 10099 Berlin, Germany

wolter@informatik.hu-berlin.de

16th March 2007

Contents

I Introduction 11

1 Basic Concepts and Problems 13

1.1 The Timeout Problem . 13

1.2 System and Fault Models . 16

1.3 Preventive Maintenance . 18

1.4 Note on Terminology . 19

1.5 Outline . 20

2 Task Completion Time 21

2.1 Bounded Downtime . 25

2.2 Bounded Accumulated Downtime . 29

2.3 Bounded Number of Failures . 34

II Restart 39

3 Applicability Analysis of Restart 41

3.1 Applications of Restart . 41

3.1.1 Randomised Algorithms . 41

3.1.2 Optimal Restart Time for a Randomised Algorithm 42

3.1.3 Failure Detectors . 44

3.1.4 Congestion Control in TCP . 45

3.2 Criteria for Successful Restarts . 47

3.2.1 When Does Restart Improve the Expected Completion Time? 48

3.2.2 When Does Restart Improve the Probability of Meeting a Deadline? . 52

3.3 Conclusions . 55

3

4 CONTENTS

4 Moments of Completion Time under Restart 57

4.1 The Information Captured by the Moments of a Distribution 58

4.2 Models for Moments of Completion Time . 60

4.2.1 Unbounded Number of Restarts . 60

4.2.2 Finite Number of Restarts . 65

4.3 Optimal Restart Times for the Moments of Completion Time 67

4.3.1 Expected Completion Time . 67

4.3.1.1 Unbounded Number of Allowed Restarts 67

4.3.1.2 Finite Number of Allowed Restarts 68

4.3.1.3 Characteristics of Probability Distributions and Optimal
Restart Policies . 70

4.3.2 Optimal Restart Times for Higher Moments 73

4.3.2.1 Characteristics of Optimal Restart Times 78

4.3.2.2 Computational Effort . 81

5 Meeting Deadlines through Restart 83

5.1 A Model for the Probability of Meeting a Deadline under Restart 83

5.2 Algorithms for Optimal Restart Times . 85

5.3 An Engineering Rule to Approximate the Optimal Restart Time 87

5.4 Towards on-line Restart for Self-Management of Systems 92

5.4.1 Estimating the Hazard Rate . 93

5.4.2 Experiments . 95

III Software Rejuvenation 103

6 Practical Aspects of Preventive Maintenance and Software Rejuvenation 109

6.1 Preventive Maintenance . 109

6.2 Software Rejuvenation . 113

7 Stochastic Models for Preventive Maintenance and Software Rejuvenation117

7.1 A non-Markovian Preventive Maintenance Model 117

7.2 A Markovian Software Rejuvenation Model 119

7.3 Aging in the Modelling of Software Rejuvenation 123

CONTENTS 5

7.4 A Petri Net Model . 130

7.5 Stochastic Processes for Shock and Inspection-Based Modelling 135

7.5.1 The Inspection Model with Alert Threshold Policy 136

7.5.2 The Shock Model with a Risk Policy 140

7.6 Inspection-based Modelling using the Möbius Modelling Tool 143

IV Checkpointing 147

8 Checkpointing Systems 151

8.1 Checkpointing Single-Unit Systems . 151

8.2 Checkpointing in Distributed Systems . 154

9 Stochastic Models for Checkpointing 157

9.1 Checkpointing at Program Level . 158

9.1.1 Equidistant Checkpointing . 159

9.1.2 Checkpointing Real-Time Tasks . 167

9.1.3 Random Checkpointing Intervals . 172

9.1.4 Algorithms for Optimum Checkpoint Selection 175

9.2 Checkpointing at System Level . 184

9.2.1 Analytic Models for Checkpointing Transaction-Based Systems 184

9.2.2 Checkpointing Policies for Transaction-Based Systems 190

9.2.3 A Queueing Model for Checkpointing Transaction-Based Systems . . . 199

9.3 A Trade-Off Metric for Optimal Checkpoint Selection 206

9.4 Summary . 209

10 Summary, Conclusion and Outlook 211

A Properties in Discrete Systems 215

B Important Probability Distributions 217

B.1 Discrete Probability Distributions . 217

B.2 Continuous Probability Distributions . 219

6 CONTENTS

C Estimating the Hazard Rate 224

C.1 Cumulative hazard rate . 224

C.2 Epanechnikov kernel . 224

C.3 Bandwidth Estimation . 225

D The Laplace and the Laplace-Stieltjes Transform 226

Bibliography 228

Abstract

This thesis addresses the timeout selection problem. Fault-tolerance methods are the selected
context. How to set optimal timeout values in those methods is investigated. The three
chosen methods are restart, software rejuvenation and checkpointing. Restart operates on
program level. A task is aborted and restarted if it does not complete fast enough. The task
is suspected to have failed if it does not complete within a given time. In case of failure a
simple treatment is to restart the task. The timeout must be carefully chosen because if it
is too short a task might be aborted just before completion while if it is chosen too long one
must wait unnecessarily.

The second method is software rejuvenation. Software rejuvenation restarts the operating en-
vironment of a task in order to prevent failures. The rejuvenation interval must be chosen with
care. If rejuvenation is performed too often the rejuvenation cost accumulates unnecessarily,
while if the system is rejuvenated at too long intervals it fails too often.

The third method, checkpointing, is the most complex mechanism of the three as it has
a preventive component, saving a checkpoint, and a reactive component, rollback recovery.
Checkpointing systems save the system state in regular or irregular time intervals. Upon
failure the system recovers by rolling back to the most recent checkpoint. The work performed
since the most recent checkpoint is lost with a failure. If checkpoints are taken too frequently
the interrupt and save operation incurs too high a cost, while if checkpoint intervals are too
long much work is lost upon system failure.

For all three methods similar trade-offs exist. Those trade-offs are evaluated and optimised
using stochastic models. The focus of this thesis is to collect, summarise and compare those
stochastic models. This can be seen as a first step towards understanding and solving the
generic timeout selection problem.

7

8 CONTENTS

Acknowledgements

First of all, I am very greatful to Mirek Malek for carefully reading the manuscript from the
first to the last page. His many valuable comments helped to improve this text tremendeously.
To Mirek I am, furthermore, greatful for the liberal and yet stimulating work environment
with many lively technical discussions. I am thankful to Boudewijn Haverkort and Miklos
Telek as they agreed on reviewing this thesis and were open to coming to Berlin to discuss
yet a different topic.

I thank the members of the committee for their invested time and consideration. It was a
pleasure to work with the gifted students at Humboldt university over the past five years
and I particularly thank Willi Engel for being a member of the habilitation committee and
Philipp Reinecke for the many little shell scripts he quickly set up and for his dedicated work
in the restart project.

The excellent technical support provided by Steffen Tschirpke was of great help as was the
support of Christine Henze in all administrative matters.

Finally, the most crucial support throughout the years I was working on this thesis came from
my family. I thank Tobias Zepter, Aad van Moorsel, and our children Louise, Margarete,
Elisabeth and Samuel for spending holidays without me and bearing my bad temper in the
mornings after the many late nights I had while working on this thesis. Special thanks to
Aad for technical discussions, organisational advice, and joining me in endless Mathematica
sessions.

9

10 CONTENTS

Part I

Introduction

11

12

Chapter 1

Basic Concepts and Problems

1.1 The Timeout Problem

Timeout problems arise virtually in all walks of life, including human-created systems such as
computing systems. Every day often several times we find ourselves waiting for some service,
or waiting for a delivery, wondering how long should I wait? In computing systems one has to
wait for the result of a computation, the response to a request, or a reply in a communication.
Set aside the situations where a system deliberately waits for customers. Behind the question,
how long one should wait, lies the suspicion the system may have failed, the length of a queue
might have become too long such that the request may have got lost, the connection may have
been disrupted or a contributing process may have erroneously stopped and will never reply.
In real-life situations the length of the line in front as well as the performance of the person
behind the counter can be observed. Based on both impressions the decision whether to stay
in line or to drop out is taken. The human user thus applies an educated guess in order to
decide whether the waiting time is still within reasonable limits of the system response time
in healthy state. This guess can often be more precise in a human environment than when
facing a computing system. The less is known about the internal configuration of the system,
the more a user has to rely upon his feelings. Typically first the user will wait optimistically
for some time followed by a period of doubt, until finally one gives up hope and cancels the
session, aborts the computation, or interrupts the communication.

The question how long to wait touches on different fields of computer science. It implies
consideration of the reasons for long waiting time and investigation of possible solutions of
the problems leading to long waiting times. Waiting time can be long because of a failure
somewhere in the system where no appropriate fault-tolerance mechanisms are deployed. One
might have to wait because a computation takes much longer than anticipated, or some part
of the system is just very slow, or overloaded. Analysis of delays in computing systems
requires detailed consideration of system performance and reliability parameters and possible
performance and reliability enhancements.

We study different performance and reliability mechanisms commonly used in computing
systems. One can do this at different levels of abstraction. Implementation of the mechanisms
at system level raises many questions, such as when to use a method, how to implement it, in
which layer of the software stack to use what mechanism, how to evaluate each method, how

13

14 1. Basic Concepts and Problems

to improve them and how to parameterise them. The last two of those exceed pure systems
questions and are commonly answered using formal methods, or mathematical models. This
work is concerned with stochastic models and stochastic modelling solutions to some particular
timeout problems as they arise in performance and reliability mechanisms.

In the second part, the first technical part of this work, a black box approach is used to find
ways to speed up processes. The restart method does not explicitly consider the shortcomings
in a system that may lead to long waiting times. Instead, it uses an engineering perspective
that does not require an understanding of the system dynamics leading to exceptionally
long delays. It uses the systems external timing behaviour to, first, identify situations in
which matters can be sped up by aborting a process and starting it anew, and, second,
develop algorithms that determine the optimal timeout efficiently. This part consists almost
exclusively in recent research contributions of the author and her colleagues.

The method studied in the third part of this work focusses on the impact of the environment
on process behaviour. It analyses not the performance of the process itself, but its response
to the degradation of the environment. The process environment is analysed, modelled and
tuned to improve the process performance and reliability. Rejuvenation denotes a periodic
restart of the process environment in order to increase system performance and reduce the
failure probability.

The fourth part of this thesis is concerned with checkpointing, which is the most fine-grained
performance and fault-tolerance mechanism out of the considered approaches. Checkpointed
systems periodically save the system state such that in the case of system failure no complete
restart of the running processes is necessary, but all processes can be reset to the most recent
checkpoint and continue processing from there. The checkpoint intervals can be placed in
different ways depending on the considered system and the metrics of interest.

At first sight the mechanisms discussed in this work, restart, rejuvenation and checkpointing,
seem to be very similar. In all approaches processing is interrupted and started again. All
three methods use a time interval, either as a timeout for process or system restart or for the
placement of checkpoints. But even though all methods relate to the general timeout problem
each one of them does so in a different way. When using the restart method completion of
a process is anticipated as soon as possible and action is taken if the result is not delivered
within a given time, whereas rejuvenation and checkpointing are applied to extend the time
until system failure. Rejuvenation and checkpointing also speed up task completion but
they do so indirectly by avoiding system outage. When applying the restart method not
the environment is observed but the considered task. Rejuvenation, in contrast, requires
monitoring the system, not the processes it executes and is applied to the system not to the
processes. Checkpointing, finally, combines properties of both, restart and rejuvenation. To
apply checkpointing the system failure behaviour and the task processing must be observed.
The rollback to the most recent checkpoint can be applied to either the task, the system
or both. As with rejuvenation the purpose is to circumvent system failures and achieve
completion of processes in as short a time as possible. However, the most important difference
between restart and both rejuvenation and checkpointing is that the former relates to a
minimisation problem with known limit of the optimum, while both latter methods relate to
unbounded maximisation problems.

Just as timeout problems in systems at first glance seem to be all the same, the stochastic
models appear to be very similar. Only a deeper analysis of the stochastic models formulated

1.1. The Timeout Problem 15

for restart, rejuvenation and checkpointing reveals the great impact of the small differences,
as will become clearer throughout this work.

A profound understanding of timeout problems in general may provide us with a tool box of
appropriate solutions which can be applied after checking some characteristics of the given
system. This thesis takes one first step towards the necessary appraisal of timeout problems
by summarising and comparing different timeout mechanisms.

Many threads of the work in this thesis may be further expanded as they require a separate
tractive. Especially development of systems that implement restart, rejuvenation and check-
pointing, but also evaluation of such system would be of utmost interest. Bearing in mind that
the majority of the modelling work for checkpointing has been published at least twenty years
ago and real systems such as IBM’s super computer Blue Gene/L implement checkpointing
schemes there obviously exists a considerable quantity of research in system development that
could supplement the modelling work collected in this thesis. Recently hardly any work on
model-based analysis of checkpointing is being published and the research questions seem to
be mostly solved.

For software rejuvenation matters are slightly different. Existing modelling work is roughly
ten years old and until now the method is mainly applied for research purposes. Recently
rejuvenation has been proposed as the method of choice for self-healing systems. Omitting
the systems perspective of rejuvenation is less a loss than it is for checkpointing since less
work has been published as of yet and the modelling work for rejuvenation often is interwoven
with system development and evaluation.

Confronting modelling and model analysis of the restart method with its system implementa-
tion leaves yet a different mark. Modelling work on the restart method is quite new as restart
has been considered a special case of checkpointing until recently. No dedicated implemen-
tations exist. It will be shown later that the stochastic restart model is inherently different
from known checkpointing models as is their analysis and its results. Even though no systems
notably implement the restart method the mechanism is used in many technical systems the
TCP (transport control protocol) being but one example.

Even though the classical timeout models seem to be well understood, the rise of todays
adaptive, self-diagnosing, self-healing, and self-managing systems puts the issue of appro-
priate timeout selection again into question. Hardly any system knowledge is available for
heterogeneous, distributed systems and simple, efficient models like the restart model are,
therefore, potential candidates for reliability enhancement of such systems. Even though
checkpointing models are superior in the amount of system detail they use the restart model
is a much more likely candidate in environments where little information is available, but on-
line algorithms are sought that can operate without human interaction. How to set a timeout
correctly and efficiently in complex heterogeneous systems is a relevant question already and
will become even more so in the future. To be able to answer this question, solid knowledge
and profound overview over existing work is essential. To provide a structured collection of
existing work in timeout related research is a major contribution of this thesis.

16 1. Basic Concepts and Problems

1.2 System and Fault Models

Restart, rejuvenation and checkpointing apply to computing systems in general. All three
methods can be used in processing systems that execute either large tasks which run for a
long time, or small transactions that complete quickly. The considered computing systems
can be unreliable and subject to failures. In rejuvenation and checkpointing models failure
characteristics are of importance while the restart model does not include the computing
system explicitly. In a more detailed description each method demands for its own system
and fault model.

When the unreliable system eventually fails it is being repaired and then restarts operation.
As it starts processing again different cases must be distinguished. The failure can be non-
preemptive, in modelling terminology, and, in system terminology, the system state has been
saved at the time of the failure. The failure can as well be preemptive and all work performed
so far is lost. Several ways exist to handle the loss of performed work in a stochastic model.
When a preemptive resume failure happens the amount of work already performed is mem-
orised. As the system resumes operation only the remaining work of the current task has
to be worked off. A preemptive repeat failure indicates that all work performed so far is lost
as the system fails. Upon resume after a preemptive repeat identical failure the task has to
be processed again from scratch and the system executes the same task again with identical
work requirement. A preemptive repeat different failure is followed by reprocessing using a
new set of random parameters.

Let us introduce the system and fault models of the three methods studied in this thesis:
restart, rejuvenation and checkpointing.

The restart method simply consists of the abortion of a task and its restart1 from the be-
ginning. Each execution of the task is independent of all preceding executions, which means
that no system state is saved during operation and the used task parameters are initialised
independently of all previous initialisations. The restart method uses a very general concept
which is being used in reliable communication protocols, it has been applied to portfolio
theory in economics [MH01] and can be applied for virtually any kind of computer science
application. Restart has no prerequisites on the system level, other than that the task has
not completed yet. Even though the system model for restart does not include an explicit
notion of failures the method is applied successfully only if the system experiences transient
failures. The type of failure, however, need not be further specified. Transient failures imply
that the system may either have recovered when the task is being reexecuted or the failure
may not occur again upon reexecution of the task. Note that restart is a method of preventive
maintenance and is implemented as timeout mechanism in distributed systems.

Rejuvenation denotes the periodic restart of the operating environment of a process for the
purpose of garbage collection, memory clearance, etc. After rejuvenation the system is as
new. This is useful under the assumption that over time, e.g., memory leakage degrades
system performance and will eventually lead to system failure. The failures handled using
rejuvenation are crash and hang failures due to minor computational errors.

Checkpointing requires saving the system state at intermediate points in time. Upon failure
the system rolls back to the most recent checkpoint and computation is resumed from there.

1The restart method should not be confused with the equally named fast simulation technique

1.2. System and Fault Models 17

If one long batch job is being processed the state of the system including the status of the
task are saved in a checkpoint. If checkpointing is applied to a transaction processing system
where many short transactions are being processed a checkpoint typically contains only the
system state while the status of the transactions in the system is kept separately in the audit
trail. Checkpoint and audit trail together allow restoration of the system at the most recent
checkpoint and reprocessing of the transactions if necessary. Checkpointing can be applied
to long batch jobs, called program level checkpointing, as well as to transaction processing
systems, called system level checkpointing. Both give rise to different stochastic models.
Checkpointing protects against many transient hardware and component failures. If the fault
is caused by a design error the system will fail again with each restoration. Protection from
software faults typically requires additional mechanisms such as algorithmic diversity and
recovery feed-back. Any kind of permanent failure would disrupt the system at the same
point again upon recovery.

The terms retry, restart and reboot each have a specific meaning in fault tolerance theory. In
the strict sense retry denotes the identical reprocessing of a task which could be reprocessing
a transaction by a running system. Restart means that the task is aborted, the system is
shut down and restarted such that a new instance of the system is ready for processing. Re-
boot includes a system update or reinstallation of the system environment and the operating
environment may not be the same as before the reboot. Retry, restart and reboot can all
be applied at different levels in a computing system. They intervene at different degree with
system operation. While a retry not necessarily requires any process to terminate, restart
happens after abortion or termination of a process and reboot require a complete system or
component setup.

The abstract relation of retry, restart and reboot is shown in Figure 1.1. Application restart
requires all requests to be retried. Therefore retry is necessary if restart is performed and the
set of all retries is a subset of the set of all restarts. Both are subsets of the set of reboots.
In other words system reboot requires application restart and request retry, while application
restart only requires request retry and retry is possible without any of restart and reboot.

retry

restart

reboot

Figure 1.1: Relation of retry, restart, and reboot

As a matter of fact, in most cases the restart method in practice retries the current task
and rejuvenation applies restart. However, the stochastic models discussed in this thesis
do not deploy the difference between retry, restart and reboot. Mostly only task repetition
is modelled and the above discussed failure modes are distinguished abstracting from the
circumstances of task reprocessing. Since the distinction between retry, restart, and reboot

18 1. Basic Concepts and Problems

is for the modelling exercise of minor importance we follow common practice and use terms
like restart, reload, retry, etc interchangingly.

The fault models for restart, rejuvenation and checkpointing are typically very simple. Faults
are assumed to be transient and failures are detected immediately as they occur and they are
assumed not to have spread in the system. These assumptions are in practice often unrealistic,
but they are essential in order to obtain tractable models.

The models significantly differ in the relevant metrics obtained from the model. Of major
importance is the task completion time and its moments. Some models allow to draw conclu-
sions on system availability and the cost due to failures or fault-tolerance mechanisms. Very
often the cost of a fault-tolerance mechanism is traded against the cost of failures and the
purpose of modelling is to minimise the total cost. For all three mechanisms the intervals
between restart, rejuvenation, or checkpoints can be chosen such as to optimise the considered
metric.

Many different modelling formalisms have been applied and some of them are presented in
this thesis. For the restart model closed form stochastic expressions are being used while the
rejuvenation models often use Petri net models and stochastic processes. An overview of the
model classes and their respective solution methods is given in [BPTT98].

1.3 Preventive Maintenance

Preventive maintenance is a very broad discipline, including observation of the system state
and actions that must be taken to prevent failure of the system. Preventive maintenance typ-
ically includes observation of the system state through measurements, testing and systematic
inspection as well as treatments to improve the actual condition of the system such as partial
replacement, component restart, etc. Knowing what to test and measure and when to take
action in order to optimise system operation and avoid failures are the challenges of preven-
tive maintenance. In this thesis software rejuvenation, one flavour of preventive maintenance,
is investigated as it falls into the class of timeout problems and uses a restart mechanism.
Software rejuvenation requires the monitoring of variables that are indicative of the system
degradation such that, if necessary, software restart can be applied as curative treatment.
Software rejuvenation stops the system during fault-free operation and performs garbage col-
lection, memory clearance and restart of some underlying processes to avoid potential future
failures. Stochastic models for software rejuvenation therefore include a model of the system
degradation process as well as model assumptions on the effects of software restart and allow
to determine e.g. the optimal time interval between software restarts.

Under the assumption that system degradation follows certain patterns system failures can be
predicted and often prevented by means of preventive maintenance in due time. Software re-
juvenation as one means of preventive maintenance on one hand causes system downtime, on
the other hand it presumably increases system lifetime. The optimal time between preventive
maintenance actions can be determined using a stochastic model of the considered system, its
degradation and failure patterns. In most systems no well-defined relation between system
degradation (e.g. memory usage) and time to failure is known. Then thresholds for pre-
sumably indicative system variables must be defined and when these given limits are reached

1.4. Note on Terminology 19

preventive maintenance action is taken. Statistical models can be used to find solutions to the
related optimisation problems. A number of different models have been formulated assuming
certain degradation characteristics or failure patterns and software rejuvenation properties.
Modelling periodic inspections allows to determine an optimal alert threshold, while mod-
elling a degradation process allows to determine the optimal rejuvenation intervals. Other
stochastic models are able to optimise the trade-off between downtime due to preventive
maintenance and downtime due to system failure.

When searching for common properties of restart, rejuvenation and checkpointing the rela-
tionship between restart and rejuvenation is of special interest since restart, like rejuvenation,
can be considered a preventive maintenance approach. In particular, extending the system
life time can be seen as the dual problem of the completion time problem studied in the next
part of this thesis. In other words, maximise the time to failure through preventive mainte-
nance policies, instead of minimise the completion time through restart policies. Resulting
schemes that optimise the timing of preventive maintenance are known as age replacement
policies, and the policies discussed for the restart model in this thesis as well as in [LSZ93] are
in fact age replacement policies. Interesting enough, it is not easy to find results on this dual
model (we have only found one in [Ger00b]), bounding the first moment of time to failure, see
Section 4.3.1.1. In general, preventive maintenance, and rejuvenation in particular, is mostly
analysed in terms of cost of preventive versus required maintenance, thus complicating the
model, but this is necessary to overcome trivial optimal preventive maintenance solutions.

1.4 Note on Terminology

The main contribution of this thesis is to collect, summarise and compare work on stochastic
models for restart, rejuvenation and checkpointing. The three methods exhibit interesting
relationships, as do the related stochastic models. However, the stochastic models have been
applied to different fields in computer science and new application areas may still arise. While
the models are all about states and transitions between those states, or activities that direct
the model into a new state, the terminology in each of the application areas is inherently
different. While from a systems perspective a transaction and a task are certainly not the
same thing, in a stochastic model they only differ in their duration. We will therefore often
use task, job, work, and transaction alternatingly. Sometimes we may speak of the work
requirement, task length or processing requirement and these always refer to the same item
in the analysis, the time needed to finish a job. As mentioned above also restart, retry, reboot,
and reload have a more general meaning in our context and are therefore not distinguished.

Throughout this thesis failure of a system happens at rate γ and the repair rate is ν. Com-
monly in dependability theory λ and µ are being used. In this work transactions arrive to the
system at rate λ. They are processed at rate µ. As known from queueing theory ρ = λ/µ. The
recovery rate after preventive maintenance as well as checkpoint rollback recovery is denoted
r, or R.

The deterministic bound on the downtime, or the accumulated downtime is denoted b, while
the random variable denoting the bound on the downtime, or accumulated downtime is de-
noted T .

If it is finite, the number of allowed restarts is denoted K, as is the number of allowed repairs.

20 1. Basic Concepts and Problems

1.5 Outline

This section gives a brief overview of the organisation of this thesis. This text is structured
in four parts.

The first part contains two chapters, the introduction and a chapter on task completion time
in unreliable systems. In the first chapter the timeout selection problem is introduced. This is
the core problem addressed in this thesis. Whether restart, rejuvenation, or checkpointing is
investigated the provided solution offers an optimal timeout value with respect to some opti-
misation criteria after which restart, rejuvenation and checkpointing is triggered. The system
and fault models underlying the work presented in this thesis are depicted. Preventive main-
tenance as a means to enhance software fault-tolerance is discussed. Software rejuvenation,
generally, is considered a method of preventive maintenance but also checkpointing belongs
to the class of preventive methods. A note on terminology and this outline conclude the
first chapter. The second chapter presents models of completion time in unreliable systems
without restart, rejuvenation and checkpointing. This is the state upon which the three
fault-tolerance mechanisms, restart, rejuvenation and checkpointing ought to improve.

The three subsequent parts are one for each of the considered methods, i.e. Part II covers
the restart model, Part III software rejuvenation and Part IV checkpointing.

The restart model in the second part is the authors main research contribution also published
in [vMW03a, vMW04d, Wol05, vMW06]. Work on the restart method is introduced by a brief
review of applications of the restart mechanism. Simple restart after a timeout is applied in
diverse fields of computing science. This leads to the general question when restart is beneficial
to a process and should be applied. This question can be formulate in a straight forward way,
but is not easily answered in general. We will give some selected detailed answers in Chapters
4 and 5 and provide a guideline and simple rule.

Chapter 4 contains our analysis of moments of completion time under restart. This chapter
investigates the topic rather exhaustively. We look at different moments of completion time
and the information the moments provide us with as well as algorithms to optimise the
moments when using a finite or infinite number of restarts.

In Chapter 5 we investigate a problem that commonly arises in real-time systems. The
question is how to improve the probability of meeting a deadline. How should the restart
interval be chosen as to optimise this metric. Furthermore, we develop an engineering rule
and algorithm which can be used online.

Software rejuvenation and preventive maintenance in general is discussed in Part III of the
thesis. First, pragmatic aspects of systems implementing software rejuvenation or other meth-
ods of preventive maintenance are addressed in Chapter 6. Chapter 7 revisits and compares
stochastic models of preventive maintenance and software rejuvenation.

In Part IV work on checkpointing is presented. As in Part III the first chapter in this part,
Chapter 8, gives an overview of systems implementing the method. In Chapter 9 stochastic
models for checkpointing at program level and then stochastic models for checkpointing at
system level are presented. Attention is drawn to some potential improvements to models
taken from the literature.

Chapter 10 summarises and concludes this thesis and points out possible directions of future
research.

Chapter 2

Task Completion Time

As a reference model for the reliability enhancement techniques discussed later in this thesis we
will first look at system performance, availability and reliability without restart, rejuvenation,
or checkpointing. Task completion time is considered in general [BT01] in unreliable systems
that are subject to failures. The three mechanisms can be evaluated by how much they
improve the task completion time at what cost. To be able to value the benefit obtained
by reliability enhancement mechanisms knowledge of the system behaviour without those
mechanisms necessary.

U
up

D
down

h (t)D

h (t)U

Figure 2.1: System model

Figure 2.1 shows the generic system model used throughout this thesis, if not stated other-
wise. The system alternates between an up (or operational) and a down (or non-operational)
state according to a semi-Markov process. Both the uptime (U), or time to failure, and the
downtime (D), or time to repair are random variables with probability distribution function
(PDF) FU (t) and FD(t) and probability density functions (pdf) fU (t) and fD(t), respec-
tively. Transition from the up to the down state and back to the up state occur according
to the respective hazard rate functions hU (t) and hD(t). This model includes the special case
of a Markovian fault model, where failures occur in a Poisson process and repair times are
exponentially distributed. Then both, FU (t) and FD(t) are exponential distributions and
hU (t) = γ. as well as hD(t) = ν. The chosen notation attempts to avoid confusion with the
arrival and service rate in processing systems, λ and µ, as discussed later in this thesis.

Successive sojourn times in the up or the down state are always assumed iid. In general, the
distribution function and the hazard rate function relate as

FX(t) = 1 − e−
R t
0 hX(s) ds for X ∈ {U,D}.

21

22 2. Task Completion Time

The bound on the downtime, or accumulated downtime, if this is considered, is denoted
by the random variable T with CDF FT (t). If a deterministic downtime b is considered,
then FT (t) is the unit step function at t = b. Let K be the bound on the number of
repairs, and N a random variable denoting the number of failures until a full system failure.
Denote by F∼

X (s) =
∫∞
0 e−st dFX(t),X ∈ {U,D} the Laplace-Stieltjes transform (LST)1 of

the probability distribution function F .

Assume a given system needs to process an amount of work w, which is measured in the time
it needs to be processed or the number of commands to be executed. If the work requirement
is random, we denote it using the random variable W . In a perfect failure free system the
time to finish a job of size w equals time w. In a system that fails the job is interrupted
upon failure of the system. Then two possible cases are considered: either the job is resumed
after repair of the system (preemptive resume failure) or the job has to be restarted anew
(preemptive repeat failure). In any case it will take longer than w time units to finish a job
with work requirement w. Let T (w) denote the time needed to complete a work requirement
w in a system subject to failure and repair. For the preemptive resume case and unlimited
failures the LST of the job completion time has been derived in [Nic95] as

F∼
T (t, w) =

(s + γ)e−(s+γ)w

s+ γ(1 − F∼
D (s)(1 − e(s+γ)w))

(2.1)

Equation (2.1) is a special case of the respective more general formula in [KNT87]. A similar
result has been obtained in [GDT92]. The distribution of the completion time of a job with
random work requirement W in a system subject to failure and repair (without checkpointing)
as given in (2.1) in the transform domain cannot be used for direct computation of the
completion time distribution. But its expectation can be computed using the relationship

E(T (w)) =
−∂F∼

T
(t,w)

∂s |s=0

E(T (w)) =

(
1

γ
+ E(D)

)
(eγw − 1). (2.2)

It is interesting to observe from (2.2) (and pointed out in [Nic95, KNST86, Dud83]) that
the time needed to complete the work requirement w, E(T (w)) grows exponentially with the
work requirement, as shown in Figure 2.2 for a failure rate of γ = 0.01 and mean downtime
of E(D) = 0.1 time units. Repairable systems using a combination of the different types of
preemption are a generalised form of the model above. Job completion time in those systems,
represented as a semi-Markov model is considered in [KNST86] in very general form.

For the special case of exponentially distributed time between failures U , or failure rate γ
and given work requirement w the probability that the task can be finished is given by the
probability that an up period of the system is longer than the task length [Bro79]:

Pr {U ≥ w} = e−γw. (2.3)

After each failure the task must be started again from the beginning, so the assumed failure
mode is preemptive repeat.

1See appendix D for properties of the Laplace and the Laplace-Stieltjes transform

23

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

ex
pe

ct
ed

 ta
sk

 c
om

pl
et

io
n

tim
e

task length

Figure 2.2: Expected task completion time

The mean number of runs needed to complete a task of length w in a system with failure rate
γ increases exponentially with the task length and is given by

M = eγw. (2.4)

The average duration of all runs is [Bro79]

Taverage =
1

γ

(
1 − (1 + γw)e−γw

) (
1 − e−γw

)
+ we−γw. (2.5)

Obviously, the higher the failure rate, the shorter the average run length.

The total run time needed to complete one execution of length w is therefore

T̂average = M · Taverage =

=
1

γ

(
1 − (1 + γw)e−γw

)
(eγw − 1) + w (2.6)

or equivalently

T̂average

w
=

1

γw
(eγw − 2) +

(
1 +

1

γw
e−γw

)
. (2.7)

Equation (2.7) expresses some system properties. As the time between failures becomes long
as compared with the task length most runs will complete the task, i.e.

As
w

1/γ
→ 0, then

Taverage

w
→ 1 from below and

T̂average

w
→ 1 from above.

The few runs that still fail have runtime shorter than w, therefore the first limit holds. Since
most runs succeed on the long-term average little time is wasted and the second limit holds.

Furthermore, there are the following limiting worst cases.

As
w

1/γ
→ ∞, then

Taverage

w
→ γw and

T̂average

w
→ ∞

24 2. Task Completion Time

If, on the other hand, the expected time between failures becomes short as compared with
the task length, most runs fail and only very few complete. The average duration of runs
lasts until the occurrence of a failure 1/γ and the number of runs needed to complete the task
grows indefinitely.

Under the assumption that failures occur in a Poisson process at rate γ, they do not happen
during recovery and are detected immediately, the repair time D, the task length w and the
failure rate γ are constants, an appealing expression for the expected task completion time
has been derived in [Dud83]:

E [T (w)] =

(
D +

1

γ

)
(eγw − 1) . (2.8)

Note that also in this special case the expected task completion time is an exponential function
of the task length w.

The assumption of exponentially distributed time to failure is in many cases not appropriate.
Because of its ability to model aging, especially in reliability analysis, the Weibull distribution
is often being used. In [LC84] the time needed to complete a job of fixed length in a system
with preemptive repeat failure mode has been studied. It was shown that if the time to failure
is exponentially distributed the mean time needed to finish the task is underestimated if the
appropriate failure time distribution would be the Weibull distribution with shape parameter
greater than one. The expected time to complete a task of length w is given as2

E [V (w)] = w +
1

1 − FU (w)

(∫ w

0
xfU (x) dx+ FU (w)E [U]

)

This equation can be used to derive a bound on the mean time E [V (w)] needed to complete
a task of length w, which is

w ≤ E [V (w)] ≤ w +
E [U] + E [D]

1 − FU (w)
.

The lower bound is obvious, since completing the job at least needs its length. The upper
bound can be interpreted as follows. If most of the probability mass of fU (.) concentrates in
the interval [0, w), then FU (w) ≈ 1 and then it is very likely that the up period is not long
enough to finish the task and the mean time to complete the task becomes infinitely large. If,
on the other hand, most of the probability mass of fU (.) concentrates in the interval [w,∞),
then FU (w) ≈ 0 and most uptimes are longer than w and therefore the mean time to complete
the task will be close to the task length.

Going back to the general treatments, clearly, on the average and if failure and repair distri-
bution are continuous and real valued, with preemptive resume failures all jobs will eventually
be completed, while with preemptive repeat failures in the worst case the system will have a
time to failure that is almost always shorter than the job completion time and hence the job
will never be finished.

We can furthermore distinguish systems by the amount of repair they allow for. We consider
three cases:

2It should be mentioned that an implementation of the given equation does not show the property claimed
in [LC84].

2.1. Bounded Downtime 25

• limited repair time. For instance in real-time systems a job must be finished before a
deadline, allowing only for a strictly bounded repair time [GNTT87].

• limited accumulated repair time. Availability guarantees of network providers promise
a bounded accumulated downtime per time, e.g. per month.

• limited number of repairs. Economic considerations might limit the number of failures
a system should experience until it is declared broken.

The analysis carried out in this subsection is extended in [KNT87] by using a general system
state model, instead of the simple up-down model we use here. In [KNT87] the system
states are described using a semi-Markov process with possibly infinite state space. Subsets
of the state space can apply each of the three failure modes, preemptive resume, preemptive
repeat identical and preemptive repeat different. If not stated otherwise a preemptive repeat
failure indicates a preemptive repeat different one. After a failure and restart the work
requirement is again randomly drawn from a distribution. Note that for deterministic as well
as exponentially distributed work requirement the distinction between preemptive repeat
identical and preemptive repeat different failures does not exist. In this section the two
remaining failure modes, i.e. preemptive resume and preemptive repeat failure mode are
treated separately. We discuss here a special case of the treatment in [KNT87].

This section will be organised according to the three ways in which repair is limited. Fur-
thermore, only the probability of task completion until a given time is computed, not the full
distribution of task completion time.

2.1 Bounded Downtime

In real-time systems a bound on the downtime is especially relevant to define system failure.
Complete system failure occurs when the downtime of a system for the first time exceeds a
given maximum value. Control systems have to be switched off if the control process remains
inactive too long. In this section the work in [GNTT87] is reported, as this is the only
reference concerned with the situation of bounded individual downtime. The bound B on the
downtime is assumed to be deterministic with value b.

Since the length of downtimes is an iid random variable the number of downtimes (N) until the
first downtime longer than b and consequently until system failure has a geometric distribution
with parameter FD(b), the probability a downtime is at most of length b.

Pr {N = n} = (1 − FD(b))(FD(b)n−1, n = 1, 2, . . . (2.9)

Then the mean number of downtimes is

E [N] =
1

1 − FD(b)
. (2.10)

System lifetime

Since the system fails when the n−th downtime takes longer than b the system lifetime
consists of the sum of n uptimes, n− 1 downtimes and a final downtime that equals b. Hence

26 2. Task Completion Time

conditioned on N = n downtimes the system lifetime Xn can be expressed as

Xn = nU + (n− 1)D<b +B (2.11)

where D<b is the random variable of downtimes less than b. The random variable Xn has
CDF FXn(t) and corresponding Laplace-Stieltjes transform (LST) F∼

Xn
(s)

F∼
Xn

(s) = (F∼
U (s))n(F∼

D<b
(s))n−1 e−sb (2.12)

and

F∼
D<b

(s) =

∫ b
0 e

−sh dFD(h)

FD(b)
. (2.13)

Using (2.9) the condition in (2.12) can be removed and the LST of the system lifetime becomes

F∼(s) =

∞∑

n=1

(1 − FC(b))(FD(b))n−1 F∼
Xn

(s)

=
(1 − FC(b))F∼

U (s) e−sb

1 − FC(b)F∼
U (s)F∼

D<b
(s)

(2.14)

Numerical inversion of (2.14) yields the distribution of the system lifetime. The expected
system lifetime is computed as expectation of (2.11) and removing the condition on n. The
expected lifetime evaluates to

E [X] = b+
E{U} + FD(b)E{D<b}

1 − FD(b)
(2.15)

where

E [D<b] =

∫ b
0 h dFD(h)

FD(b)
.

For an exponentially distributed downtime with repair rate η the mean system lifetime is
obtained by evaluating (2.15) as

E [X] =

(
E [U] +

1

η

)
eηb − 1

η
.

The expected system lifetime for limited downtime is shown in Figure 2.3 in comparison with
the the expected system lifetime for limited cumulative downtime and limited number of
repairs. For bounded downtime the expected system lifetime increases exponentially with the
repair rate of the system, shown as the straight line in the plot with logarithmic scale. The
higher the repair rate, the shorter are the system downtimes and the higher is the probability
that the system will live long until it experiences a downtime longer than b for the first time.
We set b to 3.0, γ = 1 and η ranges from 0.0 to 3.0. In most systems typical downtimes are
much shorter than the uptimes. A relation of ν = 10..100 ∗ γ is very common. This range is
not shown in Figure 2.3 for better visibility of all curves. All curves can easily be extended
to obtain realistic numbers. Note that the picture will be very different for distributions with
a heavy tail or for e.g. the uniform distribution.

2.1. Bounded Downtime 27

 1

 10

 100

 1000

 10000

 100000

 0.5 1 1.5 2 2.5 3

ex
p

ec
te

d
 s

y
st

em
 l

if
et

im
e

repair rate

limited down time
limited cumulative down time

limited number of failures

Figure 2.3: Expected system lifetime

Cumulative Uptime

To obtain the probability of completing a task the system lifetime is not needed. Instead the
cumulative uptime is used, which is computed similarly to the system lifetime.

The cumulative uptime is the sum of n uptimes, under the condition of observing exactly n
downtimes.

Yn = nU. (2.16)

Similar as for the system lifetime, taking the LST and removing the conditioning on n gives

F∼
Y (s) =

(1 − FD(b))F∼
U (s)

1 − FD(b)F∼
U (s)

. (2.17)

In general (2.17) must be inverted numerically. For exponentially distributed up- and down-
times with rates γ and ν the distribution of the cumulative uptime evaluates to

FY (t) = 1 − e−γteηb

(2.18)

which is an exponential distribution with rate γe−νb. The mean cumulative uptime is obtained
as the expectation of the LST of (2.16) with removing the condition on n:

E{Y } =
E{U}

1 − FD(b)
. (2.19)

Probability of Task Completion

To finish a task with work requirement w the system needs a cumulative uptime of length w
and we are interested in the probability Pr {w} the task will be finished before the system

28 2. Task Completion Time

fails. Here we have to distinguish between the two failure modes, preemptive resume and
preemptive repeat. In the resume mode we obtain

Pr {w|N = n} = Pr

{
n∑

i=1

Ui > w

}
=

= 1 − Pr

{
n∑

i=1

Ui ≤ w

}
=

= 1 − F
(n)
U (w). (2.20)

Unconditioned the probability of task completion can be expressed as the probability of
observing accumulated system lifetime that is at least w.

Pr {w} = 1 − FY (w), (2.21)

which for an exponentially distributed system lifetime evaluates to

Pr {w} = e−γwe−ηb

. (2.22)

In the preemptive repeat failure mode the task completes if the length of at least one out of
n uptimes is w or more.

Pr {w|N = n} = 1 − (FU (w))n (2.23)

The condition is removed using (2.9)

Pr {w} =
1 − FU (w)

1 − FD(b)FU (w)
, (2.24)

which for exponentially distributed up- and downtimes evaluates to

Pr {w} =
1

1 − (1 − eγw)e−ηb
. (2.25)

For both failure modes, as b→ 0, P (w) → eγw, the probability of completing the task within
one uptime increases exponentially, whereas as b → ∞, P (w) → 1. If infinitely long down
times can be tolerated the task will eventually be finished with certainty. Figure 2.4 shows
the probability of task completion for preemptive resume and preemptive repeat failure mode
as a function of νb for γw = 3.

Following the intuition, for exponentially distributed up- and down times the preemptive
resume failure mode leads to higher probability of task completion.

For the time to failure the exponential distribution is perhaps not the best choice, but a
reasonably good one. For the repair time, one might rather chose a uniform distribution,
since for all repair actions there is a lower time limit and most repair takes not too long. The
Laplace transform, however, is not invertible for all probability distributions and its inversion
can be a painful task. This limits the general applicability of models in Laplace transform
domain.

2.2. Bounded Accumulated Downtime 29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

p
ro

b
ab

il
it
y

of
ta

sk
co

m
p
le

ti
on

ν ∗ b

preemptive resume mode
preemptive repeat mode

Figure 2.4: Probability of task completion for bounded downtime

2.2 Bounded Accumulated Downtime

As a modification of the assumptions in the previous section, in this section we consider
bounded accumulated downtime. Again, a system may be up or down, but once the accumu-
lated downtime exceeds a given bound the system is considered failed. Such systems can be
found where e.g. contracts or service level agreements guarantee a bound on the downtime
per time interval. Such contracts are used in highly reliable fault tolerant information systems
or in telecommunication networks, etc. [NBT92] extends the work in [GNTT87] further by
considering the work requirement W and the bound on the cumulative downtime B to be
random variables.

When modelling a system of redundant components the cumulative downtime is well repre-
sented by a random variable rather than a deterministic value. A backup server takes over
operation each time the primary server fails. The downtime of the primary server therefore
reduces the lifetime of the backup server. The system eventually fails completely when the
backup server fails. Hence the time to failure of the backup server is the random variable
that bounds the cumulative downtime of the system.

Let us again, as in [GNTT87], formulate expressions for the number of downtimes. The
probability of observing more than n downtimes until system failure is equivalent to the
probability that the sum of n downtimes is less than the deterministic bound b.

Pr{N > n} = F
(n)
D (b), n = 0, 1, . . . ,

where F
(n)
D (b) is the n−fold convolution of the downtime distribution. Therefore

Pr{N = n} = F
(n−1)
D (b) − F

(n)
D (b), n = 1, 2, . . . , (2.26)

30 2. Task Completion Time

and the expected number of downtimes equals

E{N} = 1 +
∞∑

n=1

F
(n)
D (b). (2.27)

As an example, for exponentially distributed downtimes with parameter ν, the probability of
exactly n downtimes until system failure equals

Pr{N = n} =
(νb)n−1e−νb

(n− 1)!
, n = 1, 2, . . . , (2.28)

with mean
E{N} = 1 + νb.

System lifetime

The system lifetime is determined by investigating the remaining potential downtime at the
moment where an up period begins. X(t) is the remaining system lifetime at the start of
an uptime given a cumulative downtime of already t, such that the remaining accumulated
downtime is b − t. The system lifetime will now consist of the just started uptime plus,
potentially, another uptime, if the downtime in between is not too long. We have to distinguish
two cases. Either the following downtime h will be at least as long as t, then the system
lifetime will end after this uptime and time t of the next downtime. If, on the other hand, the
next downtime is shorter than t, the system lifetime will be the sum of this uptime, the next
downtime and then another remaining system lifetime with a given remaining bound t − h.
In other words,

X(t) =

{
U + t, with probability 1 − FD(t)

U + h+X(t− h), with probability dFD(h), 0 < h < t.

Taking first the LST and then the Laplace transform with respect to t gives after some
manipulation [GNTT87, NBT92]

F∼∗
X (s, v) =

(1 − F∼
D (s+ v))F∼

U (s)

(s+ v)(1 − F∼
U (s)F∼

D (s + v))
(2.29)

In [GNTT87], for exponentially distributed up- and downtimes the above equation has be
inverted with respect to v

F∼
X (s, b) =

γ

s+ γ
exp

(
−
(
s+ ν − γν

s+ γ

)
b

)
,

which must then be further inverted numerically.

If the accumulated downtime is an exponentially distributed random variable T with param-
eter β instead of a constant b, transformation with respect to b is not necessary and (2.29)
simplifies to [NBT92]

F∼
X (s) =

βF∼
U (s)(1 − F∼

D (s+ β))

(s+ β)(1 − F∼
U (s)F∼

D (s+ β))
. (2.30)

2.2. Bounded Accumulated Downtime 31

Because of the memoryless property of the exponential distribution, for an exponentially
distributed accumulated bound on the downtime the same result holds as for an exponentially
distributed bound on a single downtime.

The mean system lifetime still can be computed in a straight forward manner. It consists of
a total downtime of length b and the expected number of uptimes E{N}, multiplied with the
expected length of an uptime E{U}

E{X} = B + E{N}E{U},

and E{N} is given in (2.27). The expected system lifetime, assuming exponential up- and
downtimes is shown in Figure 2.3 on page 27, where b = 3.0, the system failure rate γ = 1
and the repair rate ν varies from 0.0 to 3.0. The system lifetime in systems with bounded
accumulated down time is a straight line with respect to the mean downtime (or its inverse,
the repair rate). Since Figure 2.3 has a logarithmic scale the system lifetime has shape
of the logarithm function. The higher the repair rate the shorter are the down periods,
and, consequently, the longer are the relative uptimes per time interval. It takes longer
to accumulate a given downtime as the expected downtime becomes shorter. Obviously,
accumulating a down time of b = 3.0 happens for most up- and downtime distributions much
faster than observing a single downtime of length b = 3.0. A system which can tolerate all
downtimes shorter than b can in fact tolerate much more downtime than a system with a
bound on the accumulated downtime and has therefore a longer expected lifetime.

Cumulative Uptime

The cumulative uptime is the sum of the uptimes until system failure, i.e. the difference
between the system lifetime and the sum of the downtimes until system failure. The sum of
the downtimes until system failure is by definition the bound on the accumulated downtime
b and therefore the cumulative uptime is computed as

Y = X − b

The LST of the distribution of the cumulative uptime is obtained by conditioning on the
number of uptimes as given in (2.26)

F∼
Y (s) =

∞∑

n=1

Pr{N = n}(F∼
U (s))n. (2.31)

For exponentially distributed up- and downtimes using (2.28) Equation (2.31) evaluates to

F∼
Y (s) =

γ

s+ γ
exp

(
− νbs

s+ γ

)
, (2.32)

which still needs to be inverse transformed.

Probability of task completion

For computing the probability that a task with work requirement w can be completed before
failure of the system the two failure modes (preemptive resume and preemptive repeat) have
to be distinguished.

32 2. Task Completion Time

In the resume failure mode the probability of finishing a given task equals the probability of
having a cumulative uptime longer than w, which is

Pr {w} = 1 − FY (w).

Unfortunately, FY can only be expressed in the transform domain. Even for exponentially
distributed up- and downtimes the inverse transformation must be carried out numerically.
This is a severe limitation of transforms as a modelling tool. In this text we therefore do not
plot the probability of task completion in the resume mode.

For preemptive repeat failures the probability of task completion is the probability of having
at least one uptime of length w, which is obtained by conditioning on the number of downtimes
until system failure

Pr {w} = 1 −
∞∑

n=1

Pr{N = n}(FU (w))n. (2.33)

Pr {N = n} again is given in (2.26). For the preemptive repeat case a closed form solution is
available. Substituting (2.28) into (2.33) for exponentially distributed up- and downtimes at
failure rate γ and repair rate ν leads to

Pr {w} = 1 − (1 − e−γw)e−νb e−γw

. (2.34)

The graph of the probability of task completion for bounded cumulative downtime in the
preemptive repeat case is shown in Figure 2.5. It is equal to the task reliability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

p
ro

b
ab

il
it
y

of
ta

sk
co

m
p
le

ti
on

η ∗ b

Figure 2.5: Task reliability for bounded accumulated downtime (preemptive repeat failure
mode, γw = 3)

Again using the deterministic bound b on the cumulative downtime, a task of deterministic
length w and preemptive resume failure mode, in [NBT92] the task completion time C(w, b) is

2.2. Bounded Accumulated Downtime 33

considered a random variable with probability distribution function P (t, w, b) = P (C(w, b) ≤
t). Because of the bounded downtime, in general P (t, w, b) is a defective distribution. Its
LST is denoted

P∼(s,w, b) =

∫ ∞

0
e−stdP (t, w, b)

The probability of completing the task, the task reliability can alternatively be computed as

η(w, b) = Pr{C(w, b) <∞} = P∼(0, w, b). (2.35)

The main result in [NBT92] is the formulation of the LST with respect to t and the Laplace
transform with respect to both w and b, which are

P∼∗(s, u, b) =

∫ ∞

0
e−uwP (s,w, b)dw

and

P∼∗∗(s, u, v) =

∫ ∞

0
e−bvP (s, u, b)db

The triple transform evaluates to

P∼∗∗(s, u, v) =
1 − F∼

U (s+ u)

v(s+ u)(1 − F∼
D (s+ v)F∼

U (s + u))
. (2.36)

The distribution of the task completion time is obtained by inverting (2.36) with respect
to all variables s, u and v. In general numerical inversion is necessary, in some special cases
analytical inversion might be possible. Computing the task reliability requires only two (rather
than three) inversions.

If the bound on the accumulated downtime is an exponentially distributed random variable T
with parameter β and the work requirement is an exponentially distributed random variable
W with parameter α then the transformations with respect to b and w can be avoided and
the task completion time distribution in LST domain equals

P∼(s) =
α(1 − F∼

U (s+ α))

(s+ α)(1 − F∼
D (s+ β)F∼

U (s+ α))
. (2.37)

Whether (2.37) is inverted numerically or analytically depends on the nature of the LSTs of
the distributions of the up- and downtimes.

The task reliability is computed as P∼(0) and evaluates to

η(α, β) =
1 − F∼

U (α)

1 − F∼
D (β)F∼

U (α)
.

From the task reliability rather obvious relationships between the value of the bound and
the cumulative downtimes can be observed. If no bound on the cumulative downtime exists
(β = 0) the task will always complete and η(α, β) = 1. If on the other hand the bound
on the cumulative downtime is zero (β → ∞), the system fails at its first downtime, then
η(α, β) = 1 − F∼

U (α) and the task must complete within the first and only uptime.

34 2. Task Completion Time

In preemptive repeat identical failure mode, where after each failure the task is restarted
anew and each retry has exactly the same work requirement similar analysis leads to a task
reliability of

η(w) =
1 − FU (w)

1 − F∼
D (β)FU (w)

. (2.38)

The probability of task completion depends on the work requirement w as well as on the
length of the up- and downtimes, where only the distribution of the downtimes is given as LST
transform. For exponentially distributed up- and downtimes, again with parameters γ and η,
respectively, the task reliability can be expressed explicitly depending on the work requirement
and the cumulative bound on the downtime and equals the probability of completing the task
as given in (2.34)

η(w, b) = 1 − (1 − e−γw)e−νbe−γw

. (2.39)

It should be noted that at least for exponentially distributed up- and downtimes the task
reliability is equal to the probability of task completion as defined in [GNTT87]. When
comparing Figures 2.4 on page 29 and 2.5 the impact of the two failure modes is not obvious.
As could be seen in Figure 2.3 a system with bounded accumulated downtime has considerably
shorter system lifetime than a system with bounded individual downtime. On the other hand
we expect the preemptive resume failure mode to lead in most cases to faster task completion
than the preemptive repeat failure mode. Figure 2.5 suggests that the impact of the failure
mode is much stronger than the impact of the bound on the downtime. But this observation
remains unproven.

In [NBT92] phase-type distributions for the up- and downtimes, the bound on the downtime
and the work requirement are used.

For preemptive repeat different failures a new work requirement is sampled each time a task is
restarted after a failure. Obviously, for deterministic work requirement the task reliability is
the same with preemptive repeat different failures as with preemptive repeat identical failures.

2.3 Bounded Number of Failures

A bounded number of failures can occur naturally in systems consisting of a set of redundant
components, where each failure is the non-repairable failure of one component and once all
components have failed, the system has failed.

Since the bound on the number of downtimes is K the system fails upon the K− th transition
to the down state and the number of down times equals K with probability one. The last
downtime has length zero, since the system immediately moves to the failed state.

System lifetime

The system lifetime consists of K uptimes and K − 1 downtimes, i.e.

X = K · U + (K − 1) ·D.

The mean system lifetime is obtained by taking the expectation of the system lifetime

E{X} = K ·E{U} + (K − 1) ·E{D}.

2.3. Bounded Number of Failures 35

Cumulative Uptime

The cumulative uptime is the sum of K uptimes

Y = K U

with distribution function

FY (y) = F
(K)
U (y) y ≥ 0 (2.40)

and expectation

E{Y } = K ∗ E{U}.

Probability of task completion

In the preemptive resume failure mode the probability of task completion equals the probabil-
ity that the cumulative uptime before system failure is at least as long as the work requirement
of the task. Using (2.40) the probability of task completion evaluates to

P (w) = 1 − F
(K)
U (w).

For exponentially distributed uptimes theK−fold convolution evaluates to aK−phase Erlang
distribution and the probability of task completion becomes

P (w) = e−γw
K−1∑

j=0

(γw)j

j!
.

20 40 60 80 100
K

0.2

0.4

0.6

0.8

1
PHwL

preemptive resume
preemptive repeat

Γ * w = 3.0

Figure 2.6: Probability of task completion as function
of tolerated downtimes K

In preemptive repeat failure mode a task completes if at least one uptime is at least as long
as the work requires

P (w) = 1 − (FU (w))K .

For exponentially distributed uptimes the above probability is simply computed as

36 2. Task Completion Time

200 400 600 800
K

0.2

0.4

0.6

0.8

1
PHwL

preemptive resume
preemptive repeat

Γ * w = 5.0

Figure 2.7: Probability of task completion as function
of tolerated downtimes K

P (w) = 1 − (1 − e−γw)K .

Figure 2.6 and 2.7 show the probability of task completion again for exponentially distributed
up- and downtimes and for both failure modes versus the number of tolerated downtimes.

At the given failure rate and work load in preemptive resume mode a task completes within
few uptimes with high probability.

If the work requirement or the failure rate increases in preemptive resume failure mode a job
still finishes quickly, while in preemptive repeat mode it takes considerably more uptime to
complete a task with high probability. The shorter the uptimes, or the longer the given task
takes, the lower the probability of quickly having an uptime that is long enough to finish the
task.

To summarise, in this section we have seen the impact of system downtimes on system per-
formance. Obvious but still interesting observations can be made by looking at the limiting
case of a system that does not fail, and revisiting the considered metrics. In a system that
does not fail, system lifetime is infinite and the probability of task completion is always one.
This limiting result is obtained from all respective equations when the failure rate γ = 0.
Furthermore, neither the characteristic of the bound on the downtime nor the failure mode
(preemptive resume or preemptive repeat) have any influence on system lifetime or task com-
pletion probability in this special case.

An algorithm for computing the distribution of the job completion time in degradable fault-
tolerant systems is presented in [KNST86].

The relations between the bounds on the tolerated system downtime and the system life-
time or probability of task completion formulated in this chapter are intuitively self-evident.
Important are their mathematical formulations. The purpose of restart, rejuvenation and
checkpointing strategies will be to improve on system lifetime and task completion probabil-
ity.

While the restart method corresponds to intentionally triggered preemptive repeat different
failures the preemptive resume failure mode constitutes the best case obtained with check-
pointing. In the models studied so far there is no overhead involved with restart after a failure
and work is continued exactly where it was interrupted.

2.3. Bounded Number of Failures 37

The preemptive repeat failure mode can also be related with checkpointing, where it comes
close to the worst case of a checkpointing scheme. With each down period the task needs to
be restarted from scratch. As we will see checkpointing could make matters worse, if induced
overhead is considered as well.

38 2. Task Completion Time

Part II

Restart

39

40

Chapter 3

Applicability Analysis of Restart

The investigation of pure restart as a means to improve performance of computer systems
is motivated by an observation known to most Internet users: when a page takes too long
to load in a web browser clicking the reload button in many cases helps. In [KR01] the
technical background of this fact is discussed in detail, explaining how clicking the reload
button ‘overrules’ the TCP retransmission timer, potentially improving the overall download
time.

In this chapter we will first look at systems, protocols or algorithms where restart occurs
or is being applied intentionally. In the second part of this chapter the restart problem is
formulated as a stochastic problem. Then stochastic criteria for the successful application of
the restart method can be derived.

3.1 Applications of Restart

The term restart applies to job, or task processing systems as well as to transaction processing
systems. In all those a job or transaction is issued and usually completes after a certain time.
Completion is determined by a result being returned, in case of a computation, or a completion
message being returned, in case of for instance a data base transaction. If a job or transaction
does not complete within a certain time, it is re-issued. In some cases the old instance can
be aborted, in others it cannot. Furthermore, in some restart scenarios a task is restarted in
exactly identical configuration or parameterisation in other scenarios the restarted task may
have a new set of parameters perhaps even a new work requirement.

3.1.1 Randomised Algorithms

The term Randomised algorithms is used for algorithms that are not deterministic in their
execution, either with respect to runtime, or with respect to the obtained result. This is
because some parameters of the algorithm are chosen randomly. Examples of randomised
algorithms are those theorem proving algorithms that search the state space and do so in a
random way. If the algorithm does not terminate within a defined number of steps it starts
again from the initial state, again randomly choosing a path. Another well-known example is

41

42 3. Applicability Analysis of Restart

the sorting algorithm Quicksort, which speeds up sorting a list by first permuting the entries
randomly. For a randomised algorithm that searches a tree to prove a theorem a strategy
defines the sequence of numbers of steps it takes in each trial.

Two important types of randomised algorithms exist. Monte Carlo algorithms provide the
correct result in most cases, but also have a small probability of computing a wrong result.
A Monte Carlo algorithm usually completes fast, even when solving a hard multi-dimensional
problem but the result will be wrong with small probability. Monte Carlo algorithms are used
to solve problems in quantum computing, complex models in physics or risk models where
not only the result but even the input has some uncertainty.

The second class of randomised algorithms is called Las Vegas algorithms and consists of those
that will always provide a correct result but have a random and sometimes very long runtime
[LSZ93, AGM+96]. Note that Las Vegas algorithms can be transformed into Monte Carlo
algorithms by just stopping the computation after a fixed time and providing an arbitrary
(possibly wrong) result in case the algorithm has not computed the correct answer yet [MR95].
The randomised Quicksort as well as theorem provers searching a state space are Las Vegas
algorithms.

Search in trees is a solution to many problems in artificial intelligence. In [GSK98] complete,
systematic, backtrack-style search in tree structures has been identified as one of the main
applications of randomised algorithms. Tree structures are not only used for theorem proving
but also in circuit design, logistics scheduling and timetabling. Search in trees often has
a heavily-tailed cost function. In [GSK98] cut-off values for restart have been determined
experimentally resulting in much lower mean problem solution time and hence lower cost.
Improved strategies for finding a good cut-off value (restart time) are discussed in [GC04]
whereas the tree-structures that lead to heavy-tailed cost functions for search algorithms are
further classified in [Wal99].

A more theoretically profound investigation is carried out in [LSZ93]. The runtime, measured
in a discrete number of computation steps, of Las Vegas algorithms can be modelled as a
random variable with some probability distribution. The completion time of the algorithm is
a random number drawn from that distribution. Since the runtime of the algorithm depends
on the algorithms input, which itself is randomly chosen, it can be worthwhile to abort the
computation at some point and restart.

Randomised algorithms can also be run with several replicas simultaneously. As soon as one
replica obtains the correct result all replicas are stopped. Strategies for how long to run
each replica and when to restart have been investigated in [LSZ93]. There are strategies
that require knowledge of the probability distribution for the runtime of the algorithm for a
given input. Others can do with only the mean completion time, or completely without any
knowledge of the completion time distribution.

3.1.2 Optimal Restart Time for a Randomised Algorithm

Let us first assume the runtime distribution of a randomised algorithm is known. The runtime
of a randomised algorithm is measured by means of a discrete random variable, counting
the number of computation steps needed until completion. In later sections in this chapter
completion time or waiting time is modelled using a continuous random variable.

3.1. Applications of Restart 43

Let A be an algorithm running a strategy S on input x. Then AS(x) finishes after exactly
t steps with probability p(t). Let F (t) be the cumulative discrete probability distribution
and let furthermore the random variable T denote the runtime of the algorithm. We are
interested in the expected runtime E(TS) using strategy S. A strategy defines the number of
steps that e.g. a search algorithm is executed and possibly what branch to take when there
is a choice. A more complex search strategy defines several sequences of steps to be executed
consecutively.

Let S = (t1, t2, t3, . . .) be an execution strategy consisting in several attempts each of length
ti and let S1 = (t2, t3, . . .) be that same strategy without the first trial. E(T) denotes the
expected running time using strategy S, whereas E(T1) is the expected running time when
using S1. Then we can formulate a recursion for the expected runtime of the algorithm: either
it completes in the first trial, with the respective expected runtime, or after having executed t1
steps it is aborted and restarted, needing those t1 steps plus the expected runtime thereafter.
In mathematical terms that is

E(T) =

t1∑

i=1

i · p(i) + (1 − F (t1))(t1 + E(T1)). (3.1)

If all strategies are the same, i.e. t1 = t2 = . . . = t and the same number of steps is computed
in every trial then equation (3.1) simplifies to

E(Tt) =
1

F (t)

t∑

i=1

i · p(i) + t
(1 − F (t))

F (t)
. (3.2)

In [LSZ93] the equivalence
t∑

i=1

i · p(i) = tF (t) −
t−1∑

i=1

F (i) (3.3)

is used to derive the following expression for the expected runtime of an algorithm executing
the optimal strategy

l(t) = E(Tt) =
1

F (t)

t∑

i=1

i · p(i) + t
(1 − F (t))

F (t)

=
1

F (t)

(
t F (t) −

t−1∑

i=1

F (i)

)
+ t

(1 − F (t))

F (t)

=
1

F (t)

(

t−
t−1∑

i=1

F (i)

)

. (3.4)

For a proof of (3.3) see the appendix.

Luby et. al. [LSZ93] furthermore show that the strategy with runs of equal length S∗ =
(t, t, . . .) is optimal for every probability distribution p, since no other strategy will give a
lower expected running time. t can be bounded from above by E(p), the expectation of the
distribution f , but no explicit formulation that could help to determine t is given.

44 3. Applicability Analysis of Restart

If the runtime distribution of an algorithm is unknown the expected runtime can be bounded
for all possible distributions. In [LSZ93] no bound is provided for the optimal strategy
(t, t, . . .), instead a universal strategy is used that has a structure based on powers of two

Suniv = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .) (3.5)

where each time a pair of a given run length has been completed a run of twice that length
follows.

Formally the universal strategy is defined as

ti =

{
2k−1, if i = 2k − 1

ti−2k−1+1 , if 2k−1 ≤ i < 2k − 1,
(3.6)

for k ∈ IN.

The complexity of this strategy can be bounded from above for all possible runtime dis-
tributions by the following expression in terms of the expected runtime using the optimal
strategy

E(Tuniv) ≤ 192 · E(Tt) (log(E(Tt)) + 5). (3.7)

As stated in [LSZ93] a tighter bound could be derived in a less compact and elegant expression.

Finally, as long as the runtime distribution is unknown any strategy will have at least com-
plexity E(Tt) · logE(Tt), if E(Tt) is the expected runtime under the optimal strategy. In other
words

supE(T) ≥ 1

8
(E(Tt) · logE(Tt))

as proven in [LSZ93].

In practice the runtime distribution typically is not known and it is much easier to estimate the
mean runtime. Therefore the mean runtime is used for a pragmatic rule, such as aborting after
twice the expected runtime. This will reduce the probability of longer runs with exponential
rate [Tar04].

A follow-up application is that of distributed queries using search algorithms that have a
random aspect. This has recently been studied in, e.g., [RHK02], and on-line algorithms have
been derived to set the restart time if dependencies between successive tries can be exploited.

3.1.3 Failure Detectors

Fault-tolerant distributed systems are designed to provide reliable and continuous service
despite failure of some of their components. A failure detector is a basic building block of
such systems. A failure detector is used by a monitoring process to determine whether the
monitored process is still alive. Two types of failure detectors exist. The ping style failure
detector and the heartbeat type failure detector.

Using a heartbeat failure detector, the monitored process periodically sends an alive message
to the monitoring process. A timeout determines the maximum waiting time of the moni-
toring process until it suspects the monitored process to have failed. While heartbeat failure

3.1. Applications of Restart 45

detectors implement the push technology, a ping-style failure detector employs a pull mecha-
nism. When using a ping failure detector the monitoring process periodically sends messages
to the monitored process. If no acknowledgement arrives until the expiry of a timeout the
monitoring process suspects the monitored process to have failed.

Of interest is the accuracy of failure detection and the detection time. The accuracy is
defined as the probability of the suspicion being correct and the monitored system having
in fact failed. The detection time is the period between failure of the system and failure
detection by the monitoring system.

A good choice of the timeout value in the monitoring process is essential when optimising
both metrics [CTA00, BMS02]. If the timeout is too small then the monitored system is
suspected of being down too often, while if the timeout is too long detection time increases
unnecessarily.

The conclusion that it is impossible to create a failure detection mechanism with the best
accuracy and delay together [FB05] corroborates the concept of a tradeoff between timeliness
and fairness for the restart model as elaborated in [RvMW06a]. The restart model as it
is discussed in Chapter 4 of this thesis has been proposed to determine the timeout value
of failure detectors in [vMW03b, vMW03a]. Even though clock synchronisation poses a
serious problem heartbeat failure detectors are considered superior in [BMS02], where, as
in [RvMW06b], different known algorithms such as the TCP algorithm [Jac88] are used for
timeout computation.

3.1.4 Congestion Control in TCP

TCP (Transmission Control Protocol) is a protocol operating in networks with varying num-
ber of participants connecting different subnets using very different technologies. To assure
some quality and speed in data transmission congestion avoidance and congestion control are
essential [Tan96].

TCP acknowledges the receipt of every packet that has been sent. A sender can send only a
limited number of packets while waiting for open acknowledgements. The accepted number
of pending acknowledgements is called the congestion window size. As the data flows the
number of allowed pending acknowledgements is increased, i.e., the congestion window opens
up.

If no acknowledgement arrives within a certain time called the retransmission timeout (RTO)
the packet is being resent. There can be mainly two reasons for not receiving an acknowl-
edgement: either the packet or its acknowledgement was damaged, which is the reason in less
than 1% of lost packets [Jac88], or there is congestion on the communication channel and the
packet got lost in a queue overflow. Actual loss rates are rarely released for publication by
network providers and therefore very difficult to find. For some backbone networks service-
level-agreements (SLAs) exist and measurements are published proving that the network
Quality-of-Service (QoS) does not violate the SLA [Spr]. We found in our experiments that
roughly 0.5% of all connections time out at least once. From this observation one can conclude,
that the observed end-to-end loss rate in our experiments was less than 0.5% [RvMW04].

46 3. Applicability Analysis of Restart

Host 1 Host 2

SYN (SEQ = x)

(SEQ = x+1, ACK = y+1)

SYN (SEQ = y, ACK = x+1)

T
im

e

Figure 3.1: Three-way handshake for connection set-up in TCP

TCP can in many cases guarantee data transmission even in the presence of data loss. This is
achieved through retransmission of unacknowledged data packets. The performance of TCP
depends to a large extent on the choice of the timeout between retransmissions.

Several proposals for the choice of the RTO exist. Most TCP implementations today use the
Jacobson-Karn algorithm [Jac88], which bases the RTO for one packet on an estimate of the
round-trip-time (RTT) based the observed RTT from previous packets .

Then the RTO is set to

RTO = βR

where β accounts for the variation in RTTs of previous packets [Jac88] and R is an estimate
of the RTT computed as

Rnew = αRold + (1 − α)M

with M being the RTT estimate of the most recently acknowledged packet. The parameter
α is a filter gain typically chosen as α = 0.9.

Today’s TCP implementations typically use for the first few packet transmissions the following
fixed values for their RTO timer: 3, 6, 12, 24, 48, etc. and adjust the RTO according to the
proposal in [Jac88] with implementation guidelines formulated in the TCP standard [PA00]
as an estimate of the RTT is obtained. The RTO is in some cases reduced down to 250-
300 msec. [KR01]. Starting with 3 in each step the previous value is doubled, realising an
exponential back-off. It is, however, unclear whether the base modulus of 3 seconds indeed
leads to optimal performance.

In HTTP transactions most users experience the RTO value of TCP as suboptimal and ’work
around’ it by clicking the reload button of their web browser. The question whether there
exists an optimal RTO value for HTTP traffic motivated our investigations, that will be
discussed in detail later.

We carried out experiments measuring the duration of the connection-setup in a TCP connec-
tion, which consists of a three-way handshake as depicted in the sequence diagram in Figure
3.1.

3.2. Criteria for Successful Restarts 47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 7500 15000 22500 30000 37500 42500 50000 56000

co
n
n
ec

ti
o
n
 s

et
u
p
 t

im
e

(c
st

)

first observation per URL

Figure 3.2: Connection set-up times for the first connection per URL download

Figure 3.2 shows data sampled for the time needed to perform the three-way handshake
forming the connection setup. The sample consists of roughly 230000 experiments connecting
to approximately 200 different hosts world-wide. The horizontal lines clearly show the retries
carried out by TCP after expiration of the RTO timer. The timeouts are so long that a
delay in an HTTP transfer can be traced back to the expiration of a TCP timer among
other potential reasons. Restart of HTTP transactions has to some extent already been
investigated in [SB01]. A generalisation are Internet agents [CJSS98, MH01]. Internet agents
carry out varying tasks, using possibly randomised algorithms, over networks with failures
and unpredictable delays, and it may therefore be smart to interrupt and restart an agent’s
job when a task takes too long to complete.

In a more general sense, however, restart has been around in computing systems since their
inception. Timeout schemes that retry an attempt once a threshold has been reached, can be
seen as restarts. The TCP retransmission timeout is but one example.

In the next sections we will carry out a pure theoretical study of restart. We will investi-
gate necessary and sufficient properties of response times or job completion times that make
restarting a beneficial action. We will look at different metrics to be optimised under restart
and, furthermore, propose algorithms to determine best times for when to restart.

3.2 Criteria for Successful Restarts

What characteristics do jobs have that benefit from restarts? This question cannot be asked
as straight forward as it is formulated, although it turns out that the answer to the different
precise questions will in many cases be the same. We have to consider the metric of interest in

48 3. Applicability Analysis of Restart

the question we ask. So, our question becomes: what characteristics do jobs have so that their
expected completion time will benefit from restart? We can also ask: what characteristics do
jobs have such that their probability of meeting a given deadline will improve under restart?

We limit ourselves here to those two questions, which can be generalised towards optimising
quantiles under restart.

The models we set up are valid under two assumptions: (1) we assume that the restart of a task
terminates the previous attempt. This is for instance the case when we click the reload button
in a web browser: the connection with the server is terminated and a new download attempt
is issued [KR01]. And (2) we then assume that successive tries are statistically independent
and identically distributed. This assumption has been found realistic in a measurement study
of HTTP Get [RvMW04]. It should be noted that both above assumptions have also been
found realistic for the use case of downloading web pages by others [MH01].

In mathematical terms, the problem formulation is as follows. Let the random variable
T denote the completion time of a job, with probability distribution F (t), t ∈ [0,∞), and
probability density function f(t), t ∈ [0,∞). Assume τ is a restart time, and introduce the
random variable Tτ to denote the completion time when an unbounded number of retries is
allowed. That is, a retry takes place periodically, every τ time units or until the deadline has
passed (if a deadline is set), which ever comes first. We write fτ (t) and Fτ (t) for the density
and distribution of Tτ , respectively.

We will see that the hazard rate function is indicative of whether restart is beneficial irre-
spective of the considered metric. Fairly general, one can say that if the task completion time
distribution has an increasing hazard rate restart should not be applied while for decreasing
hazard rate restart is always beneficial.

The hazard rate is commonly used in survival analysis, which again is used very much in
medical studies, but also in reliability theory. Survival analysis is concerned with the number
of deaths within some time interval and with the number of individuals surviving some point
in time. In reliability theory [Ger00b] the hazard rate is called failure rate since the failure
of the system is its ’death’. As we will see later, preventive maintenance is useful in systems
with increasing failure rate (IFR), (as opposed to decreasing failure rate (DFR)) where failures
become more frequent as the system ages. Restart, on the contrary, is only beneficial for tasks
that are more likely to complete soon and hence have decreasing hazard rate.

Many distributions, however, have a hazard rate which partly increases and partly decreases.
We will therefore address the question of when restart should be applied more formally.

3.2.1 When Does Restart Improve the Expected Completion Time?

In general terms, the completion time when starting new must be less than the completion
time when not restarting. Assume we are interested in the mean completion time. Under
the assumption of independent identically distributed completion time of successive tries, one
would restart at time τ when:

E [T] < E [T − τ |T > τ] . (3.8)

The above intuitive reasoning can be made precise, and indeed turns out to be correct. Even
stronger, in Section 4.3.1.3 we will show that (3.8) is a necessary and sufficient condition for

3.2. Criteria for Successful Restarts 49

any number of restarts to be useful as well, a result that is not necessarily obvious at first
hand. The question then becomes, what distributions fulfil requirement (3.8), for at least
one value of τ . Generally speaking, first, distributions with heavy tails have the required
behaviour. For such distributions, the tail decreases at polynomial pace, leaving considerable
probability mass at high values of T . Heavy-tailed and similar distributions commonly arise
when studying Internet applications, see for instance [KR01]. However, also distributions with
exponentially decaying tails demonstrate the required behaviour quite often. Considering the
three prototypical cases of exponentially decaying distributions [Hav98], we see the following:
for hyper-exponential distributions, condition (3.8) is always true (that is, for any τ), for
hypo-exponential distributions including the Erlang distribution (3.8) is never true, and for
the exponential distribution (3.8) becomes an equality, implying restarts do not help, but also
do not hurt.

Let us investigate some probability distributions more formally and evaluate (3.8) for each of
them.

Exponentially Distributed Task Completion Time

For exponentially distributed task completion time both sides of the inequality are computed
as follows.

E [T] =

∫ ∞

0
tλ · e−λt dt = − t

eλt
− 1

λ
d−λt

]∞

0

=
1

λ

E [T − τ |T > τ] =

∫ ∞

τ
(t− τ)λ · e−λ(t−τ) dt =

= eλτ

[
− t

eλt
− 1

λ
e−λt

]∞

τ

+
[
τeλ(τ−t)

]∞
τ

=

= eλτ

(
τe−λτ +

1

λ
τe−λτ

)
+ τ =

1

λ

As mentioned above, for the exponential distribution restart is not beneficial, but does not do
any harm either. The exponential distribution has a constant hazard rate function h(t) = λ,
which means that task completion is equally likely at all times.

Uniform Distributed Task Completion Time

For the uniform distribution on [a, b],

f(t) =

0 0 ≤ t < a
1

b−a a ≤ t ≤ b

0 b < t

50 3. Applicability Analysis of Restart

we obtain

E [T] =
a+ b

2

E [T − τ |T > τ] =

∫ b

τ
tf(t− τ) dt =

∫ b

τ
t

1

(b− τ)
dt− τ =

=
1

(b− τ)

1

2
(b2 − τ2) − τ =

1

(b− τ)

1

2
(b+ τ)(b− τ) − τ =

=
(b+ τ)

2
− τ =

b

2
− τ

2

=

1
2(a+ b) − τ for τ < a
1
2(τ + b) − τ = 1

2(b− τ) for a ≤ τ ≤ b

0 for b < τ.

In all cases E [T − τ |T > τ] is smaller than E [T], so one should always wait for the task to
complete, which will be faster on the average than a new try after a restart.

Weibull Distributed Task Completion Time

The Weibull distribution is very often used in reliability theory because it can model increas-
ing as well as decreasing failure rate. Increasing failure rate shows degradation of system
dependability. The density of the Weibull distribution is given by

f(t) = λααtα−1e−(λt)α

(3.9)

with shape parameter α and scale parameter λ (see also Appendix B.2). Three cases must
be distinguished, α < 1, where the hazard rate is decreasing, α = 1, where it is constant
and α > 1, where the hazard rate is increasing. For the expected value and the conditional
expectation one obtains

E [T] =
1

λ
· Γ(1 +

1

α
) (3.10)

E [T − τ |T > τ] =

∞∫
τ

(t− τ)f(t) dt

∞∫
τ
f(t) dt

= (3.11)

=

∞∫

τ
tf(t) dt− τ

∞∫

τ
f(t) dt

∞∫

τ
f(t) dt

=

=

∞∫

τ
tf(t) dt− τe−(λτ)α

e−(λτ)α =
1

λ
Γ

(
1 + α

α
, (λτ)α

)
e(λτ)α − τ (3.12)

The Gamma function Γ(z) and the incomplete Gamma function Γ(z, y) can be found in
Appendix A. Note that the Gamma function is no probability distribution and does not
integrate to one.

3.2. Criteria for Successful Restarts 51

E@TD - E@T - ΤÈ Τ > TD

0

0.5

1

1.5

2

Α

0

0.5

1

1.5

2

Λ

-1
-0.5

0
0.5

0

0.5

1

1.5

2

Α

Figure 3.3: Values greater than zero indicate that restart is beneficial as a function of the
shape (α) and scale (λ) parameter of the Weibull distribution

A task should be restarted if the inequality E [T] < E [T − τ |T > τ] holds. Writing out the
condition under which restart should be applied gives

E [T] < E [T − τ |T > τ] (3.13)

⇔ Γ

(
1 + α

α

)
< Γ

(
1 + α

α
, (λτ)α

)
e(λτ)α − λτ (3.14)

⇔ −λτ >

(λτ)α∫

0

t
1
α e−t dt +

∞∫

(λτ)α

t
1
α e−t dt

(
1 − e(λτ)α

)
. (3.15)

Analytical derivation of the range of α and λ for which inequality (3.13) holds is not straight
forward. Figure 3.3 shows a graphical representation of the solution and the zero plane. If
E [T]−E [T − τ |T > τ] < 0 then restart should be applied while if E [T]−E [T − τ |T > τ] > 0
waiting for task completion is advised. The value of the scale parameter λ has no effect on
the decision whether to restart or not. Whether restart is beneficial depends solely on the
shape parameter α. For increasing hazard rate (α > 1) restart should be applied and for
decreasing hazard rate (α < 1) no restart should be applied.

If α = 1 expression (3.13) is an equation because

E [T] =
1

λ
Γ(2) =

1

λ
(3.16)

52 3. Applicability Analysis of Restart

and

E [T − τ |T > τ] =
1

λ
Γ(2, λτ)eλτ − τ =

1

λ

∞∫

λτ

te−t dt eλτ − τ = (3.17)

=
eλτ

λ
e−λτ · (1 + λτ) − τ =

1

λ
. (3.18)

This corresponds to the special case of the exponential distribution where restart neither
helps nor hurts.

Pareto Distributed Task Completion Time

Last, but not least we want to examine the Pareto distribution. The Pareto distributions
describes situations with objects, of which most are small, but some are also big, e.g. size of
documents, links on a page, word frequencies, response times, etc. The Pareto distribution
has density

f(t) =
a · ba
ta+1

, for t > b.

For a 6= 1, the expected completion time with and without restart evaluate to

E [T] =
a · b
a− 1

E [T − τ |T > τ] =

∫ ∞

τ
(t− τ)

b

(t− τ)2
dt =

= [b ln(t− τ)]∞τ = ∞.

Having waited already time τ, the expected completion time does not converge, therefore it
is always useful to restart a task with Pareto distributed completion time. Pareto distributed
tasks take very long not too frequently, but if they do so, they should be aborted and restarted.

Very common are more complex distributions. As already mentioned the hyper-exponential
distribution always performs better with restarts. It is a distribution of a particular type
that seems to be typical for restarts to succeed [RHK02]. These distributions take values
from different random variables with different probabilities, that is, with probability p1 it is
distributed as X1, with probability p2 distributed as X2, etc. It then is useful to perform a
restart when it gets more likely one drew one of the slower distributions, since then a restart
provides a chance to draw one of the faster distributions instead.

3.2.2 When Does Restart Improve the Probability of Meeting a Deadline?

Let the random variable T denote the completion time of a job, with probability distribution
F (t), t ∈ [0,∞), and probability density function f(t), t ∈ [0,∞), as above and let d denote
the deadline we set out to meet. We are interested in the probability Fτ (d) that the deadline
is met.

One can intuitively reason about the completion time distribution with restarts as Bernoulli
trials. At each interval between restarts there is a probability F (τ) that the completion

3.2. Criteria for Successful Restarts 53

‘succeeds.’ Hence, if the deadline d is a multiple of the restart time τ, we can relate the
probability of missing the deadline without and with restart through:

1 − Fτ (d) = (1 − F (τ))
d
τ . (3.19)

Then the probability of meeting the deadline under restart is

Fτ (d) = 1 − (1 − F (τ))
d
τ (3.20)

and restart only makes sense if the probability of meeting the deadline is higher with restart
than without:

Fτ (d) > F (d). (3.21)

We can reason differently and say that we have a given time interval of length d which we
may split into a number of subintervals. For some distributions the probability of completion
within the given time is higher when waiting out the given time whereas for others many
tries and waiting shortly is more promising. Following that reasoning equation (3.21) can be
reformulated using d = kτ with k ∈ IN as

1 − (1 − F (τ))k > F (kτ). (3.22)

We will verify or falsify the above condition for some distributions that are commonly used
in modelling the lifetime of technical components. All probability distributions are defined in
the appendix.

Exponentially Distributed Task Completion Time

For exponentially distributed task completion time condition (3.21) is easily proven to become
an equality.

Fτ (d)
?
> F (d)

⇔ 1 − F (d)
?
> (1 − F (τ))

d
τ

⇔ e−λd ?
> e−λτ · d

τ

⇔ Fτ (d) = F (d)

The probability of meeting the deadline is equal whether or not one restarts an exponentially
distributed job. Hence, for exponential job completion time restart neither helps nor hurts.

Hypo-Exponentially Distributed Task Completion Time

For the hypo-exponential distributions (like the Erlang distribution) we can show that con-
dition (3.21) never holds. Let us relate the restart interval τ and the deadline d such that τ
is some fraction τ = αd of the deadline where 0 < α < 1 is known. In fact, here an Erlang
distribution, being a special case of the hypo-exponential distribution, is used.

54 3. Applicability Analysis of Restart

1 − F (d)
?
> (1 − F (τ))

d
τ

⇔ (1 − F (d))τ
?
> (1 − F (τ))d

⇔ (1 − F (d))αd ?
> (1 − F (αd))d

⇔ (1 − F (d))α
?
> (1 − F (αd))

⇔ (1 − 1 + e−λd(1 + λd))α
?
> (1 − 1 + e−λd(1 + αλd))

⇔ (1 + λd)α
?
> 1 + αλd

Assuming that λd > 0 (neither a deadline nor an event rate less or equal to zero makes much
sense), and for 0 < α < 1 it has been proven [Mit70] that

(1 + λd)α < 1 + αλd (3.23)

which means that restart never makes sense for a completion time distribution of the hypo-
exponential type, no matter what deadline is set or what the parameters of the distribution
are. This can be interpreted as being a result of the more deterministic nature of the hypo-
exponential distribution, which has little variance and therefore does not benefit from restart.

Weibull Distributed Task Completion Time

When using the Weibull distribution the decision whether restart increases the probability
that the task will complete before the deadline or not depends on the value of the shape
parameter α as shown in the following.

For the Weibull distribution condition (3.22) is equivalent to

1 −
(
1 − e−(λkτ)α

)
>

(
1 −

(
1 − e−(λτ)α

))k

⇔ e−(λkτ)α

>
(
e−(λτ)α

)k

⇔ e−(λkτ)α

>
(
e−k (λτ)α

)
(3.24)

⇔ kα < k. (3.25)

Inequality (3.25) holds for all values of k iff α < 1. If α = 1 the Weibull distribution reduces
to the exponential distribution and restart neither helps nor does it hurt. The hazard rate
of the Weibull distribution is increasing for α > 1, for α = 1 it is constant and for α < 1 it
decreases. The shape of the hazard rate function is an indication for whether restart is useful
or not.

Increasing hazard rate can be interpreted as an increase in the potential of completion, while
a decreasing hazard rate indicates a decrease in potential of completion. As the potential
of completion decreases it is helpful to restart the task and benefit again of the still higher
potential of completion of a short-running task. For increasing hazard rate the reasoning is the
equivalent. The longer a task has been running already the higher its potential of completing.

3.3. Conclusions 55

A restart would mean to discard the current relatively high potential of completion and instead
return to a newly started task with low potential of completion, which is not advisable.

The hazard rate of the Weibull distribution is shown in Appendix B.2.

3.3 Conclusions

In the previous subsections we have investigated two different metrics and a number of differ-
ent distributions. We observed that restart is beneficial for certain distributions and harmful
for others, irrespective of the considered metric. Moreover, it can be observed and has been
proven in [Ger00b] that the shape of a distribution’s hazard rate determines whether or not
a distribution is amenable to restart. A decreasing hazard rate indicates that restart will
improve all metrics. In cases where the hazard rate function is not strictly increasing or
decreasing, like the hyper-/hypo-exponential distribution, more detailed analysis is necessary.

56 3. Applicability Analysis of Restart

Chapter 4

Moments of Completion Time
under Restart

The restart method is based purely on the task processing time. In the previous chapter
conditions under which the method is triggered have been investigated. When applying the
restart method the only open question is when to restart. For the task under consideration
its processing time is monitored and if the processing time exceeds a given value τ then
the task is aborted and restarted from beginning. In stochastic terms one may say restart
uses a completion time distribution, and a job gets restarted when the remaining expected
completion time is longer than the expected completion time when restarting the job, taking
into account the time already waited for completion. This is similar to age replacement in
preventive maintenance.

There are two important issues which we have not yet considered and which will be addressed
in this chapter for the metric moments of completion time. Those are: (1) to quantify
how much the moments of completion time can be improved by restarting the job and (2)
when to restart as to achieve the most improvement. These issues are also addressed in
[vMW04a, vMW04d, vMW04c, vMW06].

In order to give expressions answering (1) we need to formulate mathematical models for the
moments of completion time under restart. Then (2) is provided by optimising the moments
of completion time under restart with respect to the restart interval length.

We have to distinguish whether a finite or an infinite number of restarts is allowed and we
treat the first moment separately as it turns out to be a much simpler special case, allowing
for much simpler optimisation algorithms.

But before entering into the technical details of restart we investigate in the next subsection
whether optimising, that is in our case minimising the moments of completion time improves
system operation. We study the meaning of the moments for the shape of a probability
distribution and how reducing the moments changes the shape of a distribution.

57

58 4. Moments of Completion Time under Restart

4.1 The Information Captured by the Moments of a Distribu-
tion

The models and methods provided in this thesis can be used to compute and optimise all
moments of completion time under restart. However, we would like to be able to interpret
the moments when we want to see how the shape of a distribution, and in particular the mass
distribution, is changed when we change the distribution’s moments. Unfortunately, the raw
moments, which we optimise, do not so easily translate into characteristics such as variance,
skewness and kurtosis, that are based on the central moments of a distribution. Geometric
interpretations are in any case only known for combinations of the first four central moments
and we will only discuss those here.

Let T be a random variable describing some job execution time with probability distribution
f(t). Then its n−th raw moment can be expressed as the expected value E [T n] with

µn = E [T n] =

∫ ∞

0
tn f(t) dt.

The n−th central moment µ′n is defined as

µ′n =

∫ ∞

0
(t− µ1)

n f(t) dt.

The raw moments and the central moments can each be expressed by each other [AS72], we
describe here the central moments in the raw moments as

µ′n =
n∑

k=0

(
n

k

)
(−1)n−kµkµ

n−k
1 . (4.1)

Using µ0 = 1 the first five central moments evaluate to

µ′1 = 0

µ′2 = −µ2
1 + µ2

µ′3 = 2µ3
1 − 3µ1µ2 + µ3

µ′4 = −3µ4
1 + 6µ2

1µ2 − 4µ1µ3 + µ4

µ′5 = 4µ5
1 − 10µ3

1µ2 + 10µ2
1µ3 − 5µ1µ4 + µ5

The first moment of a probability distribution is its expected value E [T], estimated by the
mean of a sample. Obviously, the smaller the expected value the smaller are in many cases the
observations. If we manage to reduce the expected job execution time we will in most cases
in fact see shorter job execution times. Minimising the first moment therefore is certainly
worth while.

The second moment of a probability distribution is a measure describing the degree of vari-
ation. The variance, the second central moment above, is defined through first and second
raw moment and it is not obvious whether minimising those will also reduce the variance. All
we can say, as we will see later, is that if restarts at τ1 minimises the first raw moment and

4.1. The Information Captured by the Moments of a Distribution 59

restarts at τ2 minimises the second raw moment, then the variance with restarts at time τ2
is less than the variance with restarts at time τ1.

The probability distributions we consider in this thesis typically have strictly non-negative
support, meaning they are bounded from below by zero and high variation is rather unpleasant
since it means that very large values are still reasonably likely to happen. Decreasing variance
will typically mean that large extremes are less likely to happen. This again will in some cases
reduce job execution times.

A metric based on the third central moment is the skewness v, defined as

v =
µ′3

µ′2
3/2

=
2µ3

1 − 3µ1µ2 + µ3

(−µ2
1 + µ2)3/2

The skewness v of a distribution indicates the asymmetry of the distribution around its mean,
characterising the shape of the distribution [LK91]. Symmetric distributions like the normal
distribution have v = 0, whereas for the exponential distribution, e.g., v = 2. The skewness
of the Gamma distribution is

vGamma =
2

α
.

Special cases are obtained for certain values of α. The exponential distribution is a Gamma
distribution with α = 1, and the Erlang distribution is a Gamma distribution with α ≥ 1, α ∈
IN, where α are the number of phases of the Erlang distribution. We see that the skewness
of the Erlang distribution decreases with increasing number of phases and we know that the
Erlang distribution becomes more deterministic with increasing number of phases.

A negative skewness means that the distribution is skewed to the left, i.e. has the long flat
tail on the left.

The kurtosis β2 and kurtosis excess γ2 [AS72] of a distribution are defined as a normalised
form of the fourth central moment which describes the degree of peakedness of a distribution.
γ2 is scaled such that the normal distribution has kurtosis excess zero. Different definitions
of kurtosis exist. We use

β2 =
µ′4
µ′2

2

and γ2 = β2 − 3. In terms of the raw moments it is

β2 =
−3µ4

1 + 6µ2
1µ2 − 4µ1µ3 + µ4

(−µ2
1 + µ2)2

(4.2)

The Gamma distribution has γ2 = 6
α , with again the exponential distribution being the special

case α = 1 and the Erlang distribution having α ≥ 1, α ∈ IN.

It is not obvious how minimising the raw moments affects the kurtosis. One can assume that
minimising the first moment will maximise the kurtosis, since the first moment appears in
the highest power in (4.2) and hence has the greatest impact. But we may reason that for
our purpose of reducing completion times a deterministic distribution is desirable and hence
reducing the kurtosis of the completion time distribution is beneficial.

60 4. Moments of Completion Time under Restart

4.2 Models for Moments of Completion Time

In this section we define the stochastic models for completion time under restart. For an un-
bounded number of allowed restarts we are able to derive an elegant formula for all moments,
which we can then use to compute all moments iteratively. The moments can be bounded
from below and above by using a simple geometric approximation.

We do not address choosing an appropriate restart interval length, but assume that restarts
happen in fixed-length intervals. We will see later that optimal moments of completion time
are often rather achieved when using restart intervals of individual and different length. We
show the degree of improvement depending on the restart interval length where all intervals
are equal.

An expression for the moments of completion time can also be derived if the number of allowed
restarts is finite. Based on this expression an algorithm is formulated that goes backward in
time to compute all moments for the case of a finite number of restarts.

Optimisation of the moments of completion time with respect to the restart interval length
is the topic of the next section.

4.2.1 Unbounded Number of Restarts

Let the random variable T represent the completion time of a job without restarts, f(t) its
probability density function, and F (t) its distribution. For convenience, but without loss
of generality,1 we assume that F (t) is a continuous probability distribution function defined
over the domain [0,∞), so that F (t) > 0 if t > 0. Assume τ is a restart time2, and the
overhead associated with restarting is c time units for each restart (we also refer to c as the
‘cost’ of a restart). We introduce the random variable Tτ to denote the completion time
when an unbounded number of restarts is allowed. That is, a restart takes place periodically,
every τ time units, until completion of the job. We write fτ (t) and Fτ (t) for the density and
distribution of Tτ , and we are interested in the moments of Tτ , and later also in the optimal
value of the restart time τ itself. To formally derive an expression for the moments, we first
need an expression for the distribution and density of the completion time with restarts.
We assume that a restart preempts the previous attempt, and that the completion times for
consecutive attempts are statistically identical and independent. One can then reason about
completion of a task in a restart interval as a Bernoulli trial with success probability F (τ).
That is, the completion time with restarts relates to that without restarts as:

Fτ (t) =

{
1 − (1 − F (τ))k(1 − F (t− k(τ + c))) if k(τ + c) ≤ t < k(τ + c) + τ
1 − (1 − F (τ))k+1 if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(4.3)
for k = 0, 1, 2, For the density we obtain, also for any integer value k = 0, 1, 2, . . .:

fτ (t) =

{
(1 − F (τ))kf(t− k(τ + c)) if k(τ + c) ≤ t < k(τ + c) + τ
0 if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(4.4)

1At the cost of more notation, and with a proper discussion for special cases, the results in this section also
apply to distributions defined over finite domains, as well as to defective distributions and distributions with
jumps.

2At times we also refer to τ as the as restart interval.

4.2. Models for Moments of Completion Time 61

0.1 0.2 0.3 0.4 0.5
t

1

2

3

4

5

6

fHtL

Figure 4.1: The probability density function of the mixed hyper/hypo-
exponential distribution. Optimal restart times are 0.25 for single restart
and 0.19 for unbounded number of restarts.

0.1 0.2 0.3 0.4 0.5
t

1

2

3

4

5

6

fΤHtL

Figure 4.2: The probability density fτ of completion time with un-
bounded number of restarts (based on hyper/hypo-exponentially dis-
tributed completion time without restarts, with restart time τ = 0.1
and cost c = 0.02).

As an example we will use the hyper/hypo-exponential distribution (see Appendix B for the
precise mathematical characterisation), as it represents typical almost bimodal behaviour.
The random variable draws with probability p = 0.9 from an Erlang distribution with two
phases and mean 0.1 and with probability 0.1 from an Erlang distribution with two phases
and mean 1.0.

Figure 4.1 shows the density of the mixed hyper/hypo-exponential distribution. It turns
out that for a single restart, the optimal restart time is about 0.25, while for unbounded
number of repeated restarts, the optimal restart time is about 0.19. Both values are indeed
not too far above the mean 0.1 of the first Erlang distribution. The expected completion time
decreases for a single restart from 0.190 to 0.136, and for unbounded restarts to 0.127, see
also Figure 4.6 on page 68.

It is worth visualising the density of Tτ , see Figure 4.2 for a mixed hyper/hypo-exponentially
distributed T , with parameters as in Appendix B.2, restart time τ = 0.1, and cost c = 0.02.

62 4. Moments of Completion Time under Restart

In what follows, we also need the partial moments Mn(τ) at τ of the completion time, which
are defined as:

Mn(τ) =

∫ τ

0
tnf(t)dt =

∫ τ

0
tnfτ (t)dt. (4.5)

The equality of partial moments of T and Tτ follows from the fact that their respective
densities are identical between 0 and τ (see (4.4) for k = 0).

We will exploit the structure of (4.4) to obtain computationally attractive expressions for the
moments of Tτ , and to gain further insight into optimal restart policies.

Theorem 1. The moments E [T n
τ] =

∫∞
0 tnfτ (t)dt, n = 1, 2, . . . , of the completion time with

unbounded number of restarts, restart interval length τ > 0, and time c consumed by a restart,
can be expressed as:

E [T n
τ] =

Mn(τ)

F (τ)
+

1 − F (τ)

F (τ)

n−1∑

l=0

(
n

l

)
(τ + c)n−lE

[
T l

τ

]
, (4.6)

where E
[
T 0

τ

]
= 1.

Proof. The derivation is particularly elegant if one exploits the recursive structure of (4.4).
First, by definition, we have:

E [T n
τ] =

∫ ∞

0
tnfτ (t)dt

=

∫ τ

0
tnfτ (t)dt+

∫ ∞

τ+c
tnfτ (t)dt = Mn(τ) +

∫ ∞

τ+c
tnfτ (t)dt. (4.7)

Then, we use that from (4.4) it follows that for any t ≥ 0,

fτ (t+ τ + c) = (1 − F (τ))fτ (t),

and thus:
∫ ∞

τ+c
tnfτ (t)dt =

∫ ∞

0
(t+ τ + c)nfτ (t+ τ + c)dt = (1 − F (τ))

∫ ∞

0
(t+ τ + c)nfτ (t)dt. (4.8)

Combining (4.7) and (4.8) we obtain:

E [T n
τ] = Mn(τ) + (1 − F (τ))

∫ ∞

0
(t+ τ + c)nfτ (t)dt,

which we write out as:

E [T n
τ] = Mn(τ) + (1 − F (τ))

∫ ∞

0

n∑

l=0

(
n

l

)
(τ + c)n−ltlfτ (t)dt =

Mn(τ) + (1 − F (τ))

n∑

l=0

(
n

l

)
(τ + c)n−lE

[
T l

τ

]
.

One then solves this equation for E [T n
τ] , cancelling out the highest moment within the sum,

to obtain:

E [T n
τ] =

Mn(τ)

F (τ)
+

1 − F (τ)

F (τ)

n−1∑

l=0

(
n

l

)
(τ + c)n−lE

[
T l

τ

]
.

4.2. Models for Moments of Completion Time 63

0.25 0.5 0.75 1 1.25 1.5 1.75 2
Τ

0.5

1

1.5

2

2.5
E@TΤ

kD�E@TkD,k=1,2,3

E@TΤD�E@TD
E@TΤ

2D�E@T2D
E@TΤ

3D�E@T3D

Figure 4.3: Restart time versus the normalised difference between un-
bounded restarts and no restarts, for first three moments.

For example, the expected completion time is given by:

E [Tτ] =
M1(τ)

F (τ)
+

1 − F (τ)

F (τ)
(τ + c). (4.9)

The expression for the variance can also be found in [MH01]. The result for the first moment
is indeed as it should be: (4.9) must account for the interval in which the task completes, as
well as for the times the job fails to complete. The first term in (4.9) is the expected download
time conditioned on success within a restart interval. The second term equals interval length
τ + c times the expected value of a modified geometric distribution [Hav98] with parameter
F (τ), since, indeed, in every interval the probability of completion is F (τ).

Finally, note that by requiring that τ > 0 in Theorem 1, the denominator F (τ) in (4.6) is
positive, since we assumed continuous distributions defined over [0,∞). For τ ↓ 0 and c = 0,
we can apply l’Hospital’s rule, to see that E [Tτ] → f−1(0), which tends to infinity for our
running example meaning that if we do an unbounded number of immediate restarts the job
will never complete.

Equation (4.6) directly yields an algorithm to iteratively compute all moments up to some
specified value N . We reformat it here as an algorithm for completeness of the presentation:

Algorithm 1 (Computation of all Moments, Unbounded Restarts).

Set E
[
T 0

τ

]
= 1 for chosen τ > 0;

For n = 1 to N {
compute E [T n

τ] = Mn(τ)
F (τ) + 1−F (τ)

F (τ)

∑n−1
l=0

(
n
l

)
(τ + c)n−lE

[
T l

τ

]

}

Using this basic algorithm we obtained the results as shown in Figure 4.3 through 4.13. Figure
4.3 provides the relative gain depending on the restart interval length using restarts for the
first three moments, where we use identical interval lengths for all restarts, which we will later
see is not always optimal. Notice that the gain increases rather dramatically with the order of

64 4. Moments of Completion Time under Restart

0.05 0.1 0.15 0.2 0.25
Τ

0.05

0.1

0.15

0.2

0.25

Approximation E@TΤD

E@AΤD

E@TΤD

E@BΤD

Figure 4.4: Approximation of expected completion time using geometric distribu-
tions.

the moment. Also, notice the wide range of restart times which perform well, which suggests
that rough estimates may often suffice to set a restart time. An important engineering rule is
not to take the restart time too small, since for many realistic distributions, the completion
time will then tend to infinity (the hyper-exponential distribution being one exception). In
general, it may be safer to take the restart time too large than too small.

As a corollary of Theorem 1 we state a fundamental result, which was also observed by
[CTA00] for failure detectors.

Corollary 1. Under unbounded restarts, the expectation (as well as higher moments) of the
completion time Tτ with restart time τ > 0 (for which F (τ) > 0), is always finite, even if the
moments of the original completion time are not.

This is an important observation, stressing the value of restarts for situations in which there is
a (strictly) positive probability that a task can fail (thus making the moments of completion
time infinite).

Geometric approximation. The results obtained above also suggest bounds for the mo-
ments by using the (modified) geometric distribution (see also expression (4.2.12) in [Ger00b]
for the dual result in terms of mean time between failures). To bound the first moment, one
replaces the first term in (4.6), which refers to the interval in which the job completes, by its
upper and lower bounds 0 and τ, respectively. This can be generalised to all moments, using
two discrete random variables Aτ and Bτ , with

Aτ = k(τ + c), with probability (1 − F (τ))kF (τ), k = 0, 1, . . . ,

Bτ = k(τ + c) + τ, with probability (1 − F (τ))kF (τ), k = 0, 1, (4.10)

Since we know from (4.3) that

k(τ + c) ≤ Tτ ≤ k(τ + c) + τ, with probability (1 − F (τ))kF (τ), k = 0, 1, . . . ,

we have that E [An
τ] ≤ E [T n

τ] ≤ E [Bn
τ], for n = 1, 2, Note that Aτ has a modified

geometric distribution [Hav98] and that Bτ = Aτ + τ . Figure 4.4 shows E [Tτ] as well as
the bounds for the mixed hyper/hypo-exponential distribution. The bounds, whose summed

4.2. Models for Moments of Completion Time 65

s

}}}

ττ

}

s

cτ1

1 2

c

sK−1

K−1c K c

sK K+1
times

Figure 4.5: Labeling restarts, total of K restarts.

error equals exactly τ , are excellent approximations as long as the restart time τ is small
relative to the mean completion time E [Tτ]. For the area around the optimal restart time the
bounds are not particularly tight. Nevertheless, the geometric approximation may prove very
useful for determining a conservative restart time. For instance, for Figure 4.4, the optimal
restart time (that is, the minimum of the curve) for the upper bound is 0.09, and for the lower
bound 0.31, while the real optimum lies in between (namely at 0.20). Moreover, Figure 4.3
shows that for τ = 0.31, the expected completion time is still close to optimal. Using 0.31 as
a conservative restart time is also consistent with the above-mentioned engineering rule that
it is better to restart too late than too early.

4.2.2 Finite Number of Restarts

There may be cases in which one is interested in a finite number of restarts. For example,
in the mixed hyper/hypo-exponential example, too low a restart time is very detrimental for
the completion time if there is no bound on the number of restarts. Although this need not
generally be the case (the hyper-exponential distribution is a counter example), for many
distributions it may be wise to limit the number of restarts, or increase the period between
restarts with the restart count. This leads to a situation with finite and non-identical restart
intervals, for which we derive an algorithm to compute all moments. Perhaps one would expect
that restarts should take place with fixed-length intervals between them, but we will see that
this is often not optimal. We provide an algorithm to compute the optimal restart times for
the first moment. We explain why the first moment is considerably simpler to optimise than
higher moments, for which we do not know an algorithm with proven convergence.

For our discussion it is convenient to label the restarts as shown in figure 4.5. We assume
the total number of restarts is K, and the restart intervals have length τ1, τ2, . . . , τK−1, τK ,
respectively. The k-th interval starts at time sk. So, we get s1 = 0, s2 = τ1 + c, s3 =
τ1 + c + τ2 + c, etc., until sK =

∑K
k=1 τk + Kc. The completion time with K restarts is

represented by the random variable Tτ1,...,τK
. The completion time probability distribution

Fτ1,...,τK
and density fτ1,...,τK

for the scenario with K restarts can be derived in the same
way as (4.3) and (4.4). If we introduce τK+1 = ∞ for notational purposes we can define the
density and distribution function piece-wise over every restart interval:

Fτ1,...,τK
(t) =

{
1 −

∏k−1
i=1 (1 − F (τi))(1 − F (t− sk)) if sk ≤ t < sk + τ, k = 1, . . . ,K + 1

1 −∏k
i=1(1 − F (τi)) if sk + τk ≤ t < sk+1, k = 1, 2, . . . ,K

fτ1,...,τK
(t) =

{ ∏k−1
i=1 (1 − F (τi))f(t− sk) if sk ≤ t < sk + τ, k = 1, . . . ,K + 1

0 if sk + τk ≤ t < sk−1, k = 1, 2, . . . ,K
(4.11)

66 4. Moments of Completion Time under Restart

As for the unbounded case, we express the moments in the following theorem in a manner
convenient for computational purposes. This time, we express the moments of the completion
time with K restarts in that with one restart less.

Theorem 2. The moments E
[
T n

τ1,...,τK

]
=
∫∞
0 tnfτK ,...,τ1(t)dt, n = 1, 2, . . . , of the completion

time with K restarts, restart interval lengths τ1, τ2, . . . , τK , and time c consumed by each
restart, can be expressed as:

E
[
T n

τ1,...,τK

]
= Mn(τ1) + (1 − F (τ1))

n∑

l=0

(
n

l

)
(τ1 + c)n−lE

[
T l

τ2,...,τK

]
, (4.12)

where E
[
T 0

τ2,...,τK

]
= 1.

Proof. The derivation is similar to that of Theorem 1. Start from the fact that from (4.11)
it follows that for t ≥ 0:

fτ1,...,τK
(s2 + t) = (1 − F (τ1))fτ2,...,τK

(t),

and then follow the same derivation as in Theorem 1. Only the last step, in which E [T n
τ] is

solved, has no counterpart in the current proof.

As an illustration, we get for the first moment:

E [Tτ1,...,τK
] = M1(τ1) + (1 − F (τ1))(τ1 + c+ E [Tτ2,...,τK

]). (4.13)

The above theorem implies that if τ1, . . . , τK are known beforehand, one can iteratively com-
pute E

[
TN

τ1,...,τK

]
for any N > 0 by going backward in time. That is, starting from the

moments E
[
T n

τK

]
, n = 1, . . . , N, one obtains E

[
T n

τK−1,τK

]
, until E

[
TN

τ1,...,τK

]
. The algorithm

thus goes as follows:

Algorithm 2 (Backward Algorithm, first N Moments, K Restarts).

For n = 0 to N

Set E
[
T n

τK+1,...,τK

]
= E [T n];

For k = K to 1 {
For n = 0 to N {

E
[
T n

τk ,...,τK

]
= Mn(τk) + (1 − F (τk))

∑n
l=0

(n
l

)
(τk + c)n−lE

[
T l

τk+1,...,τK

]
;

}
}

A nice feature of the backward algorithm is that it computes moments of subsets {τk, . . . , τK}
along the way. One should be careful to interpret those correctly: the moments E

[
T l

τk ,...,τK

]

are for sk = 0, that is, for the case that completion time starts counting at the k-th interval,
not before. This feature of the backward algorithm turns out to be its pitfall as well, if we
try to use the algorithm for optimisation purposes. The issue is that for higher moments
optimisation of the k-th restart time depends on all other restart times. Only for the first
moment, the optimal value of the k-th restart is insensitive to what happens before the k-
th restart (that is, to the restarts we labelled 1, . . . , k − 1). As a consequence, for the first
moment, we can optimise the restart intervals concurrently with computing moments using
the backward algorithm.

4.3. Optimal Restart Times for the Moments of Completion Time 67

4.3 Optimal Restart Times for the Moments of Completion
Time

In this section we find optimal restart times, which are the times when to restart as to optimise
the moments of completion time. We have to distinguish the first moment of completion time
and higher moments, as well as an infinite number of allowed restarts and a finite number of
restarts. We will see that for all four cases the algorithms for obtaining the optimal restart
times are different as are the best restart times themselves.

4.3.1 Expected Completion Time

At first we study the first moment of completion time under restart and develop algorithms
that help finding the restart times that will optimise the first moment of completion time.
Allowing an unbounded number of allowed restarts we find an interesting relationship between
the hazard rate of the completion time and the expected completion time (Theorem 3): the
inverse hazard rate evaluated at the optimal restart time τ equals the expected completion
time under restart, if the cost associated with restart is zero.

We are able to formulate a condition on completion time distributions to be amenable to
restart, and a monotonicity relation for the mean completion time as function of the number
of restarts (see Subsection 4.3.1.3).

4.3.1.1 Unbounded Number of Allowed Restarts

The optimal restart interval size for the first moment and an unbounded number of allowed
restarts can be computed in one optimisation during the computation of the moments under
restart with the backward algorithm 2 on the preceding page. It is obtained in a straight
forward manner by minimising (4.9) with respect to τ . All optimal restart intervals have
equal length.

We give here an implicit relation for the optimal restart time τ∗ for the first moment of Tτ .
This implicit expression provides us with interesting insight into how the hazard rate of a
distribution determines the optimal completion time under restarts. It will also help us to
refute the claims on the existence of a cusp point in [MH01], as we will show in Section 4.3.2.

Theorem 3. The optimal restart time τ∗ > 0 that minimises the expected completion time
E [Tτ] is such that:

1 − F (τ∗)

f(τ∗)
= E [Tτ∗] + c. (4.14)

That is, if c = 0, the inverse of the hazard rate at τ∗ equals the expected completion time
under unbounded restarts.

Proof. To obtain this result, we equate to zero the derivative with respect to τ of E [Tτ] =

68 4. Moments of Completion Time under Restart

0.1 0.2 0.3 0.4 0.5
Τ

0.2

0.4

0.6

0.8

1

E@TΤD

E@TD

1 - F HΤL
����������������������
f HΤL

Figure 4.6: Extrema for the mean completion time are found at restart
times τ for which the inverse hazard rate equals E [Tτ].

M1(τ)
F (τ) + 1−F (τ)

F (τ) (τ + c) (the base relation (4.9)):

d

dτ
E [Tτ] = 0 ⇐⇒ τf(τ)F (τ) − f(τ)M1(τ)

F 2(τ)
+

1 − F (τ)

F (τ)
− f(τ)(τ + c)

F 2(τ)
= 0

⇐⇒ 1 − F (τ)

F (τ)
=

f(τ)

F (τ)

(
(τ + c)

F (τ)
− τ +

M1(τ)

F (τ)

)

⇐⇒ 1 − F (τ)

f(τ)
=

1 − F (τ)

F (τ)
(τ + c) + c+

M1(τ)

F (τ)
.

Applying (4.9) again we obtain:

d

dτ
E [Tτ] = 0 ⇐⇒ 1 − F (τ)

f(τ)
= E [Tτ] + c.

It is important to realise that (4.14) may hold for many restart values, including τ → ∞, and
not only holds for the global optimum, but also local minima and maxima. For instance, in
Figure 4.6, the inverse hazard rate indeed crosses E [Tτ] in its minimum, which gives τ∗ ≈ 0.2,
but also meets at point 0, where the maximum of the completion time under restarts is
reached.

As we remarked in Section 1.3, there exists a dual problem formulation in terms of maximising
the time to failure, and thus, Theorem 3 not only holds for restart times that minimise
completion time, but also for preventive maintenance times that maximise the mean time to
failure (which is meaningful only for certain distributions and without cost (i.e., c = 0)).

4.3.1.2 Finite Number of Allowed Restarts

For the first moment, we can optimise the restart intervals concurrently with computing
moments using the backward algorithm. We extend the backward algorithm for optimisation
of a finite number of restart intervals to the backward optimisation algorithm.

4.3. Optimal Restart Times for the Moments of Completion Time 69

The backward optimisation algorithm only requires a single run of K steps; it works backward
in time and finds optimal restart times τ∗K , . . . , τ

∗
1 , in that order.

Algorithm 3 (Backward Optimisation Algorithm, First Moment, K Restarts).

Set E
[
Tτ∗

K+1,...,τ∗
K

]
= E [T];

For k = K to 1 {
compute τ∗k, the value of τk > 0 that

minimises M1(τk) + (1 − F (τk))(τk + c+ E
[
Tτ∗

k+1,...,τ∗
K

]
);

Set E
[
Tτ∗

k
,...,τ∗

K

]
= M1(τ

∗
k) + (1 − F (τ∗k))(τ∗k + c+ E

[
Tτ∗

k+1,...,τ∗
K

]
);

}

As already mentioned in Section 4.3.1.2 the backward algorithm computes moments of subsets
{τk, . . . , τK} on the way. But the moments E

[
T l

τk ,...,τK

]
are for sk = 0, that is for sk shifted

on the time axis to zero. The first moment is insensitive to those shifts, i.e. it is insensitive
to what happens before the k−th restart. This does not hold true for higher moments.
The insensitivity of the first moment of completion time to shifts is proven in the following
theorem.

This theorem is necessary to show that the backward optimisation algorithm finds the restart
times that optimise the first moment of completion time.

Correctness of the Backward Optimisation Algorithm The following theorem demon-
strates that if the backward optimisation algorithm (Algorithm 3) computes a restart time
τ∗k it is optimal, irrespective of the values of τ1 to τk−1 computed later in the algorithm.

Theorem 4. Assume a restart strategy with K restarts at times τ1, . . . , τK−1, τK . For the first
moment E [Tτ1,...,τK

] , for any value of k between 1 and K, the restart time τ∗k , that minimises
E [Tτk ,...,τK

] , also minimises E [Tτ1,...,τK
] (and is thus independent of τ1, . . . , τk−1). For higher

moments this is not generally true.

Proof. E [Tτ1,...,τK
] and E [Tτk,...,τK

] relate as follows:

E [Tτ1,...,τK
] =

∫ sk

0
tfτ1,...,τK

(t)dt +

k−1∏

i=1

(1 − F (τi))

∫ ∞

sk

tfτk,...,τK
(t− sk)dt =

∫ sk

0
tfτ1,...,τK

(t)dt +

k−1∏

i=1

(1 − F (τi))E [sk + Tτk,...,τK
] . (4.15)

Since E [sk + Tτk,...,τK
] = sk + E [Tτk,...,τK

] , and since the integral between 0 and sk is inde-
pendent of τk, we see immediately that the value of sk is immaterial for the optimal restart
time τ∗k :

d

dτk
E [Tτ1,...,τK

] = 0 ⇐⇒ d

dτk
E [sk + Tτk,...,τK

] = 0 ⇐⇒ d

dτk
E [Tτk ,...,τK

] = 0.

70 4. Moments of Completion Time under Restart

Hence, τ∗k is an extreme for E [Tτ1,...,τK
] if and only if it is an extreme for E [Tτk,...,τK

] . Even
stronger, by inspection of (4.15) it follows that if τ∗k is an element of the global minimum
{τ∗k , . . . , τ∗K} for E [Tτk ,...,τK

] (with k restarts) then no other value of τk can result in a better
expected overall completion time E [Tτ1,...,τK

] (with K restarts). Thus, τ∗k must then also
be an element of the global optimum {τ∗1 , . . . , τ∗K} for E [Tτ1,...,τK

] . For higher moments, we
can not remove the dependence on sk, and the backward optimisation algorithm does there-
fore not extend to higher moments. As an example, E

[
(sk + Tτk,...,τK

)2
]

leaves a term with

sk
d

dτk
E [Tτ1,...,τK

] in the derivative. Hence, restart times τk, . . . , τK that optimise E
[
T 2

τk ,...,τK

]

may not optimise E
[
(sk + Tτk ,...,τK

)2
]

and/or E
[
T 2

τ1,...,τK

]
.

As an illustration, we apply the backward optimisation algorithm to our mixed hyper/hypo-
exponential distribution, with parameters as given in Appendix B.2, to obtain the optimal
restart times given in Table 4.1. Note that the values in the table imply that, for instance,
for k = 9, the two remaining restart times will be after 0.209 and 0.209 + 0.249 = 0.458 time
units, respectively. As one sees from Table 4.1, the restart intervals have different lengths,

interval index k optimal length τk of k-th interval

unbounded 0.198254
1 0.198254
2 0.198254
3 0.198254
4 0.198256
5 0.198265
6 0.1983
7 0.199
8 0.200
9 0.209
10 0.249

Table 4.1: Optimal restart intervals for finite and unbounded number of restarts.

longer if it is closer to the last restart. Furthermore, the more restarts still follow, the closer
the interval length is to the optimum for unbounded restarts, which is 0.198254. This is as
expected.

4.3.1.3 Characteristics of Probability Distributions and Optimal Restart Policies

The backward algorithm (Algorithm 2 in Section 4.3.1.2) provides us with machinery to
further characterise necessary and sufficient conditions for a random variable T to benefit
from restarts. We will see that for the mean completion time, the intuitive condition we
derived in Section 3.2.1 for a single restart is necessary and sufficient for any number of
restarts to be useful. We will also show that if a single restart improves the mean completion
time, multiple restarts perform even better, and unbounded restarts performs best.

We use the random variable TτK to denote the completion time under K restarts at times
τ + c, 2(τ + c), . . . ,K(τ + c), and for technical reasons also use the notation Tτ0 = T, for the

4.3. Optimal Restart Times for the Moments of Completion Time 71

case without restarts.

Theorem 5. The mean completion time under zero (E [T]), K ≥ 1 (E [TτK]) and unbounded
restarts (E [Tτ]) interrelate as follows:

E [Tτ] < . . . < E [TτK+1] < E [TτK] < . . . < E [T] ⇐⇒ E [Tτ] < E [T] , (4.16)

and

E [T + c] < E [T − τ |T > τ] ⇐⇒ E [Tτ] < E [T] . (4.17)

Proof. The first result follows from the backward algorithm, which uses (4.13) for the first
moment. (Note that TτK is in fact identical to Tτ1,...,τK

with τ1 = . . . = τK = τ .) If we
introduce

Cτ = M1(τ) + (1 − F (τ))(τ + c),

then from (4.13) we obtain that for any K ≥ 0 (remembering that E [Tτ0] = E [T])

E [TτK+1] = Cτ + (1 − F (τ))E [TτK] , (4.18)

and from (4.9) that for unbounded restarts:

E [Tτ] =
Cτ

F (τ)
. (4.19)

Combining (4.18) and (4.19) it is easy to show that

E [TτK+1] < E [TτK] ⇐⇒ Cτ

F (τ)
< E [TτK] ⇐⇒ E [Tτ] < E [TτK] .

Since this holds for any K ≥ 0, it follows that E [Tτ] < E [T] , proving (4.16).

To show that (4.17) holds, we derive:

E [T − τ |T > τ] =

∫∞
τ (t− τ)f(t)dt

1 − F (τ)

=

∫∞
τ tf(t)dt− τ(1 − F (τ))

1 − F (τ)
=

E [T] −M1(τ)

1 − F (τ)
− τ.

Then (4.17) follows using (4.9):

E [T] + c < E [T − τ |T > τ] ⇐⇒ E [T] + c <
E [T] −M1(τ)

1 − F (τ)
− τ

⇐⇒ (1 − F (τ))E [T] < E [T] −M1(τ) − (1 − F (τ))(τ + c)

⇐⇒ E [T] >
M1(τ)

F (τ)
+

1 − F (τ)

F (τ)
(τ + c) ⇐⇒ E [Tτ] < E [T] .

72 4. Moments of Completion Time under Restart

0.05 0.1 0.15 0.2
restart
time

0.125

0.15

0.175

0.2

0.225

0.25

0.275

mean completion time

unbounded restarts
no restart
1 restart

5 restarts

Figure 4.7: Expected completion time for varying number of restarts.

Note that the above proof shows that the backward algorithm is a fixed-point iteration of the
form

xK+1 = Cτ + (1 − F (τ))xK ,

(see (4.18)) with initial guess x0 = E [T] and fixed-point solution E [Tτ]. The consequence
of the first result of Theorem 5 is depicted in Figure 4.7. The straight line is the expected
completion time E [T] without restarts, and the curve with the highest maxima and lowest
minima is E [Tτ] for unbounded restarts. Because of Theorem 5, all curves improve the
completion time over the same range of restart times, and the more restarts, the better.
Similarly, when the completion time increases with restarts, fewer restarts are less detrimental
for the completion time.

Another consequence of Theorem 5 is that if the completion time distribution is such that
there exist restart times that improve expected completion time, as well as restart times that
increase expected completion time, then there must also exist at least one point in which all
curves cross, that is, it is immaterial if and how many restarts one executes. Figure 4.7 shows
this, at τ ≈ 0.05.

We finally note that the results from Theorem 5 do not extend to higher moments. Figure
4.8 shows that there exist values for which one or two restarts improve the second moment,
but unbounded restarts do not. There also is no point τ ′ in which any number of restarts
provides the same completion time. The reason higher moments are more problematic is the
same as why the backward algorithm does not work for higher moments: whether a restart
time improves the completion time’s higher moments is sensitive to the starting point of a
restart interval. Repeated restarts may therefore not always keep improving the completion
time’s higher moments. Nevertheless, one can follow a similar conditional argument as in
Section 3.2.1 to obtain the condition under which restart is beneficial for higher moments,
namely E [(T + c)n] < E [(T − τ)n|T > τ]. However, from this we cannot conclude anything
about the success for multiple or unbounded number of restarts.

4.3. Optimal Restart Times for the Moments of Completion Time 73

0.05 0.1 0.15 0.2
restart
time

0.05

0.1

0.15

0.2

0.25

second moment
completion time

unbounded restarts
no restart
1 restart

5 restarts

Figure 4.8: Second moment of completion time for varying number of restarts.

4.3.2 Optimal Restart Times for Higher Moments

In Section 4.2 we formulated a mathematical description of models for moments of completion
time under restart. We were able to derive a general description for all moments, the first
moment as well as higher moments of completion time. However, optimising the moments with
respect to the restart intervals can not be done for all moments similarly. Different algorithms
are needed for higher moments than for the expected completion time. In the previous section
we derived an algorithm for optimising the first moment of completion time under unbounded
and finite many restarts. We provide in this section an efficient algorithm to determine the
optimal time instants at which to initiate restarts, so that higher moments of completion time
are minimised. As we showed in the previous section and in [vMW04a], the optimal restart
strategy for the first moment can be determined in straightforward manner, both for finite
and infinite number of allowed restarts. However, determining restart times that minimise
higher moments of completion time is considerably more challenging, and requires an iterative
approach to deal with the multiple dimensions of the optimisation problem. Our proposed
algorithm leverages various expressions for the moments of completion time to simplify the
minimisation problem. Because of this simplification, the algorithm outperforms more naive
approaches by up to an order of magnitude (see Algorithm 4 in this section).

From our analysis it follows that it is typically not optimal to apply restarts at constant
intervals when minimising higher moments, even if an infinite number of restarts is allowed.
This is in contrast to the situation for the first moment, as we explained. We also provide
insights into the characteristics of the optimal restart strategy through approximations under
limiting conditions. It turns out that as long as enough restarts are allowed, one can use a
first-moment approximation, with appropriate corrections for the first and last few restarts.
Such approximations enable quick estimates for optimal restart times, and are therefore of
practical importance.

When optimising the moments of completion time separately one finds that a restart time can
be optimal for one moment but not for others, i.e. each moment has its respective optimal
restart times. We will see that the cusp point (which minimises both ‘reward’ and ‘risk’)

74 4. Moments of Completion Time under Restart

s

}}}}

s

c

1 2

c

sK−1

c c

sK K+1
times

τ1|K τK−1|K τK|K

Figure 4.9: Labelling restarts, total of K restarts.

identified in [MH01] does not generally exist, for instance, not for the mixed hyper/hypo-
exponential distribution which we use for illustration.

Optimising higher moments needs slightly heavier notation, since we have to always account
for the total number K of restart intervals, which we therefore need to incorporate into
the definition of moments of completion time. We use the expression for the density and
distribution of the random variable for completion time under restart in slightly different
form than (4.4) and (4.4) and therefore recall both of them here. Also, our numbering
scheme must be augmented with the total number of restart intervals K, as shown in Figure
4.9.

Remember the random variable T representing the completion time of a job without restarts,
f(t) its probability density function, and F (t) its distribution. The total number of restarts
is K, and the overhead associated with restarting is again c time units for each restart. The
random variable TK (with density fK(t) and distribution FK(t)) represents the completion
time with K restarts, where the restart intervals have length τ1|K , . . . , τK|K, (see Figure 4.9).

The k-th interval starts at time sk, that is, s1 = 0, s2 = τ1|K +c, . . . , sK+1 =
∑K

k=1 τk|K +Kc.

Setting τK+1|K = ∞ for notational purposes, the density function fK(t) and survival function
F̄K(t) = 1 − FK(t) depend on which restart interval t falls in, as follows [vMW04a]:

fK(t) =

{ ∏k−1
i=1 F̄ (τi|K)f(t− sk) if sk ≤ t < sk + τk|K, k = 1, . . . ,K + 1

0 if sk + τk|K ≤ t < sk+1, k = 1, . . . ,K
(4.20)

F̄K(t) =

{ ∏k−1
i=1 F̄ (τi|K)F̄ (t− sk) if sk ≤ t < sk + τk|K, k = 1, . . . ,K + 1∏k
i=1 F̄ (τi|K) if sk + τk|K ≤ t < sk+1, k = 1, . . . ,K

The N -th moment E
[
TN

K

]
, our metric of interest, is by definition:

E
[
TN

K

]
=

∫ ∞

0
tNfK(t)dt =

K+1∑

k=1

∫ sk+τk|K

sk

tNfK(t)dt. (4.21)

To find the restart times τ1|K , . . . , τK|K that minimise E
[
TN

K

]
, one could minimise (4.21)

directly. It results in a K-dimensional minimisation problem that can be solved with off-the-
shelf optimisation software. However, it is computationally expensive, since every new ‘guess’
for τk|K implies recomputing the integral term in (4.21) for all intervals [sl, sl + τl|K) with

l ≥ k, to determine if the guess improves E
[
TN

K

]
.

As an alternative, we can use an expression for E
[
TN

K

]
we derived in 4.2. We present this

expression here in slightly different form, using the notation k̄ = K−k+1. It is important to
grasp the intuitive meaning of k̄: where k is the number of restarts preceding and including

4.3. Optimal Restart Times for the Moments of Completion Time 75

the k-th, k̄ is the number of restarts succeeding and including the k-th. We then recursively
relate moments for k̄ restarts with that for k̄ − 1 restarts by adding one restart before the
existing k̄ − 1:

E
[
TN

k̄

]
= Mk[T

N] + F̄ (τk|K)

N∑

n=0

(
N

n

)
(τk|K + c)N−nE

[
T n

k̄−1

]
, (4.22)

where Mk[T
N] denotes the ‘partial moment,’ defined for k̄ = 1, . . . ,K, as:

Mk[T
N] =

∫ τk|K

0
tNf(t)dt.

Instead of minimising (4.21) one can minimise (4.22). In this case, however, every new ‘guess’
for τk|K implies computing E

[
TN

K

]
‘all the way,’ recursively calculating E

[
TN

l

]
for all values

l ≥ k, to determine if the guess improves E
[
TN

K

]
. This also introduces much computational

overhead. (In Figure 4.14 we will see that minimising (4.22) is in fact slightly less expensive
than minimising (4.21), at least for the discussed example.)

The main idea is not to minimise (4.21) or (4.22) directly, but instead extend to higher
moments an idea that worked very well in [vMW04a] for the first moment and is carried
out in Section 4.3.1.2. Utilising the recursion of (4.22), the backward optimisation algorithm
sequentially determines the restart time τk|K that minimises E [Tk̄] = Mk[T]+ F̄ (τk|K)(τk|K +
c + E

[
Tk̄−1

]
), for k̄ = 1 to K. Its correctness relies on the fact that the optimal restart

time τk|K is independent of preceding restarts, as we discuss in Section 4.3.1.2 and in detail
below. We named this algorithm the backward algorithm, since it determines the best restart
times in reversed order, that is, first τK|K, then τK−1|K until finally τ1|K . A single pass
of K optimisations is guaranteed to provide the optimal restart times, which makes the
backward algorithm computationally much more efficient than minimising either (4.21) or
(4.22). (Figure 4.14 shows an improvement of about a factor 20.)

As we already pointed out earlier, the backward algorithm can not be applied to higher
moments, because the optimal value of a restart interval depends on the restarts that precede
it. To resolve this problem, we now prove that the optimal restart time at interval k depends
on preceding restart times solely through the sum of these restart times, not the individual
values. That is, the optimal τk|K depends on τ1|K , . . . , τk−1|K only through the value of sk.
Based on this, we obtain a new expression (namely expression (4.17)), which we combine with
(4.22) to simplify the optimisation task.

Theorem 6. For any strictly positive k ≤ K, let the first k− 1 restart times τ1|K , . . . , τk−1|K

be given. The last k̄ restart times τk|K, . . . , τK|K minimise E
[
TN

K

]
if and only if they minimise

E
[
Tk̄ + sk)

N
]

(where we equate restart τk+i−1|K in TK with τi|k̄ in Tk̄, for i = 1, . . . , k̄).

Proof. First, by definition:

E
[
TN

K

]
=

∫ sk

0
tNfK(t)dt +

∫ ∞

sk

tNfK(t)dt.

Since the left most integral term does not depend on τk|K, . . . , τK|K, the last k̄ optimal restart

times minimise E
[
TN

K

]
if and only if they minimise

∫∞
sk
tNfK(t)dt. If we equate τk+i−1|K with

76 4. Moments of Completion Time under Restart

τi|k̄ for i = 1, . . . , k̄, we know from (4.20) that for any t ≥ 0:

fK(t+ sk) =
k−1∏

l=1

F̄ (τl|K)fk̄(t).

This implies that:
∫ ∞

sk

tNfK(t)dt =

∫ ∞

0
(t+ sk)

NfK(t+ sk)dt =

k−1∏

l=1

F̄ (τl|K)

∫ ∞

0
(t+ sk)

Nfk̄(t)dt =

k−1∏

l=1

F̄ (τl|K)E
[
(Tk̄ + sk)

N
]
.

The product in this expression is independent of τk|K, . . . , τK|K, and therefore minimising∫∞
sk
tNfK(t)dt (and thus E

[
TN

K

]
) corresponds to minimising E

[
(Tk̄ + sk)

N
]

(with τk+i−1|K =

τi|k̄, i = 1, . . . , k̄).

Theorem 6 implies that for any k, k = 1, . . . ,K, determining the optimal restart time τk|K
corresponds to minimising:

E
[
(Tk̄ + sk)

N
]

=

N∑

n=0

(
N

n

)
sN−n
k E

[
T n

k̄

]
, (4.23)

where E
[
T n

k̄

]
obeys (4.22):

E
[
T n

k̄

]
= Mk[T

n] + F̄ (τk|K)

n∑

m=0

(
n

m

)
(τk|K + c)n−mE

[
Tm

k̄−1

]
. (4.24)

We are now in a position to show that for the first moment, the optimal value for τk|K does
not depend on earlier restarts, not even through their sum sk. For that reason, the backward
algorithm works correctly for the first moment. We present this as a corollary of Theorem 6.

Corollary 2. The restart times τk|K, . . . , τK|K minimise E [TK] if and only if they minimise
E [Tk̄] (with τk+i−1|K = τi|k̄, i = 1, . . . , k̄).

Proof. This corollary follows from the fact that Theorem 6 states for N=1 that minimising
E [TK] corresponds to minimising E [Tk̄ + sk]. Obviously, E [Tk̄ + sk] = E [Tk̄] + sk, and since
sk is a constant, it does not influence the optimisation solution. Therefore minimising E [TK]
corresponds to minimising E [Tk̄].

Minimising the second or third moment of completion time using (4.23) and (4.24) saves
about 70 percent computation time for our example, as can be seen in Figure 4.14 in Section
4.3.2.2. The reason for this speed-up is that with every ‘guess’ of τk|K when minimising
(4.23) using (4.24), we only recompute E

[
T n

k̄

]
. That is, the algorithm neither requires to

recompute integral terms for all values l ≥ k (as in (4.21)), nor terms E
[
TN

l

]
for all values

l ≥ k (as in (4.22)). Effectively, we have isolated the optimisation of the k-th restart time
from interference with the other restart intervals.

4.3. Optimal Restart Times for the Moments of Completion Time 77

The resulting optimisation algorithm is given as Algorithm 4. Contrary to the backward
optimisation algorithm for the first moment it does not terminate in K steps, but requires
to iterate until convergence (of either E

[
TN

K

]
or the restart times). One can apply generic

approaches to decide which restart time τk to optimise at each iteration (such as the method
of steepest descent). However, we propose three particular ways, which try to leverage the
structure of the problem: backward, forward and alternating.

Algorithm 4 (Backward, Forward and Alternating Optimisation).

Input constants N and K;

Input boolean alternating;

Set either boolean forward or backward to TRUE;

Determine τ∞ that minimises E [T∞];
For n = 1 to N {

Compute and Set E [T n
0] (moments without restarts);

For k = K to 1
Initialise E

[
T n

k̄

]
using (4.24) with τk|K = τ∞;

}
While(not converged) Do {

If(backward) then {
For k = K to 1 {

Find τk|K that minimises (4.23), using (4.24) for E
[
T n

k̄

]
;

For n = 1 to N
Update E

[
T n

k̄

]
using (4.24) with new value of τk|K;

}
If(forward) then {

For k = 1 to K
Find τk|K that minimises (4.23), using (4.24) for E

[
T n

k̄

]
;

Update sk+1 with new value of τk|K;

}
For k = K to 1 {

For n = 1 to N
Update E

[
T n

k̄

]
using (4.24) with new value of τk|K;

}
}
If(alternating) then swap backward and forward

}
Return τ1|K , . . . , τK|K;

Each minimisation step in the algorithm can be carried out with any desired general-purpose
optimisation routine. Also, note that at initialisation, E [T∞] can be minimised using the
expression E [T∞] = (M1[T] + F̄ (τ∞)(τ∞ + c))/F (τ∞) derived in Section 4.2.1. The reason to
initialise the algorithm with τ∞ will become apparent when discussing the bulk approximation
in the next section.

78 4. Moments of Completion Time under Restart

4.3.2.1 Characteristics of Optimal Restart Times

We applied our algorithm to the case that the completion time T has a lognormal distribution,
with parameters µ = −2.31 and σ = 0.97.3 We determine K = 15 restart times that minimise
the first, second and third moment of the completion time. These restart times (with an
interpolating curve) are shown in Figure 4.10. The figure also shows τ∞, which is the starting
solution set at the initialisation step in Algorithm 4.

1 5 10 K=15

restart
index k

0.18

0.2

0.22

0.24

0.26

restart
time

1st moment
2nd moment
3rd moment
Τ¥

Figure 4.10: Optimal restart times, with respect to the moments E [T15],
E
[
T 2

15

]
and E

[
T 3

15

]
, respectively.

Figure 4.10 indicates that when minimising the first moment, the optimal restart time τk|K
monotonically converges when k gets smaller, to a single optimum τ∞, provided K is large
enough. In fact, as we observed in Section 4.3.1.3, the backward algorithm is a fixed-point
algorithm, with associated convergence properties. This also implies that if an infinite number
of restarts is allowed, a constant restart time is optimal, as has been observed in [AGM+96,
LSZ93].

The convergence behaviour for higher moments is not as straightforward, as seen in Figure
4.10. Nevertheless, there are some interesting insights to be gained from explaining the more
intricate convergence patterns.

The key observation is that if the number of restarts increases, the dominant term when
minimising (4.23) involves only the first moment. Therefore the restart times that minimise
the first moment are a good strategy for higher moments as well (provided K is large, and
not considering the first and last few restart times). To make this more precise, assume that
k → ∞, k ≤ K, in which case, apart from pathological cases, it must be that sk → ∞. This
allows us to approximate expression (4.23) by the first two terms of its sum:

lim
k→∞

E
[
(Tk̄ + sk)

N
]
≈ sN

k +NsN−1
k E [Tk̄] . (4.25)

3There is no particular significance to the chosen parameter values. They happen to be the parameters of
a lognormal fit for experimental data of HTTP GET completion times [RvMW04].

4.3. Optimal Restart Times for the Moments of Completion Time 79

1 5 10 15 20 25 K=30

restart
index k

0.18

0.19

0.2

0.21

0.22

0.23

0.24

restart
time

right approximation

bulk approximation Τ¥

left approximation

Figure 4.11: The dots give restart times that minimise the second mo-
ment E

[
T 2

30

]
, the dashed lines are the approximations, as labelled.

Since sN
k and NsN−1

K are constants, finding the restart times that minimise (4.23) is approx-
imately equal to finding the restart times that minimise the first moment E [Tk̄]. Based on
this, we introduce three limiting cases, namely at the right boundary (τk|K for k → ∞, and
k̄ ↓ 1), middle or ‘bulk’ (τk|K for k → ∞ and k̄ → ∞), and left boundary (τk|K for k ↓ 1 and
k̄ → ∞). Figure 4.11 illustrates the main results.

Right boundary approximation. For k → ∞ and k̄ = 1 the first-moment approximation
of τk|K corresponds to finding the restart time that minimises E [T1] (only one restart allowed).
Figure 4.11 shows the right approximation and we see that for K = 30 it is reasonable but
not exceptionally close to the actual optimal restart (given by the dot). We can extend the
approximations to value k̄ = 2, 3, . . . , which results in restart times identical to those shown
in Figure 4.10 (the curve for the first moment).

Bulk approximation τ∞. At the ‘bulk,’ or the middle of the pack, we get a limiting
result if both k and k̄ go to infinity. The approximation using (4.25) results in optimising
E [T∞], i.e., in restart times equal to τ∞. In Figure 4.11, the bulk approximation τ∞ is indeed
close to the optimal restart times. This also explains why we chose τ∞ during initialisation
in Algorithm 4: it is close to optimal for the bulk of restarts.

Left boundary approximation. At the left boundary, we can not simply apply the
approximation suggested by equation (4.25), because k does not tend to infinity. However,
we can obtain an approximation for τk|K with k ↓ 1 and k̄ → ∞, by assuming that the
completion time T is distributed as T∞ with restart interval τ∞. This approximation is
remarkably close, as seen from Figure 4.11. In fact, other experiments indicate that the left
boundary approximation is very close irrespective of the value of K. This implies that if we
allow an infinite number of restarts, we can use the left boundary approximation to determine
early restarts, until it is close enough to the bulk approximation (which we would use from
then on).

80 4. Moments of Completion Time under Restart

In conclusion, we find for the first moment of completion time that the optimal restart strategy
is a constant restart time for all restarts, provided we allow an infinite number of restarts.
If only a finite number of K restarts is allowed, we can optimise these using the backward
algorithm, which terminates in K steps. When we consider higher moments, a constant
restart time is typically not optimal, not even if we allow infinitely many restarts. Instead,
we need the backward/forward iterative algorithm to compute optimal restart times for the
finite case, and use the bulk and left boundary approximation for the case with infinitely
many restarts.

Cusp Point. In [MH01] the authors point to the existence of a ‘cusp point’, in which both
the expected completion time and its variance are minimised. In terms of [MH01] ‘reward’ as
well as ‘risk’ are then optimised jointly. Figure 2 in [MH01] suggests that such a cusp point
exists; we have redone this in Figure 4.12 for our example, and indeed two curves seem to
come together at a cusp point where it reaches the minimum for both mean and variance.
(Note that the curve is parameterised over τ , plotting mean versus variance of the completion
time for a range of restart times.) However, it turns out that the restart time that minimises

0.125 0.175 0.225 0.275
E@TΤD

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Variance@TΤD

Τ small

Τ large

Figure 4.12: Mean and variance of the completion time, parameterised
by restart time τ , as Figure 2 of [MH01].

0.127 0.1275 0.128
E@TΤD

0.0126

0.0128

0.013

0.0132

0.0134

Variance@TΤD

Figure 4.13: As Figure 4.12, zoomed in at ‘cusp point.’

the higher moments of the completion time is typically not identical to τ∗. Since it is easy to

4.3. Optimal Restart Times for the Moments of Completion Time 81

see that if the second moment is minimised by a different restart time than τ∗, the variance is
also not minimised in τ∗, it follows that the cusp point identified in [MH01] does not exist–at
least, not in general.

One way to show that the cusp point does not exist is to derive for higher moments the
counterpart to Theorem 3 on page 67, so that a relation is established between the hazard
rate and the optimal restart time for higher moments. Then it is possible to show that
if τ∗ is the restart time that minimises the completion time for E [Tτ] , . . . ,E

[
TN

τ

]
, then

E [T n
τ∗] = n!(1−F (τ∗)

f(τ∗))n, for n = 1, . . . ,N . We can certainly construct probability distributions

with partial moments Mn(τ) such that this relation holds when filling in (4.6), but in general
the relation will not hold true. Instead of providing the proof for this negative result, we
demonstrate numerically that the cusp point does not exist for our running example. Figure
4.13 zooms in at the ‘cusp point’ of Figure 4.12 and demonstrates that there is no point that
minimises the curve with respect to both the x and y-axis (mean and variance of completion
time). In particular, for our example, the minimum expected completion time is for restart
time τ∗ = 0.198, for the second moment the minimum is for τ = 0.192, and for the variance
the minimum is reached at τ = 0.188.

4.3.2.2 Computational Effort

In Figure 4.14 we plot the time used for three different methods: Algorithm 4 (backward),
minimising expression (4.21), and minimising expression (4.22). In all cases we applied de-
fault minimisation algorithms in Mathematica to carry out the respective optimisation steps.
Algorithm 4 outperforms the other approaches. For the first moment, the speed up is an
order of magnitude (about a factor 20), which finds its explanation in assured convergence in
K steps of the backward algorithm. For the higher moments, the speed up is about a factor
3 or 4. Apparently, the arguments put forward in Section 4.3.2 hold correct.

2 4 6 8 10
restarts

100

200

300

400

500

600

CPU time

backward algorithm

using eq. H2L
using eq. H3L

1st

2nd

1st

2nd

1st

2nd

Figure 4.14: CPU time used for different algorithms, applied to minimise
first as well as second moment.

82 4. Moments of Completion Time under Restart

We note that we tuned our Mathematica program to the best of our abilities, memorising
in-between results so that the recursion in (4.22) and repetitive computation in (4.21) are
handled as efficiently as possible. We also set the convergence criterion identical for all three
experiments, (based on convergence of E

[
TN

K

]
). Hence, although we do not have access to

the ‘internals’ of Mathematica’s optimisation algorithm, we are reasonably confident that the
comparison of the three approaches is fair.

5 10 15 20
restarts

100

200

300

400

500

CPU time

backward algorithm
alternating algorithm
forward algorithm

Figure 4.15: CPU time used by three versions of algorithm.

Figure 4.15 compares three versions of Algorithm 4: backward, forward and alternating.
These three exhibit similar performance. For our example, the forward algorithm turns out
to require one pass less through all restart times than the other two algorithms, and hence it
takes less CPU time.4

Typically, we require not more than five passes through the K restart times, irrespective
of the value of K. Studying the complexity of our Mathematica implementation, it turns
out that running the optimisation routine is the computationally most expensive part: at
step k, optimisation of τk|K takes an order of magnitude more time than the computation

that updates E
[
TN

k̄

]
. Algorithm 4 uses backward and/or forward traversal through the K

restart times to compute E
[
TN

k̄

]
efficiently, but following the above reasoning, it may be

more important to decrease the number of calls to the optimisation routine. Algorithm 4
may therefore be further improved by choosing the order in which to optimise restart times
based on criteria such as steepest descent. This requires more experimentation.

4Note that because of the workings of the Mathematica optimisation algorithm, the comparison in Figure
4.14 had to be based on convergence of E

ˆ

T
N
K

˜

as stopping criterion, while we were able to base the results
for the backward/forward algorithm in Figure 4.15 on convergence of restart times, a stricter criterion. This
explains the higher CPU usage for the backward algorithm in Figure 4.15 compared to Figure 4.14.

Chapter 5

Meeting Deadlines through Restart

Retrying tasks is an obvious thing to do if one suspects a task has failed. However, also
if a task has not failed, it may be faster to restart it than to let it continue. Whether
restart is indeed faster depends on the completion time distribution of tasks, and on the
correlation between the completion times of consecutive tries. As in the previous chapter
here also we assume that the completion times of consecutive tries are independent and
identically distributed, an assumption that has been shown to be not unreasonable for Internet
applications [RvMW04]. Furthermore, we analyse algorithms that are tailored to lognormal
distributions, which we (and others) have found to be representative for various Internet
applications [KR01, RvMW04]. Our metric of interest is the probability that a pre-determined
deadline is met, and we want to find the restart times that maximise this metric. Note that the
metric of meeting deadlines corresponds to points in the completion time distribution, a metric
often harder to obtain than moments of completion time which we analysed in the previous
chapter. The material in this chapter has been published in [WvM04, vMW04b, Wol05].

We derive two very efficient algorithms to determine the optimal time for restart. The ‘equi-
hazard’ algorithm finds all restart intervals with equal hazard rates, which corresponds to
all local extrema for the probability of making the deadline. It turns out that among the
equihazard restart intervals, in all cases we applied the algorithm to lognormal distributed
completion times, equidistant points are optimal. Therefore, a practical engineering approach
is to only consider equidistant points, which we do in our second algorithm. The equihazard
algorithm finds each local extremum in logarithmic time, the equidistant algorithm takes a
constant time to do the same, and finds the globally optimal solution in a few iterations.
Hence, these algorithms are excellent candidates for on-line deployment in potential future
adaptive restart implementations.

5.1 A Model for the Probability of Meeting a Deadline under
Restart

To analyse and optimise the time at which to restart a job, we start from a simple model
that lends itself to elegant analysis. As in the previous chapter we assume that the restart of
a task terminates the previous attempt and that successive tries are statistically independent

83

84 5. Meeting Deadlines through Restart

and identically distributed. This is for instance the case when we click the reload button in
a web browser: the connection with the server is terminated and a new download attempt is
tried. In mathematical terms, the problem formulation is as follows. Let the random variable
T denote the completion time of a job, with probability distribution F (t), t ∈ [0,∞), and let
d denote the deadline we set out to meet. Obviously, without restart, the probability that the
deadline is met is F (d). Assume τ is the restart time, and the random variable Tτ denotes
the completion time when an unbounded number of retries is allowed. That is, a retry takes
place periodically, every τ time units, until completion of the job or until the deadline has
passed, which ever comes first. We write fτ (t) and Fτ (t) for the density and distribution of
Tτ , respectively, and we are interested in the probability Fτ (d) that the deadline is met.

One can intuitively reason about the completion time distribution with restarts as Bernoulli
trials. At each interval between restarts there is a probability F (τ) that the completion
‘succeeds.’ Hence, if the deadline d is a multiple of the restart time τ, we can relate the
probability of missing the deadline without and with restart through:

1 − Fτ (d) = (1 − F (τ))
d
τ . (5.1)

If the restart intervals are not identical we denote their length by τ1, . . . , τn, assuming n
intervals. If furthermore d is not exactly reached by the last interval the remaining time after
the last interval until the deadline is d −

∑n
i=1 τi. If we furthermore introduce a penalty, or

cost c associated with restart the probability of missing the deadline without and with restart
relate similarly to the probability distribution function defined in (4.3):

1 − Fτ (d) =

k∏
i=1

(1 − F (τi)) · (1 − F (d−
k∑

i=1
(τi + c))) if

k∑
i=1

(τi + c) ≤ d <
k+1∑
i=1

τi + kc

k+1∏
i=1

(1 − F (τi)) if
k+1∑
i=1

τi + kc ≤ t <
k+1∑
i=1

(τi + c).

(5.2)
For the sake of an easier treatment we will in the following assume that c = 0 and τ1 = . . . =
τn = τ, and that the deadline is an integer multiple of the restart time d = nτ.

For a single retry during the finite interval [0, d), when the retry is at time τ , τ < d, then the
probability of completion before d is:

Fτ (d) = 1 − (1 − F (τ))(1 − F (d− τ)). (5.3)

By equating the derivative with respect to τ to zero, we obtain for the extrema of Fτ (d) that:

f(τ)

1 − F (τ)
=

f(d− τ)

1 − F (d− τ)
. (5.4)

The function

h(t) =
f(t)

1 − F (t)

is known as the hazard rate, and is key throughout our analysis and algorithms. The above
result shows that minima and maxima for the probability that a deadline is met with restarts
are found at equihazard restart intervals. Moreover, the equidistant restart intervals τ = d

2
are a special case of equihazard intervals, and form thus also a local extremum.

5.2. Algorithms for Optimal Restart Times 85

For multiple retries before the deadline similar mathematics can be applied. This time we take
derivatives with respect to each restart interval τi, i = 1, . . . ,N. (Note, the restarts take place
at times τ1, τ1 +τ2, . . . ,

∑N
n=1 τn, and we assume without loss of generality that

∑N
n=1 τn = d.)

Then we obtain that an optimum with respect to all retry intervals τ1, . . . , τN is found when:

f(τ1)

1 − F (τ1)
=

f(τ2)

1 − F (τ2)
= . . . =

f(τN)

1 − F (τN)
. (5.5)

Again, the extrema are at equihazard intervals, with as special case the equidistant restart
intervals τn = d

N .

5.2 Algorithms for Optimal Restart Times

Very often, completion times for Internet tasks have a distribution function that can be closely
fit by a lognormal distribution [KR01, RvMW04]. Since the Internet is one of our anticipated
application fields we chose in this section the lognormal distribution with parameters we fit to
the data in [RvMW04]. The density function and the hazard rate of a lognormal distribution
are shown in the Appendix in Section B.2.

The lognormal shape of the hazard function can be exploited by optimisation algorithms,
since it has at most two points with the same hazard function value. This allows us to
quickly identify all potential solutions of the optimisation problem. The following algorithm
finds the two restart interval lengths τa and τb for which holds:

h(τa) = h(τb), (5.6)

naτa + nbτb = d, (5.7)

where na and nb denote the number of intervals of each length. The parameters na and nb

are input to the algorithm, and to find the optimal restart strategy, one needs to call the
algorithm for all relevant combinations of na and nb, and then select from all the equihazard
solutions the one that optimises the probability of meeting the deadline.

Algorithm 5 (Equihazard Restart Intervals).

Input na and nb;

top = d/nb; bottom = d/(na + nb);

τb = top; τa = d−nbτb

na
;

Repeat {
top = (top+bottom)/2;
τb = top;

τa = d−nbτb

na
; (so interval lengths sum to d)

If(SignChanged(h(τb) − h(τa))) {
bottom = top;

top = PreviousValue(top);

}
}
Until (top-bottom ≈ 0)

86 5. Meeting Deadlines through Restart

0.1 0.2 0.3 0.4 0.5 0.6 0.7
restart
time Τ

0.978

0.982

0.984

0.986

0.988

0.99

PHTΤL

deadline probability
for single restart

Figure 5.1: Probability of meeting deadline for one restart (d = 0.7, µ = −2.3, σ = 0.97).

To explain the working of Algorithm 5, first note that one solution to (5.7) is the equidistant
restart strategy τa = τb = d

N . The algorithm will end up with that solution, unless there
exists a second solution. For this solution, it cannot be that τa and τb are both smaller or
both larger than d

N , since then the intervals would not sum to d. Therefore, we can choose

τb >
d
N and τa <

d
N . Furthermore, it also must hold that τb ≤ d

nb
. The algorithm utilises

these facts to initialise an interval between bottom and top in which τb lies, and then breaks
the interval in two at every iteration, until top ≈ bottom. At every iteration, it sets τb to the
guess top and computes the belonging τa = d−nbτb

na
. It then tests if the sign of h(τb) − h(τa)

changes, to decide if τb lies in the upper or lower half. This test works correctly thanks to the
particular shape of the lognormal hazard function. Note that since the algorithm divides the
considered interval in two in every iteration, it takes logarithmic time to find the optimum
for every pair na, nb for which the algorithm is run.

We applied Algorithm 5 to the lognormal distribution with parameters µ = −2.3 and σ = 0.97,
and deadline d = 0.7. The parameters fit data collected in [RvMW04], but are otherwise
arbitrary. Figure 5.1 shows typical behaviour if one considers a single restart. The equidistant
restart (at τ = 0.35) is optimal, while the other equihazard points turn out to be minima
(τ = 0.013 or τ = 0.687). The improvement in probability of making the deadline is from
0.977 to 0.990. Table 5.1 shows results for increasing number of restarts, displaying all sets of
equihazard intervals that are extrema. We see from the table that for this example equidistant
hazard rates always outperform the other equihazard points, and that the optimum is for three
equidistant restarts (and thus four intervals). We also see from the table that if we restart
too early (using the minima in Figure 5.1) the probability of meeting the deadline is even less
than without any restart.

It turns out that equidistant restarts are optimal in all experiments with lognormal distribu-
tions. Although we can construct examples in which for instance two non-equidistant points
outperform equidistant points, for the lognormal distribution this only seems to be possible
if no restart performs even better. Unfortunately, we have no proof for this phenomenon, but
it gives us ground to use an algorithm that limits its search for optima to equidistant points,
which can be done even faster than Algorithm 5 for equihazard points. In the following al-
gorithm we increase the number of equidistant restart points (starting from 0), consider the
probability of making the deadline for that number of restarts and stop as soon as we see

5.3. An Engineering Rule to Approximate the Optimal Restart Time 87

restarts equihazard intervals P (T{τ} < d)

0 — 0.978
1 0.35, 0.35 0.990
1 0.013, 0.687 0.977
2 0.23, 0.23, 0.23 0.993
2 0.019, 0.34, 0.34 0.990
2 0.013, 0.013, 0.674 0.976
3 0.175, 0.175, 0.175, 0.175 0.99374
3 0.024, 0.225, 0.225, 0.225 0.993
3 0.019, 0.019, 0.331, 0.331 0.989
3 0.013, 0.013, 0.013, 0.660 0.976
4 0.14, 0.14, 0.14, 0.14, 0.14 0.99366
...

...
...

Table 5.1: Equihazard restart intervals and associated probability of meeting the deadline
(d = 0.7, µ = −2.3, σ = 0.97).

no more improvement. This is a very advantageous stopping criterion since one needs not to
set an arbitrary maximum on the number of restart points. We do not give the derivation
of the correctness of this stopping criterion here, but instead close the discussion with the
algorithm.

Algorithm 6 (Equidistant Restart Intervals).

n=1; prob[1]=F (d);
Do{
n++;

prob[n] = 1 − (1 − F (d/n))n;
}
Until (prob[n] < prob[n-1])

Return(d/(n− 1))

Where other mechanisms like early fault detection add an enormous computation overhead
to increase availability [SHM05] we are able to increase the probability of completion before
a deadline with a very easy mechanism by a factor of two (’half a nine’). Further study is
needed not only to see how the algorithms generalise to other completion time distributions
but also how the impact of restarts depends on the remoteness of the deadline.

5.3 An Engineering Rule to Approximate the Optimal Restart

Time

The algorithms for finding the optimal restart time to maximise the probability of meeting
a deadline work well for theoretical distributions of a certain shape. However, for empirical

88 5. Meeting Deadlines through Restart

data we might want a more rough approximation of (5.1) to be able to implement online
methods for finding those optimal restart times, as we will show in the following section. And
indeed, an approximation of (5.1) helps us to find a simple rule which we used in an online
fashion.

As in Section 5.1 we again need some definitions: Let the random variable T denote the
completion time of a job, with probability distribution F (t), t ∈ [0,∞). Assume τ is a restart
time, and the random variable Tτ denotes the completion time when an unbounded number
of retries is allowed. We write fτ (t) and Fτ (t) for the density and distribution of Tτ . We also
use the hazard rate

h(t) =
f(t)

1 − F (t)
. (5.8)

New in this section is the use of the cumulative hazard

H(t) =

∫ t

s=0
h(s)ds,

which is closely related to the distribution function in that

1 − F (t) = e−H(t) (5.9)

or
H(t) = − log(1 − F (t)). (5.10)

Restart at time τ is beneficial only if the probability Fτ (d) of making the deadline d under
restart is greater than the probability of making the deadline without restart, i.e.

Fτ (d) > F (d). (5.11)

We again start from (5.1) which for completeness we repeat here

1 − Fτ (t) = (1 − F (τ))
d
τ . (5.12)

If there would be a restart time τ that maximises the completion probability Fτ (t) for all
values of t, this would be the ideal restart time and be ’stochastically’ optimal. However,
except for pathological cases, such a restart time does not exist. Equation (5.12) is correct
only for values of d and τ such that d is an integer multiple of τ . But if we ignore this
fact, or simply accept (5.12) as an approximation, we can find the optimal restart time in a
straightforward way. Surprisingly, it turns out that the approximation gives us a restart time
independent of the deadline d, which is optimal in the limit d→ ∞. That is, it optimises the
tail of the completion time distribution under restarts, and is therefore beneficial for many
other metrics as well, such as higher moments of the completion time.

Theorem 7. The following statements about our approximation τ∗ are equivalent.

1. τ∗ is an extremum (in τ) of

(1 − F (τ))
d
τ (5.13)

for any deadline d;

5.3. An Engineering Rule to Approximate the Optimal Restart Time 89

2. τ∗ is the point where
τ∗ · h(τ∗) = − log (1 − F (τ∗)); (5.14)

3. τ∗ is a point where

τ∗ · h(τ∗) = H(τ∗); (5.15)

4. τ∗ is an extremum of
− log(1 − F (τ))

τ
; (5.16)

5. τ∗ is an extremum of

(1 − F (τ))
1
τ . (5.17)

Proof. We use

d

dx
(g(x))x = (g(x))x

(
x d

dxg(x)

g(x)
+ log(g(x))

)

.

If the first item is true, then τ∗ is an extremum when the derivative of (1 − F (τ))
d
τ equates

to 0:
d

dτ
(1 − F (τ))

d
τ = (1 − F (τ))

d
τ

(
f(τ)τ

1 − F (τ)
+ log(1 − F (τ))

)
= 0.

Irrespective of the value of d, Statement 2 then follows immediately:

f(τ∗)

1 − F (τ∗)
=

− log(1 − F (τ∗))

τ∗
,

which can be rewritten using (5.8) into

τ∗ · h(τ∗) = − log (1 − F (τ∗)),

and thus Statement 2 holds if and only if Statement 1 holds.

The equivalence between Statements 2 and 3 follows using the relation (5.10).

Statement 4 follows from taking the derivative of − log(1−F (τ))
τ and equate it to 0:

d

dτ

− log(1 − F (τ))

τ
= − 1

1 − F (τ)
(−f(τ))τ − log(1 − F (τ)) = 0

⇐⇒ f(τ)

1 − F (τ)
=

log(1 − F (τ))

τ
.

So, Statement 4 holds if and only if statement 1 holds.

Statement 5 then follows from taking exponential power of the expression in Statement 4

exp

(
− log(1 − F (τ)) · 1

τ

)
= (1 − F (τ))

1
τ .

Note that, alternatively, Statements 4 and 5 can be obtained from properly manipulating the
result in Statement 1 for d = 1.

90 5. Meeting Deadlines through Restart

The heuristics behind this approximation is that (1) the optimal restart times correspond to
equihazard points; (2) equidistant restart times are equihazard points and often (albeit not
always) optimal. The mathematical trick then is to relax the restriction that the number of
restarts must be integer valued. In doing so, one obtains a continuous function, for which one
can take derivatives and get relations for its extremes. If one carries this out, it turns out

that the optimal restart time is independent of the time d one want to optimise (1 − F (τ))
d
τ

for. Moreover, if d
τ∗ takes an integer value, restart time τ∗ is an equidistant restart strategy,

and thus a local extremum. From this reasoning it also follows that the rule gets closer to
the optimum for the tail of Fτ (t), since then t

τ∗ is close to an integer value. This results in
the following claim, which is stated without proof:

Theorem 8. For d → ∞, the approximation error in the restart interval lengths converges
to zero:

d− n∗ · τ∗ → 0. (5.18)

where n∗ is the maximum number of intervals of length τ∗ that can be accommodated in the
interval [0, d]

n∗ = ⌊ d
τ∗

⌋.

Item 3 of Theorem 7 can be interpreted in the following way: the surface under the hazard rate
curve up to point τ∗ equals the rectangle defined by x- and y-value of h(τ∗). We will refer to
(5.15) as the rectangle equals surface rule. This very illustrative and simple rule is used later
in a pragmatic algorithm for an empirical hazard rate to find an empirical optimal restart time
that maximises the probability of completion, the probability of making an infinite deadline.

The quality of the approximation of the equivalent formulas in Theorem 7 is evaluated by
formulating an engineering rule based on (5.16) (Item 4 of Theorem 7) and using this rule in
experiments. The rule is defined as follows.

Algorithm 7. Set the restart time at τ∗ with τ∗ the optimum of −log(1−F (d))
d .

It should be noted that if the hazard rate is monotonously increasing, no value of τ exists that
satisfies Theorem 7. In this case restart will not help increasing the probability of completion.
Whereas if the hazard rate is monotonously decreasing the rectangle equals surface rule holds
only for τ = 0, which means immediate restarts. Most other distributions will have a single
maximum in their hazard rates, after which the hazard rate then decreases. Although, of
course, distributions can be constructed that have several local maxima also in their hazard
rates. In both latter cases after some point a value of τ exists, such that (5.15) holds. Only
then restart can be applied successfully.

Figure 5.2 shows a variety of optimal restart times. The example is the lognormal distribution
we already used in previous chapters, with parameters µ = −2.3, and σ = 0.97. The straight
lines are the approximation, and the optimal restart times to minimise the first and second
moment of the completion time. The sea-saw line is the optimal restart time for points on
the distribution. That is, the x-axis gives the point t on the distribution, the y-axis the
restart time τ that maximises Fτ (t). We see that the approximation gets closer to optimal as
t increases; in other words, the approximation works best for the tail of the completion time
distribution. This fact suggests that the approximation may be better for higher moments

5.3. An Engineering Rule to Approximate the Optimal Restart Time 91

1 2 3 4

0.14

0.16

0.18

0.22

Figure 5.2: Optimal restart times: approximation (lowest), optimal for first moment (highest),
optimal for second moment (middle), optimal for points in distribution (sea-saw).

of completion time, since these are more sensitive to the tail of the distribution. This seems
indeed to be the case, since the restart time that minimises the first moment is farther off our
approximation than the restart time that minimises the second moment.

0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.3: Completion time distribution for optimal restart times (dotted), approximation
(solid line), and the optimal restart time for first moment (dashed).

Figure 5.3 shows the completion time distribution for the various restart regimes. The solid
curve gives Fτ (t) with t on the x-axis and τ equal to our approximation. The dotted curve uses
the restart time at point t that optimises Fτ (t). This is the theoretical optimum. The dashed
curve uses the restart time that minimises the first moment of completion time. We see that
both the approximation and the optimum restart time for the first moment are very close to
the theoretical optimal. Figure 5.4 shows the difference between the approximation and the
optimal completion time, as well as the difference between the completion time with restart
optimised for the first moment and the theoretical optimum. We see that the approximation
is exact at the spikes, which appear with distant equal to τ∗. We also see that if t increases,
the optimal restart time for the first moment never reaches the theoretical optimum, and in

92 5. Meeting Deadlines through Restart

0 0.5 1 1.5 2 2.5 3 3.5 4
1. ´ 10-16

1. ´ 10-13

1. ´ 10-10

1. ´ 10-7

0.0001

Figure 5.4: Completion time distribution for optimal restart times (dotted), approximation
(solid line), and the optimal restart time for first moment (dashed).

fact slowly diverges from the approximation.

restart time E [Tτ] E
[
T 2

τ

]
90% quant. 99% quant. 99.9% quant.

Approximation 0.162 0.14600 0.0399 0.317 0.635 0.952
2nd Moment opt. 0.177 0.14573 0.0398 0.318 0.639 0.962
Average optimal 0.189 0.14568 0.0399 0.319 0.645 0.970

Table 5.2: Performance of three possible restart times: our approximation, restart time that
minimises second moment, restart time that minimises first moment.

Table 5.2 shows how three different restart times perform with respect to moments and
quantiles of the completion time distribution under restarts. One can see that the differences
are minor, our approximation performing best for the 90 percent and higher quantiles. (The
value in the table under quantiles is the point t at which Fτ (t) = 0.9 (0.99, 0.999), smaller
values are thus better.)

5.4 Towards on-line Restart for Self-Management of Systems

The objective in this section is to automate restart, building on the above work. We want
to explore on-line decision taking to see whether restart will be beneficial and when to do it.
We simulate an on-line procedure by using increasingly more data from measurements taken
earlier [RvMW04], but the applied methods can easily be included in a software module like
the proxy server in [RvMW04] to be executed in real-time.

In Section 3.2 we have already seen that the shape of the hazard rate of a probability dis-
tribution indicates whether restart is beneficial. For empirical data the correct theoretical
distribution is unknown and the hazard rate therefore needs to be estimated based on obser-
vations. Estimating the hazard rate is not a straightforward task, since it needs numerical
computation of the derivative of the cumulative hazard rate. We derive and implement a new

5.4. Towards on-line Restart for Self-Management of Systems 93

and simple rule based on the hazard rate that allows us to find the optimal restart time to
maximise the probability of making a deadline. This rule approximates the optimal restart
time independent of the exact value of the deadline, and is asymptotically exact (when the
deadline increases). Moreover, the rule is very simple, making it a likely candidate for run-
time deployment. Not in all cases does the optimal restart time exists. Restart is applicable
to a system if (and only if) the rule finds an optimal restart time. So, our simple rule actually
serves a two-fold purpose: it enables us to decide whether restart will be beneficial in the
given situation, and if so, it provides us with the optimal restart time.

We apply the rule to data sets we collected for HTTP, thus mimicking the on-line execution
of the algorithm. We explore how much data is required to arrive at reasonable estimates
of the optimal restart time. We also study the effect of failed HTTP requests by artificially
introducing failures in the data sets. Based on these explorations we provide engineering
insights useful for run-time deployment of our algorithm.

5.4.1 Estimating the Hazard Rate

It follows from (5.15) that an estimate ĥ(t) of the hazard rate curve is needed to determine
the optimal restart time following the rectangle equals surface rule. We will in this section
provide the main steps of how to estimate the hazard rate and implement the rule (5.15) in
an algorithm. Some details are shifted to Appendix C. We use the theory on survival analysis
in [KM97]. The hazard rate h(t) cannot be estimated directly from a given data set. Instead,
first the cumulative hazard rate H(t) is estimated and then the hazard rate itself is computed
as a numerical derivative.

Let us consider a sample of n individuals, that is n completions in our study. We sample the
completion times and if we order them, we obtain a data set of D distinct times t1 ≤ t2 ≤
. . . ≤ tD where at time ti there are di events, that is di completions take time ti. The random
variable Yi counts the number of jobs that need more or equal to ti time units to complete.
We can write Yi as

Yi = n−
i−1∑

j=1

dj

All observations that have not completed at the end of the regarded time period, usually time
tD, are called right censored. There are Yn−dn right censored observations. The experimental
data we use falls in that category, since Internet transactions commonly use TCP, which aborts
(censors) transactions if they do not succeed within a given time.

The hazard rate estimator ĥ(t) is the derivative of the cumulative hazard rate estimator
Ĥ(t), which is defined in Appendix C.1. It is estimated as the slope of the cumulative hazard
rate. Better estimates are obtained when using a kernel function to smooth the numerical
derivative of the cumulative hazard rate. The smoothing is done over a window of size 2b. A
bad estimate of the hazard rate will yield a bad estimate of the optimal restart time and the
optimised metric is very sensitive to whether the restart time is chosen too short. Therefore
obtaining a good estimate of the hazard rate is important.

Let the magnitude of the jumps in Ĥ(t) and in the estimator of its variance V̂ [Ĥ(t)] at the
jump instants ti be ∆Ĥ(ti) = Ĥ(ti)− Ĥ(ti−1) and ∆V̂ [Ĥ(ti)] = V̂ [Ĥ(ti)]− V̂ [Ĥ(ti−1)]. Note
that ∆Ĥ(ti) is a crude estimator for ĥ(ti).

94 5. Meeting Deadlines through Restart

The kernel-smoothed hazard rate estimator is defined separately for the first and last points,
for which t− b < 0 or t+ b > tD. For inner points with b ≤ t ≤ tD − b the kernel-smoothed
estimator of h(t) is given by

ĥ(t) = b−1
D∑

i=1

K

(
t− ti
b

)
∆Ĥ(ti). (5.19)

The variance of ĥ(t) is needed for the confidence interval and is estimated by

σ2[ĥ(t)] = b−2
D∑

i=1

K

(
t− ti
b

)2

∆V̂ [Ĥ(ti)]. (5.20)

The function K(.) is the Epanechnikov kernel defined in Appendix C.2.

A (1 − α) · 100% point wise confidence interval around ĥ(t) is constructed as

[

ĥ(t) exp

[

−
z1−α/2σ(ĥ(t))

ĥ(t)

]

, ĥ(t) exp

[
z1−α/2σ(ĥ(t))

ĥ(t)

]]

. (5.21)

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.

The choice of the right bandwidth b is a delicate matter, but is important since the shape of
the hazard rate curve greatly depends on the chosen bandwidth (see Figure 5.6) and hence a
badly chosen bandwidth will have a serious effect on the optimal restart time. One way to
pick a good bandwidth is to use a cross-validation technique of determining the bandwidth
that minimises some measure of how well the estimator performs. One such measure is the
mean integrated squared error (MISE) of ĥ over the range τmin to τmax. The mean integrated
squared error can be found in Appendix C. To find the value of b which minimises the MISE
we find b which minimises the function

g(b) =

M−1∑

i=1

(
ti+1 − ti

2

)
(ĥ2(ti) + ĥ2(ti+1)) − 2b−1

∑

i6=j

K

(
ti − tj
b

)
∆Ĥ(ti)∆Ĥ(tj). (5.22)

Then g(b) is evaluated for different values of b. Each evaluation of g(b) requires the compu-
tation of the estimator of the hazard rate. The optimal bandwidth can be determined only
in a trial-and-error procedure. We found in our experiments that the optimal bandwidth is
related with the size of the data set and the variance of the data. We use the standard devi-
ation to determine a starting value and then do a simple step-wise increase of the bandwidth
until g(b) takes on its minimal value. In case the hazard rate is increasing in the first steps,
we decrease b and start again, since then we are obviously beyond the minimum already. In
our experiments and in the literature we always found a global minimum, never any local
minima. Advanced hill-climbing algorithms can be applied to find the minimum more quickly
and more accurately than we do here.

Once the best estimate of the hazard rate is found we need to determine the point i∗ that
satisfies the rectangle equals surface rule (5.15).

The following simple algorithm determines the optimal restart time τ∗ by testing all observed
points ti, i = 1, . . . , n as potential candidates.

5.4. Towards on-line Restart for Self-Management of Systems 95

Algorithm 8 (Optimal restart time).

Input ĥ, Ĥ and t;
i = 1; #(t = t1, . . . , tn)

While((i < n) and (ti · ĥ(ti) > Ĥ(ti))) {
i+ +;

}
return ti;

This algorithm returns in the positive case the smallest observed value that is greater than
the estimated optimal restart time τ∗.

In many cases, however, the studied data set does not contain observations large enough to
be equal or greater than the optimal restart time. Then we extrapolate the estimated hazard
rate to find the point where the rectangle equals the surface under the curve. Assuming we
have a data set of n observations ti, i = 1, . . . , n, at first the slope of the estimated hazard
rate at the end of the curve is determined as the difference quotient

slope =
ĥ(tn) − ĥ(tn−1)

tn − tn−1
. (5.23)

Then tτ = tn + ∆t is determined such that for tτ Equation (5.15) holds.

(tn + ∆t) · (ĥ(tn) + slope · ∆t) = Ĥ(tn) · slope · ∆t · tn

⇐⇒ ∆t =
Ĥ(tn) − t · ĥ(tn)

ĥ(tn) − 2 slope tn − Ĥ(tn) − slope
. (5.24)

The computational complexity of the algorithm depends in first place on the number of itera-
tions needed to find the optimal bandwidth for the hazard rate estimator. In our experiments
we used a heuristic based on the standard deviation of the data set that gave us the optimal
bandwidth often in less than 5 iterations, but sometimes took up to 20 iterations.

The second important parameter is the number of observations considered. Each iteration
on the bandwidth requires the computation of the estimated hazard rate, which in turn
needs traversing all observations and uses for each point a window of size 2b. Complexity
of the hazard rate estimator is therefore at most O(n2). Improving on the heuristic for the
bandwidth, so that in all cases only few iterations are needed is certainly worth while.

5.4.2 Experiments

We have implemented the algorithm to estimate the hazard rate and determine the optimal
restart time as defined by (5.15) in Theorem 7. The implementation is done in Mathematica
and has been applied to the HTTP connection setup data studied in [RvMW04]. This data
in fact consists of the time needed for TCP’s three-way handshake to set up a connection
between two hosts.

96 5. Meeting Deadlines through Restart

In our experiments we investigate various issues. One is the uncertainty introduced by small
sample sizes. The available data sets consist of approximately one thousand observations for
each URL, that is thousand connection setup times to the same Internet address. We use
these data sets and take subsets of first one hundred then two hundred observations etc. as
indicated in the caption of the figure and in the table. We do not use data of different URLs
in one experiment since we found that very often different URLs have different distributions
or at least distribution parameters. Furthermore, the application we have in mind is web
transactions between two hosts.

The data we study is Data Set ‘28’ consisting of roughly 1000 connection setup times to
http://nuevamayoria.com, measured in seconds. This data set shows characteristics such as
a lower bound on all observation and a pattern of variation which we found in many other
data sets as well, even though usually not with the same parameters. The chosen data set is
therefore to be seen as one typical representative of a large number of potential candidates.
The considered connection setup times are shown in Figure 5.5. The largest observation in
this data set is 0.399678 seconds.

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0 200 400 600 800 1000

cs
t

observation

Figure 5.5: Data Set No. 28; connection setup times (in seconds).

For each of the mentioned subsamples the optimal smoothing factor, or bandwidth, is com-
puted by evaluating (5.22) several times, finding the minimum in a simple search. Figure 5.6
shows estimates of the hazard rate for different values of the bandwidth. Parameter b1 is too
large, whereas b2 is too small, b3 is the one that minimises the error and is therefore the opti-
mal bandwidth. One can see that too large a bandwidth leads to an extremely smooth curve,
whereas too small a bandwidth produces over-emphasised peaks. From the figure one might
conclude that rather too large a bandwidth should be chosen than one that is too small, but
more experiments are needed for a statement of this kind. Using the optimal bandwidth, the
hazard rate and its 95% confidence interval are estimated according to (5.19) and (5.21). Fi-
nally, for each estimated hazard rate the optimal restart time τ∗ is computed using algorithm
8. In some cases, the algorithm finds the optimal restart time, since the data set includes still
an observation greater than the optimal restart time. If the data set has no observation large
enough to be greater than the optimal restart time, we extrapolate according to (5.24). The

5.4. Towards on-line Restart for Self-Management of Systems 97

-100

 0

 100

 200

 300

 400

 500

 600

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ha
za

rd
 r

at
e

connection setup time

b1 = 0.0121551
b2 = 0.0013370
b3 = 0.0067581

Figure 5.6: Hazard rate for Data Set No. 28 and different values of the bandwidth b.

optimal restart times are drawn as vertical bars in the plots in Figures 5.7 and 5.8. Note that
in Figure 5.7 although it looks like all optimal restart times are extrapolated in fact none of
them is. The extrapolated optimal restart times are indicated by an asterisk in Table 5.3.

The hazard rate curve has no value at the point of the largest observation, since for the
numerical derivation always two data points are needed. Furthermore, because of the lim-
ited amount of data in the tail, it is not surprising that the confidence interval at the last
observations grows rapidly.

Table 5.3 shows some characteristics obtained in the program runs for Data Set 28. Each block
of the table belongs to a subset of size n with corresponding standard deviation. The standard
deviation changes as more observations come into consideration. For each subsample three
different cases are studied. In the first one only the n observations are used and the failure
probability equals either zero, or the relative fraction of observations that are greater than
3.0. This threshold is the first retransmission timeout of TCP and hence observations greater
3.0 are (somewhat arbitrarily) censored and retried. We treat them as censored observations
and all censored observations contribute to the failure probability. Data Set ‘28’ does not
have any such censored observations, but many other data sets do. The second group consists
of the n observations plus 2n censored ones and has therefore failure probability 2/3, or a
little higher if there are additional censored observations present in the data set. Analogously,
the third group has n+ 4n observations and a failure probability of 4n/5n = 0.8 (or more if
there are censored observations in the data set).

When looking at the results for failure probability zero, also plotted in Figure 5.7 for n =
100, 200, 400, 600, 800 we see that the small data sets lead to an overestimated optimal restart
time (if we assume that the full 1000 observations give us a correct estimate), and the ‘correct’
value is overestimated by less than 5%.

Such high, and perhaps unrealistic, failure probabilities have been used since a failure prob-
ability of e.g. 0.1 does not show in the results at all. Looking at the results for the different
sample sizes in the group with high failure probability, we also find that with the small samples

98 5. Meeting Deadlines through Restart

0.3 0.32 0.34 0.36 0.38 0.4
cst

100

200

300

400

500

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e
0.3 0.32 0.34 0.36 0.38 0.4

cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

Figure 5.7: Estimated hazard rates and confidence intervals for the estimates for increasing
sample size (top row n = 100 and n = 200, middle row n = 400 and n = 600, bottom row
n = 800) and failure probability 0.0

the optimal restart time is overestimated.

The impact of the failure probability within a group of fixed sample size has been investigated
as well. The failure probability is increased by subsequently adding more failed (and hence
censored) observations and then estimates for the hazard rate and optimal restart time are
computed. The failed attempts of course increase the sample size. We notice (as can be
seen in Table 5.3) that the bandwidth used for estimating the hazard rate decreases for
increasing failure rate, while the sample standard deviation is computed only from non-
failed observations and hence does not change with changing failure probability. We found in
[vMW04a] that for theoretical distributions the optimal restart time decreases with increasing
failure probability. Typically, our experiments agree with this property, which, however, is
not true for some subsets of Data Set ‘28’.

An additional purpose of the experiments was to find out whether we can relate the optimal
bandwidth to any characteristic of the data set. In the literature no strategy is pointed
out that helps in finding the optimal bandwidth quickly. In our implementation we set the

5.4. Towards on-line Restart for Self-Management of Systems 99

n = 100, StdDev = 0.0121551 n = 200, StdDev = 0.0117341

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.006758 0.389027 0.0 0.011557 0.389027
0.666667 0.001779 0.597251∗ 0.666667 0.001398 0.674306∗

0.8 0.001779 0.554513∗ 0.8 0.001271 0.638993∗

n = 300, StdDev = 0.0106746 n = 400, StdDev = 0.010383

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.011742 0.389027 0.0 0.010226 0.399678
0.666667 0.001272 0.333271 0.666667 0.001124 0.333271

0.8 0.001156 0.333271 0.8 0.001124 0.333271

n = 500, StdDev = 0.00997916 n = 600, StdDev = 0.00941125

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.010977 0.399678 0.0 0.010352 0.399678
0.666667 0.001081 0.333271 0.666667 0.001138 0.333271

0.8 0.001081 0.333271 0.8 0.001019 0.333271

n = 700, StdDev = 0.00895504 n = 800, StdDev = 0.00851243

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.009850 0.309209 0.0 0.0103 0.399678
0.66667 0.000970 0.333271 0.66667 0.000922 0.332014

0.8 0.000970 0.333271 0.8 0.000922 0.332014

n = 900, StdDev = 0.00816283 n = 1000, StdDev = 0.00784583

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.009877 0.308456 0.0 0.009493 0.308456
0.6667 0.000884 0.332014 0.6667 0.000949 0.333271

0.8 0.000884 0.332014 0.8 0.000850 0.332014

Table 5.3: Optimal restart time (τ∗) and optimal bandwidth (bw) for different subsample
sizes of Data Set 28 and different failure probabilities

standard deviation as a starting value for the search. If we have no censored observations
(failure probability zero) we always find the optimal bandwidth within less than five iterations.
If the data set has many censored observations the optimal bandwidth roughly by factor 5
and we need more iterations to find that value, since our heuristic has a starting value far too
large in that case.

Figure 5.8 compares two hazard rates using another, larger data set, the first has zero failure
rate and the second has failure rate 0.8. It can be seen that the high number of added censored
observations leads to a much narrower hazard rate, with lower optimal restart time. Note
that this figure is based on a different data set than the ones above, which has a larger sample
size than the data set used before.

In summary, we have provided an algorithm that gives us an optimal restart time to maximise
the probability of meeting a deadline only if restart will indeed help maximising that metric.
So if the algorithm returns an optimal restart time we can be sure that restart will help.
We found a heuristic based on the variance of the data that helps in finding quickly the

100 5. Meeting Deadlines through Restart

0.09 0.1 0.11 0.12 0.13
cst

100

200

300

400

500

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.09 0.1 0.11 0.12 0.13
cst

10

20

30

40

50

60

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

Figure 5.8: Estimated hazard rates and confidence intervals for sample size n = 1000, failure
probability 0.0 (left) and 0.8 (right)

bandwidth parameter needed for the hazard rate estimator. We found that small data sets
usually lead to an overestimated optimal restart time. But we saw earlier (in [vMW04a])
that an overestimated restart time does much less harm to the metric of interest than an
underestimated one and we therefore willingly accept overestimates. The whole restart process
is automated to an extent that allows us to propose it for self-management of systems.

The run-time of the algorithm depends on the considered number of observations and on the
number of iterations needed to find a good bandwidth for the hazard rate estimation. We
found that for our smaller data sets with up to 400 observations less than 5 iterations are
needed and the algorithm is very fast. We did not evaluate CPU time and the Mathematica
implementation is not run-time optimised, but a suggestion for an optimal restart time in the
above setting can be provided within a few seconds. If, however, the data set grows large,
has e.g. more than 800 observations, each iteration on the bandwidth takes in the order of
some one or two minutes. The polynomial complexity becomes relevant and the method is
no longer applicable in an on-line algorithm.

A good heuristic for choosing the optimal bandwidth is a key part in the whole process. The
better the first guess, the less iterations are needed and the faster we obtain the optimal restart
time. We cannot compare our heuristic to others since in the literature nothing but pure ‘trial
and error’ is proposed. But we can say, that for small data sets and failure probability zero
the optimal restart time is obtained very fast since the heuristic provides a good first estimate
of the bandwidth.

In our experience the smallest data sets were usually sufficient for a reasonably good estimate
of the optimal restart time. The optimal restart time will always be placed at the end of the
bulk of the observations and some few hundred observations are enough to get a notion of
‘bulk’ and ‘end of the bulk’. If we consider that some web pages consist of up to 200 objects a
data set of 100 samples is neither difficult to obtain nor unrealistic. In Internet transactions
some hundred samples are very quickly accumulated. Furthermore, small samples seem to
overestimate the optimal restart time, which does the maximised metric much less harm than
underestimation.

One may argue that if everybody applies restart networks become more congested and re-
sponse times will drop further. And in fact restart changes the TCP timeout - for selected
applications. In our measurements we found that less than 0.5% of all connection setup at-

5.4. Towards on-line Restart for Self-Management of Systems 101

tempts fail. Our method tries to detect failures faster than the TCP timeout and to restart
failed attempts, since for slow connections restart typically does not lead to improved re-
sponse time, whereas for failed connections in many cases it does. Failed attempts, however,
are so rare that restarting those does not impose significant extra load on a network, while
potentially speeding them up significantly. Obviously, if the failed attempts target at a server
that is out of operation restart cannot improve the completion time. Restart can only help in
the presence of transient failures. When sending requests to a permanently failed system the
timeout values will increase, thus avoiding heavy load on the network connecting the failed
server.

102 5. Meeting Deadlines through Restart

Part III

Software Rejuvenation

103

104

Introduction

Until the 1990s the common belief was that system reliability is dominated by the reliability
of the hardware components a system is made of. Von Neuman addressed the issue of high-
reliability already in the 1950s. He set up a model that required a redundancy factor of 20,000
to achieve a mean time between failures (MTBF) of 100 years [Gra86, vN56]. Certainly,
the vacuum tubes von Neuman was thinking of were very unreliable compared to modern
integrated circuits, but also his model lacked modularity. The failure of one single component
would lead to a failure of the whole system, while modern systems are built of reliable modules
and need much less redundancy. Still, much effort was invested in the design and construction
of reliable hardware [SS82]. The increase in system complexity for many years exceeded the
increase in component reliability. During the last decades the efforts paid off and hardware
became quite reliable, so that since the middle of the 1980s the functioning of software was
first questioned and software failures were noticed to be a potential significant cause for
system break-downs [Gra86]. Some say that for the past two decades faster growth in system
complexity kept, e.g., the processor chip failure rate almost constant. Hardware as well as
software fault-tolerance mechanisms are necessary to achieve acceptable time between failures
in today’s highly complex systems, such as ,e.g., supercomputers with thousands of processors
[Gra04].

We will at first very briefly revisit general aspects of preventive maintenance. Preventive
maintenance denotes a large class of methods used to prevent system failure rather than to
repair and restart the failed system. Software rejuvenation is one among many methods of
preventive maintenance. Preventive maintenance has already been applied in mechanical sys-
tems in the early twentieth century, while software rejuvenation is relatively new [HKKF95].
Its classification as a method of preventive maintenance with age or block replacement without
emergency repair has been pointed out in [GPTT98]. Historically, preventive maintenance is
concerned with hardware systems, or even manufacturing systems rather than with computing
systems. Today there is no such strict distinction and in some recent publications stochastic
models are called preventive maintenance models rather than software rejuvenation models
to emphasise the model’s universal applicability.

While preventive maintenance is a generalised concept stemming from mechanical engineering,
software rejuvenation is (obviously) explicitly concerned with software in computing systems.
Much of the theory of software rejuvenation discussed later in this chapter extends to technical
systems in general but the system model specifies a computing system. The system model
for software rejuvenation assumes a transaction based software system with an underlying
communication system that may use either a reliable or unreliable communication protocol.

Preventive maintenance and software rejuvenation in particular aim at preventing failures

105

106

caused by faults. Not all methods of preventive maintenance are suitable for all types of
failures and faults. Therefore, a classification of faults and failures is necessary. Faults are
divided into permanent, or hard, faults and transient, or soft, faults. Permanent hardware
faults can be circuits implementing wrong functionality due to some hardware defect which
then leads to faults that can be reproduced and occur in the same way every time a circuit is
executed. On the other hand, temporary faults are, e.g. bit flips due to radiation, or oscillating
power. They sometimes occur, but on the next try typically cannot be reproduced. Most
permanent faults are removed during testing and debugging of hardware or software, while
some transient faults remain. Transient faults may not manifest in the tests and if they do
so, they are not seen again and therefore are extremely difficult to detect and remove.

Hardware faults in most cases are transient faults and for hardware systems standard tech-
niques for dealing with those exist like, e.g., checksum transmission. These techniques make
sure that most transient hardware faults are either removed or worked around. It is assumed
[Gra86] that most software faults are transient as well, because most of the software faults
causing permanent failures were eliminated at the latest during testing of the software. Tran-
sient software faults typically are faults related to some limit condition (counter overflow, out
of memory, lost interrupt, etc.) or race conditions (semaphore problem), called Heisenbugs.
Permanent faults are called Bohrbugs, after the Bohr atom, since they stay and are relatively
easily detected. Software systems are assumed to be fail-fast, that means, operation of a
faulty system stops and does not continue to process incorrectly. Without loss of generality
we can therefore assume in our models that we know whether a system is fault-free or not.

If indeed most problems are caused by transient Heisenbugs then they can be solved by restart-
ing the system and resuming operation of the current process. It is then highly unlikely that
the same problem will occur again. The pure restart as analysed in the previous part of
this thesis is applicable to treat presumably failed systems but it has not been developed
explicitly as a fault-tolerance mechanism. Software rejuvenation and checkpointing both are
fault-tolerance mechanisms designed to handle transient faults. For both many stochastic
models have been formulated in recent years. We will not use chronological order, in which
case checkpointing would be first, but instead discuss them in order of increasing complex-
ity and start with the stochastic models for software rejuvenation. Taking checkpoints is
a preventive measure but roll-back recovery follows a system failure. Checkpointing saves
system states periodically during system operation, so that upon failure the system can be
reset to the most recent checkpoint and no complete system restart is necessary. In contrast,
software rejuvenation is purely preventive and pro-activ. Software rejuvenation is based on
the assumption that the process environment degrades over time and becomes faulty. The
process environment is cleaned through restart, in which case, unlike with checkpointing, no
process state is saved and no transactions are replayed. Software rejuvenation clearly is the
simpler mechanism of the two.

Stochastic modelling of software rejuvenation is useful to determine optimal timing with
respect to some metric. In preventive maintenance, depending on the replacement strategy,
the timing as well as the repair action must be optimised. Software rejuvenation always uses
restart of the process environment as (preventive) repair action and therefore only the timing
must be determined through a stochastic model. Still, different metrics can be considered:
software rejuvenation can be used to optimise system availability, the ability of a system
to be operational and able to work correctly at time t, to minimise maintenance costs, or

107

to maximise system reliability, the probability of correct operation of a system until time t.
Some, but not all, of those metrics lead to equivalent optimisation problems. Cost models
often are equivalent to availability models, as we will see. Both, availability and reliability are
system oriented metrics and can as such be considered insensitive to the load on the system.
Some of the models we discuss incorporate the load also to determine system availability.
Very few models for software rejuvenation optimise job completion time, which was the key
metric throughout the past chapters.

108

Chapter 6

Practical Aspects of Preventive
Maintenance and Software
Rejuvenation

In the design and development process of complex systems stochastic modelling and simulation
are part of the iterative procedure. Often, before implementation the design of a new product
is evaluated by means of formal and stochastic modelling. Later in the product development
process prototypes are modelled, evaluated and improved. Therefore, stochastic modelling
must follow or accompany the system development process. As stochastic modelling operates
on a different level of abstraction than system development, the latter must not be observed
in all technical detail. Technical system development issues for preventive maintenance and
software rejuvenation in particular are at least as diverse as are the presented stochastic
models. An exhaustive study of the history of the system development process is therefore
far beyond the scope of this thesis. We will only briefly introduce main systems aspects of
preventive maintenance as to ease later discussion of the related stochastic models.

6.1 Preventive Maintenance

Historically much earlier, but in structure very similar to software rejuvenation is the theory of
preventive maintenance. Preventive maintenance actions aim at extending a systems lifetime,
as opposed to repair, that would restore system operation after an outage. The bulk of work
on preventive maintenance was published in the 1960s through 1980s and we will not revisit
those models in detail as they typically address fault-tolerance of production systems or
manufacturing systems, while recent papers are concerned with computing systems, as is this
thesis.

A huge amount of work has been published before 1990, most of which is covered in three
survey articles. The first one [McC65] covers publications before 1965, the second one [PV76]
until 1975 and the third one [VFF89] categorises the references between 1975 and 1989, its
year of appearance.

109

110 6. Practical Aspects of Preventive Maintenance and Software Rejuvenation

Preventive maintenance models can be categorised in different ways and to make matters
more concise we will restrict ourselves to single-unit systems, since all stochastic models for
software rejuvenation have been developed for monolithic systems. Multi-unit systems like
the n cold drink machines mentioned in [Ger00b] require a slightly reformulated criterion of
optimality.

The classification of stochastic models for preventive maintenance used in [VFF89] and
[Ger00b] suits the point of view taken in this thesis. The following types of models are
identified.

(1) Block replacement models postulate complete periodic replacement of the whole
unit in intervals of constant length T . In addition, failed components are removed
in emergency repair (ER). Figure 6.1 shows a possible time line with periodic block
replacement as well as intermediate emergency repairs.

(2) Age replacement models assume a lifetime distribution F (t) and renewal takes place
when the unit reaches age F (tT) = T or when it fails, whichever occurs first. Age
replacement is more profitable than block replacement [Ger00b], when using both as
cost models. It is pointed out in [Ger00b] that in practice the cost of a preplanned
block replacement is less than that of an age replacement renewal.

(3) Inspection models assume that the state of a system that deteriorates or ages is
unknown and can be learnt through inspection of the system. The purpose of these
models is twofold: the required maintenance or repair action needs to be determined as
well as the length of the next inspection period. Much focus is on ways to find out to
what degree a system has aged or in which state of deterioration it currently is. The
models use different assumptions on the nature of the aging and associate cost with
inspection. They assume different degree of knowledge about the system.

(4) Minimal repair models assume that a single-unit system still consists of many parts.
If one of the parts fails it is usually replaced (like a flat tire on a car) while leaving
the aging process of the whole system unchanged. As the system deteriorates more it
becomes less useful to repeatedly do minimal repair. One type of minimal repair model
assumes complete periodic renewal after time intervals of length T , 2T , 3T , etc. which
resets the failure rate. The other type of minimal repair model uses partial repair which
does not reset the failure rate. Instead, in each interval Ik = [T (k − 1), Tk] the system
failure rate hk(t) = hk−1(t) · eα, where α > 0 is a known degradation factor. Then

h1(t) = h(t), h(0) ≤ h(t) ≤ h(T)

h2(t) = eα · h(t)
hn(t) = e(n−1)α · h(t)

and after k partial renewals one complete periodic renewal is performed.

The many existing publications differ in assumptions on the aging, the system descrip-
tions, the failure models, the way to determine the number k of partial renewals after
which to perform a complete renewal, etc.

6.1. Preventive Maintenance 111

(5) Shock models assume that the failure of a system or its components is caused by
shocks the system experiences. These shocks happen randomly such that the time
between shocks and the damage caused by a shock are random variables that follow
some probability distribution.

In practice the most commonly used preventive maintenance is block replacement, since this
is the simplest strategy.

All the models listed here can be implemented as cost models, where emergency replacement
after a failure (cER) has much higher cost than preventive replacement of a unit (cPM), which
again is more expensive than partial replacement, i.e.

cPM ≪ cER

Then the metric to be minimised is the total accumulated cost using the different replacement
strategies while tuning the respective parameters.

Figure 6.1 displays a block replacement strategy that may have associated cost, which is not
explicitly visible in the figure. There are preplanned renewals at regular intervals of length T
(i.e. at time T, 2T, 3T,etc.) and in between unscheduled emergency repair takes place upon
failure of a component. The time needed for emergency repair and preventive maintenance
is irrelevant in a cost model, important is how many repairs have taken place within one
preventive maintenance cycle.

emergency repair (ER)
preventive maintenance (PM)

4T3T2TT0

Figure 6.1: Cost based model of preventive maintenance and emergency repair

Let us now derive formulas for the mean cost and the mean availability, both using block
replacement. Let us first derive an approximation for the mean expected cost of block re-
placement. The emergency repairs (ERs) between two adjacent preventive maintenances
(PMs) form a renewal process on [0, T] (see Figure 6.1 for an illustration). Let m(t) be the
mean number of emergency repairs (ERs) in [0, T] at cost cER = 1 and the cost of preventive
maintenance is cPM = c, with c < 1, then the mean cost per unit time is [Ger00b]

ηC(T) =
c+m(T)

T
. (6.1)

Since the renewal process often is unknown [Ger00b] proposes bounds that typically are
satisfactory

c+ F (T) + F 2(T)

T
< ηC(T) <

c+ F (T) + F 2(T) + (F (T))3/(1 − F (T))

T

where F is the failure time distribution and Fn(T) is the n−fold convolution of F .

112 6. Practical Aspects of Preventive Maintenance and Software Rejuvenation

Preventive maintenance models can also be expressed as availability models. Then the steady-
state availability is maximised, or the expected downtime is minimised. Instead of attaching
a cost with each replacement action, the time needed for replacement is part of the model.
To evaluate availability emergency repair and preventive maintenance replacement have asso-
ciated duration tER and tPM , respectively (see also Figure 6.2). In analogy with the relation
of the costs, we assume that

tPM ≪ tER.

0
tER tER tER tPM

X X1 2 3X X4

4321T = (X + X + X + X)

Figure 6.2: Time based model of preventive maintenance and emergency repair

Figure 6.2 shows a timeline with preplanned preventive maintenance and unscheduled emer-
gency repair where for both actions a duration is defined. The time needed for repair and
maintenance reduces the system operation time and hence is a punishment similar to the cost
in a cost model. The operational time of the system is the remaining time between consecu-
tive repair or maintenance. An availability model exploits the proportion of system up- and
downtime due to repair and maintenance and aims at optimising the maintenance intervals
in order to minimise the overall system downtime.

Supplementing (6.1) we want to maximise the steady-state availability for block replacement.
The mean duration of a renewal period is T +m(T) · tER + tPM . The mean total uptime is
by definition T , the mean number of emergency repairs again is m(T). The total uptime is
the reward. This reward per total time of operation is the expected availability

ηA(T) =
T

T +m(T) · tER + tPM

=
1

1 + tER · η∗C(T)

where η∗C(T) is the cost for block replacement with c = tPM/tER. So, maximising availability
is equivalent to minimising the corresponding costs. We leave without proof that this holds
for the other replacement strategies as well.

It is worth pointing out the relation between preventive maintenance replacement strategies
and the restart discipline as defined in Chapter 4. The restart of a job has been defined
using the completion time distribution. This corresponds to an age replacement strategy
in preventive maintenance. Preventive maintenance is the dual action to restart in that a
preventive maintenance renewal aims at extending the lifetime of a system while restarting a
job aims at minimising the overall completion time of that job.

6.2. Software Rejuvenation 113

6.2 Software Rejuvenation

It is widely known that software code is never completely fault free. Industry practice indicates
that carefully tested and debugged software still has at least one fault in a thousand lines
of code. These faults and other rare coincidences, like race conditions, lead to a slow filling
up of memory, reduction in available swap space, and the increasing length of the file table
among other characteristics [GvMVT98]. Eventually, this will result in a degradation of
software performance or even in a software crash-failure. The phenomenon of slowly increasing
disruption of the software environment is called software aging [AW97, GvMVT98].

Most software fault-tolerance and reliability techniques, such as recovery blocks [MV96,
Ran75], n-version programming [Avi85, LA92, Lyu88], N self-checking programming [MV96,
DvB94] forward and backward recovery are reactive in nature, they include mechanisms to
react to failures in order to avoid a complete system crash. Software rejuvenation, however,
is a proactive technique, that aims at solving problems before they lead to a failure. Soft-
ware rejuvenation flushes buffer queues, performs garbage collection, reinitialises the internal
kernel tables, cleans up file systems, in essence: it reboots the operating environment. Since
the source of the problem is unknown and cannot be removed, the only available solution is
to periodically stop processing and restart the system environment and the software itself.
Problems like memory leaking are then solved for the near future.

After a failure the system is rebooted as well, but this is an undesirable event since data
might be damaged or lost if the failure happens while processing a transaction. Failures are
typically rare, so a reboot due to a failure is not performed on a frequent or even regular basis.
If rejuvenation is applied to prevent failures it must be done well before the software fails, and
hence it is applied much more often than restart after a failure. Every unnecessary reboot of
a software system causes additional downtime, which is the cost incurred by rejuvenation.

Software rejuvenation is superior to waiting for a crash and doing the reboot then only under
the assumption that either

• rejuvenation is faster than the repair and restart after a failure or

• the cost of a failure is very high.

Software rejuvenation aims at increasing software reliability determined solely by the mean
time to failure (MTTF) and the software availability, defined as A = MTTF/(MTTF +
MTTR), where MTTR is the mean time to repair. Software rejuvenation does improve soft-
ware availability by increasing the mean time to failure through process restarts before the
software fails.

The system model assumed in the study of software rejuvenation is shown in Figure 6.3 as
a state-transition diagram [HKKF95]. Initially a system is operational (state S0) and the
probability of a failure is assumed to be negligible, therefore there is no arc between the
operational state S0 and the failed state Sf . After some time the system enters the failure-
probable state (state Sp), because of software aging. Then eventually the system fails (enters
state Sf), is rebooted and returns to the clean state.

If rejuvenation is included in the system model, there is one additional state (state Sr), as
shown in Figure 6.4, where the system is undergoing rejuvenation. The arcs connecting the

114 6. Practical Aspects of Preventive Maintenance and Software Rejuvenation

Sf Sp

S0

γ

ν
r1

Figure 6.3: System model without rejuvenation

Sf Sp

S0

ν
r1

Srr2

r3

γ

Figure 6.4: System model with rejuvenation

states are labelled with (at the moment unknown) transition rates. Note, that for instance
the inverse rate 1

r1
represents the average time a system is in perfect condition, called the

longevity interval [HKKF95]. Failure and repair rate are γ and ν. If the rejuvenation time is
exponentially distributed its mean duration is 1/r3. The rejuvenation rate, when being in the
failure probable state, is captured by r2. Once the transition rates are known the expected
time to failure with and without rejuvenation can be computed and the decision whether or
not to perform rejuvenation can be made. Stochastic models that lead to such decisions will
be investigated in the next chapter. This chapter concludes with a brief illustration of an
implementation of a rejuvenation module.

Software rejuvenation has been implemented using the UNIX cron deamon [Pon01]. Reju-
venation is implemented as an extension of the UNIX fault-tolerance tool Watchd, which
periodically tests whether a process is still alive and restarts hanging or crashed processes. For
some applications storing checkpoints is beneficial, which can be done using the library libft.
The implementation in [HKKF95] uses the command Addrejuv which takes four arguments:
first the process name, then a command or signal number, another signal number and the
time at which to rejuvenate. watchd will create a script using arguments of addrejuv as
parameters. The script will be executed by the cron deamon. The commands to be executed
are the second and third parameter of addrejuv, which can be augmented by the time to
wait before executing them. If no time is specified they will be executed each after waiting
for 15 seconds, finally after another 15 seconds a SIGKILL signal will terminate the process.
Watchd terminates and restarts an application in the same way as if there was a failure. It
depends on the type of application whether the program to be restarted is kept in permanent
storage or in volatile memory. In the latter case checkpointing might be necessary as well to
avoid loss of data [WHV+95].

Rejuvenation has been implemented in AT&T’s long distance billing system and in several

6.2. Software Rejuvenation 115

regional telephone billing systems in the US. The longevity interval 1
r1

was determined before
in field studies to be approximately 2 weeks. In the module only one week has been used as a
conservative parameter. It has not been reported whether availability of the billing systems
could be increased significantly.

Software availability can be improved not only by increasing the MTTF but also by applying
recovery-oriented computing [CBFP04] and therewith reducing the MTTR. One can argue
that in practical applications the mean time to repair is much easier to observe than the mean
time to failure [FP02]. The former typically is measured in seconds, minutes or hours while
the latter can take years. Therefore, reducing the mean time to repair is the more effective and
more promising way to increase availability than prolonging the MTTF. This is the key idea
behind microreboot [CKF+04], where only components of a software system are rebooted, not
the whole system at once, leading to shorter recovery times. Microreboot is a much smaller
impediment to the ongoing system operation and sometimes can be implemented such that
it is not even noticed by the user. But it must be kept in mind, that microreboot aims at
effectively recovering from failures after they occur and not at avoiding failures by restarting
before a crash. This is an important difference to rejuvenation, where the MTTF is exploited
as to restart before a potential failure, while microreboot aims at reducing the MTTR by
partial restarts after the crash has happened.

The prerequisites for being able to perform a microreboot, however, are quite limiting. Mi-
croreboot can only be applied if the fault is diagnosed and associated with a component, which
can be isolated from the rest of the software and can be restarted independently. Further-
more, components must be stateless and if they are not stateless to begin with all important
application state must be kept in a state store. Microreboot through restart provides only
application recovery while everything related to data recovery must be dealt with otherwise.
The state of the observed process can be managed, e.g. by using the session state manager
[LKF04].

C1 C2 Cn

C1

r2

r12

C3

Cn

C2

r r

r

r

r n1

11

r111

microreboot treerestart tree

r113 C4

C5

Figure 6.5: Tree structure of global restart and restarts in microreboot systems

In most systems components will not be completely independent of each other and their

116 6. Practical Aspects of Preventive Maintenance and Software Rejuvenation

structure can be represented as a tree. Figure 6.5 shows two potential tree structures. The
rectangles labelled r and ri are the restart points. The graph on the left shows a system
consisting of n components, or modules C1, . . . , Cn. Components cannot be restarted indi-
vidually, but only the whole system can be restarted by executing the restart point r. This
is usually called software rejuvenation.

The graph on the right in Figure 6.5 shows a software system that again consists in the
components C1, . . . , Cn. Each component can be restarted individually (e.g. restarting C1 by
executing r111), but sometimes the restart of a single component does not solve the problem.
Then a module composed of several components is restarted, moving up one level in the
microreboot tree (e.g. restarting C1, C2, C3 by executing r11). If this still is not sufficient the
next higher level in the microreboot tree needs to be restarted until finally the system as a
whole is rebooted (by executing r). Note that component C2 cannot be restarted individually,
but only together with component C1 and C3. In [CKF+04, CCF04] an implementation is
presented where the components are enterprise JavaBeans and a reboot of the whole system
corresponds to restarting the Java virtual machine.

Components may have different MTTR. Assume the MTTR of nodes C1 and C3 is much
shorter than the MTTR of node C2. If C1 is detected to have failed one can restart only C1

(execute restart node r111). If, however, C2 fails, both nodes C1 and C3 can be restarted as
well without any additional time penalty. To restart C2 the restart point r11 is used, which
will automatically restart C1 and C3 too. The decision at which layer to restart components
such as C1 and C3 and how often to do so before moving up in the restart tree is a task solved
by an oracle [CCF+02]. Defining a (possibly optimal) restart strategy in a microreboot tree
is a modelling issue that has not been tackled yet.

Software typically needs to be especially designed as to be amenable to restart of individual
components. Microreboot has been successfully applied to the E-commerce system eBid, an
auction system mimicking ebay’s functionality which is implemented only using enterprise
JavaBeans [CKF+04] and to the software system of Mercury, Stanford’s satellite ground
station [CCF+02]. Both case studies showed a remarkable decrease in mean time to repair,
translating either to higher system availability or more tolerance in the fault detection time.

It should be noted that as yet no stochastic models for microreboot systems exist.

However, in the context of real-time systems an experimental study of component restart
exists [Gra04, KBGS05]. In these experiments cars drive autonomously on an ellipse being
directed by a controller. The controller of the first car is repeatedly being switched off and
restarted as to simulate a failure and restart. The focus of the experiments lies in practical
issues, such as showing that timing constraints in a real-time control system can be satisfied
even when using component restart. The timing is investigated to determine experimentally
whether checkpoints should be taken during system operation. The experiments do not allow
for generalisation and are therefore interesting, but not of more general use.

Chapter 7

Stochastic Models for Preventive
Maintenance and Software
Rejuvenation

A number of stochastic models for preventive maintenance and specifically for software reju-
venation are presented and discussed in this chapter. Preventive maintenance is a method to
enhance system reliability and availability. Even before a failure happens measures are taken
to prevent system failure. Software rejuvenation is one such preventive action. Software re-
juvenation restarts the process environment to counteract software aging. While the taken
action is essentially the same as in the restart model the considered metrics are fundamentally
different. In consequence, the developed models differ greatly. While restart is exclusively
carried out for the purpose of minimising task completion time and the system state is not
considered, software rejuvenation models are in both aspects the opposite. Software reju-
venation models do not explicitly model the task completion time but instead focus on the
operating environment processing the task. Software rejuvenation models minimise system
downtime as well as the downtime costs not considering individual tasks. The restart model
minimises task completion time while not explicitly considering possible system breakage.

In general, stochastic models can serve different purposes. They can be used to compare
the performance or reliability of different system configurations, to evaluate the impact of an
improvement within one system, or they can be used to formulate an optimisation problem
which then helps to find an optimal parameter set. When using software rejuvenation an
important question is when to rejuvenate, such that there is an overall positive effect on
system performance. The optimal rejuvenation interval very much depends on characteristics
of the system. The models studied in this chapter aim at tuning preventive maintenance
and software rejuvenation in an optimal way, but differ in their level of detail for the system
description and in assumptions on probability distributions.

7.1 A non-Markovian Preventive Maintenance Model

Lately, models have been named preventive maintenance models to emphasise their general
applicability to technical systems and not being tailored for a special kind of system. We will

117

118 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

look here in detail at one such model, as this fits into the context of our stochastic models
[BPTT98]. Figure 7.1 shows a stochastic activity network (SAN) [SM01] as an atomic model
in Möbius [CDD+04].

Figure 7.1: Möbius atomic model of preventive maintenance

The model represents a system that can be in one of two states, either it is operational (up)
or failed (down). Added is a preventive maintenance unit with a timer. When reaching
the end of the preventive maintenance interval the timer expires and the next preventive
maintenance action is triggered. The activity representing preventive maintenance preempts
the activity failure and hence the failure process. In consequence the model acts as new
after the preventive maintenance action has been completed. The two input gates (IG1 and
IG2) are implemented as inhibitor arcs to disable failure during preventive maintenance and
preventive maintenance during repair. The activity failure models the aging of the system
by being distributed according to a Weibull distribution1 with scale parameter λ and shape
parameter α = 2.0 which produces a increasing hazard rate and hence models aging of the
system.

In [BPTT98] the analytical solution of the underlying semi-Markov process (SMP) is derived
and used for obtaining results. We will use here the simulation component of the Möbius
modelling tool to solve the model in Figure 7.1. The parameters are the following. Initially
the system is up. It fails according to a Weibull distribution with shape parameter 2.0 and
varying scale parameter λ as shown in Table 7.1. The repair time is exponentially distributed
and takes on the average 10 hours. The preventive maintenance interval δ is varied as shown

1For details on the Weibull distribution see Appendix B.2

7.2. A Markovian Software Rejuvenation Model 119

λ E [X]

0.5 · 10−3 1772.45
0.455 · 10−3 1949.7
0.4 · 10−3 2215.57

Table 7.1: Parameter value (α = 2) and expected value of the Weibull distribution

in Figure 7.1 and preventive maintenance as such takes 1 hour. Note that in [BPTT98] the
claim is that the Weibull distribution with parameters α = 2.0 and λ = 2 ·10−7 would have an
expectation of 1981.66. We could not recompute the first moment at these parameter values
and therefore changed the value of λ in order to keep the same MTTF. In doing so we find
similar optimal preventive maintenance intervals as presented in [BPTT98].

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0 500 1000 1500 2000 2500 3000

st
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

δ

λ = 0.5 E-3
λ = 0.455 E-3

λ = 0.4 E-3

Figure 7.2: Simulation results for different scale parameters in the failure
time distribution

For comparison reason we plot the simulation runs with the three parameter configurations as
given in Table 7.1. We find that as the MTTF of the system increases the optimal preventive
maintenance interval increases as well. This complies with our intuition because preventive
maintenance also disturbs operation of the system and should become necessary more often
as the system fails more frequently.

7.2 A Markovian Software Rejuvenation Model

The simple model from [HKKF95] as shown in Figures 6.3 and 6.4 on page 114 is the basis
for various other studies. To investigate the usefulness of rejuvenation the downtime, or the
cost associated with downtime in the model without rejuvenation and with rejuvenation are
compared. An important assumption is that all state transitions are exponentially distributed.

120 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

This greatly simplifies the analysis but is rarely realistic. Later work [PGT+96] removes this
restriction.

Let the state vector π = (π0, πp, πf) hold the probabilities of an application being in state
S0, Sp or Sf , respectively and let all state transition times be exponentially distributed with
rates as labelled in Figure 6.3. Failure and repair rate are γ and ν, respectively and the
expiry rate of the longevity interval is denoted r1. The steady-state solution of this system is
obtained as the solution of

π0 + πp + πf = 1

πp · γ = π0 · r1 (7.1)

πf · ν = πp · γ

which evaluates to

πf =
1

1 + ν
γ + ν

r1

. (7.2)

πf equals the proportion of downtime in the system operation, or an application run time. If
the system operation period has length L (also called mission time) and an associated cost cf
then the expected overall cost of an application A due to downtime is for a system without
rejuvenation

CostA(L) =
1

1 + ν
γ + ν

r1

· L · cf . (7.3)

Including rejuvenation the system model is shown in Figure 6.4 on page 114, with the reju-
venation rate r2 and the repair rate after rejuvenation r3 being exponentially distributed as
well.

The solution of the underlying Markov process with rejuvenation equals

πp =
1

1 + γ
ν + r2

r3

γ+r2

r1

(7.4)

π0 =
γ + r2
r1

· πp (7.5)

πr =
r2
r3

· πp (7.6)

πf =
γ

ν
· πp. (7.7)

The downtime now is composed of the proportion of time the system is in the failed state plus
the proportion of time it spends in the rejuvenating state (πf +πr). Both have an associated
cost (cf + cr), so that the expected cost due to downtime of a application Ar in the model
with rejuvenation evaluates to

CostAr(L) = (πf · cf + πr · cr) · L

=
L

1 + γ
ν + r2

r3

γ+r2

r1

·
(
γ

ν
· cf +

r2
r3

· cr
)
. (7.8)

Note that if r2 = 0 (no rejuvenation) (7.8) equals (7.3).

7.2. A Markovian Software Rejuvenation Model 121

The parameter that needs to be tuned is the rejuvenation rate r2. Whether the downtime or
the cost of downtime will increase or decrease when changing r2 can be seen in the sign of
the derivative of the downtime with respect to r2. The derivative of downT imeAr(L) with
respect to r2 evaluates to

d

dr2
downTimeAr(L) = L · γ

νr1r2
· 1
(
1 + γ

ν + γ
r1

+ r2
r1

+ r2
r3

)2 ·
(
ν(1 +

r1
γ

− r3)

)
. (7.9)

It should be pointed out that the above derivative changes its sign independently of r2 which
means that either immediate rejuvenation (r2 = 0) or no rejuvenation (r2 = ∞) will be
optimal.

The denominator of (7.9) is always positive and hence the sign of (7.9) only depends on the
last term. The last term relates the time to rejuvenate (1

r3
) with the failure and repair rate.

More precisely, if

r3 < ν +
r1µ

γ
then

d

dr2
downTimeAr(L) > 0 (7.10)

then increasing the rejuvenation rate increases the downtime, while if

r3 > ν +
r1ν

γ
then

d

dr2
downTimeAr(L) < 0 (7.11)

increasing the rejuvenation rate decreases the expected downtime. In the latter case rejuve-
nation should be immediately performed as the system enters the failure probable state.

It is intuitively evident that an application benefits from rejuvenation only if rejuvenation is
faster and less expensive than repair. This can be seen in the above condition as well as in
the condition on the downtime cost below. Definitely, if the recovery after rejuvenation and
the repair after a failure take equally long (i.e. ν = r1), then

ν(1 +
r1
γ

) − r3 =
νr1
γ
, (7.12)

which is always positive, independent of all other parameters and rejuvenation will always
increase the system downtime (as long as r2 > 0).

The derivative with respect to the rejuvenation rate r2 of the total downtime cost (Equation
(7.8)) equals

d

dr2
CostAr(L) = L · 1

νr1r3
· 1

(νr1 + γν + γr1)
· 1
(
1 + γ

ν + γ
r1

+ r2
r1

+ r2
r3

)2 ·

(
cr − cf

γ(r1 + r3)

γ(ν + r1) + νr1

)
. (7.13)

Again, the sign of the above expression purely depends on the last term, which is independent
of the rejuvenation rate r2.

Figure 7.3 shows the two terms which determine the sign of the derivative of the downtime
and the derivative of the downtime cost both with respect to the rejuvenation rate. The zero

122 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

plane is added to the graph to separate the positive from the negative parts of both curves.
Some parameters had to be set. The longevity is set to 10 days (1/r1 = 10 ∗ 24), the MTBF
(mean time between failures)2 is one year (1/γ = 12 ∗ 30 ∗ 24), the cost of rejuvenation cr
equals 5, and the cost of repair after a failure cf equals 50. Those numbers are chosen similar
to the parameters in [HKKF95]. It is then possible to observe the impact of the MTTR (1/ν)
and the time to rejuvenate (1/r3) on the derivative of both the downtime and the downtime
cost. The figures represent only the last term in (7.9) and (7.13), being responsible for the
sign of the equation. Important in the figures is therefore whether the curves are greater,
equal or less than zero, but the absolute values have no meaningful interpretation.

If both ν and r3 are equal to zero, the time to repair is infinite and increasing the rejuvenation
rate does neither reduce nor increase the total downtime. The derivative equals zero, since
its last term equals zero. Note that the graph for the change in downtime cost uses the
same parameters but is plotted in a different range for better visibility. For MTTR = ∞
the derivative of the downtime cost converges to minus infinity, meaning that rejuvenation
reduces the cost of downtime dramatically, for without rejuvenation the system will be down
for ever.

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 0
 2

 4
 6

 8
 10

-10

-5

 0

 5

 10

 15

change in down time
termDownTime(mu, r3)

0.0

repair rate after failurerepair rate after rejuvenation

change in down time

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0
 0.5

 1
 1.5

 2

-25

-20

-15

-10

-5

 0

 5

change in down time cost

termDownTimeCost(mu, r3)
0.0

repair rate after failure
repair rate after rejuvenation

change in down time cost

Figure 7.3: Derivative of the downtime and the downtime cost with respect to the rejuvenation
rate

Two conclusions should be drawn from the two graphs in Figure 7.3: (1) values exist for
the MTTR and for the repair rate after rejuvenation such that both the downtime and
the downtime cost may decrease or increase with changing rejuvenation rate. And (2) for
some choices of the two parameters both downtime and downtime cost are reduced, but also
parameter values exist such that one is reduced and the other increased. I.e. at r3 = 2 and
ν = 0.3 cost decreases with changing rejuvenation rate, but the downtime does not.

It is worth mentioning again, that in this model the downtime or downtime cost can be
optimised, if at all, only by the extreme parameter choices either to rejuvenate immediately
or never. It has been pointed out in [DGPT00a, DGPT00b] and in Section 3.2 that an
exponentially distributed restart time, or rejuvenation interval, will always imply that the
optimal restart or rejuvenation interval has length zero. Rejuvenation should be performed

2Note that usually the MTBF is the sum of the MTTF (mean time to failure) and the MTTR (mean time
to repair), making a specification of the repair rate obsolete. In [HKKF95], however, both are given, so perhaps
MTTF is meant instead of MTBF.

7.3. Aging in the Modelling of Software Rejuvenation 123

as soon as the model enters the failure probable state, an observation that is supported by
the results obtained in [HKKF95]. Therefore, [DGPT00a] extends the cost model in this
section and [DGPT00b] extends the availability model such that all state transitions can
be other than exponentially distributed. Both papers also investigate a slightly different
state transition model and provide a non-parametric, data-driven method for experimentally
obtaining the optimal rejuvenation interval.

In summary, the very simple model in [HKKF95] gives much insight in the interplay of
rejuvenation and repair after failure of a system. The model, however, only incorporates
a very simple form of aging, the notion of a longevity period, which has an exponentially
distributed duration and is, therefore, not amenable for detailed analysis.

7.3 Aging in the Modelling of Software Rejuvenation

The system model in the previous section has an underlying homogeneous Markov process.
The longevity period represents the concept of aging in a rather unnatural way. The model
in this section represents aging using a time dependent failure rate that increases over time,
representing an increasing likelihood of system breakdown. This leads to the simpler sys-
tem model shown in Figure 7.4 and is the more common way today to model component
exhaustion.

While the model in the previous section solely considered a software system, the one in this
section also includes arrival and service of jobs as well as queueing. The analysis of the model
consists of two parts: first the system model is analysed and then the queueing model. First
a system metric, the system availability, is computed and then the loss probability, which is
a job related metric.

The necessary parameters of the model are on one hand the arrival and service characteristics
and on the other hand failure, repair and rejuvenation parameters. The time when to trigger
rejuvenation is being optimised through evaluation of two different policies.

• Policy I is to rejuvenate after fixed time intervals of length δ, while in

• Policy II after waiting δ time rejuvenation is only performed when the transaction queue
is empty.

An optimal choice of δ such that system availability is maximised and the loss probability is
minimised formulates the optimisation problem of this section. Presumably the model is too
complex to perform direct optimisation. In [GPTT97, TVGP00, GPTT98] the strategies are
evaluated in the same model with different parameter sets showing the best parameter set.
How to parameterise the model in a realistic way using the data collection from [VT99] is
shown in [TVGP00].

Let us now formally define the model parameters.

Let us assume a failure rate γ(t), where the time to failure X is distributed as FX(t) =

1−e−
R t

0
γ(s)ds. In [GPTT97] the failure rate can be time dependent, while in [TVGP00] it may

124 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

A

B

C

available

recovering

undergoing
preventive maintenance

Figure 7.4: System model for preventive maintenance and failure/repair

also depend on the system load L(t), or on the actual processing time [GPTT98, TVGP00].
The processing time is defined as

L(t) =

∫ t

τ=0

∑

i

cipi(τ) dτ

where pi denotes the probability of i jobs waiting in the queue and ci expresses the degradation
level of the software with i jobs waiting.

The failure rate γ can depend on a combination of both time and load as well as on the mean
accumulated work [GPTT98]. This allows to capture aging behaviour as well as overload
problems. Note that the time to failure is not in general exponentially distributed, making
the model in Figure 7.4 a Markov regenerative process (MRGP) [Kul95], or Markov renewal
process with state space Z(t) = {A,B,C} [Cin75] and no longer a CTMC. The service rate
µ(.) is defined similarly. It can be a function of time µ(t), or a function of the system load
µ(N(t)), where N(t) is the number of transactions waiting in the queue to be served, or of
both. The service rate is always measured from the last renewal time of the software and the

service time has distribution 1 − e−
R t
r

µ(.)ds if service starts at time r. Transactions arrive at
constant rate λ to the software system which has a queueing capacity of K transactions or
jobs.

Let us assume general distributions FDf
and FDr for the random variables describing the

time to recover from a failure (Df) and the time to recover from rejuvenation Dr. No further
assumptions on the distributions are necessary, only that their respective expectations E [Df]
and E [Dr] are finite.

If {Z(t), t ≥ 0} denotes a stochastic process representing whether the software system is in
one of the three states A, B, or C, and the sequence of random variables Si, i > 0 represent
the times at which an application moves from one state to the next, then the entrance times
Si constitute renewal times and {Z(t), t ≥ 0} is an embedded discrete time Markov chain
(DTMC) [Cin75, Kul95]. The embedded DTMC has probability matrix P and steady-state
probability vector π = (πA, πB , πC) with

P =

0 pAB pAC

1 0 0
1 0 0

 .

7.3. Aging in the Modelling of Software Rejuvenation 125

The solution of the homogeneous linear equation π(I − P) = 0 gives the steady-state proba-
bilities of the DTMC being in one of the three states. The solution evaluates to

π = (
1

2
,
1

2
pAB,

1

2
pAC). (7.14)

The expected availability of the software system can now be computed to be the average
proportion of time the system is in state A. Let U be a random variable denoting the sojourn
time in state A, the expected sojourn times in states B and C are defined above as E [Df] and
E [Dr] respectively. Then the expected steady state availability Ass of the software system is

Ass =
πAE [U]

πBE [Df] + πCE [Dr] + πAE [U]
=

E [U]

pABE [Df] + pACE [Dr] + E [U]
(7.15)

To be able to compute system availability the three parameters pAB, pAC and E [U] must be
known. They all depend on which rejuvenation strategy is applied and are therefore for both
cases defined below.

A second metric of interest is the loss probability for jobs waiting for service as the system
fails or is stopped for rejuvenation. To compute the loss probability the queueing behaviour
must be defined. Only in state A a queue of waiting jobs N(t) exists. In both states B and C
the queue is empty and N(t) = 0 since all jobs arriving while the system is in the failed state
or being rejuvenated are lost by definition. The full description of the considered stochastic
process is {Z(t), N(t)}. This process is a MRGP since the time behaviour of N(t) changes
while the system is in state A. This is because the service rate µ(.) may be time dependent
to model degrading service quality.

The expected number of lost jobs is composed of three quantities:

• expected number of jobs lost because of failure and initiating rejuvenation

• expected number of jobs discarded during recovery from failure and rejuvenation

• expected number lost because the buffer is full.

Formally for Policy II:

Ploss =

πAE [Nl] + λ

(
πBE [Df] + πCE [Dr] + πA

∞∫

0

pk(t) dt

)

λ (πBE [Df] + πCE [Dr] + πAE [U])

=

E [Nl] + λ

(
pABE [Df] + pACE [Dr] +

∞∫

0

pk(t) dt

)

λ (pABE [Df] + pACE [Dr] + E [U])
(7.16)

where E [Nl] is the expected number of jobs in the buffer when the system exits state A. The
expected number of jobs that are lost due to failure of the system or initiation of preventive
maintenance depends on the rejuvenation strategy and will therefore be defined below.

Using Policy I the upper limit of the integral in (7.16) is δ the rejuvenation interval (instead
of ∞). After a period of length δ the system always leaves state A and the buffer is flushed.

126 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

W denotes the mean total time the transactions spend in the system while the software is in
state A

W =

∫ ∞

t=0

∑

i

ipi(t) dt.

Time W consists of the time spent in the system by jobs which were actually served (WS) and
the time spent in the system by those that were discarded at some point (WD). Of interest
is only the former. But the sum of both W = WS +WD can be used as an upper bound.

The response time can then be bounded by

Tres <
W

E − E [Nl]
(7.17)

where E is the mean number of transactions accepted for service while the system is in state
A. E is composed of the total number of transactions arriving to the system minus those that
find the buffer already full

E = λ

(
E [U] −

∫ ∞

t=0
pK(t) dt

)
.

Out of these E [Nl] are still discarded later, because the system fails or rejuvenation is initiated.

Behaviour in State A under Policy I

The three metrics of interest, the steady-state availability, the loss probability and the upper
bound on the response time, are computed separately for both rejuvenation policies. As the
queueing process N(t) is different for both policies and is needed to compute the metrics of
interest, it has to be studied for both policies separately. In Policy I the system remains in
state A until it fails, or until δ time units have elapsed and rejuvenation is initiated, whichever
comes first. For Z(t) = A the subordinated process until the next regeneration point is the
queueing process N(t), shown in Figure 7.5. The queueing process is determined by arrivals of
transactions to the system and their being processed. It corresponds to a birth-death process
with an added absorbing state. At time t = δ the system moves to one of the absorbing states
(0’, . . ., K’). This is not reflected in the figure.

λ λ

µ(.)
γ(.)γ(.)

λ

γ(.)

λ λ

µ(.)
γ(.)γ(.)

2 31

1’ 2’ 3’

µ(.) µ(.)

K’K’−1

K−1 K0

λ

γ(.)
µ(.) µ(.)

0’

Figure 7.5: Subordinated non-homogeneous CTMC for t ≤ δ

The states 0’, . . . , K’ are needed for the computation of metrics, otherwise they could be
lumped into one absorbing ’down’ state.

The system of equations to be solved form a subset of the equations for Policy II given in
(7.19), where the separate equations for p1(t) and p′1(t) are omitted and i always ranges from
1, . . . ,K.

7.3. Aging in the Modelling of Software Rejuvenation 127

Once the solutions pi(t), 0 ≤ i ≤ K and p′i(t), 0
′ ≤ i′ ≤ K ′ are available the following terms

can be computed in a straightforward manner:

pAB =
K ′∑

i=0′

pi(δ)

pAC = 1 − pAB.

Then, the steady-state availability (7.15) can be computed.

The expected sojourn time in state A is

E [U] =

∫ δ

t=0

(
K∑

i=0

pi(t)

)
dt

and

E [Nl] =

K∑

i=0

i(pi(δ) + p′i(δ)),

which allow to compute the loss probability and the upper bound on the response time as
given in (7.16) and (7.17).

Behaviour in state A under Policy II

Using Policy II makes matters more complicated, since the system behaviour changes when
δ time units have passed after each renewal. While the system is in State A it is in normal
operation until time δ after which no more arriving jobs are accepted until the system is
empty and being rejuvenated.

λ λ

µ(.)
γ(.)

µ(.)
γ(.)

µ(.)

λ

γ(.)

λ λ

µ(.)
γ(.)γ(.)

2 310

1’ 2’ 3’

µ(.) µ(.)

K’K’−1

K−1 K

Figure 7.6: Subordinated non-homogeneous CTMC for t > δ

Therefore, for t ≤ δ the system behaves as with using Policy I, and as depicted in Figure 7.5,
while as t > δ it behaves differently. The subordinated non-homogeneous CTMC when t > δ
is shown in Figure 7.6.

State 0 now belongs to the absorbing states for when the system is empty the subordinated
process is left for rejuvenation. No arriving transaction is accepted when t > δ and the queue
is empty.

128 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

The system of equations to be solved is

dp0(t)

dt
= µ(.)p1(t) − (λ′ + γ(.))p0(t)

dp1(t)

dt
= µ(.)p2(t) + λ′p0(t) − (λ+ µ(.) + γ(.))p1(t),

dpi(t)

dt
= µ(.)pi+1(t) + λpi−1(t) − (λ+ µ(.) + γ(.))pi(t), 2 ≤ i < K (7.18)

dpK(t)

dt
= λpK−1(t) − (µ(.) + γ(.))pK(t)

dp0′(t)

dt
= γ′(.)p0(t)

dpi′(t)

dt
= γ(.)pi(t), 0 ≤ i′ ≤ K

where

λ′(t) =

{
λ if t ≤ 0

0 else
and γ′(t) =

{
γ if t ≤ 0

0 else.

The initial condition is

p0(0) = 1, pi(0) = 0, 1 ≤ i ≤ K, p′i(0) = 0, 0′ ≤ i′ ≤ K ′. (7.19)

If the arrival rate to the queue and the service rate of the queue depend on the queue length,
i.e. µ(.) = µ(L(t)) and γ(.) = γ(L(t)) then one additional equation is needed to determine
the solution of the process

dL(t)

dt
=

K∑

i=0

cipi(t). (7.20)

The probability pAB is computed by solving the above system of equations at t = ∞ and it
equals

pAB =

K ′∑

i=0′

pi(∞)

and therefore
PAC = 1 − PAB = p0(∞)

because only for the absorbing state a solution greater than zero at t = ∞ exists. The mean
sojourn time in State A is

E [U] =

δ∫

t=0

(
K∑

i=0

pi(t)

)
dt+

∞∫

t=δ

(
K∑

i=1

pi(t)

)
dt

=

δ∫

t=0

p0(t) dt +

∞∫

t=0

p0(t)

(
K∑

i=1

pi(t)

)
dt.

The mean number of transactions in the queue when State A is left equals

E [Nl] =

K∑

i=0

ipi′(∞).

7.3. Aging in the Modelling of Software Rejuvenation 129

Now the steady-state availability (7.15), the loss probability (7.16) and the upper bound on
the response time (7.17) can be calculated for Policy II.

Results taken from [GHKT95] are shown in Figure 7.7. The used parameters are a failure
rate that is defined as the hazard rate of a Weibull distributed random variable, using the
MTTF of 240 hours for defining the distribution’s parameters. The MTTR equals 0.85 hours,
the service rate is variable with a maximum of 15/h and a minimum of 5/h, the arrival rate
is 6/h and the buffer size is 50. The expected time needed for rejuvenation is varied across
the curves for both Policy I and Policy II.

Figure 7.7: Availability and loss probability taken from [GPTT98]

In Figure 7.7 each curve shows either the availability or the loss probability for different
values of the rejuvenation interval δ. The curves are labelled with the policy and the expected
rejuvenation time.

The most important interpretations of the results in Figure 7.7 are as follows.

• If the primary aim is to minimise loss probability, Policy II is always better than Policy
I, while for maximising availability this is not obvious from the given results.

• The value of δ that minimises the loss probability is lower than the value of δ that
maximises availability [TVGP00, GPTT98].

• If the MTTF is exponentially distributed there exists no rejuvenation interval or reju-
venation wait δ that optimises steady-state availability, while the loss probability can
still be minimised [GPTT98].

An obvious observation is that the longer the rejuvenation time the higher is the loss proba-
bility and the lower is the availability.

Apart from the characteristics of the results themselves is of interest how this model compares
with the restart model discussed in Chapters 4 and 5 and with the Markovian model presented
in the previous section.

130 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

Let us compare the latter first. There are many differences and not too many similarities
between this model, and its results, and the one in the previous section. First of all, Figure
7.7 shows optimal rejuvenation interval lengths other than zero or infinity. The models are
so different in structure that it is not even possible to say whether they would lead to the
same conclusion for the same parameter set. But it can be said that clearly the model in this
section includes much more detail and therefore provides more detailed results while being
less straightforward to solve and interpret.

Certainly, including the notion of jobs or transactions adds much value, since not only system
availability but also other important metrics such as loss rate and response time can be
considered. The queueing model new in this model adds a customer perspective to the pure
system view of the problem. The restart model in Chapters 4 and 5 completely hides the
system view in the completion time distribution (which of course in some way depends on
the system dynamics) and only exhibits a customer view. It cannot be judged from the given
references whether the non-exponential repair does improve the model quality. Applying the
different approaches to a situation with an identical parameter set would certainly answer
some open questions and allow us to judge as to whether or not one model gives the more
conservative results compared with the others.

Figure 7.7 indicates that when minimising the loss probability in the non-Markovian model
one would chose the rejuvenation interval δ rather too small than too large but for maximising
availability it is better to choose δ rather too large. Similar conclusions were drawn in Section
4.2.1 for improving moments of completion time through restart. The rejuvenation interval
with respect to availability therefore behaves analogously to the restart interval to minimise
completion time, which is rather chosen a little longer (see Figure 4.3), while the rejuvenation
interval with respect to the loss probability shows the opposite behaviour.

7.4 A Petri Net Model

Petri nets are a modelling formalism suited for describing concurrency and synchronisation
in system actions [ABCD95]. Reformulating the rejuvenation model from the previous sec-
tion as a Petri net model allows for much more modelling detail as was shown in [GHKT95].
We present a modified version of the model in [GHKT95] here. The model in [GHKT95] is
a stochastic reward net (SRN), which is similar to a GSPN as in [ABCD95]. In SRNs re-
ward definitions are an integral part of the model, arc cardinality can be marking dependent
and transitions can be enabled by state-dependent functions. The added structural compo-
nents can make models more compact, but they do not increase the modelling power of the
formalism.

The model we present here belongs to the class of DSPNs [Ger94, Ger00a], since activities in
the model can have other than exponentially distributed duration. The rejuvenation model
only uses deterministic timing for modelling the clock which initiates rejuvenation after the
rejuvenation interval of fixed length has expired.

The DSPN model in Figure 7.8 roughly corresponds to the rejuvenation model from the
previous section using Policy I. Rejuvenation is carried out whenever the rejuvenation interval
expires, which is modelled as the firing of transition Tclock. In the experiments the firing
time of Tclock is varied to find the optimal rejuvenation interval.

7.4. A Petri Net Model 131

<md>

Prej

Pclock

<md>

<md>

<md>

Pdown Tfail

Pfprob

<md>

PloadTarr Tserve

Tfprob Trejuv

Timm

Pevent

Tclock

Pup

Trepair

Figure 7.8: DSPN of the rejuvenation model

The solid lines in the Petri net model indicate the part of the model that is directly translated
from the state transition diagram in Figure 7.4, the subordinated CTMCs in Figures 7.5
and 7.6 on page 127 representing the jobs arriving to the system and leaving the system
are here directly included in the model, represented by the place Tload and the transitions
Tarr and Tserve. The Petri net model implements Policy II as this is the better of both
policies with respect to most criteria. The customer queue is preempted upon repair of the
system. In [GHKT95] the customer queue is also preempted while rejuvenation takes place.
The corresponding arc is omitted in our model, since it showed no effect on the results. Since
rejuvenation is only initiated when the queue is empty one would not expect preemption to
happen frequently.

The clock measuring the time intervals after which rejuvenation is initiated is modelled using a
transition with deterministic firing time (Tclock). Its firing time is the parameter to be tuned.
In [GHKT95] the deterministic firing time is approximated by a series of 10 transitions with
exponentially distributed firing times, together representing an Erlang distributed activity.
Luckily, the software tool TimeNET allows for generally distributed firing times, deterministic
ones in particular, hence making the analysis more convenient and much faster.

The parameters of our model are identical to those in [GHKT95] – if they were specified. In
particular they are the following long term averages: Customers arrive in a Poisson process
with rate 30 (here we selected only one of the cases studied in [GHKT95] and simplified the
model in that we omitted the incompletely specified modulating process) and the jobs require
a service time of 2 minutes. The queue is limited to just one customer by the inhibitor arc

132 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

connecting place Pload and transition Tarr. The system stays in the robust state for 10
days and after reaching the failure probable state it fails in another 30 days. Rejuvenation
takes on the average 10 minutes and recovery after a failure takes 200 minutes. In [GHKT95]
rejuvenation and failure recovery take equally long, in which case rejuvenation cannot be
beneficial (it would always pay off to wait for a failure), so the results provided in [GHKT95]
cannot be obtained using the parameter values as given in that paper.

The marking dependent arcs assure that a token is removed from a place only if the place holds
a token, making sure that the transition can fire even if the input place is empty. Similarly, the
marking dependent arcs connecting transition and place make sure that a token is deposited
only if the place is empty. This happens if the system is being rejuvenated while being in
the failure probable state or if the system fails during rejuvenation and then undergoes repair
instead of rejuvenation.

The parameters used to solve the model in Figure 7.8 are listed in the table below (in rates
per hour).

Tfprob 4.166 · 10−3 Trejuv1 0.3 Trejuv2 6
Tfail 1.388 · 10−3 Tarr 30
Trepair 0.3 Tserve 30

Table 7.2: Parameter values used for the DSPN

The model is solved using the software tool TimeNET [ZFGH00] using the steady-state analysis
module for increasing rejuvenation interval from 50 to 700 in steps of 10. The runtime for this
experiment was 36.7148s. Two different parameter sets were evaluated, the first one being as
described in [GHKT95] with the rejuvenation time and the repair time being identical. The
results are shown in Figure 7.9 on the left. Obviously, the longer the rejuvenation interval the
less jobs are lost due to rejuvenation and the more jobs are lost due to system failure. But
the number of jobs lost due to system failure soon converges to a constant and the optimal

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 500 1000 1500 2000 2500 3000

E
xp

ec
te

d
lo

ss
 r

at
e

rejuvenation interval

mean repair time and mean rejuvenation time equally long

loss rate due to rejuvenation
loss rate due to failure

total loss rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600 700

E
xp

ec
te

d
lo

ss
 r

at
e

rejuvenation interval

mean repair time = 20 * mean rejuvenation time

loss rate due to rejuvenation
loss rate due to failure

total loss rate

Figure 7.9: Expected number of jobs lost versus rejuvenation interval using Policy II

rejuvenation interval is infinitely long. This model does not incorporate cost and hence the
number of jobs lost is the metric to be minimised. As mentioned above, if rejuvenation and

7.4. A Petri Net Model 133

repair are associated with the same expected number of lost customers, there is no benefit in
rejuvenating before a failure happens. This statement is supported by the results from the
model.

On the right hand side in Figure 7.9 are the expected loss rates from the same model, the
only difference being that the mean repair time is much longer than the rejuvenation time.
In this case a clear optimum for the rejuvenation interval exists, such that the total expected
number of jobs lost is minimised.

Policy I from the previous section has been implemented by cutting the inhibitor arc from
place Pload to transition Timm, hence allowing for rejuvenation even if there is a job being
processed. The experiment included solutions of the model for the rejuvenation interval
ranging from 50 to 500 in steps of 10. The runtime for the experiment was 26.5997s. The
result can be seen in Figure 7.4. Surprisingly, the curves are almost identical to those in
Figure 7.9 on the right. The optimal rejuvenation interval and the corresponding expected
loss rates differ only in the fifth digit after the decimal point.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 50 100 150 200 250 300 350 400 450 500

E
xp

ec
te

d
lo

ss
 r

at
e

rejuvenation interval

mean repair time = 20 * mean rejuvenation time using policy I

loss rate due to rejuvenation
loss rate due to failure

total loss rate

Figure 7.10: Expected number of jobs lost versus rejuvenation interval
using Policy I

The conclusion from the Petri net model must be, that an optimal rejuvenation interval exists
if repair takes sufficiently longer than rejuvenation. The choice of the policy is less important.
The model allows to determine whether rejuvenation is beneficial for given rejuvenation and
repair time. If rejuvenation improves the steady-state system availability and loss rate the
optimal rejuvenation interval can be determined.

More Petri net models of software rejuvenation exist and in [GPTT95] a similar improvement
as we did here was made. The rejuvenation model is a Markov regenerative stochastic Petri net
(MRSPN), which has an underlying stochastic process that is a Markov regenerative process.
In consequence also actions with deterministic timing can be included in the model. This is
the main difference between the Petri net models in [GHKT95] and [GPTT95]. The models,
furthermore, differ in minor details implementing the reset of the system after rejuvenation.
Still, the two models cannot be directly compared since [GPTT95] uses the model parameters

134 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

such as MTTF and rejuvenation interval from [HKKF95] and computes different metrics such
as expected downtime, transient expected unavailability and expected cost.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000

ex
pe

ct
ed

 r
el

at
iv

e
tim

e

time

rejuvenation time
downtime

unavailability

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

ex
pe

ct
ed

 r
el

at
iv

e
tim

e
time

rejuvenation time
downtime

unavailability

Figure 7.11: Transient downtime of the system due to rejuvenation, failure or both

Figure 7.11 shows the transient expected downtime due to rejuvenation, failure and both. The
left plot presents the transient results until time 6000 to demonstrate the slow convergence
of a model with mixed Markovian and deterministic behaviour. The right plot shows the
same results. For clearer presentation only the first 600 time units are displayed. It takes the
model several thousand time units to reach steady-state. Transient availability in the SRN
model in [GPTT95] is in steady state already after 1500 time units. This might be caused by
a slightly different parameter set, but also Markovian models reach steady state much faster
than models with deterministic timed activities.

In Figure 7.11 the downtime increases over time and is reset to a much lower value by reju-
venation, taking place in regular intervals. Unavailability due to rejuvenation, on the other
hand, initially happens almost with probability upon expiry of the rejuvenation interval. Only
slowly and in a very long term average the probability of rejuvenating decreases and hence the
downtime then is less dominated by the downtime due to rejuvenation. Notice the logarithmic
scale of the ordinate and the sharp peaks at the rejuvenation times.

A cable modem termination system is modelled as a stochastic reward net in [LTM+02] and
cluster systems in [VHHT01, CHH+01], leading to very complex, application specific models.
Time based as well as measurement based rejuvenation is being modelled. These models
include a complex structure and interdependencies of potential faults but the timer counting
the rejuvenation interval again is approximated using an Erlang distribution. The computed
metrics are capacity oriented availability and the downtime cost.

The Petri net model for software rejuvenation can include much detail and structural depen-
dencies, which clearly is a great advantage in comparison with other modelling formalisms.
It allows for very complex structures, which then are extremely hard to debug. But the main
disadvantage of a Petri net model is that parameter optimisation must be done ’by hand’ in
carrying out sequences of experiments.

Software rejuvenation has also been modelled using fluid stochastic Petri nets [BGG+99].
Extending stochastic Petri nets with fluid places, that hold a continuous amount of fluid,
rather than discrete tokens was first proposed in [TK93], solution methods for these models

7.5. Stochastic Processes for Shock and Inspection-Based Modelling 135

were presented in [HKNT98, CNT99]. The formalism was extended to include variability in
the movement of fluid [Wol97], applications and solution quality of the formalism were studied
in [WZ01]. Further extensions introduced jump arcs [Wol99], or flush-out arcs [GSHB01,
GH02], which have similar semantics. Jump arcs remove or deposit a certain amount of fluid
at once, instead of continuously as the fluid arcs do while flush-out arcs remove all content of
a fluid place at once.

The fluid stochastic Petri net models in [BGG+99] represent a degrading software system
with failure and repair that is periodically being checkpointed3 as well as rejuvenated. Four
fluid places are used to represent the level of degradation of the system, the unsaved work
performed since the last checkpoint and two fluid places representing the time since the last
renewal (checkpoint, rejuvenation, or failure). The work as well as the clocks are reset upon
failure, rejuvenation, or checkpointing. No general purpose Petri net tool is used for solving
the model. Instead, a discretisation scheme has been implemented for this particular model.
The computed metrics are on one hand the relative time spent in the discrete states denoting
the mode of operation of the system (normal operation, failed state, rejuvenating, etc.) and
the proportion of useful work performed until time τ , called work efficiency.

The results show similar saw-tooth patterns as the ones in Figures 7.11, although the peaks
are not as sharp and especially the work efficiency is quickly smoothened by the effects of
exponentially distributed activities in the model. The fluid stochastic Petri net model is
used to show characteristics of the model, there is no parameter tuning or optimisation being
carried out. Neither are the effects of checkpointing versus rejuvenation evaluated. The model
serves a purely descriptive purpose.

7.5 Stochastic Processes for Shock and Inspection-Based

Modelling

In this section we will report on two very elegant mathematical models, a shock model and
an inspection model.

In preventive maintenance inspections often are used to observe the system state and based
on the observation of system degradation preventive maintenance actions are carried out. In
[BSA01] two models are investigated for software rejuvenation that use mechanisms known
from preventive maintenance. The one uses inspection intervals and an alert threshold re-
juvenation policy, the other one is a shock model applying a risk-level rejuvenation policy.
Both models use the unavailability due to rejuvenation and crash as the metric of interest,
which is to be minimised. In the inspection model the alert threshold is the parameter to be
tuned, while in the shock model the length of the rejuvenation interval is to be chosen such
as to minimise unavailability of a system.

Let us first describe the degradation process, which is the same for the first two models. We
assume there is a parameter that describes degradation and that can be monitored, such as
disk usage in a computer system. Let s(t) be the value of the degradation index at time t.
Hence, s(t), t ≥ 0 is the stochastic process modelling system degradation over time.

3For an elaborate discussion of checkpointing and stochastic models for checkpointing see the next chapter.

136 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

Let us assume the degradation process is determined by a sum of random shocks, as depicted
by the dashed lines in Figure 7.12. Each shock increases the degradation index by a random
variable X ≥ 0 distributed according to a probability distribution function FX(x). The
distribution of the degradation shocks must be known.

The system is operational as long as smin ≤ s(t) < smax. At smin the system is fully operational
and smax is the maximum degradation, at which the system will crash. Let T be the random
variable denoting the time until s(t) reaches smax for the first time, i.e.

T = min{t : s(t) ≥ smax}. (7.21)

T is the time until the system crashes, distributed according to a cdfDT (t, smax) = Pr{T ≤ t}.
The survival function is D̄T (t, smax) = 1 −DT (t, smax).

In the following we will now explain the inspection interval approach and the shock approach.
The main difference between the two being, that in the inspection interval approach time
intervals are given and the value of the degradation index is sought and an alert value in space
is determined using the model. In the shock model knowledge of the degradation process is
assumed and the rejuvenation interval is sought. The two models are complementary in that
one assumes knowledge on timing and computes values in space, while the other one assumes
knowledge in space and determines the timing.

7.5.1 The Inspection Model with Alert Threshold Policy

Starting from observation times, the degradation index s(t) is monitored at equispaced in-
tervals of length ∆t, as shown in Figure 7.12. This gives a sequence of degradation values
s(k · ∆t), k = 0, 1, Let Xk be the increment in the degradation index at time k, then the
cumulative degradation can be expressed as the random variable hk, where

hk = s(k∆t) = smin +
k∑

i=1

Xi. (7.22)

The increment is a strictly positive random variable and therefore the cumulative degradation
is monotonically increasing. This allows us to express the survival function as

D̄T (k∆t) = Pr{hk < smax}. (7.23)

If the increments are iid then

D̄T (k∆t) =

∫ smax−smin

0
f∗kX (z)dz, (7.24)

where f∗kX (z)dz is the k−fold convolution of the density fX(x) corresponding to the cdf FX(x).

Observation of software degradation levels in practice is done in [SHM05].

Alert threshold rejuvenation policy

To avoid a system crash, the system needs to be restarted before an inspection determines
that the degradation index has gone beyond the acceptable limit and hence the system has

7.5. Stochastic Processes for Shock and Inspection-Based Modelling 137

t∆ t∆
t

smin

s

∆ ts s s1 2 3 s4 s5 s s6 7 s s8 9 s s10 11

T

max

X

X1

X2
X3

X

X
X

4

5
6

X

X

7

8
9

10
als

s
X

X

Figure 7.12: Equidistant observation intervals to determine an alert threshold

crashed already. Therefore, a warning is needed before the degradation index reaches smax,
so that the system can be rejuvenated in time. The alert threshold policy introduces this
alert value of the degradation index, where if an inspection finds that the degradation index
exceeds the alert threshold rejuvenation is initiated. Proper choice of the alert value is an
optimisation problem. If the alert value is too low, rejuvenation will be carried out too often,
leading to unnecessary unavailability of the system. But if the alert threshold is chosen too
high, there is not enough time for rejuvenation to prevent the system from crashing.

We introduce a threshold sal ≤ smax and as soon as the system degradation reaches that
value, rejuvenation is performed. In other words, if

s((k − 1)∆t) ≤ sal and s(k∆t) > sal

i.e. the system jumps above the alert threshold in the k-th inspection interval, then rejuve-
nation is performed. There are two possible situations

1) sal < s(k∆t) < smax

2) s(k∆t) > smax.

The distance of sal and smax determines the probability of both events. The appropriate
absolute distance |smax − sal| or the relative distance

σal =
sal
smax

maximise the probability of the first event.

To precisely formulate the probabilities of rejuvenation or crash at the k-th inspection interval
we need the random variable T, denoting the first passage time until the degradation index s(t)
crosses a value s in the k-th inspection interval for the first time. Let DT (k∆t, s) denote the
corresponding cdf and dT (k∆t, s) its probability density. Then dT (k∆t, s)ds is the probability
that the degradation index s achieves a value in the interval [s, s+ ds] in the k−th inspection
interval.

138 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

For the alert threshold sal the probability that rejuvenation is performed in the k−th interval
is computed as

Pr {rejuvenate at k − th step, sal} =

∫ sal

smin

dT ((k − 1)∆t, z)(FXk
(smax − z) − FXk

(sal − z)) dz

(7.25)
and the probability that the system crashes in the k−th inspection interval equals

Pr {crash at k − th step, sal} =

∫ sal

smin

dT ((k − 1)∆t, z)(1 − FXk
(smax − z) dz. (7.26)

If the increments of the degradation index are iid random variables with cdf FX(x), then
FXk

(x) = FX(x) and dT (k∆t, s) = f∗kX (s) and we can simplify (7.25) and (7.26) as

Pr {rejuvenate at k − th step, sal} =

∫ sal

smin

f
∗(k−1)
X (z)(FX (smax − z)− FX(sal − z)) dz (7.27)

and

Pr {crash at k − th step, sal} =

∫ sal

smin

f
∗(k−1)
X (z)(1 − FX(smax − z)) dz. (7.28)

Reward measures

In order to evaluate the alert policy a metric of interest must be defined. We want to de-
fine a reward that represents the cost due to rejuvenation or repair and that is associated
with the renewal process of times between successive rejuvenation or repair actions. Let the
interrenewal time Yn be the time interval between the repair or rejuvenation actions and it
corresponds to the first passage time of the degradation index s(t) across the alert threshold
sal. Irrespective of whether rejuvenation or repair is triggered, the system is renewed when
the degradation index crosses the alert threshold.

The expected value of the interrenewal time Yn equals

τ = E [Yn] =

∞∑

k=1

k∆t · Pr {crossing sal at the k-th step} (7.29)

=

∞∑

k=1

k∆t ·
∫ sal

z=0
dT ((k − 1)∆t, z)(1 − FXk

(sal − z)) dz. (7.30)

The probability of crossing the alert threshold can be evaluated as

Pr {crossing sal at the k-th step} = D̄T ((k − 1)∆t, sal) − D̄T (k∆t, sal) (7.31)

and therefore (7.30) simplifies to

τ =

∞∑

k=1

k∆t(D̄T ((k − 1)∆t, sal) − D̄T (k∆t, sal)) = ∆t

∞∑

k=0

D̄T (k∆t, sal). (7.32)

At the end of the n−th renewal period a reward Rn is paid (or earned). We assume c1 as
rejuvenation costs and c1+c2 to be the cost of repair if a crash happens before the rejuvenation

7.5. Stochastic Processes for Shock and Inspection-Based Modelling 139

action. c2 is the extra cost for repair, as compared with the rejuvenation costs. The costs are
the same in all renewal cycles. The cost of each renewal is

Rn =

{
c1 if sal < s(k∆t) < smax

c1 + c2 if s(k∆t) > smax

(7.33)

for some k ∈ 1, . . . , n. The total accumulated cost until time t is then

C(t) =

{
0 if N(t) = 0
∑N(t)

n=1 Rn if N(t) > 0
(7.34)

where N(t) is the stochastic process counting renewal events. The process {C(t), t ≥ 0} is
a renewal reward process [Kul95]. The average cost paid (or reward earned) at each cycle
evaluates to

r = E [Rn] = c1 · Pr {rejuvenate, sal} + (c1 + c2)Pr {crash at, sal} (7.35)

where

Pr {rejuvenate, sal} =

∞∑

k=1

Pr {rejuvenate at k − th step, sal} (7.36)

Pr {crash, sal} =

∞∑

k=1

Pr {crash at k − th step, sal} , (7.37)

and
Pr {rejuvenate, sal} + Pr {crash, sal} = 1.

Assuming the increments of the degradation index to be iid random variables with cdf
FX(x) the probabilities Pr {rejuvenate at k − th step, sal} and Pr {crash at k − th step,sal}
were given in (7.25) and (7.26) or in (7.27) and (7.28).

The long-term cost rate can be expressed using a result from the theory of renewal processes.
If r <∞ and τ <∞ then

lim
t→∞

C(t)

t
=
r

τ
with probability 1. (7.38)

For the inspection model under the alert policy the long-term cost rate is obtained by sub-
stituting (7.30) and (7.35) into (7.38) resulting in

lim
t→∞

C(t)

t
=
c1 ·

∑∞
k=1

∫ sal

smin
f
∗(k−1)
X (z)(FX (smax − z) − FX(sal − z)) dz

∆t
∑∞

k=0 D̄T (k∆t, sal)

+
(c1 + c2) ·

∫ sal

smin
f
∗(k−1)
X (z)(1 − FX(smax − z)) dz

∆t
∑∞

k=0 D̄T (k∆t, sal)
(7.39)

again assuming the simplified case where the increments of the degradation index are iid
random variables with cdf FX(x).

The long-term cost rate is plotted in [BSA01] for the following parameter values:

FX(x) is the Gamma distribution with three different sets of parameters, as to achieve iden-
tical expected value, but different variances.

140 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

• FX(x) = Γ(0.2, 0.2). The cdf of the increment is decreasing hazard rate (DFR) with
expected value equal to 1 and variance 5. The coefficient of variation equals 2.24.

• FX(x) = Γ(1, 1). The cdf of the increment exponentially distributed (constant hazard
rate) with expected value, variance and coefficient of variation all equal to 1.

• FX(x) = Γ(5, 5). The cdf of the increment is an Erlang-5 (IFR - increasing hazard rate)
distribution with expected value equal to 1, variance equal to 0.2 and coefficient of
variation equal to 0.447.

Furthermore, the chosen failure profile is

• The feasible values of the degradation index are in the interval [0, 10), i.e. smin = 0 and
smax = 10.

• The downtime to recover from a rejuvenation is c1 = 15 min, the downtime to recover
from a crash is c1 + c2 = 45 min.

• The degradation index is monitored once per day (∆t = 1 day).

In [BSA01] in addition realistic data from a data base system has been studied.

An inspection-based model with alert threshold has been used for a closed loop design in
[HCLT02] demonstrated by rejuvenating a web server. The degradation model corresponds
to the inspection model in section 7.6. The alert threshold policy is compared with executing
no rejuvenation and a fixed rejuvenation interval. It has been shown in [HCLT02] that
especially in random environments where degradation is not deterministic adaptation of the
rejuvenation interval is beneficial, even though it incurs a higher cost than just employing a
fixed size interval. The feed-back rejuvenation methods have been included in IBM’s Director
tool for performance management of the xSeries servers [CHH+01].

7.5.2 The Shock Model with a Risk Policy

Instead of making assumptions on the observation of degradation, we now look at the degra-
dation process itself and assume degradation to take place due to random shocks. The random
shocks not only determine the degree of degradation coming along with each shock, i.e. the
’height’ of the shock, but also the frequency of occurrence, or the time between shocks. The
time instants at which the shocks happen give rise to a point process S(t). This point process
determines the number of shocks S(t) in the interval [0, t). The increment of the degradation
index at each shock again is a random variable X with cdf FX(x). To specify the degradation
process we first need to know the probability Pk(t) of seeing k shocks until time t, i.e.

Pk(t) = Pr {S(t) = k}

which is the second term in the survival function

D̄T (t) =

∞∑

k=0

D̄T (t|k) · Pr {S(t) = k} . (7.40)

7.5. Stochastic Processes for Shock and Inspection-Based Modelling 141

D̄T (t|k) is the survival probability at time t, under the condition of having had k shocks in
the time interval [0, t). As in the inspection model, we make the simplifying assumption that
the increment of the degradation process is a random variable X with cdf FX(x) and density
fX(x), we assume that shocks are independent and the degradation process is additive. Then
D̄T (t|k) can be expressed as (see (7.24))

D̄T (t|k) =

∫ smax−smin

0
f∗kX (z)dz, (7.41)

t
smin

s

T

maxs

1X
X2

X3

X4

X5

X6

X

θ

Figure 7.13: Degradation process to determine rejuvenation interval

Until now we have described the height of the increment of the degradation index with each
shock. To fully specify the degradation process we still need a stochastic process describing
the number of shocks in a time interval, or the time between shocks. In degradation processes
it is common to model the aging of a system with a time-dependent shock rate (or time
between shocks). The point process S(t) is a non-homogeneous Poisson process and a power-
law dependence for the time-dependent rate λ(t) gives

λ(t) = cβtβ−1, (7.42)

where for β > 1 the interarrival time between shocks is decreasing with time (age of the
system) and the shock rate increases, for β < 1 vice versa. If β = 1 then S(t) is a Poisson
process. Using the time-dependent shock rate we can write the probability of having k shocks
until time t as

Pk(t) = e−ctβ (ctβ)k

k!
(7.43)

and the survival probability D̄T (t) as

D̄T (t) =

∞∑

k=0

D̄T (t|k) · e−ctβ (ctβ)k

k!
. (7.44)

In [BSA01] earlier work is pointed out, deriving general and interesting results for the Poisson
distributed random shock model. If only the increment of the degradation index X is a
positive random variable, the survival probability D̄T (t) is increasing hazard (failure) rate on

142 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

the average. Hence, independent of the distribution of the single shocks, the overall process
on the average represents degradation.

Risk level rejuvenation policy

After having described the degradation process in the shock model, we now proceed to formu-
lating a rejuvenation policy. Given the probability distribution function DT (t, smax) denoting
the probability that the degradation index will cross the threshold smax and crash until time t
the rejuvenation interval θ is chosen such that the probability of a crash stays below a thresh-
old, or risk level (1 − α). At a confidence level α (i.e. α = 0.95) the system is rejuvenated at
time θ(α) where

DT (θ) = 1 − α. (7.45)

The value θ is the (1 − α) percentile of the distribution DT (t) and, obviously, the higher the
confidence α the shorter becomes the rejuvenation interval θ. Hence θ depends on the choice
of α and we may write θα.

Reward measures

The formulation of the reward measures more or less follows along the same lines as in the
inspection-based model with alert threshold. We describe the renewal process Yn, consisting
in the periods between successive crashes or rejuvenations and associate costs with both
crash and rejuvenation. The accumulated reward then is the accumulated cost of crash and
rejuvenation and this corresponds to the unavailability of the system. Unavailability of the
system depends on the length of the rejuvenation interval θ, which again depends on the risk
level α.

Let us assume that crashes and rejuvenation times form renewal times and that Tn as defined
in (7.21) is the time until the system crashes in the n-th cycle. The duration of the n-th
renewal cycle is defined as

Yn = min(Tn, θα).

The reward paid (or earned) at the end of the n-th renewal cycle is similar to the reward in
the inspection model with alert threshold (7.33)

Rn =

{
c1 if Yn = θα

c1 + c2 if Yn = Tn < θα.
(7.46)

The total cost C(t) is defined as in (7.34) and r = E [Rn] again is the expected value of the
reward Rn gained at the end of each renewal cycle. The expected interrenewal time is again
τ = E [Yn] . Both are now defined as

τ = E [Yn] = E(min(Tn, θα)) =

∫ θα

0
(1 −DT (t)) dt =

∫ θα

0
D̄T (t) dt (7.47)

r = E [Rn] = c1 + c2DT (θα) = c1 + c2(1 − α). (7.48)

The long-term cost rate is computed using (7.38), which now evaluates to

lim
t→∞

C(t)

t
=
c1 + c2(1 − α)

θα∫

0

D̄T (t) dt

. (7.49)

7.6. Inspection-based Modelling using the Möbius Modelling Tool 143

To obtain a low risk of system crashes (1 − α), α should be chosen close to 1. This leads to
very short rejuvenation intervals and hence a considerable unavailability due to rejuvenation.
Clearly, wanting to avoid downtime due to system crashes α should be chosen large, while
to reduce unavailability due to rejuvenation, α should be chosen small. Considering the
downtime costs incurred by crashes and rejuvenation, respectively, there will be an optimal
value of α (and hence of the rejuvenation interval θ) that minimises the overall cost.

7.6 Inspection-based Modelling using the Möbius Modelling
Tool

The model in [VST02] takes a slightly different approach on inspection-based preventive
maintenance as it models the system in more detail. The model allows for system crashes
and repair during inspection intervals and uses different degrees of maintenance depending
on the degradation level. In [VST02] a Markov regenerative process with a subordinated
semi-Markov reward process is defined using an arbitrary number of inspection intervals and
allowing for arbitrary probability distributions for the inspection interval as well as for the
inspection activity, the repair after a component as well as a full system failure. The computed
metrics are the expected downtime and the expected cost over an interval [0, T] where T =
1000 hours. The model is solved using deterministic as well as exponentially distributed
inspection intervals δ, while all other parameters are assumed exponentially distributed.

We use the Möbius modelling tool [CDD+04] to model and simulate an instance of the model
as solved analytically in [VST02]. Figure 7.14 shows a stochastic activity network as atomic
model in Möbius with only n = 4 stages of deterioration. The general model in [VST02] is
depicted as a state transition diagram.

Figure 7.14: Atomic Möbius model for inspection-based preventive maintenance

The model in Figure 7.14 initially has a token in place D0, the new and up state. The state of
the system deteriorates with the firing of transitions t0 through t3 until it finally fails. If the
firing time of transitions t0, .., t3 is exponentially distributed then the failure time distribution

144 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

is a hypo-exponential distribution, which has an increasing hazard rate and therefore models
aging.

Parameter Transition Description Value

λ ti Deterioration failure rate 0.1/hour
λp tpi Poisson failure rate 0.05/hour

1/µr tri Mean time for retry 2 min
1/µR tR Mean time for full reboot 1 hr
1/µm tm Mean time for minimal maintenance 5 min
1/µM tM Mean time for major maintenance 15 min
1/µins tinsj Mean time for inspection 40 sec
cr Cost of retry $500/hour
cR Cost of full reboot $5000/hour
cm Cost of minimal maintenance $1500/hour
cM Cost of major maintenance $3000/hour
cins Cost of inspection $1000/hour

Table 7.3: Parameters of the inspection-based SAN

At each stage of deterioration the system may fail and can be restarted. This is modelled
by the transitions tpi and tri. Inspection is initiated upon the firing of tdi and is completed
when tinsi fires. If the system has reached deterioration grade D2 inspection is followed by
a minimal maintenance (firing of transition tm), which improves the system state such that
it returns to deterioration state D1. Once the system has reached deterioration state D3 a
major maintenance is needed after which the system is ’as good as new’ (back in state D0).
The failed system needs a full reboot, modelled as the firing of transition tR. All parameter
values are taken from [VST02] and summarised in Table 7.3.

As in [VST02] we compute the expected downtime and the expected cost over an interval of
1000 hours. The following figure shows that an optimal inspection interval exists for both
considered metrics. The length of the optimal inspection interval, however, depends on the
chosen metric.

We find that the expected downtime is minimal for an inspection interval of approximately
3.5, while for the expected cost an inspection interval of 1.2 is optimal. Unlike the observation
in [VST02], we find that the optimal inspection interval is irrespective of the distribution of
the inspection interval, where we considered the exponential distribution and deterministic
inspection intervals. The distribution of the inspection interval does influence the results in
that for longer deterministic inspection intervals the expected downtime and even more so
the expected cost are higher than both would be when using an exponentially distributed
inspection interval.

Figure 7.15 furthermore shows that selecting the optimal inspection interval length such that
the expected downtime is minimised penalises the expected cost roughly to the same extent as
choosing the optimal inspection interval with respect to the expected cost would increase the
expected downtime. As we have seen earlier, also in this model when in doubt the inspection
interval should be chosen rather too long than too short.

7.6. Inspection-based Modelling using the Möbius Modelling Tool 145

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20

ex
pe

ct
ed

 c
os

t,
ex

pe
ct

ed
 d

ow
n

tim
e

(h
ou

rs
)

inspection interval (hours)

deterministic inspection interval, down time
deterministic inspection interval, cost

exponential inspection interval, down time
exponential inspection interval, cost

Figure 7.15: Expected downtime and expected cost for deterministic and exponentially dis-
tributed inspection intervals

146 7. Stochastic Models for Preventive Maintenance and Software Rejuvenation

Part IV

Checkpointing

147

148

Introduction

In this part we want to briefly recall checkpointing systems and survey existing stochastic
models for checkpointing. These models aim at choosing the checkpointing interval such that
a metric of interest is being optimised. The models make assumptions on the considered
system, on the considered faults and on where checkpoints can possibly be placed. In order
to introduce practical issues of checkpointing we will first give a brief overview of existing
systems work in checkpointing. A huge body of work in systems science appeared over the past
decades and work in this field is still ongoing. We do not try to discuss systems checkpointing
exhaustively in this chapter, since it is beyond the scope of this thesis. The systems work is
introduced only for the purpose of placing the stochastic modelling work in the right context.

Checkpointing is being applied to transaction processing systems as well as to batch pro-
grams. It is being applied in production environments, real-time systems [GNTT87] and
in distributed message passing systems. With checkpointing the system or program state
is saved to permanent storage and if a failure happens after the checkpoint, the system or
program does not need to restart all over from the beginning but only from the most recent
checkpoint. Taking a checkpoint often is called a save, while restarting from the most recent
checkpoint is called a rollback. When checkpointing a program environment, the whole system
needs to be rolled back to the state when the checkpoint was taken. When checkpointing a
process the rollback restores an earlier state of the process. When checkpointing a transaction
processing system then also the list of waiting and processed transactions has to be saved and
when the state is restored the lost transactions from the audit trail must be replayed.

149

150

Chapter 8

Checkpointing Systems

Checkpointing applies to large software systems subject to failures. In the absence of failures
the software system continuously serves requests, performs transactions, or executes long-
running batch processes. If the execution time of the task and the time at which processing
starts is known, then the moment of completion of the task is known as well. If failures
can happen the completion of a task severely depends on the underling fault model. The
typical fault model employed in checkpointing consists in the assumption that faults are
detected immediately as they happen. This implies that only crash-faults are considered and
no transient or Byzantine faults that would require fault-detection mechanisms are considered.
Some checkpointing models assume that faults are detected only at the end of the software
module [TB84].

8.1 Checkpointing Single-Unit Systems

In this section different techniques are outlined for checkpointing monolithic systems.

Sequential checkpointing. Sequential checkpointing is the basic type of checkpointing. It
is concerned with uni-process systems. Without checkpointing upon failure of the system typ-
ically all work performed so far is lost and the computation has to start anew. Checkpointing
aims at reducing the amount of work that is lost upon failure of the system by intermediately
saving the whole state of the system. Saving the system state usually comes with some cost,
or overhead. Usually this is not clearly specified. The checkpointing cost can be the time
needed for checkpointing. It can also be some cost incurred by system operation. The check-
point latency is the time needed to establish a checkpoint. A checkpoint is also called recovery
point. In sequential checkpointing the checkpoint latency is equal to the checkpoint overhead.
During the checkpoint save operation the system cannot perform any useful work. Therefore,
work is delayed because of checkpointing. If no failure happens checkpointing is seen purely
as retarding system operation. If a failure happens during computation, on the other hand,
then the system does not have to roll back to the initial state, instead it can roll back to
the most recent checkpoint. Checkpointing can then considerably reduce the amount of work
that is lost upon failure of the system. An exemplary checkpointing scenario is depicted in
Figure 8.1, where w denotes the task length, ti the intervals between checkpoint i− 1 and i.
The checkpointing cost is ci and the rollback cost ri.

151

152 8. Checkpointing Systems

t1 t2 t3 t4 t5 t6 t7

w

t t
c

t tt
c

7

c6
6

5
5

4c
t4

c3
3

r1
t3

2

2

c1
t1

checkpoint overhead C
checkpoint latency L

checkpoint overhead

useful computation

Figure 8.1: System model

There obviously is a trade-off between the amount of work lost when the system fails and the
checkpointing overhead. Many stochastic models aim at optimising this trade-off with respect
to some performance metric, typically either the expected completion time of the task, or the
availability of the software system.

Forked checkpointing When using sequential checkpointing on a uni-processor system no
useful work is being performed during the whole save process of a checkpoint. Therefore,
in forked checkpointing the process whose state is being saved creates a child process which
performs the establishment of the checkpoint while the parent process continues processing of
useful work. This reduces the checkpoint overhead when using efficient processors, since very
often computation of the parent process can be done in parallel with stable storage access of
the child process [Vai97].

checkpoint overhead

useful computation

begin
checkpointing

end
checkpointing

checkpoint latency L checkpoint latency L

begins
interval

ends
interval

t

+ Cτ

Figure 8.2: Forked checkpointing

The checkpoint latency is no longer equal to the checkpoint cost, as illustrated in Figure 8.2,

8.1. Checkpointing Single-Unit Systems 153

where only one checkpoint save operation is depicted.

The probability of a failure during checkpointing increases when spreading out the checkpoint
save operation over time. Therefore high latency reduces the performance gain through
checkpointing. The quality of forked checkpointing is not evaluated by means of the overhead
or the latency, but by the overhead ratio, which is the relative extra time required to perform
a job with forked checkpointing [Vai97]. The overhead ratio is formally defined later.

A system crash can terminate all processes, or it can be a partial crash affecting only some
processes. An optimistic view assumes that sometimes only the parent process which does
the computation is affected and the forked child process can complete the checkpoint save
operation [HKC02]. The rollback in these cases is more or less a restart from the current
state and very little computation is wasted.

Cooperative checkpointing

Cooperative checkpointing is also called compiler-assisted checkpointing in the literature
[EP04, LF90]. There exist three types of implementations of checkpointing. Checkpointing
can be integrated into applications by the application programmer. Checkpointing can also
be implemented as a function of the operating system. This is called system-initiated check-
pointing [SSB+05]. Cooperative checkpointing [ORS06] combines both application-initiated
as well as system-initiated checkpointing. At runtime the operating system uses heuristics
classifying the system state to decide whether a checkpoint, which is implemented in the
application code, should be executed.

Most applications use equidistant checkpoints, which, as we will see later in this chapter,
is in many cases the best choice. Cooperative checkpointing then appears to be irregular,
since the system can either grant or deny a checkpoint requested by the application. For
realistic distributions of the time between failures cooperative checkpointing can perform up
to four times better than periodic checkpointing [ORS06]. A good heuristic of the system
state is essential for the performance of cooperative checkpointing. In [OS06] two strategies
for cooperative checkpointing are investigated. Work-based cooperative checkpointing trades
the cost of executing a checkpoint against the risk when skipping it. Risk-based cooperative
checkpointing is a slight modification of work-based cooperative checkpointing, where the
risk is not measured as the worst case loss if a failure happens, but the expected loss. If
a failure can be predicted with 10% accuracy, cooperative checkpointing can considerably
reduce the amount of work lost, increase system utilisation and improve other system metrics
as compared with not checkpointing at all. If 50% of all failures are known ahead of time,
then the cooperative checkpointing strategy performs as good as periodic checkpointing, for
over 50% an improvement over periodic checkpointing is possible. Both types of cooperative
checkpointing do not differ much in performance [OS06].

In the future, with still growing systems one must expect increasing failure rates [EP04] where
still the bottleneck will be the bandwidth of the input and output devices. Therefore, check-
pointing is expected to be still relevant over the next decades and cooperative checkpointing
can become more significant.

154 8. Checkpointing Systems

8.2 Checkpointing in Distributed Systems

In distributed systems components may be geographically or logically remote. They cooperate
by exchanging messages. Checkpointing of such systems poses a number of challenging prob-
lems. This section discusses the problems arising when checkpointing in distributed systems
as well a possible solution.

Checkpointing in Message-Passing Systems

Checkpointing requires the periodic saving of the system state. Distributed systems usually
consist of several components that can be located geographically and logically apart from
each other. To checkpoint a distributed system the state of all components must be saved at
the same time. Time synchronisation in distributed system is a difficult issue itself, but it
would not be relevant if the components of the system were not to communicate with each
other. The exchange of messages turns the checkpoint save operation into a difficult task.
Even if perfect time synchronisation were available this would not guarantee consistent roll
back recovery, because message that were sent before the checkpoint save operation may not
yet have arrived. In the sending process the system state includes information on having sent
the message while the receiving process does not include receipt of the message in its saved
copy of the system state. The basic problem is illustrated in Figure 8.3.

m

m

Consistent cut

2

1 m

m

Inconsistent cut

2

1

P

P

P

P

P

P
3

1

2

3

2

1

Figure 8.3: Consistent and inconsistent recovery line

A cut (or recovery line) through the system defines the point where the state of each process
in the distributed system is saved in a checkpoint. The system in Figure 8.3 consists in the
three processes P1, P2 and P3, which exchange messages. The graph on the left in Figure
8.3 shows a consistent cut, because in the checkpointed state of the system all messages
that have been received, also have been sent. The graph on the right in Figure 8.3 shows
an inconsistent cut, because the saved system state includes received messages that have
not been sent at the point that they were saved in the checkpoint. It should be noticed
that even a consistent cut alone does not guarantee consistency of the system at rollback
recovery. The sent messages, which have not been received before taking the checkpoint must
be redelivered by the checkpointing protocol. This mechanism is similar to the repeated
delivery of messages in reliable communication protocols, such as TCP. Messages that have
been sent, but not received, at the time a checkpoint is taken, are called in-transit messages.
In Figure 8.3 on the left message m2 is an in-transit message.

To create consistent cuts requires some coordination between the communicating processes.
If processes autonomously save checkpoints and an inconsistent cut is created then the system

8.2. Checkpointing in Distributed Systems 155

detects this inconsistency at the rollback recovery operation and rolls back one checkpoint
further. If that checkpoint again is inconsistent the system rolls back to the next preceding
checkpoint. This may cause a step wise rollback to the initial state of the system, which is
called the domino effect and is highly undesirable.

The possible domino effect is the main disadvantage of uncoordinated checkpointing, where
each process decides individually when to take a checkpoint. Its advantage is that it has low
administration costs. Coordinated checkpointing on the other hand assumes a central control
unit which stops communication between the processes to avoid inconsistency of checkpoints.
The third possible way to create a checkpoint is to induce the checkpoint save operation
by communication messages between all participating processes. This is a very expensive
method and it is not always known what processes will communicate if they have not done
so yet. These are the disadvantages of communication-induced checkpointing, a strong reason
for using it is that handshake protocols are very well studied and have known properties and
performance.

When using a general fault model that allows for failures during checkpointing and rollback
recovery not only the checkpoint save operation but also the rollback recovery can be carried
out in different ways. Two different rollback recovery algorithms are analysed in [TPV86],
the sequential and the lookahead rollback. Sequential rollback means that upon failure of
the system it is rolled back to the most recent checkpoint and if recovery fails the system
is again rolled back to the previous checkpoint. This happens sequentially and potentially
until the initial system state is reached. In lookahead rollback a cost function of recovery at
the individual checkpoints is defined and all existing checkpoints are considered for selection.
The most recent checkpoint whose predecessor has higher recovery cost is then selected. This
scheme is bounded by sequential rollback. The models in [TPV86] show that the lookahead
rollback achieves lower expected rollback and recovery cost than the sequential rollback, but
in the optimum requires more checkpoints.

An exhaustive survey of checkpointing protocols for distributed systems is given in [EAWJ02]
and a very thorough classification of checkpointing algorithms can be found in [KR00]. In-
teresting experience reports of checkpointing in practice are given in [LCC00, WHV+95].

Stochastic models for checkpointing do not consider any problems related to checkpointing
in distributed system. Therefore, we do not go in more detail into this huge area of existing
work.

For stochastic modelling two types of systems are distinguished: systems processing large
batch processes and transaction processing systems. Checkpointing batch programs requires
saving a possibly very big system state, while a checkpoint of a transaction processing system
consists of two components: the system state at the time the checkpoint is taken and the
audit trail (the list of transactions processed after the checkpoint save operation). The audit
trail is being reprocessed in the recovery process after the system has rolled back to the most
recent checkpoint. For batch programs processing is continued after the rollback under the
assumption that this completely recovers the system state at the time of failure.

156 8. Checkpointing Systems

Chapter 9

Stochastic Models for
Checkpointing

In the 1970’s until early 1990’s a huge amount of work on modelling checkpointing has been
published and we will cover in this section the most important models, insights, algorithms
and results. Models of checkpointing differ in the granularity at which the environment is
included in the model, if at all. They also differ in which components of the model are
considered deterministic and which components are modelled as random variables, and what
system characteristics are included at all. Some models allow for checkpoints being taken
and possible failures during recovery, some allow for one of the two or none. Some models
assume checkpoints to be equidistant, others consider them to be taken at random time
intervals. There are many ways existing work in modelling of checkpointing can be organised
and structured. We will use the structure given in [Nic95], where checkpointing schemes
are divided in system level and program level checkpointing. In [Nic95] only program level
checkpointing is regarded in detail. We will here summarise existing work in both fields.

A very similar distinction can be found in [Cha75], the first survey article on analytic models
for checkpointing, summarising the five previous papers. In [Cha75] program level checkpoint-
ing is called checkpointing of a process control system, which repeatedly runs the same long
job or a small set of jobs. The execution time of a job is typically very long as compared with
the MTTF. The equivalent of system level checkpointing is on the other hand checkpointing
of a data base system with many small jobs. The execution time of these jobs typically is
short as compared with the MTTF of the system.

The purpose in program level checkpointing is to minimise the checkpointing overhead, by
minimising rollback and recovery time. As a consequence the job execution time is minimised.
In a stochastic model the cost of rollback and recovery due to failures has to be traded against
the cost of taking checkpoints. Usually an optimal checkpointing interval can be determined.

The purpose of system level checkpointing, on the other hand, is to optimise availability of
a computing system. This increases fault tolerance of the system. In transaction processing
systems (in [Cha75] database systems are considered) taking a checkpoint involves storing
the system state and keeping an audit trail of transactions carried out since the checkpoint.
Storing the system state usually is a costly and time consuming task. Stochastic models of
those systems aim at tuning the checkpointing interval so as to optimise system availability

157

158 9. Stochastic Models for Checkpointing

with respect to the trade-off between the cost of checkpointing and the cost of rollback and
replay of the audit trail.

When comparing the two types of checkpointing first the metric of interest is slightly different.
In program level checkpointing the completion time of a job is considered, whereas in system
level checkpointing the metric of interest is the availability of the system. Checkpointing
is just a saving of the complete system state in program level checkpointing, whereas in
system checkpointing it also requires logging an audit trail. Typically, in program level
checkpointing the system is modelled using a simple model with two discrete states, in system
level checkpointing sometimes more complex system models are used. Assumptions on failures
and distribution of failures are typically more complex in program level checkpointing, since
this sometimes is considered with real-time control jobs or other critical tasks [Cha75]. Some
models cannot clearly be grouped into one of these two types. In [KNT90] a system level
checkpointing model is considered, but tasks take very long, which is typically not the case
in transaction processing systems. If tasks take very long time, the system spends a long
time processing one task and even though the model is a queueing model with different server
states the analysis is concerned with the completion of single tasks, as it is common in program
level checkpointing. So the model has characteristics of both, system level and program level
checkpointing.

9.1 Checkpointing at Program Level

In checkpointing at program level we consider systems processing one (or possibly more) long-
running jobs. The job length in a failure free system is known in advance [LC84, GRW88,
Nic95]. System failure increases the time needed to process the given amount of work. The
models for the completion time of tasks in unreliable systems discussed in the first part of this
thesis can be used as reference models in order to judge whether checkpointing is beneficial
in such a systems. In this chapter we discuss stochastic models for the completion time of
tasks in unreliable systems that include checkpointing.

The completion time of a job is the time from starting the job until its completion. Completion
time includes the pure processing of the job, but also the time needed to take a checkpoint
as well as the reprocessing time after a failure.

We have seen in Chapter 2 that in a system subject to failures, where with a failure the affected
job needs to be restarted from beginning the completion time of a job increases exponentially
with the work requirement. In this chapter we will demonstrate how checkpointing transforms
this increase to linear growth, i.e. when applying checkpointing the time needed to finish a
certain amount of work increases only linearly with the amount of work [Dud83, KNT90].

The easiest and most straightforward way to do checkpointing would be to divide the task
length into k equally long intervals and save the system state at the end of each of the
first k − 1 intervals. At the end of the last interval the job is completed and no checkpoint
needs to be taken [CG90, Nic95]. This strategy assumes that checkpoints can be placed at
arbitrary points in the program code and that the processing time for parts of code is known
in advance and identical with every program run. These assumptions generate an abstraction
and a simplification that might not always be appropriate. More complex and perhaps more

9.1. Checkpointing at Program Level 159

realistic is the random placement of checkpoints, where the intervals between checkpoints are
random variables distributed according to some probability distribution.

As in [Nic95] we will in this section distinguish the two cases of equidistant checkpointing
and checkpointing at random intervals. The purpose of checkpointing typically is to reduce
the job completion time by optimising the time between checkpoints.

More recent work [HKC02] takes a very different angle and aims at reducing the recovery
time instead of optimising the checkpointing effort. The analysis in [HKC02] is applied to
forked checkpointing. Minimising the checkpoint overhead ratio in forked checkpointing is
addressed in [Vai97].

9.1.1 Equidistant Checkpointing

The system model used to determine job completion time with checkpointing is the same
as the one in Chapter 2 for systems without checkpointing. The system model is depicted
in Figure 2.1 on page 21 and all parameters are identical to those in Chapter 2. The time
between failures and the time to repair are again assumed exponentially distributed and
hence the hazard rate functions hU (t) and hD(t) evaluate to γ and ν respectively. With
checkpointing the time to repair is called the time to rollback to the previous checkpoint.
Rollback is an important concept in checkpointing. It includes the time to restart the system
and restore the state at the most recent checkpoint. The model in this section does not
consider the actual repair of the system explicitly. We will use D to denote constant rollback
time.

The processing requirement w is divided into k equal parts and there is a checkpoint taken at
the end of each part, except for the last one, hence there are in total k− 1 checkpoints taken.
Checkpoint duration is assumed to be a random variable C with CDF FC(t), pdf fC(t) and

LST F∼
C (s) =

∞∫

0

e−st dFC(t) time units.

The total execution time needed to perform the work requirement is a random variable denoted
T (w, k) with CDF FT (w, k). The LST of the distribution of the job completion time with
checkpointing and failures is given and proven in [Nic95] as

F∼
T (s,w, k) =

(
(s+ γ)F∼

C (s + γ)e−(s+γ)w/k

s+ γ(1 − F∼
D (s)(1 − F∼

C (s + γ)e−(s+γ)w/k))

)k−1

×
(

(s+ γ)e−(s+γ)w/k

s+ γ(1 − F∼
D (s)(1 − e−(s+γ)w/k))

)
(9.1)

Similar as for (2.1) on Page 22 also for (9.1) no solutions are available in the literature,
indicating that the inverse transformation must be a challenge. But there exists a solution
for the expected job completion time with checkpointing in the presence of failures [Nic95]:

E{T (w, k)} =

(
1

γ
+ E{D}

)(
(k − 1)(F∼

C (−γ)eγw/k − 1) + (eγw/k − 1)
)
. (9.2)

160 9. Stochastic Models for Checkpointing

Not even the formula for the expected completion time provides us with an expression that can
be evaluated directly. This explains why LST expressions, although they form a mathematical
model, are not very popular and rarely find their way into implementations in practice.

Following [Nic95], if we assume that E{T (w, k)} is a non-concave function in k, then
equidistant checkpointing is beneficial only if the expected task completion time using
one checkpoint is less than the expected task completion time without checkpointing, i.e.
E{T (w, 2)} < E{T (w, 1)} = E{T (w)}, which implies eγx/2(F∼

C (−γ) + 1 − eγx/2) < 1. The
convexity issue for the completion time distribution considering different probability distri-
butions of the pieces of work performed between checkpoints is discussed in [CG90]. Since C
is a non-negative random variable F∼

C (−γ) ≥ 1 and for w → 0 the above inequality does not
hold checkpointing is not beneficial if the work requirement is very small. This corresponds
to our intuition.

Expressing the work requirement w as k multiples of a fixed program length τ , w = k · τ and
correspondingly k = w/τ allows to reformulate (9.2) as

E{T (w,w/τ)} =

(
1

γ
+ E{D}

)(
(
w

τ
− 1)(F∼

C (−γ)eγτ − 1) + (eγτ − 1)
)
. (9.3)

Since τ in (9.3) is a constant that does not change as w increases (assuming that w/τ will still
be an integer) (9.3) shows a linear increase of the expected completion time as the processing
requirement increases. This is in contrast to the exponential increase in (2.2) shown in Figure
2.2 and discussed in [KNT90].

In [Nic95] it is further shown that the optimal checkpointing interval τ⋆ does not depend on
the job length. Instead, it solely depends on the system failure rate and the distribution of the
time needed to checkpoint the system, leaving recovery time an open degree of freedom. But
no closed-form expression or algorithm for computing the optimal checkpointing interval is
given. As we will see now, for exponentially distributed times between failures a closed-form
solution as well as useful approximations exist.

A very simple first order approximation is given in [You74]. For exponentially distributed
time between failures, deterministic checkpointing cost C and constant time intervals between
checkpoints τ the time lost due to checkpointing and failures τl can be expressed as

τl =
1

γ
+

C

1 − eγ(C+τ)
. (9.4)

The optimal time interval between checkpoints that minimises the amount of time lost τl is
obtained by differentiating τl with respect to τ and equating the derivative to zero.

dτl
dτ

=
1 − eγ(τ+C) − γτ(−eγ(τ+C))

(
1 − eγ(τ+C)

)2 = 0.

This equation holds if the denominator equals zero. I.e.,

1 − eγ(τ+C) − γτ(−eγ(τ+C)) = eγτ · eγC(1 − γτ) − 1 = 0.

Expanding the exponential function eγτ to the second degree we obtain 1 − eγC = 1
2γ

2τ2.
Assuming that the time to save a checkpoint C is much shorter than the time between failures,

9.1. Checkpointing at Program Level 161

i.e. C ≪ 1/γ, which is a realistic assumption, a second order approximation to the term e−γC

gives τ2 = 2C
γ −C2. Ignoring the second order term gives the well known simple approximation

[You74].

τ∗ ≈
√

2C

γ
(9.5)

It should be noticed that this optimal time between checkpoints is not designed to minimise
the expected completion time, but to minimise the overhead due to checkpointing and failures,
certainly a related metric. Furthermore, (9.5) is an approximation.

For systems in which failures may happen during normal operation or recovery, but no failures
during checkpoint save operation, a very elegant derivation of the optimum checkpointing
interval is given in [Bro79]. It results in an exact solution for the optimum checkpointing
interval,

τ∗ =

√

C

(
2(

1

γ
−D) + C

)
− C. (9.6)

If the checkpointing cost C and the rollback time D are small compared with the time between
failures 1/γ then (9.5) is a good approximation of the optimal checkpointing interval. The
approximation overestimates the correct optimum checkpoint interval. In both the exact
formulation as well as the approximation the independence of the task length should be
pointed out.

In [LC84] the considered model can use a general distribution for the time to failure. As a
consequence the interval until the first checkpoint must be considered separately, since it is
unlikely that this interval starts exactly with the beginning of an up time. Because of the
memoryless property for exponentially distributed times between failures the probability of
failure in the first interval in that case is just computed as in all other intervals. It is pointed
out in [LC84] that the optimal checkpointing sequence that would minimise the expected
completion time of a given program can only be computed if the time to failure is exponentially
distributed. Then the optimisation corresponds to a resource allocation problem that can be
solved using dynamic programming.

For non-exponentially distributed interfailure times the authors of [LC84] suggest an engi-
neering approach, applicable only to equally long checkpointing intervals. They propose to
compute the expected job completion time for different numbers of checkpoints and then
select the number of checkpoints as optimal that yields the minimum expected completion
time. In the case study a single checkpoint is able to improve expected completion time over
no checkpointing, while adding more checkpoints adds too much overhead as compared to
the failure characteristics. One would expect more benefit from checkpointing, which does,
surprisingly, in the model not account for reprocessing after a failure.

In [CG90] checkpointing strategies are developed. A strategy consists of the number k of
checkpoints to be placed and the amount of work S1, S2, . . . , Sk to be performed between
checkpoints. The time to save the system state, the action of taking a checkpoint, is assumed
to be constant and to take one unit of time. The simplest checkpointing strategy is the
uniform strategy where equally spaced checkpoints are placed. Then only the number of
checkpoints k must be chosen from which the interval length follows as

Si =
w

k + 1

162 9. Stochastic Models for Checkpointing

where w is the total amount of work to be performed. This very simple strategy has shown
to be optimal for task restart in Chapter 5 where the purpose was to meet a deadline. One
cannot expect the same property here although it will be shown for random checkpointing
intervals that some metrics are optimised with equidistant checkpoints when not considering
the last interval until job completion [CG90].

Models with bounded downtime

In this subsection the models from Chapter 2 with bounds on downtime are extended to
include checkpointing. The considered application field are again critical tasks as investigated
in [GNTT87] and [GRW88] where either individual downtimes are bounded, the accumulated
downtime may not exceed a bound or the number of accepted downtimes is bounded.

All model parameters are used as defined above and the system model is the simple two-state
model depicted in Figure 2.1 on page 21. As in [GRW88] we first extend the previous model
by introducing checkpointing and neglecting the checkpointing overhead. Let us first consider
the case of bounded individual downtimes.

We wish to compute the probability of completing the given work requirement w, Pr{w}.
Assuming N down periods until job completion (and an equal number of up periods), recall
that in preemptive repeat failure mode the probability of job completion (refer to (2.23)) is
computed as

P (w|N = n) = 1 − (FU (w))n (9.7)

whereas in the preemptive resume failure mode (refer to (2.20)) the probability of job com-
pletion using n up times equals

Pr {w|N = n} = 1 − F
(n)
U (w). (9.8)

Following [GRW88] we will first add one checkpoint, which divides the task of length w into
two sub-tasks of length w/2 each and then we will generalise to k checkpoints. Remember
that we assume zero checkpointing cost. Given one checkpoint we derive a new expression for
the probability of job completion Pr {w|N = n} using n up times.

Let n1 be the number of up periods whose total duration falls into the interval [0, w/2).
These up periods are too short for checkpointing the performed work. Therefore, the work
completed in the n1 very short up periods is lost. This event occurs with probability FU (w/2).
For illustration of the terminology see Figure 9.1. Similarly, let n2 be the number of longer
up periods whose duration falls into the interval [w/2, w), i.e. they are at least w/2 long and
at most w. So, these intervals are always long enough to reach the checkpoint, in the best
case the whole job can be completed in such an interval. In any case half of the necessary
work is performed and with two such up times the job can be completed. This event occurs
with probability FU (w) − FU (w/2). The job cannot be completed iff n2 < 2 and all up times
are less than w, that is, n1 + n2 = n. Given n up times the probability of task completion
evaluates to

Pr {w|N = n} = 1 −
∑

(n1,n2)∈S

(
n

n1

)
(FU (w/2))n1 (FU (w) − FU (w/2))n2 (9.9)

9.1. Checkpointing at Program Level 163

Task

preemptive resume
failure mode

w

w/2 w/2

preemptive repeat
failure mode

w/2 w/2

n = 22n = 31

checkpointing

checkpoint checkpoint

w

Figure 9.1: Task and interval lengths using one checkpoint

where S ≡ {(n1, n2)|n1 + n2 = n, and n2 < 2}.
This expression is easily extended to the general case of k checkpoints. Then, a task is
completed if its m subtasks of length w/m can be performed successfully, any subset of which
can occur in the same up period. We assume that checkpoints are always placed between two
subtasks.

Let ni denote the number of up times whose durations fall in the interval [(i−1)w/m, i ·w/m)
for i = 1, . . . ,m. The task cannot be completed iff

m∑

i=1

ni = n and

m∑

i=1

(i− 1)ni < m.

Hence the probability of task completion using k checkpoints (corresponding to m = k sub-
tasks) and given n up periods is

Pr {w|N = n} = 1 −
∑

S

(
n

n1 · n2 . . . nm

) m∏

i=1

(FU (i · w/m) − FU ((i− 1) · w/m))ni , (9.10)

where S ≡ {(n1, . . . , nm)|∑i ni = n, and
∑

i(i− 1) · ni < m}.
Individually bounded downtimes with bound b imply that the number n of observed up times
before system failure follows the geometric distribution:

Pr {N = n} = FD(b)n−1(1 − FD(b))

(see (2.9)).

Any possible number of up and down periods until completion of the task or system failure
must be considered. Therefore

Pr {w} =

∞∑

n=1

Pr {w|N = n} Pr {N = n} .

164 9. Stochastic Models for Checkpointing

When using the first M terms of the sum, the error is bounded by (FD(b))M

Pr {w} =
M∑

n=1

(
1 −

∑

S

(
n

n1 · n2 . . . nm

) m∏

i=1

(FU (i · w/m) − FU ((i− 1) · w/m))ni ·

FD(b)n−1(1 − FD(b))

)
(9.11)

For exponentially distributed up and down periods the probability of task completion is

Pr {w} =

M∑

n=1

(
1 −

∑

S

(
n

n1 · n2 . . . nm

) m∏

i=1

(
e−νb ·

(
1 − e−νb

)n−1
·
(
e−γ(i−1)w/m − e−γiw/m

)))

(9.12)
When limiting the sum to only M down periods being considered, then the error can be
bounded by (FD(b))M . This, however, is not a very tight bound, since for νb = 5 FD(b) ≈ 1
and very many down periods must be considered. In the analysis in this chapter νb ranges
from zero to 10 and the bound is not very useful.

Cost can be added to this model easily by replacing w/m with w/m + c. For the curves in
Figure 9.2 the added cost is 5% of the task length.

We wish to compare the probability of completing a task with checkpointing with the proba-
bility of completing a task in the preemptive repeat and the preemptive resume failure modes.

Recall from (2.20) the probability of task completion in preemptive resume failure mode

Pr {w} = 1 − F
(n)
U (w)

which for an exponentially distributed system lifetime evaluates to

Pr {w} = e−γwe−νb

. (9.13)

In preemptive repeat failure mode (2.24) defines the probability of task completion which is

Pr {w} =
1 − FU (w)

1 − FD(b)FU (w)
,

and for exponentially distributed up- and downtimes evaluates to (2.25)

Pr {w} =
1

1 − (1 − eγw)e−νb
. (9.14)

The following figure compares the preemptive resume, preemptive repeat failure mode and
checkpointing with using the indicated number of checkpoints and associated cost of 5% of
the job length. Only the curves with checkpointing are new, the curves for preemptive repeat
and preemptive resume failure mode were shown already in Figure 2.4 on Page 29.

In [GRW88] the results for probability of task completion with checkpointing are given as
numbers in a table and the authors point out that a different optimal number of checkpoints

9.1. Checkpointing at Program Level 165

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

p
ro

b
ab

il
it

y
 o

f
ta

sk
 c

o
m

p
le

ti
o
n

ν * b

preemptive repeat mode
preemptive resume mode

3 checkpoints
6 checkpoints
9 checkpoints

Figure 9.2: Probability of task completion with and without checkpointing

exist, depending on νb. When looking at the curves, this difference appears relatively so
small, that it is of little significance.

The figure shows that preemptive repeat failure mode, which corresponds to one checkpoint at
the beginning of the task, is a lower bound for checkpointing, while preemptive resume failure
mode can be considered the perfect checkpointing strategy, a checkpoint is taken exactly
when the system fails. So, the probability of task completion with checkpointing lies between
those two extremes. It is remarkable, however, that the number of checkpoints does not make
much of a difference at all. One would rather expect that the more checkpoints the closer
the checkpointing curve is to the preemptive resume curve. Also, the insight obtained from
[GRW88] is limited.

The model can be extended by investigating different types of limitations of the downtime, i.e.
bounded accumulated downtime and limited number of downtimes. This has not been done
in the literature. Perhaps the model was not of sufficient practical value to attract further
research.

Without bounds on the downtime the probability of task completion is not as interesting,
because eventually, every task will complete.

In [GDT92] different checkpointing strategies for equidistant checkpointing and Markovian
checkpointing models are derived. It is shown that checkpointing adds extra work to the
system and therefore always increases the job length, if the job length is assumed exponentially
distributed. Checkpointing does, however, reduce the variance of job completion time, giving
therefore more confidence in completion and establishing upper bounds on completion time.
This property has been observed for restart as well, where it is independent of the distribution
of task completion time (see Chapter 4 on Page 57).

166 9. Stochastic Models for Checkpointing

Models for Forked Checkpointing

As described in Section 8 in forked checkpointing a child process is used to perform the
checkpoint save operation. We assume checkpointing has a constant overhead, or cost, of
C, the useful work performed between checkpoints is τ , the roll back cost equals R and as
illustrated in Figure 8.2 on Page 152 checkpoint latency is denoted L. The amount of useful
work performed during checkpoint operation is L−C. If a failure happens after checkpoint C1

and before checkpoint C2 the system must perform R, the rollback cost, then it must repeat
the work performed during the previous checkpointing operation, L−C, since the checkpoint
always saves the state at the beginning of the latency period and, finally, an additional τ +C
work must be done. This amounts in total to R+ (L−C) + (τ +C) = R+ τ +C work that
needs to be performed after a failure to complete the current interval.

Forked checkpointing does not directly optimise the expected task completion time, but a
metric based on the expected task completion time, the overhead ratio. Let E [T (w)] be the
expected completion time of the whole job and E [T (τ)] the expected completion time of the
portion τ , then the overhead ratio is defined as

r = lim
τ→∞

E [T (τ)] − τ

τ
. (9.15)

The expected completion time of the portion of work τ performed within one checkpoint
interval is analysed in [Vai97] using a three-state Markov chain as shown in Figure 9.3.

working
complete

complete

fail

fail

γ

γ

0
finished

1

2
recovering

Figure 9.3: Markov chain for evaluating the expected work performed per checkpoint interval

State 0 describes normal operation. When the model enters State 1 from state 0 the system
has completed the interval without failure, a checkpoint has been established and amount τ of
work has been performed. A failure at rate γ during the checkpoint interval is modelled as a
transition to State 2. If only one failure happens, the transition to State 1 denotes completion
of the interval. If, on the other hand, more failures occur then the model uses the self loop
and remains in State 2.

Using Markov chain analysis [Tri01] an expression for the expected completion time of an
interval can be computed as the expected cost of a path from State 0 to State 1 in the
three-state Markov chain. Each transition between states of the Markov chain has associated

9.1. Checkpointing at Program Level 167

probability and cost. The cost corresponds to the expected time spent in one state before
moving on to the next state. The expected completion time of an interval is computed as the
expected cost of a path from State 0 to State 1. The expression obtained in [Vai97] is

E [T (τ)] =
eγ(L−C+R)(eγ(τ+C) − 1)

γ
(9.16)

Then the overhead ratio is

r =
eγ(L−C+R)(eγ(τ+C) − 1)

γ · τ − 1. (9.17)

To optimise the overhead ratio with respect to the length of the checkpointing interval τ the
derivative of the overhead ratio with respect to τ must be equal to zero:

∂r

∂τ
=

∂

∂τ

(
eγ(τ+C) − 1

τ

)

= 0. (9.18)

As shown in [Vai97] there exists only one positive τ = τ∗ that satisfies this equation. Equation
(9.18) shows that the length of the optimal checkpointing interval τ∗ depends only on the
system failure rate and the cost of checkpointing. Even though stated otherwise in [Vai97]
this observation is not surprising and has been made already for other checkpointing models.
E.g. in [You74] and [Cha75] it has been shown that if the checkpointing cost C is small
compared to the failure rate γ then τ∗ ≈

√
2C/γ. (see also Equation (9.5).

As can be seen in Figure 8.1 for sequential checkpointing the latency is equal to the checkpoint-
ing cost and is therefore minimal. Forked checkpointing aims at time-sharing the checkpoint
save operation with useful work. The fact that during the checkpoint save operation useful
work can be performed reduces the checkpointing cost. In [Vai97] it has been shown that the
checkpoint interval length that minimises the overhead ratio is achieved together with the
maximum latency which will also reduce the overhead ratio.

If a failure happens during checkpointing, recovery always rolls the system back to the most
recent checkpoint. In forked checkpointing there is a chance that only the parent process has
failed and the child process could save its checkpoint successfully. In this case the system can
roll back to the actual checkpoint rather than to the previous one. This leads to faster recovery
and the roll back model can be considered optimistic. Assuming that with the parent process
the child process will always fail too gives rise to a pessimistic recovery model. As expected,
in [HKC02] the expected completion time of a task under optimistic recovery is shorter than
when using pessimistic recovery. In forked checkpointing if the checkpoint interval τ is larger
than the checkpoint cost C, which usually should be the case, then it pays off to wait for the
checkpoint save operation to complete before rolling back the process.

9.1.2 Checkpointing Real-Time Tasks

The main characteristic of models for real-time tasks is the special treatment of failures.
Real-time tasks are not only required to complete, but also to complete fault-free within a
pre-defined time interval. Therefore, fault-detection and fault-treatments are handled in more
detail than usually in the models in [SLL87].

168 9. Stochastic Models for Checkpointing

The basic model in [SLL87] assumes a task length w with required execution time T (w)
and expected execution time E [T (w)] . The system fails at rate γ with failures occurring in a
Poisson process. There are a total of K checkpoints inserted at processing time Tk, 1 ≤ k ≤ K.
The k−th checkpoint is inserted when the task has been successfully processed up to Tk. We
define the work interval between checkpoints Ik, 0 ≤ k ≤ K as the computation time between
the kth and the (k + 1)th checkpoint, excluding the time tc needed to save the checkpoint,
i.e.

Ik = Tk+1 − Tk − tc.

The checkpointing interval includes saving a checkpoint as shown on the time line in Figure
9.4 and is denoted as

τk = Ik + tc = Tk+1 − Tk.

Surprisingly, in this model even after the task is completed a last checkpoint is taken. To

T + (K+1) tc

0I I I1 2 I3 II KK−1 tcccct ccc t t t t t

T T T
0 1 2 T3 TK−1 TK TK+1

τKτK−1
τ0 τ1 τ2 τ3

Figure 9.4: Checkpointing intervals

avoid the unnecessary checkpoint, the authors in [CG90] point out that a checkpoint should
be taken only if the remaining work is more than the checkpointing cost.

An important assumption is that failures are detected immediately as they occur. More real-
istic would be a random delay in failure detection and a probability of not detecting the failure
at all (which is equivalent to an infinite random detection delay). Modelling the failure detec-
tion in more detail requires either knowledge or assumptions on the characteristics of failure
detection. As no data on the failure detection process is available additional assumptions
would complicate the model while not providing more meaningful results.

The system can only keep one checkpoint in storage. If the rollback operation fails, because
of a broken link to the checkpoint saving device or an internal failure of the checkpoint saving
device the task has to be restarted from its beginning. Rollback succeeds with probability
p and fails with probability 1 − p (in which case the task is restarted). If a failure happens
before the first checkpoint the task always has to be restarted. The authors in [SLL87]
elaborate on the coverage of the different types of failures of the processor and the storage
device. They introduce several parameters for coverage through an acceptance test and on-
line failure detection which complicates the model and is ignored in the first model, which we
present here.

Rollback of the system takes r time units while a restart of the task takes time s. It should
be observed that repair of the system is not modelled explicitly, but rather implicitly within
the rollback and restart time.

Figure 9.5 illustrates the two options. In state Tk time Tk is reached and interval τk, consisting
of processing time Ik and checkpoint saving time tc is just to begin. If within the interval τk
a failure occurs then the system either rolls back to state Tk−1 or it restarts again from T0.

9.1. Checkpointing at Program Level 169

restart

restart

rollback rollbackrollback rollback

τ τ ττ0 1 2 K−1 Kτ

T TT0 1 2 TK K+1

p p
p

p

1−p

1−p

1−prestart

1−prestart

T

Figure 9.5: Performing the amount of work w =
∑n+1

i=0 Ii subject to rollback and restart

By going backwards through the intervals in Figure 9.4 a recursive expression is derived in
[SLL87] for E [T (w)] , which can be simplified into

E [T (w)] = hy0u
K + vy

K−1∑

k=0

uk, (9.19)

where
h = 1

γ + s, v = 1
γ + pr + (1 − p)s

τ∗ = w−b
n+1 + tc, b = 1

γ ln
(

1+γr
1+γs

)

y0 = eγbeγτ∗ − 1
y = eγτ∗ − 1

u = (1 − p)eγτ∗
+ p.

(9.20)

E [T (w)] must be minimised with respect to K and τk. A slight simplification could ease this
step considerably. If the first interval would be treated the same as all other intervals then
the optimum solution would have only equally spaced intervals and for a given task length the
optimum number of checkpoint intervals can be determined. Once the optimum number of
checkpoints is known the interval length for a task of given length can easily be determined.
Similarly, for given interval length the number of checkpoints is known.

In the given model first the number of checkpoints is assumed fixed to minimise E [T (w)] with
respect to τi, then the above expressions are used to minimise E [T (w)] with respect to K.

The following theorem relates the number of checkpoints K with the minimum expected
completion time E [T (w)] . For the proof see [SLL87].

Theorem 9. For a given K the minimum E [T (w)] is obtained when

τ0 −
1

γ
ln

(
1 + γr

1 + γs

)
= τ1 = τ2 = . . . = τK . (9.21)

This theorem shows that the optimal checkpoint intervals are equally long, except for the
first one. This is not surprising, since in the first interval only restart is possible, while in all
other intervals either rollback or restart can be performed.

170 9. Stochastic Models for Checkpointing

To minimise E [T (w)] with respect to K two cases must be distinguished. For the rollback
probability holds either p = 1 or p < 1.

E [T (w)] =

{
hy0 + nvy if p = 1

uK
(

v
1−p + hy0

)
− v

1−p if 0 ≤ p ≤ 1
(9.22)

using the abbreviations in (9.20). The optimal K that minimises E [T (w)] can be found by
solving

d E [T (w)]

d K
= 0 (9.23)

and finding the closest integer K. Unfortunately, no closed-form solution for (9.23) exists and
the optimal K can only be found in an trial-and-error fashion by solving 9.22 for successive
K and finding its minimum. This procedure has been carried out in [SLL87] and the results
are illustrated in the following figures.

First the optimal number of checkpoints is evaluated with respect to the checkpointing cost.
Figure 9.6 shows individual curves for different checkpointing cost. For the chosen parameters
as indicated in the caption of Figure 9.6 the precise optimum number of checkpoints is deter-
mined. When generalising the observations made in Figure 9.6, the rather obvious conclusion

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ex
p

ec
te

d
 t

as
k

 c
o

m
p

le
ti

o
n

 t
im

e

number of checkpoints K

tc = 3.0
tc = 2.0
tc = 1.0
tc = 0.5

Figure 9.6: Expected completion time versus number of checkpoints for
γ = 0.01, r = 0.2, s = 0.5, p = 0.8, T = 100

is that the lower the checkpointing cost, the lower the expected execution time while using
more checkpoints. It is interesting to see that a task of length 100 with a failure rate of one
per hundred time units and rather short rollback and restart time has a minimum expected
execution time of 125% of its actual processing time. This is because only one checkpoint
is being saved. In many cases, if the rollback fails, a considerable amount of work must be
reprocessed. Adding more storage capacity could lead to a performance improvement for such
systems.

Similar results are found in Figure 9.7 when considering different failure rates. With a failure

9.1. Checkpointing at Program Level 171

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ex
p

ec
te

d
 t

as
k

 c
o

m
p

le
ti

o
n

 t
im

e

number of checkpoints K

γ = 0.02
γ = 0.01

γ = 0.005
γ = 0.001

Figure 9.7: Expected completion time versus number of checkpoints for
r = 0.2, s = 0.5, tc = 2.0, p = 0.8, T = 100

rate of 0.001 on the average only one in 10 tasks experiences a failure. In this case check-
pointing only adds to the expected task completion time and is not beneficial at all. The
higher the failure rate, the higher becomes the expected task completion time and the more
checkpoints should be used in order to recover from a failure with as little as possible lost
work.

Figure 9.8 investigates the impact of the probability p of successful rollback. The optimum
number of checkpoints is almost independent of the probability of successful rollback. Fewer
checkpoints should be used as the probability increases that a complete restart of the task
is necessary. This conforms to most people’s intuition. Not surprisingly, the probability of
successful rollback, or rather the probability of unsuccessful rollback has a significant impact
on the expected task completion time. This is because a restart of the task can be initiated
at late stages in task execution and then comes with a large penalty.

The special case of p = 0 deserves some attention. If p = 0, i.e. rollback never takes place
and the system restarts with each failure. Then, a task is restarted after an exponentially
distributed processing time, instead of a fixed interval, as it was used for the restart model.
The expected completion time in that case is a special case of (9.22), i.e.

E [T (w)] =

(
1

γ
+ s

)(
eγ(b+(K+1)τ∗) − 1

)

where b and τ∗ are as given in (9.20). If checkpointing is performed but rollback is always un-
successful, such that a restart is necessary with each failure, then the checkpointing cost adds
to the task execution time and the expected task execution time suffers from checkpointing.
The expected task execution time with zero rollback probability is shown as the straight line
with positive slope in Figure 9.8. If, additionally, no cost is associated with checkpointing,
then the expected completion time is constant.

172 9. Stochastic Models for Checkpointing

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ex
p

ec
te

d
 t

as
k

 c
o

m
p

le
ti

o
n

 t
im

e

number of checkpoints K

p = 0.0
p = 0.6
p = 0.7
p = 0.8
p = 0.9

p = 0.0, tc = 0.0

Figure 9.8: Expected completion time versus number of checkpoints for
γ = 0.01 r = 0.2, s = 0.5, tc = 2.0, T = 100

As a rule of thumb from the figures can be deduced that one should rather take too many
checkpoints than too few. All curves increase rapidly for fewer checkpoints than the optimum
and more slowly for more checkpoints than the optimum number of checkpoints. The same
engineering rule has been derived already for the restart and rejuvenation intervals.

If essentially no checkpoints are inserted and therefore the checkpointing cost is almost zero,
then the number of checkpoints is irrelevant for the expected task completion time, which
then only depends on the system failure rate. The respective curve is the straight horizontal
line in Figure 9.8. In this case the model only does restart. However, the model dynamics
correspond to a model of completion time in unreliable systems as discussed in Chapter 2
rather than to the restart model in Chapter 4. Even though restart is performed, the restart
does not happen at intervals chosen by the user. Instead, the task is restarted when the
system fails, which is at random time intervals. The restart model in Chapter 4 corresponds
to an unreliable system as discussed in Chapter 2 with deterministic failure times. In the
checkpointing model of this section the term restart refers to recovery after a failure and not
to restart for performance improvement. The failure rate most dominantly determines the
expected task completion time, whereas in the restart models in Chapter 4 failures are not
an appointed factor.

9.1.3 Random Checkpointing Intervals

Equidistant checkpointing is possible only when assuming that checkpoints can be placed
at any point in the program code and that each run of the code takes equally long. Both
assumptions are in many cases not appropriate, so it is a natural choice to assume that the time
between checkpoints behaves as a random variable τ , following some probability distribution
Fτ (t) with associated LST F∼

τ (t). The pieces of code of different length can be blocks or
modules and therefore in [Nic95, KNT90] this strategy is called modular checkpointing. It

9.1. Checkpointing at Program Level 173

should not be confused with random checkpointing in [Nic95] denoting a slightly more complex
model. The random checkpointing model has the three system states operational, in repair and
checkpointing. Since failures can happen during checkpointing the random variable denoting
the length of the checkpointing interval is the minimum of the time until the next failure (if
this happens during checkpointing) and the time needed for the actual checkpointing.

We will now discuss the model with the checkpointing intervals of random length and look at
optimal checkpointing strategies as derived in [CG90].

In [Nic95] two closely related measures are considered, the expected completion time of a
program consisting of n modules and the expected processing time needed to finish a work
requirement w. Both are generalisations of the above expected completion time when using
equidistant checkpoints.

The expected completion time of a program that consists of n modules is

E [T (n)] =

(
1

γ
+ E [D]

)
((n− 1) · (F∼

C (−γ)F∼
τ (−γ) − 1) + (F∼

τ (−γ) − 1)) . (9.24)

Equation (9.24) is obtained from (9.2) by replacing the equidistantly spaced time between
checkpoints w/n with the random time τ and unconditioning on τ .

Obviously, for deterministic productive times between checkpoints of length τ = w/n we
obtain F∼

τ (−γ) = eγw/n and (9.24) reduces to (9.2). For exponentially distributed productive
time between checkpoints with rate α F∼

τ (−γ) = 1
α−γ (9.24) reduces to

E [T (n)] =

(
1

γ
+ E [D]

)(
(n − 1) ·

(
F∼

C (−γ)
α− γ

− 1

)
+

(
1

α− γ
− 1

))
. (9.25)

The above equations cannot be easily used for optimising the expected job completion time
with respect to the number of checkpoints K = n−1, since changing n also involves changing
the distribution of the work requirement of each module Fτ (t).

We now consider the completion time of a given amount of work where a checkpoint is placed
at the end of each module and the productive time between checkpoints is an iid random
variable, rather than deterministic.

With generally distributed productive time between checkpoints the expected completion time
of work requirement w in the presence of failures is [Nic95]

E [T (w)] =

(
1

γ
+ E [D]

)(
F∼

C (−γ)
∫ w

h=0
eγh dFτ (h) + eγh(1 − Fτ (h)) − 1

)
+

∫ w

h=0
E [T (w − h)] dFτ (h). (9.26)

For the special case of deterministic checkpoint intervals (9.26) reduces to (9.2). For expo-
nentially distributed productive time between checkpoints at rate α an explicit solution of
(9.26) is given by

E [T (w)] =

(
1

γ
+ E [D]

)(
γ + α(F∼

C (−γ) − 1)

(α − γ)2

)

·
(
α(α− γ)w + γ(e−(α−γ)w − 1)

)
. (9.27)

174 9. Stochastic Models for Checkpointing

For α = 0, i.e. no checkpointing, E [T (w)] reduces to

E [T (w)] =

(
1

γ
+ E [D]

)
(eγw − 1)

given also in (2.2). For sufficiently large w it can be shown that E [T (w)] is a convex function1

and that checkpointing is beneficial. The optimal checkpointing rate then is higher than the
failure rate of the system. For large w, i.e. for long running jobs, and checkpointing rate
greater than the failure rate, i.e. α > γ we can approximate E [T (w)] as

E [T (w)] ≈
(

1

γ
+ E [D]

)(
γ + α(F∼

C (−γ) − 1)

α− γ

)
αw.

This approximation is linear in w. An approximation to the optimal checkpointing rate α̂ is
independent of w but dependent on the failure rate γ and given by

α̂ ≈ γ

(

1 +

√
F∼

C (−γ)
(F∼

C (−γ) − 1)

)

.

When substituting α̂ in the approximation above one obtains for the expected time to com-
plete a task of length w with checkpointing

E [T (w)] ≈
(

1

γ
+ E [D]

)
γw

(
1 + 2(F∼

C (−γ) − 1) + 2
√
F∼

C (−γ)(F∼
C (−γ) − 1)

)
.

Following [Nic95] this approximation provides good estimates for a wide range of parameters.
It still requires knowledge of the distribution of the time needed for checkpointing and its
LST.

A special case has been studied in [Dud83]. It falls into the class of models for equally spaced
checkpoint intervals and fixed number of checkpoints as discussed in the previous section. The
model discussed in [Dud83] assumes failures to occur in a Poisson process. They are detected
as they occur and they do not happen during checkpointing. Repair takes a constant time
D. A constant number of K checkpoints is placed in equally spaced intervals such that the
total work requirement w is covered by checkpoint intervals of length τ , i.e. w = Kτ . The
sequence of failure times t1, t2, . . . , forms a renewal process. Consequently, also the sequence
of checkpoint locations forms a renewal process.

The expected task completion time with checkpointing E [TC(w)] is shown in [Dud83] to be

E [TC(w)] =
w

τ

(
C +

(
D + C +

1

γ

)
(eγw − 1)

)
. (9.28)

Using (2.8) the solution with respect to w or γ of the inequality

E [TC(w)] < E [T (w)]

determines whether or not checkpointing is beneficial for the given amount of work in a system
with the given failure rate. Both solutions for w and γ require a numerical evaluation (or
approximation) of the exponential function.

1For a discussion of convexity in checkpointing see [CG90]

9.1. Checkpointing at Program Level 175

The expected task completion time with checkpointing is determined as

dE [TC(w)]

dτ
= 0

which evaluates to

eγτ∗
(γτ∗ − 1) =

γC

1 + γ(D + C) − 1.

The approximate solution is

τ∗ ≈
√

2C

γ (1 + γ(R+ C))
. (9.29)

Experimental [Dud83] and analytical [KNT90] analysis show that checkpointing is not ben-
eficial for very short tasks, which complies with our intuition. The relative increase of the
expected completion time in systems subject to failures E [T (w)] /w is exponential in the task
length whereas in systems with checkpointing E [TC(w)] it is linear in the task length. Without
checkpointing a dominant factor is the failure rate of the system whereas with checkpointing
the relative importance of the failure rate is compensated and the expected completion time
increases less dramatically with the failure rate.

9.1.4 Algorithms for Optimum Checkpoint Selection

In this subsection algorithms to determine checkpointing strategies are presented. Not much
work exists that comes close enough to practical applicability as to formulate an algorithm.
First, an algorithm for a checkpointing scheme with random checkpoint intervals is presented
in which the system model and the program to be checkpointed are defined as in the previous
subsection. The second algorithm is applicable to programs consisting of a given number of
tasks where checkpoints can only be placed between tasks.

In [CG90] the optimal number of checkpoints to complete a given work requirement w is
investigated. The task length is given, the time to perform a save (take a checkpoint) is
constant and takes one time unit, the repair time of the system is deterministic and takes
1/ν time units, where ν is the repair rate as used above. The repair time can be generalised
to be a random variable D. Time between failures is a random variable U with probability
distribution FU (t). A checkpointing strategy consists of choosing the number of checkpoints
K and the amount of work performed between checkpoints S1, . . . , SK .

The time between checkpoints is

sk = Sk + 1, k = 1, . . . ,K.

Checkpointing is only performed when the remaining work is more than the time needed to
save the system state. Therefore the following condition holds

S1 + S2 + . . . ,+SK < w − 1.

Failures can happen also during a save, the checkpointing operation. The system model is the
same as has been used before. Repair after a failure is a random variable D with probability
distribution FD(t).

176 9. Stochastic Models for Checkpointing

The mean time to finish a job (K = 0) is

E [T (w)] = ψ(w) =

(
1
νFU (w) +

∫ w
0 (1 − FU (x)) dx

)

1 − FU (w)
(9.30)

Considering K ≥ 1 checkpoints gives

E [T (w)] = ψ(s1) + ψ(s2) + . . . ψ(sK+1), (9.31)

where

sk = Sk + 1, k = 1, . . . ,K

sK+1 = t+K − s1 − s2 − . . .− sK = t− S1 − S2 − . . .− SK .

If the work requirement is greater than one (w > 1), then all checkpointing strategies can
be bounded from below by the relative actual portion of work performed between two check-
points, i.e.

E [T (w)] ≥ m(w − 1), (9.32)

where

m is the greatest lower bound (glb) of
ψ(s)

s− 1
, 1 < s ≤ w.

Checkpointing of duration 1 is included in time s. Due to failure and rollback it can take
longer than s to perform the work requirement and save operation s. The time needed ψ(s)
will always be more than the pure work requirement s− 1, therefore m(w) is always greater
than one. The system performs better the closer the bound gets to one. For a proof see
[CG90].

If K,S1, . . . , SK can be chosen such that

ψ(sk)

sk − 1
, for k = 1, . . . ,K + 1

are all close to m, then E [T (w)] is close to the lower bound m(w − 1) and the strategy is
close to optimal.

Consider for example an exponentially distributed time to failure FU (t) with mean 1/γ, then
(9.30) evaluates to

ψ(s)

s− 1
=

(
1

ν
+

1

γ

)
eγs − 1

s− 1
(9.33)

This equation has a unique minimum at s = s∗, which is at the root of

γs+ e−γs = 1 + γ. (9.34)

This expression has in many cases no real-value solution and is therefore often not of imme-
diate use.

If the task length is less than the optimal checkpointing interval, i.e. w ≤ s∗, then (9.32)
becomes E [T (w)] ≥ m(w − 1) and (9.30) shows that the checkpointing strategy with K = 0,
i.e. no checkpointing, is optimal.

9.1. Checkpointing at Program Level 177

If the task length is greater than the optimal checkpointing interval, w > s∗, then choosing a
strategy that sets sk ≈ s∗ for all k = 1, . . . ,K + 1 has ψ(sk) close to m(s∗ − 1) and E [T (w)]
close to m(w− 1) and (9.32) shows that the strategy is close to optimal. Since the sum of all
checkpointing intervals must evaluate to w+K, the task length plus the saves, the sk cannot
be all near s∗ unless K is chosen such that approximately

w +K

K + 1
=
w − 1

K + 1
+ 1 = s∗. (9.35)

This strategy leaves a longer job at the end sK+1 = w− S1 − S2 − . . .− SK ≈ s∗, making all
other intervals equally long. The optimal strategy differs from the equidistant strategy only
in the length of the job left after the last checkpoint.

In [CG90] a table is given with different values for the optimal checkpointing interval length
depending on the failure rate of the system. It turns out that the optimal checkpointing
strategy depends on the failure rate of the system but is independent of the repair rate, which
is a constant in the formulas.

An optimal checkpoint interval length as in (9.35) does not exist for all K. As mentioned
above the checkpointing intervals must add up to the task length and very often they will not
do so when set to the optimal interval length s∗. Another prerequisite for the existence of
an optimal interval length s∗ is convexity of the expected time to finish a portion Sk of work
ψ(s).

For uniformly distributed time to failure with 0 ≤ U ≤ X and constant repair time of
1/ν = 1/2 the optimal checkpointing interval can be expressed with the simple formula

s∗ =
√

2(X + 1) − 1.

Table 9.1 lists the optimal checkpointing intervals s∗ − 1 as a function of the failure rate γ.
The proportion of work performed between checkpoints is determined by evaluating (9.34).
This equation has two solutions for every value of γ, a positive and a negative one. We only
use the positive solution, since a negative checkpointing interval makes no sense.

Using the table one immediately sees that once the number of checkpoints is fixed, very often
the interval length cannot be optimal. Assume a task of length s∗−1 = 100 must be processed
and the system has failure rate of 0.001. If we set the number of checkpoints K > 2 then
obviously the checkpointing intervals must be chosen much smaller than the optimal interval
length. Even when using 2 checkpoints, the first would be placed at t = 44 and the second
at t = 88. Then the last interval would only be 12 time units long and consequently much
shorter than the optimal length.

To determine an optimal checkpointing strategy one should therefore first determine the
optimal interval length for the failure time distribution of the considered system using (9.30)
or for exponentially distributed time between failures (9.34). Consequently, (9.35) should be
reformulated into

n = ⌊w − 1

s∗ − 1
− 1⌋. (9.36)

178 9. Stochastic Models for Checkpointing

γ s∗ − 1

0.001 44.06
0.002 30.96
0.005 19.34
0.01 13.48
0.02 9.345
0.05 5.676
0.1 3.832
0.2 2.534
0.5 1.397
1.0 0.8414
2.0 0.4738
5.0 0.1995

Table 9.1: Optimal checkpointing interval to minimise the expected completion time

Then for the above case with task length 100 and failure rate γ = 0.001 one would first
compute the optimal checkpointing interval length of 44 and then determine, that to obtain
the fastest expected completion time only one checkpoint should be used. This strategy leaves
the last checkpoint interval longer than the previous one.

 0.1

 1

 10

 0 1 2 3 4 5

o
p
ti

m
al

 c
h
ec

k
p
o
in

ti
n
g
 i

n
te

rv
al

γ

Figure 9.9: System failure rate versus optimal interval length

Figure 9.9 graphically depicts the data from Table 9.1. It shows the rapid growth of the
optimal checkpointing interval length as the failure rate decreases and time between failures
increases. Obviously, a system with no failures (i.e. failure rate γ = 0) needs no checkpoints,
or infinite interval length.

As pointed out in [CG90] Equation (9.34) does not always hold for an integer K. In fact, a
necessary condition is that ψ(s) is a convex function, which does not hold for all failure time
distributions and needs to be proven anew for each considered distribution. Furthermore, in
[CG90] extensions to more challenging repair time distributions are possible, even to repair
strategies where the system has an age dependent failure rate after a repair.

9.1. Checkpointing at Program Level 179

The model used in the next part of this subsection has constant failure rate. This can be
interpreted as rejuvenation that is performed with each repair. Consequently, the system is
’as good as new’ after a repair.

The final part of this subsection is devoted to the algorithm presented in [TB84]. This is a
prominent paper among the very few publications concerned with algorithms to determine
checkpointing strategies. It is very interesting in the context of this thesis, since one of
the major advantages of the simple restart model is that it serves as a basis to formulate
algorithms to determine optimal restart intervals as to optimise a variety of metrics. As we
will see, those algorithms have strong similarity.

The model in [TB84] assumes that the work to be processed is organised in a set of n mod-
ules, or a sequence of tasks, between which checkpoints can be placed, but not inside them.
Therefore, the number of possible checkpoints is limited a priori by n − 1 and the potential
location of checkpoint k is known to be between task k − 1 and task k.

The problem can then be made more precise. An algorithm to determine an optimal check-
pointing strategy must check which ones of the potential checkpoints to omit (if any) as to
optimise the expected completion time of the whole sequence of tasks. The algorithm opti-
mises cooperative checkpointing as analysed in [OS06, SSB+05]. Strongly related is a model
that has been proposed in [CR72], where a flowchart representation of a program is being
used. Checkpoints can be placed at any arc in the graph. An algorithm is presented in [CR72]
that selects checkpoints from the potential checkpoint locations as to minimise the maximum
recovery time after a rollback. The most difficult part when using this approach in practice
is the amount of knowledge required about the system recovery and rollback times.

If the considered system can be represented as a graph and the graph can be understood
to represent a Markov chain, then, as shown in [Mag83], the checkpointing policy that cor-
responds to a control limit policy is an optimal checkpointing strategy that can be found
in a straight forward manner. A control limit policy Rk places checkpoints only in states
with index greater or equal k. If there are N states and k = 0, . . . ,N then R0 can place a
checkpoint in any state while RN cannot place a checkpoint at all.

For two reasons the arbitrary placement of checkpoints in a job of length w, as illustrated
above and in [CG90], is much harder to determine. First, the number of checkpoints in an
arbitrary task is not necessarily limited and second, their potential location is not predefined.

The computation is formalised as follows. The sequence of n modules or tasks constitute
together the considered program. The tasks are numbered as i = 1, . . . , n. Task i has pro-
cessing requirement ti in absence of failures. The boundary between task i − 1 and task i
is the i−th candidate checkpoint location with checkpointing cost ci. for saving the system
state before computation of task i starts. When a failure is detected the system rolls back to
the most recent checkpoint at roll back cost ri, if the most recent checkpoint is at location i.
Figure 9.10 illustrates the notation. There is no checkpoint placed between Task 5 and Task
6, neither between Task 6 and Task 7. Therefore, the failure in Task 7 calls for a roll back to
the beginning of Task 5 at roll back cost r5. The initial situation is assumed to constitute a
checkpoint before the first task, which is not explicitly shown in the figure. Assumptions that
have later been relaxed in [TB84] are failure free checkpoint setup and failure free rollback
operation.

180 9. Stochastic Models for Checkpointing

without checkpointing

t t1 3

with checkpointing

2t 5t4tc c c4 c5

tn−1 tn
cn

t6

r5

t7
2 3

[i,j]

T

[1,n]

T

1,n
0

i,j
0

t t t t t1 2 3 4 5 ti tj
tntn−1

Figure 9.10: Notation used for optimal checkpoint selection

The optimisation problem is to choose a subset of the n − 1 checkpoint candidates as to
minimise the expected completion time of the whole task sequence.

Before presenting the algorithm that solves this optimisation problem some further notation
is needed as illustrated in Figure 9.10. A sequence consisting of the tasks i, i+ 1, . . . , j − 1, j
is denoted [i, j]. The sequence [1, n] refers to the entire computation. Let TK

i,j define the
expected completion time of the task sequence [i, j] with at most K checkpoints. Clearly,
T 0

1,m refers to the expected completion time of the whole program without any checkpoints.

The K-optimal solutions for the task sequence [i, j] are those checkpoint selections in [i, j]
that achieve the minimal expected completion time TK

i,j with at most K checkpoints. The

K-optimal solutions of [i, j] with k ≤ K checkpoints are denoted LK
i,j. If LK

i,j contains no

checkpoints it is written as LK
i,j =<> while if LK

i,j contains k checkpoints, the K-optimal

solution is denoted as the sequence of checkpoint locations LK
i,j =< u1, u2, . . . , uk >, where

i < u1 < u2 < . . . < uk ≤ j. The rightmost checkpoint location of LK
i,j =< u1, u2, . . . , uk >

is uk, while the rightmost checkpoint location of LK
i,j =<> is i, since there is no checkpoint

besides the initial state.

Note that there can be several different checkpoint selections with the same number of check-
points where the checkpoints are placed differently. A K-optimal solution must satisfy the
additional condition that the rightmost checkpoint location in LK

i,j is greater than or equal

to the rightmost checkpoint location of any other K-optimal solution or LK
i,j =<> . With

this definition, still more than one K-optimal solution can exist. For a real-valued expected

9.1. Checkpointing at Program Level 181

completion time the event that several different checkpoint selections with the same number
of checkpoints achieve the same expected completion time is very unlikely. Practical issues
such as how to decide when two computations of the expected completion time with different
checkpoint selections are identical is an open problem.

The checkpoint selection algorithm recursively chooses the rightmost checkpoint location to
optimise the expected completion time using K checkpoint selections and leaves the problem
with K − 1 checkpoint locations, for which again the rightmost is chosen and so on until
the last checkpoint location is determined. In more detail the algorithm operates as follows.
Let us consider the expected completion time TK

1,j of the task sequence [1, j] using at most K
checkpoints and the expected completion time for the same task sequence using at most K−1
checkpoints TK−1

1,j for some K and j such that K ≥ 1 and j ≥ 2. Either the expected job

completion time with one checkpoint more is unchanged TK
1,j = TK−1

1,j or the extra checkpoint

reduces the expected completion time and then TK
1,j < TK−1

1,j . If TK
1,j < TK−1

1,j , then every
K-optimal solution for [1, j] must have exactly K checkpoints, since we just assumed that
one checkpoint less does not achieve the same expected overall completion time. So no
other checkpoint selection with less than K checkpoints exists which has the same expected
completion time.

Let h be the location of the rightmost checkpoint of a K-optimal solution for the sequence
[1, j]. Then the overall expected completion time can be split into the expected completion
time of the task sequence [1, h−1] using K−1 checkpoints and the expected completion time
of the last segment [h, j] plus the checkpointing cost for the checkpoint at location h, which
is ch.

TK
1,j = TK−1

1,h−1 + T 0
h,j + ch.

In other words, up to K − 1 checkpoints have been established optimally in [1, h− 1] and the
last checkpoint is located at h. No more checkpoints are in the interval [h, j]. Let LK−1

1,h−1 be
a (K − 1)-optimal solution for [1, h − 1] then adding a checkpoint at location h

LK
1,j = LK−1

1,h−1|| < h >

must be a K-optimal solution. The operator || denotes concatenation of sequences, i.e. <
u1, u2 > || < u3 >=< u1, u2, u3 > .

We can generalise this observation to compute TK
1,j and LK

1,j as follows. Let

T = min
1<i≤j

(TK−1
1,i−1 + T 0

i,j + ci)

and let h be the largest index i such that T = TK−1
1,h−1 + T 0

h,j + ch. The expected completion
time of the sequence [1, j] with K checkpoints must be the minimum of the sequences with
K and K − 1 checkpoints TK

1,j = min(T, TK−1
1,j). The K-optimal solutions can be defined as

LK
1,j =

{
LK−1

1,j if TK
1,j = TK−1

1,j

LK−1
1,h−1|| < h > else.

The previous paragraph shows that if for all i and j such that 1 ≤ i ≤ j the expected
completion time without checkpoints T 0

i,j and the expected completion time with K − 1

checkpoints TK−1
i,j and the (K − 1)-optimal solutions LK−1

i,j have been computed, then also

182 9. Stochastic Models for Checkpointing

TK
i,j and LK

i,j can be determined. This is a recursive approach starting from the rightmost
potential checkpoint location which lends itself for a dynamic programming algorithm. This
algorithm is formalised in

Algorithm 9 (Computation of the Optimal Checkpoint Selection).

For i = 1 to n {
For j = 1 to n {

compute T 0
i,j ;

}
}

For K = 1 to n− 1 {
TK

1,1 = T 0
1,1;

LK
1,1 =<>;

}

For K = 1 to n− 1 {
For j = n to 2 {

T = min1<i≤j(T
K−1
1,i−1 + T 0

i,j + ci);

Let h be the largest minimising index i;

If T < TK−1
i,j then {

TK
1,j = T;

LK
1,j = LK−1

1,h−1|| < h >;

}
else {

TK
1,j = TK−1

1,j ;

LK
1,j = LK−1

1,j ;

}
}

}

It is worth mentioning that the failure model does not explicitly appear in the system. It
is implicitly present, since the expected completion times of all partial sequences of tasks
T 0

i,j, of course, depend on the failure model as well as on the completion time distribution.

The first step in the algorithm is its weakest point. The computation of all T 0
i,j has already

computational complexity of order O(m2) and because of the minimum operator Algorithm
9 in total is of order O(m3).

The algorithm can be slightly modified in that the rollback costs are related to the checkpoint
set up costs, such that the rollback cost is a linear function of the set up cost as ri = αci + β
for some constants α ≥ 0 and β ≥ 0. Then if ci > cj it follows that ri ≥ rj and the loops in
the algorithm can be reduced and the complexity of the algorithm is only O(m2), see [TB84].

Two failure models are considered in [TB84]. A discrete Bernoulli model and a continuous
model where failures constitute a renewal process.

9.1. Checkpointing at Program Level 183

The discrete failure model is outlined first. Although failures can happen at any time in task
i, they are detected only at the end of task i. Each task has a probability pi of completing
successfully in time ti. Note that pi does not denote the failure probability, as usual, but the
probability that no failure happens. In [TB84] the moment generating function is derived
and used to determine a recurrence relation for the expected task sequence completion times
without checkpoints as

T 0
i,i =

ti
pi

+

(
1

pi
− 1

)
ri (9.37)

T 0
i,j =

1

pj
+
(
T 0

i,j−1 + tj
)

+

(
1

pj
− 1

)
ri ∀j, j > i. (9.38)

Using these recurrence relations all T 0
i,j with 1 ≤ i ≤ j ≤ m can be computed in O(m2) time.

The continuous failure model uses the random variable X for the time between failures, which
is independent and identically distributed. In this failure model, failures are detected imme-
diately as they happen. The time between failures, X, has a known probability distribution
function, F (x) = Pr {X ≤ x} . Then the expected completion time of a sequence of tasks
without checkpoints can be expressed as

T 0
i,j = ti,j +

riF (ti,j) +
∫ ti,j
0 t dF (t)

1 − F (ti,j)
. (9.39)

For the special case of exponentially distributed epochs between failures this evaluates to

T 0
i,j =

(eγti,j − 1)(γri + 1)

γ
.

Algorithm 9 is to some extent similar to the backward algorithm (Algorithm 2 on page 66 on
Page 66) for optimising the first moment of completion time under restart. Both algorithms
are dynamic programming algorithms, both determine recursively backwards starting from
the last interval the optimal intervals. The backward algorithm uses a simpler expression for
the expected completion time of the segments and is therefore able to determine the optimal
length of those segments. Algorithm 9 also determines the checkpoint interval length, by
potentially omitting checkpoints, but it has much less degree of freedom. However, the model
the backward algorithm operates on is also simpler and more restricted as it has only one
checkpoint at the origin, the leftmost checkpoint in the checkpointing model.

An on-line algorithm for checkpoint selection is derived in [ZB97]. This algorithm optimises
the overhead ratio by minimising the checkpointing cost. It is assumed that checkpointing cost
is dependent on the system state (e.g. through the amount of memory allocated) and if the
system state can be monitored, checkpoint locations can be chosen such that the checkpointing
cost is low. This minimises the checkpointing overhead. The system state is captured in a
simple Markovian model. The algorithm is evaluated in a simulation study. The results are
compared with the simulation of the optimal checkpoint selection algorithm from [TB84]. This
alleviates a deficiency in [TB84], the lack of experimental results. The checkpointing overhead
is minimal in the optimal checkpoint selection algorithm [TB84], it is close to optimal when
using the on-line algorithm [ZB97], which is still better than using equispaced checkpointing
intervals.

184 9. Stochastic Models for Checkpointing

Algorithms for checkpointing and rollback in distributed systems are proposed in [KT87].
Much work on coordinated checkpointing has been published over the last thirty years. Check-
pointing in distributed systems is to a large extent concerned with synchronisation problems
in distributed systems, which is outside the scope of this thesis.

Two main conclusions should be drawn from the analysis of program level checkpointing.
First, constant checkpoint intervals minimise the expected completion time of a task. It is
interesting to note that the expected completion time of a task under restart is maximised us-
ing constant restart intervals. For higher moments of completion time under restart constant
interval length is no longer optimal and the same is to be expected for checkpoint intervals,
albeit no work on higher moments of completion time under checkpointing is known.

Second, the optimal checkpoint interval is independent of the task length. This does not hold
for the optimal restart interval, which does depend on the moments of completion time. Also,
in system level checkpointing the optimal checkpoint interval does depend on the load on the
system, as we will see in the next section.

9.2 Checkpointing at System Level

While in program level checkpointing as well as in restart the focus is on long-running tasks
that should complete as fast as possible, in system level checkpointing tasks are typically
short and the system is sometimes seen as a queueing system where the states of the server
are described using a stochastic process. The total processing time of a task is short with
respect to the time between failures of the system. Consequently, task completion time is not
a critical measure and system availability, or unavailability [GDT92] is investigated instead.
The optimal checkpoint intervals are not the same for minimum expected task completion
time and for maximum expected system availability [GD78].

An exact formula for the optimum checkpoint interval in [Gel79] shows that the optimum
checkpoint interval in transaction-based systems depends on the system load. The approxi-
mation of the optimal checkpointing interval Topt ≈

√
2C/γ in [You74, Cha75], where C is

the checkpointing cost and γ the system failure rate, is still applicable to transaction-based
systems if the system is saturated.

New to system level checkpointing, as compared to program level checkpointing, is the fact
that establishing a checkpoint in transaction-based systems does not only require saving the
system state, but also recording an audit trail of transactions that were processed. In case of a
failure the system is rolled back to a functional state and the saved transactions are reexecuted.
A typical example of a transaction-based system is a database. In database systems two types
of transactions are distinguished. First, those transactions that merely query the data base
and second, the transactions that create or change entries of the database.

9.2.1 Analytic Models for Checkpointing Transaction-Based Systems

In this subsection three models taken from [CBDU75] are presented. The models A, B, and C
(as they are also referenced in later literature) have increasing complexity. All three models
make the following four assumptions:

9.2. Checkpointing at System Level 185

1. faults are detected at random times in a (possibly non-homogeneous) Poisson process.
This is equivalent to the very common assumption of occurrence of failures in a Poisson
process and immediate fault detection.

2. the time required to reprocess the audit trail is directly proportional to the number of
transactions recorded in the audit trail. This also is a common assumption

3. Transactions that arrive while the system is checkpointing or recovering from a failure
are being stored and processed later. The time required to process stored transactions
is assumed small compared to the MTBF. Many papers assume that requests during
checkpointing and recovery are rejected.

4. System availability under optimal checkpointing is assumed to be high. This issue is not
usually addressed but the discussion of checkpointing strategies with respect to system
availability constitutes a main contribution of [CBDU75].

Model A uses two additional assumptions:

1. all request rates are constant and

2. no failures happen during recovery.

The second assumption is widely used and reasonable if checkpointing and recovery time are
small compared to the MTBF.

Model B removes the second assumption of Model A and allows for failures during checkpoint
establishment and rollback recovery. Model C relaxes the first restriction in Model A using a
seasonal request rate that varies over time. Cycles will typically be days or weeks. We will not
discuss Model C here because it leads to a very complex description that requires numerical
approximation which does not allow us to compute results which can be compared with the
results from other models. The model is therefore of limited practical value and gives only
little insight. In [LM88] a cyclic failure rate is used as well.

For both, Model A and Model B the following definitions are required. Let C be the check-
pointing cost (which can be a time penalty induced by checkpointing) and R the time needed
for rollback. The system recovery is divided into the rollback of the system and the reprocess-
ing of the audit-trail. Let r(t) be the expected system recovery time given a failure happened
at time t after the most recent checkpoint, which is a monotone, non-decreasing function.
Let τ be the time between checkpoints and let R(τ) be the total expected time spent in
recovery between two checkpoints, given that the time between two checkpoints is τ . R(τ) is
monotone, increasing with τ . The total overhead O(τ) consists of checkpointing and recovery
within the checkpoint interval τ and

O(τ) = C +R(τ).

Define the expected relative overhead o(τ) as

o(τ) =
O(τ)

τ
.

186 9. Stochastic Models for Checkpointing

In [CBDU75] convexity of o(τ) is shown. Availability of the system can be expressed in terms
of the checkpointing interval τ as

A(τ) = 1 − o(τ). (9.40)

The failure rate of the system is γ and t counts the time since the most recent checkpoint.
A checkpoint is initiated at time t = 0 and the next checkpoint is taken at t = τ . The time
needed to reprocess the audit trail in case of a failure at time t is directly proportional to
t. The constant of proportionality is ρ, also called the compression factor. The transaction
arrival rate is λ the processing rate of transactions in the audit trail is µ. Until time t a total
expected number of λt transactions arrive and the required time to process those transactions
is λt/µ. Therefore the compression factor ρ equals the utilisation of the queue

ρ =
λ

µ
.

Considering only the transactions that modify the database, with respective arrival rate λ′

and processing rate µ′ the compression factor is ρ = λ′/µ′. In stable systems the utilisation is
less than one and therefore λ < µ. Furthermore, the number of transactions that modify the
data base is usually small and therefore µ′ will be less than µ, similarly λ′ will be less than λ
and the compression factor will not change much. Values of ρ = 1/10 should be expected.

For Model A the expected recovery time r(t), given a failure is detected t time units after the
most recent checkpoint further explains the total expected time between checkpoints R(τ).
The function r(t) consists of the rollback time and the time required for reprocessing of the
audit trail. Therefore,

r(t) = R+ ρt. (9.41)

The expected cost of recovery in the interval [t, τ], i.e. from time t until the next checkpoint
at time τ is denoted C(t). Note that C(τ) = 0 and R(τ) = C(0) is the total expected cost of
recovery between two consecutive checkpoints.

In real systems the load on the system will not be constant. Even if the arrival rate of requests
is constant due to checkpointing and rollback recovery after the period of checkpointing
and after the period of rollback a large number of requests will have accumulated, shortly
increasing the otherwise constant request rate.

For simplification, in Models A and B in [CBDU75] the request rate is assumed constant al-
ways and checkpointing and recovery are assumed to happen instantaneously. Checkpointing
is associated with cost C and rollback has cost r(t) if a failure happens t time after the most
recent checkpoint. This simplification is reasonable only if system availability is high.

For Model A in [CBDU75] the following properties are proven. We only list and interpret the
theorems here. For the proofs see [CBDU75].

Lemma 1. The variable cost function C(t) satisfies

dC(t)

dt
= −γ · r(t), for 0 ≤ t ≤ τ. (9.42)

Intuitively, the increment of the expected cost function between two checkpoints depends on
the cost of rollback and recovery and the frequency of its occurrence.

9.2. Checkpointing at System Level 187

Theorem 10. The optimal value of the intercheckpoint time τ∗ which minimises the relative
overhead o(t) and maximises availability is

τ∗ =

√
2C

γρ
(9.43)

with corresponding relative overhead

o∗τ = γR+
√

2Cγρ. (9.44)

As the system becomes saturated and the utilisation ρ→ 1 the optimal checkpointing interval
reduces to the widely known approximation

τ∗ =

√
2C

γ
(9.45)

It should be noticed that in this model task completion time is not being optimised. It is not
even considered, because tasks are assumed to be short in relation with MTBF. Nonetheless,
(9.45) is identical with (9.5) on Page 161, which has been derived as an approximation of
the optimal checkpoint interval for equispaced checkpointing of long-running batch programs.
Later, in [Gel79], it has been shown, that the formula is exact only for saturated systems and
otherwise is an approximation. The quality of the approximation is shown in the next section
in Figure 9.18 on Page 202. Therefore, (9.45) is widely used as a general rule to determine
optimal checkpoint intervals, although it is in most cases an approximation.

Using r(t) = R+ ρt and the boundary condition C(τ) = 0 Equation (9.42) can be solved and
we obtain for the total expected time spent in reprocessing during a checkpoint interval of
length τ and the relative expected time spent in overall recovery

R(τ) = C(0) = γ ·R · τ +
γ · ρ · τ2

2
(9.46)

and

o(τ) = γ · R+
γ · ρ · τ

2
+
C

τ
(9.47)

Corollary 3. At optimality, the maximum recovery time is

r(τ∗) =
o(τ∗)

γ
. (9.48)

In other words, the maximum time spent in rollback and recovery equals the relative overhead
due to rollback and recovery times the MTBF. If the system spends 10% of the time between
checkpoints in rollback and recovery and the MTBF equals 100 then the maximum time for
recovery is 10 time units.

Consequently, the expected number of failures during one individual recovery is o(τ∗) = 0.1
in the example above. In [CBDU75] a relative recovery time of up to 10% (or availability of
90%) leads to a negligible number of failures during recovery which can be knowingly ignored
and the simplification of no failures during recovery therefore can be tolerated.

188 9. Stochastic Models for Checkpointing

Elasticity is a measure which indicates the sensitivity of a function towards changes in a
variable. It consists in the ratio of the percentage change in the variable and the percentage
change of the function using that variable. For a function f(x) elasticity with respect to x is
defined as

Ef,x =

∣∣∣∣
∂ ln f(x)

∂ lnx

∣∣∣∣ =
∣∣∣∣
∂f(x)

∂x

x

f(x)

∣∣∣∣ .

For checkpointing the sensitivity of the checkpointing cost as well as the checkpoint interval
with respect to the failure rate of the system is of importance. The failure rate of a system is
extremely difficult to estimate precisely. Failures happen only rarely and therefore the sample
size is always too small to obtain an estimate with high confidence.

Corollary 4. The following bounds on elasticities exist

∂o(γ, t)

∂γ

γ

o(γ, t)
≤ 1

∂o(R, t)

∂R

R

o(R, t)
≤ 1

∂o(ρ, t)

∂ρ

ρ

o(ρ, t)
≤ 1

2

∂o(C, t)

∂C

C

o(C, t)
≤ 1

2

(9.49)

The proof is by direct differentiation as in [CBDU75].

This corollary expresses the fact that a change of one percent in the checkpointing cost C
implies a change of at most 0.5% in the expected relative overhead. In most cases the change
of the expected relative overhead will be even less. This is important because a not too large
error in the estimate of the system parameters does not render the model useless.

Figure 9.11 shows the relative overhead in Model A. The used parameter values are the cost
of checkpointing C = 0.5, the rollback cost R = 0.5, system failure rate γ = 1/18 and
compression factor ρ = 1/8. The total overhead consists of a constant part per interval,
which is the time needed to take a checkpoint, and the variable part, which is the cost to
reprocess the audit trail. The latter part is variable because the number of transactions to
reprocess depends on the length of the checkpointing interval. The cost of taking a checkpoint
is constant, but when considered relative to the interval length it decreases as the interval
length increases.

The variable checkpointing cost in (9.46), on the other hand, increases proportional to the
square of the checkpoint interval, therefore the relative rollback and recovery cost increases
linearly with the checkpoint interval. The sum of both, the relative fixed and the relative
variable checkpointing costs has its minimum where the optimal checkpointing interval τ is
marked in Figure 9.11. It coincides with the value obtained by evaluating (9.43). This figure
very much resembles the figures for the rejuvenation interval in Chapter 7. Also, the issue
of optimising a trade-off between the cost of a failure and the cost of the fault-tolerance
mechanism is similar.

Figure 9.12 uses the same parameters as above (rollback cost R = 0.5, system failure rate
γ = 1/18 and compression factor ρ = 1/8). The cost of checkpointing is C = 1.0. The figure

9.2. Checkpointing at System Level 189

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20

re
la

ti
v

e
o

v
er

h
ea

d

intercheckpoint time τ

checkpointing cost (C(/τ))
rollback cost (R(τ)/τ)

total overhead (O(τ)/τ)
optimal τ

Figure 9.11: Minimised checkpointing costs

displays the sensitivity of the relative overhead, as given in (9.44), and the optimal checkpoint
interval, (9.43), to the compression factor ρ. As the compression factor increases either more
transactions require reprocessing, or their processing time grows longer.

The optimal checkpoint interval decreases as the compression factor increases. A shorter
checkpoint interval of course leads to lower reprocessing cost. The constant part of the roll-
back and recovery cost, the restoration R of the most recent checkpoint does have an influence
on the optimum relative checkpointing cost. The optimum relative checkpoint overhead in-
creases with the compression factor. Figure 9.12 uses a logarithmic scale, which flattens the
pronounced increase.

Model B takes possible failures during checkpointing and recovery into consideration. Model
B should be used if the system availability is below 90% as then a failure during recovery is
rather likely. The difference between Model A and Model B concerns the definition of the
recovery time r(t), given a failure occurs t time after the most recent checkpoint (see (9.41)).

If failures can happen during recovery a recovery is completed only after R+ ρt time units of
failure-free reprocessing have taken place. If a failure happens during recovery the reprocessing
is reinitiated. Several attempts of recovery might be necessary before reprocessing completes
successfully. This requires a new definition of the optimal checkpoint interval, as given in the
following theorem.

Theorem 11. If there are failures during recovery, but no failures during checkpointing, the
optimal checkpoint interval τ∗ satisfies the equation

eγρτ∗
(1 − γρτ∗) = 1 − γρC · e−γR. (9.50)

If there can be failures during checkpointing and recovery and both the checkpointing and re-
covery process are reinitiated after each failure then the optimal checkpoint interval τ∗ satisfies

eγρτ∗
(1 − γρτ∗) = 1 −

(
eγC01

)
· ρ · eγR. (9.51)

190 9. Stochastic Models for Checkpointing

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

o
p

ti
m

u
m

 v
al

u
e

compression factor ρ (utilisation)

oτ∗(ρ), R = 2
oτ∗(ρ), R = 1
oτ∗(ρ), R = 0

τ∗
(ρ), R = 0

Figure 9.12: Optimal checkpoint interval and relative minimal overhead

For the proof see [CBDU75].

As the failure rate γ tends to zero, the optimal checkpoint interval of Model B tends to the
optimal checkpoint interval of Model A. The optimal checkpoint interval in Model B is always
shorter than that for Model A.

Obviously, all overhead is higher in Model B than in Model A. While for Model A a closed-
form expression for the optimal checkpoint interval exists, this is not the case for Model B.
The optimal checkpoint interval in Model B must be determined numerically.

9.2.2 Checkpointing Policies for Transaction-Based Systems

A very general and powerful model is used in [TR84]. The model allows for general distri-
butions of the time between failures, instead of the commonly used exponential distribution.
The checkpoint interval can depend on the reprocessing time and on the failure distribution.
Furthermore, failures may occur during checkpointing and recovery.

The considered metric is the system availability. The usual equidistant checkpointing strategy
depends on the mean of the failure time distribution. In [TR84] a failure-dependent but
reprocessing-independent cost strategy is introduced, the equicost strategy. The equicost
strategy uses the trade-off between the cost of checkpointing and the cost of recovery to
determine an optimal checkpoint interval. For exponentially distributed times between failures
both strategies achieve the same optimal checkpoint interval and the same optimal availability,
while for other distributions of the time between failures this is not the case.

The model is defined by the failure process and the checkpointing process. We first describe
the failure process.

Failures that happen during normal processing are denoted Fk, k = 1, 2, . . . while failures
during recovery or reprocessing are denoted fk, k = 1, 2, The time of occurrence of a

9.2. Checkpointing at System Level 191

failure is t(Fk) and t(fk), respectively. Then the time between failures Gk = t(fk+1) − t(fk),
where fk is an arbitrary failure during either normal operation or recovery and reprocessing,
constitutes a stationary stochastic process that is independent of the system state. Let the
times between failures Gk, k = 1, 2, . . . be independent and identically distributed with mean
time between failures 1/γ. The time between two consecutive failures during normal operation
Li = t(Fi+1) − t(Fi) is the length Li of the i−th cycle. The cycle length consists of two
portions: the normal processing time Di and the total recovery time Θi. The time required for
recovery is determined by the function r(Xi−1), which depends on the reprocessing time Xi−1

associated with failure Fi and a constant time interval needed for rollback. A failure during
error recovery interrupts the recovery process and initiates a new recovery. The previous
recovery process is not resumed. The time until recovery therefore consists in some interrupted
recoveries and finally a successful uninterrupted recovery period.

In previous sections the failure process was assumed a Poisson process and, therefore, needed
no further description. Only the checkpointing process was defined. In this section a cycle is
the time between failures during normal operation and not the time between checkpoints.

Checkpoints are taken only during normal processing Di, following some checkpoint strategy
which determines the normal operation time between checkpoints. In the i−th cycle τi(1)
denotes the time production time until the first checkpoint, τi(k) is the time between the
(k− 1)th and the k−th checkpoint in the i−th cycle. In total k = 1, 2, . . . , Ji checkpoints are
completed successfully in cycle i.

The checkpointing time Ci(k) is the time needed to take the k−th checkpoint with k =
1, 2, . . . , Ji in cycle i. The process {Ci(k), k = 1, 2, . . .} is stationary and independent of
the system state. Furthermore, the checkpointing process is assumed to be independent and
identically distributed with mean C > 0.

The system state is determined by the checkpointing process. Since failures happen indepen-
dently of the system state a failure may happen before, during or after the first checkpoint
in a cycle. In the first case, the checkpoint interval τi(1) is larger than the normal process-
ing time Di. The reprocessing time Xi associated with failure Fi+1 is therefore the sum of
the production time Di, which has not been checkpointed, plus the reprocessing time Xi−1

associated with Fi, as shown in Figure 9.13 a).

A failure during checkpointing, which is the second case, illustrated in Figure 9.13 b), is
assumed equivalent to a failure immediately before checkpointing with respect to the recovery
time. The third case is illustrated in Figure 9.13 c). The reprocessing time Xi associated with
failure Fi+1 is the time between completion of the Ji−th checkpoint and the failure. These
three cases must be considered in the analysis of the model which is in detail carried out in
[TR84], we will only present the results.

Some more definitions are necessary. Let Vi(j) be the cumulative production time between
the end of the error recovery and the j−th checkpoint in cycle i, i.e.

Vi(j) =

{∑j
k=1 τi(k), j = 1, 2, . . . ,

0 otherwise,

and let Bi(j) be the sum of the first j checkpointing times during the i−th cycle,

Bi(j) =

{∑j
k=1Ci(k), j = 1, 2, . . . ,

0 otherwise.

192 9. Stochastic Models for Checkpointing

c (1)i

time

F F

τ (1)
Θ D

i i+1

ii

time

Di

c (1)i c (J)i

iF

Θi

i c (J)i i+1

τi i+1(J)τi (1)

time

i

Di

F i+1

c (1)i c (J)i

iF

Θi

i c (J)i i+1

τi i+1(J)τi (1)

Fi+1

a)

b)

c)

Figure 9.13: Failure before, during, or after checkpointing

Then the starting time Si(j) and the ending time Ei(j) of the j−th checkpoint during the
i−th cycle equal

Si(j) = Vi(j) +Bi(j − 1), j = 1, 2, . . . ,

and

Ei(j) = Vi(j) +Bi(j), j = 1, 2,

For further analysis the distribution of the reprocessing time must be known. Since failures
can happen during reprocessing the time needed for reprocessing can be longer than the
actual reprocessing requirement. For a given reprocessing requirement x let Yx denote the
random variable for the time to reprocess work x with pdf fYx(y). Let furthermore Dx be
the normal processing time associated with the reprocessing time x with PDF FDx . The unit
step function is defined as

u(a) =

{
1 if a ≥ 0

0 otherwise,

and the conditional function U(x) equals one if its argument is a true condition, i.e.

U(COND) =

{
1 if COND = TRUE

0 otherwise.

In what follows the index i for the considered cycle is omitted for clarity and the equations
hold for any arbitrary cycle. The probability density of the reprocessing time can then be

9.2. Checkpointing at System Level 193

expressed as (for a derivation see [TR84])

fYx,C
(y) = fDx

(
(y − x) · u(y − x)

)
U
(
τx(1) > (y − x)

)

+
((

1 − FDx(Sx(1))
)
−
(
1 − FDx(Ex(1))

))
U
(
τx(1) = (y − x)

)

+
∞∑

k=2

[
fDx

(
Ex(k − 1) + y

)
U
(
τx(k) > y

)

+
((

1 − FDx(Sx(k))
)
−
(
1 − FDx(Ex(k))

))
U
(
τx(k) = y

)]
, y ≥ 0.

(9.52)
The dependence on the checkpointing times is eliminated by integrating over the density of
the reprocessing time with respect to the checkpointing times

fYx(y) =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
fYx,C

(y) dFC(c(1)) dFC(c(2)) . . . y ≥ 0. (9.53)

where c(k) is the checkpointing cost of the k−th checkpoint, as shown in Figure 9.13. As
i→ ∞ the stationary pdf of Y , assuming it exists, is the solution φ of the equilibrium equation

φ(y) =

∫ ∞

0
fYx(y)φ(x) dx, y ≥ 0, (9.54)

subject to ∫ ∞

0
φ(x) dx = 1.

The stationary PDF then is obtained as usual by integrating over the density

Φ(y) =

∫ y

0
φ(x) dx.

The system availability is defined as the ratio of the mean production time in a cycle E [N]
and the mean length of a cycle E [L] ,

A =
E [N]

E [L]
. (9.55)

The denominator is given by

E [L] =
1

γ

∫ ∞

0

1

1 − FF (r(x))
dΦ(x). (9.56)

Recall that γ is the failure rate, r(x) is the recovery time. FF (.) is the CDF of the interfailure
time distribution.

The nominator cannot be expressed as straight forward. It is defined as

E [N] =

∫ ∞

0
E [Nx] dΦ(x), (9.57)

where

E [Nx] =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
E [Nx,C] dFC(c(1)) dFC(c(2)) . . .

194 9. Stochastic Models for Checkpointing

and

E [Nx,C] =
1

1 − FF (r(x))
·
(

1

γ
−

r(x)∫

0

y dFF (y) −
∞∑

j=1

((
B(j − 1) + r(x)

)

[
FF

(
Sx(j) + r(x)

)
− FF

(
EX(j − 1) + r(x)

)]
+

EX(j)+r(x)∫

Sx(j)+r(x)

(y − Vx(j)) dFF (y)
))

.

This completes the specification of the model. In its general form usage of the model is rather
laborious. It has, however, some compact special cases, such as Model A in [CBDU75] and
the same approximation in [You74] and Section 9.1.1 as well as in Section 9.2.1. Another
special case is the model in [Gel79] which is discussed in the next section.

As being very general, the model is very interesting from a theoretical point of view. For
practical purposes, such as computing the optimal checkpoint interval in a closed-form ex-
pression some simplifications are necessary. Let us therefore assume that no failures occur
during checkpointing and recovery. The system availability (9.55) then takes a much simpler
form. The mean cycle length reduces to the mean interfailure time

E [L] =
1

γ
.

In the known affine linear equation r(x) = R + ρx for the recovery time the affine term
R is a constant portion for restoring the previous checkpoint and the linear part ρx is the
time needed to reprocess the audit trail. Reprocessing time of the work requirement x is
determined by the compression factor ρ. Using E [X] for the mean reprocessing time, the
production time per cycle in equilibrium can be expressed as

E [N] =
1

γ
−R− ρE [X] − C ·

∞∫

0

∞∑

j=1

(
1 − FF ′(Vx(j))

)
dΦ(x).

Consequently, the system availability is

A = 1 − γ

(
R+ ρE [X] + C ·

∞∫

0

∞∑

j=1

(
1 − FF ′(Vx(j))

)
dΦ(x)

)
. (9.58)

This equation has an intuitive interpretation. Within one time unit there are on the average
γ failures. For each failure the mean total recovery time is given by the first two terms in the
parentheses, while the last term expresses the total checkpointing time.

The equidistant checkpoint strategy is given by the sequence of checkpoint intervals, which
are

τx(j) =

{
τ − x, j = 1

τ, j = 2, 3,

Note that the first checkpoint interval in a cycle starts after recovery and reprocessing is com-
pleted, while all other checkpoint intervals are the time between two consecutive checkpoints.

9.2. Checkpointing at System Level 195

In [TR84] it is shown that equidistant checkpoint intervals imply a uniform distribution of
the reprocessing time, φ(x),

φ(x) =
1

τ
, 0 ≤ y ≤ τ

with mean reprocessing time E [X] = τ
2 .

The equidistant checkpointing strategy has availability

Aτ =
1 − γ(R + ρτ/2)

1 + C/τ
(9.59)

It is interesting to see that the availability does not depend on the interfailure time dis-
tribution, but only on the mean time between failures. Using different interfailure time
distributions does therefore not change the system availability.

Differentiating the availability with respect to τ and equating the derivative to zero gives the
optimal checkpoint interval, which maximises system availability.

τ∗ =

√

C2 +
2C(1/γ −R)

ρ
− C. (9.60)

The optimum checkpoint interval is a real number only as long as the expression under the
square root is greater than or equal to zero,

C2 +
2C(1/γ −R)

ρ
> 0.

This limits all parameters. For the system failure rate, for example, must hold

γ <
2

2R − ρC
.

More strictly, the optimal checkpoint interval must be non-negative and therefore a useful
result is obtained only when

C2 +
2C(1/γ −R)

ρ
>

√
C

which holds for

γ <
2

(C− 1
2 − C)ρ+ 2R

.

The bound on γ contains as parameters only the mean time for checkpoint establishment,
rollback and recovery. Therefore, the range of the failure rate, for which checkpointing is
applicable depends on the checkpoint and recovery costs. This is intuitively convincing.

The curves in Figure 9.14 compare the optimal checkpoint interval as computed using (9.60)
with the one in (9.43), since both maximise availability, but in slightly different models.
The parameters are again rollback cost R = 0.5, compression factor ρ = 1/8 and cost of
checkpointing C = 0.5. For these parameter values the optimal checkpoint interval τ∗ as
defined in (9.60) evaluates to 11.34, which is slightly less than 12, the result for (9.43) in
Section 9.2.1.

196 9. Stochastic Models for Checkpointing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3

o
p

ti
m

u
m

 c
h

ec
k

p
o

in
t

in
te

rv
al

 τ
∗

failure rate γ

τ∗
Chandy

τ∗
Tantawi

Figure 9.14: Comparison of the optimal checkpoint interval with an approximation

For the given parameters only a failure rate of less than 2.0 leads to useful results. The model
suggests that if the failure rate is more than 2.0 checkpointing does not help or is rather a
burden on system availability.

In Figure 9.14 the curve displaying (9.60) always shows a smaller optimum checkpoint interval
in the model presented in this section, as compared with the model from [CBDU75], presented
in Section 9.2.1. The approximation (9.43) always overestimates the optimal checkpoint
interval. The system availability for different checkpoint intervals in Figure 9.15 shows that
it is always better to take a checkpoint interval rather too large than too small. The increase
before the maximum of the curve is stronger than the decrease after the maximum.

The equicost checkpointing strategy is defined as the sequence of checkpoint intervals which
satisfy

τ(j+1)∫

0

ρyΓ(V (j) + y) dy = C, j = 1, 2, . . . , (9.61)

where

Γ(x) =
fF ′(x)

1 − FF ′(x)
x ≥ 0

is the failure rate and ρ is the compression factor that determines the reprocessing time of
the audit trail during recovery. The integrand on the left-hand side is the reprocessing time
in case a failure occurs within the (j+1)−th checkpoint interval and on the right-hand side is
the checkpoint cost. If the failures occur in a Poisson process the optimal checkpoint intervals
in the equicost strategy are equidistant.

The equicost strategy is a failure-dependent checkpoint strategy because the checkpoint inter-
vals depend on the failure time distribution. At the same time it is a reprocessing independent
strategy because the first checkpoint is taken immediately after error recovery, i.e. τx(1) = 0.
Using a reprocessing independent strategy the moment after error recovery constitutes a

9.2. Checkpointing at System Level 197

 0.878

 0.88

 0.882

 0.884

 0.886

 0.888

 0.89

 0.892

 0.894

 6 8 10 12 14 16 18 20

sy
st

em
 a

v
ai

la
b

il
it

y

checkpoint interval τ

Figure 9.15: System availability for changing checkpoint interval

regeneration point and no reprocessing of the recovery is necessary in case another failure
happens after recovery and before the first checkpoint.

The mean reprocessing time becomes

E [X] = E [N] −
∞∑

j=2

(
V (j) − V (j − 1)

)(
1 − FF ′(V (j))

)
. (9.62)

Substituting (9.62) into (9.58) gives

AC = 1 − γ

(
R+ ρE [N] + C +

∞∑

j=2

(
C − ρ(V (j) − V (j − 1))

)(
1 − FF ′(V (j))

))
. (9.63)

Unfortunately, (9.63) depends not only on the mean production time E [N] but also on the
full distribution of the times between failures FF ′(.). The mean production time can be
determined using

E [N] =
A

γ
(9.64)

so that (9.64) and (9.63) may be solved iteratively. As stated in [TR84] the algorithm typically
converges in very few iterations.

The parameters of the previous graphs cannot be used again, since no implementation of the
iterative algorithm is at hand and only the data given in [TR84] is displayed. The parameters
used there are the Weibull distribution for the time between failures with mean interfailure
time 1/γ = 60 hours and shape parameter ranging from 0.2 to 5. The mean checkpoint time
is C = 1 minute, R = 6 minutes and compression factor ρ = 0.5.

Figure 9.16 shows that while obviously system availability for the equidistant strategy remains
constant over all values of the shape parameter of the Weibull failure time distribution,

198 9. Stochastic Models for Checkpointing

 0.9815

 0.982

 0.9825

 0.983

 0.9835

 0.984

 0.9845

 0.985

 0.9855

 0.986

 0.9865

 1 2 3 4 5

sy
st

em
 a

v
ai

la
b
il

it
y

shape parameter

equidistant strategy
equicost strategy

 0.981

 0.982

 0.983

 0.984

 0.985

 0.986

 0.987

 0.988

 1 2 3 4 5

sy
st

em
 a

v
ai

la
b
il

it
y

1/(shape parameter)

equidistant strategy
equicost strategy

Figure 9.16: System availability for increasing (left) and decreasing (right) failure rate

the equicost strategy achieves the better availability the more pronounced the increasing
or decreasing failure rate is. For shape parameter 1, which is the case when the Weibull
distribution reduces to the exponential distribution, availability for both strategies is almost
identical and, in fact, the equidistant strategy seems slightly better, since then it is the optimal
strategy. A Figure in [TR84] shows the checkpoint intervals for increasing and decreasing
failure rate of the Weibull distribution. For increasing failure rate the first checkpoint intervals
are very long and as more checkpoints are being taken and the failure rate of the system
increases the checkpoint intervals become shorter. For decreasing failure rate the opposite
holds.

The equicost strategy is significantly superior in performance to the equidistant strategy, in
computational complexity it is unfortunately not competitive. Had efficient and fast com-
putation of the optimum checkpoint interval lengths become available over the past decades
it would certainly have found its application in practice. The computation of the optimum
checkpoint interval for the equicost strategy is complicated by the fact that the length of each
checkpoint interval must be determined individually.

Minimisation of checkpoint and recovery cost has also been done for Model A in [CBDU75],
an example of which is shown in Figure 9.11. The model used there is a special case of the
one treated in this section and it shows that minimising total cost is feasible in restricted
cases.

In [LM88] a model is analysed that allows for failures during checkpointing and recovery. At
the same time the checkpointing as well as the recovery cost can be generally distributed. The
failure rate of the system is a cyclic function of the time since the most recent checkpoint. The
model corresponds to a Markov renewal decision process. The underlying discrete state model
has the same three states (failed, operational, checkpointing) as the model in [TR84], which
has been discussed in detail in this section. The decision is recovery in the failed state, and
the length of the interval until the next checkpoint in both other states. A reward function
measures system availability. This reward function must be optimised with respect to the
taken decisions. Optimisation is carried out through a dynamic programming algorithm for
which the reward function must be discretised. Solving this model is therefore very costly.
The results presented in [LM88] use the same parameters as the model with the Weibull

9.2. Checkpointing at System Level 199

failure rate in [TR84] and the results differ by less than 0.05%. This shows that both methods
lead to correct results, but also that the additional modelling detail in [LM88] is not worth
while.

9.2.3 A Queueing Model for Checkpointing Transaction-Based Systems

In previous sections in this chapter (as in [CBDU75] and [You74]) the MTBF was assumed
to be much longer than the time between checkpoints. This implies, that the audit trail
typically is not very long at the time a failure happens and there is no long queue to be
reprocessed after system restoration. This restriction is in practice realistic and therefore no
serious constraint.

The work in [Gel79, GD78], which is presented in this section, removes any restriction on
the order of magnitude of the system failure rate. The formal description of the considered
systems consists of two parts, a system model, and a queueing model as shown in Figure
9.17. The three states working, recovery and checkpointing and the transitions between them
constitute the system model, while the processing of tasks in the working state with arrival
rate and service time specifies the queueing model. The queueing model explicitly models the
transactions in the system and their arrival, waiting and being serviced. None of the earlier
models in this chapter did so. The model in this section can be used to compute system
availability as well as completion time of transactions.

recovering
1

working
0

2
checkpointing

fail
γ

λ µ

C τ−1

(µ κ τ)−1

−1

Figure 9.17: System model

The stochastic process Xt, t ≥ 0 is defined as

Xt =

0 if the system is operational

1 if the system is recovering from a failure

2 if the system is taking a checkpoint

(9.65)

In the following the dynamics of this stochastic process are defined.

The work in [Gel79, GD78] distinguishes between the uptime of a a system and its operational
time. The system is up also during checkpointing, but it is not ready to do useful work during
checkpointing. The operational time is the time the system spends in state working, as shown

200 9. Stochastic Models for Checkpointing

in Figure 9.17. The random variable Y with probability distribution function F (y) and
density function f(y) denotes the total time in state working between two successive visits to
state checkpointing. The total uptime between checkpoints Y can be interrupted by several
failures and the recovery periods thereafter. The expected duration of the total operational
time between two checkpoints is

E [Y] =

∫ ∞

0
y dF (y).

Later, we will see that a deterministic choice of Y optimises system availability.

Checkpointing cost is the time the system spends in state checkpointing. This time is random,
independent of the past history and has a general distribution function C(y) with finite
expectation

E [C] =

∫ ∞

0
y dC(y).

The system transitions to the failed state (state recovery) only from the operational state, not
from the checkpointing state. This means that no failures can happen during checkpointing.
Failures happen in a Poisson process at rate γ and γ is the failure rate of the server.

The recovery time r(Yt) is defined in a more complex way. The recovery time is age dependent
with respect to the most recent checkpoint. In other words, the time Yt denotes the operational
time since the most recent checkpoint, until system failure. Yt can be either the time between
a checkpoint and the first failure, or it can be the cumulative operational time since the most
recent checkpoint where one or more failure and recovery periods have already happened.
The recovery periods are then excluded from the total operational time.

Of interest are the stationary state probabilities

Πj = lim
t→∞

Pr {Xt = j} , j = 1, 2, 3

of the regenerative process (X) = {Xt, t ≥ 0}.

The solution is

Π0 =
E [Y]

E [C] + E [Y] + γ
∞∫

0

dF (y)
y∫

0

r(x) dx

(9.66)

Π1 =

γ
∞∫

0

dF (y)
y∫

0

r(x) dx

E [C] + E [Y] + γ
∞∫

0

dF (y)
y∫

0

r(x) dx

(9.67)

and, of course,
Π2 = 1 − Π0 − Π1. (9.68)

The optimum checkpoint interval could be either the total operational time Y between succes-
sive checkpoints, such that the system availability Π0 is maximised, or the checkpoint interval
could include failure recovery periods that lie between checkpoints. The work in [Gel79] er-
roneously claims that [CBDU75] includes recovery periods into the checkpoint interval. On

9.2. Checkpointing at System Level 201

the contrary, the choice in [Gel79] of counting only the operational time for the checkpoint
interval seems to be a common and natural choice also taken by other authors. A contribution
of the work [Gel79] is the use of a general distribution F (y) for the checkpoint interval. The
optimum checkpoint interval is F (y) such that the availability Π0 is maximised.

As in the previous sections, again r(x) is defined as an affine linear function

r(x) = R+ ρx R, ρ > 0,

where R is the affine term, representing the recovery of e.g. a data base and ρx is the time
needed to reprocess the audit trail. The work requirement x is reprocessed as determined by
the compression factor ρ. Then

H(y) =

∫ y

0
r(x) dx =

R

2
y2 + ρy

and

E [H] =
R

2
E
[
y2
]
+ ρE [y] ≥ H(E [Y]) =

R

2
E [y]2 + ρE [y] .

And the distribution function of the optimum checkpoint interval is

F ∗(y) =

{
1 if y ≥ τ

0 if y < τ

for fixed τ ≥ 0. Note that the formulation is that of an arbitrary checkpoint interval distri-
bution, but the definition corresponds to that of a constant deterministic interval of length
τ . The system availability using the optimal checkpoint interval distribution evaluates to

Π0(F
∗(y)) =

1

1 + E [C] /τ + γρ+Rγτ/2
.

To determine the parameters R and ρ the queueing system must be examined. Let us assume
transactions arrive at rate λ and are served at rate µ in a first-come-first-served fashion and let
interarrival and service times be exponentially distributed. The probability that the system
is operational (in state ’0’) and idle is denoted p(0, 0).

The stationary probability that the server is idle and operational is

p(0, 0) = 1 − λ

µ
Π0.

Substituting into the system availability using the optimal checkpoint interval Π0(F
∗(y)) one

obtains

Π0

(
1 +

E [C]

τ
+ γρ

)
= 1 − kγτλ

2µ
. (9.69)

Equating the derivative of the availability with respect to the checkpoint interval gives the
optimum checkpoint interval

τ∗ =
E [C]

1 + ργ

(√

1 +
2(1 + ργ)

λ/µkE [C]
− 1

)
. (9.70)

202 9. Stochastic Models for Checkpointing

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3

o
p
ti

m
u
m

 c
h
ec

k
p
o
in

t
in

te
rv

al

failure rate γ

τ∗
Chandy

τ∗
Gelenbe, λ = 0.95

τ∗
Gelenbe, λ = 0.65

Figure 9.18: Exact and approximate optimum checkpoint interval (ρ = 1)

Several interesting observations can be made. First, the optimal checkpoint interval, which
is the total operational time of the system between two checkpoints, is deterministic and of
constant length. Second, the optimum checkpoint interval depends on the reciprocal of the
processing load of the system (λ/µ). The higher the load, the shorter the optimum checkpoint
interval, which seems reasonable.

Figure 9.18 compares the optimum checkpoint interval using (9.70) and the approximation
(9.43) (which for ρ = 1 is identical with (9.5) from [You74]) as a function of the failure rate γ.
The chosen parameters are mainly taken from [Gel79] and they are E [C] = 0.5, ρ = 0.9, µ =
k = 1.0, λ as indicated in the figure. The parameter k indicates the proportion of transactions
that need reprocessing after a failure. For a data base system only writing transactions need
reprocessing, reading transactions do not. We assume here that all transactions must be
reprocessed. The figure gives some insight in the quality of the approximation as well as in the
characteristics of the optimum checkpoint interval obtained with the queueing analysis. The
two curves showing the optimum checkpoint interval defined in (9.70) differ in the utilisation of
the system. Since the processing rate of the queueing system is set to 1, the transaction arrival
rate λ equals the utilisation of the queue. The failure rate in a system with checkpointing
usually is below 10−2. The curves have an interesting shape in the range from 0 to 0.5, after
that point they can be extrapolated linearly.

It is interesting to see that the simple approximation (τChandy) for low system failure rate
matches very well with the exact formula for the optimum checkpoint interval with the high
system load, while for high failure rate the approximation increasingly overestimates both
curves, still being closer to the one for the low system load (λ = 0.65). Considering its
simplicity, the approximation in (9.43) shows remarkably high quality.

9.2. Checkpointing at System Level 203

In [Gel79] a simpler formula for the case of heavily loaded systems is derived. Under heavy
load the probability of an idle server in the operational state is almost zero, i.e. p(0, 0) ≈ 0.
and for the fraction in the root of (9.70) holds

2(1 + ργ)

λ/µkE [C]
≫ 1,

such that this term dominates the formula for the optimum checkpoint interval and the 1
on either side of the fraction can be ignored. Then the optimum checkpoint interval can be
written as

τ∗ ≈
√

2E [C]

λ/µγk(1 + ργ)
. (9.71)

If reprocessing is ignored and therefore ρ = 0 and k = 1 we have Chandy’s known approxi-
mation.

In [GD78], as in [Gel79] the recovery time is deterministic, but age-dependent, where the
age yt is the processing time since the most recent checkpoint excluding recovery of previous
failures in the considered checkpoint interval. In [GD78] the recovery time is defined as
µkyt, which is the time needed to reprocess all transactions that were processed between the
most recent checkpoint and system failure. Then in [GD78] the system availability A = Π0

evaluates to

A =
1

1 + µkτγ + E [C] /τ.
(9.72)

It is interesting to see that only the transaction processing rate is a parameter of system
availability, not the transaction arrival rate. The system can therefore be in overload, but
still available. Additionally, it was shown in [GD78] that system availability is always less
than the utilisation of the queue, i.e.

A <
λ

µ

which is an interesting property, even more, since analytically availability is independent of
the utilisation.

Also of importance is the response time W of a transaction, as derived in [GD78]. The
response time of a transaction is the time between the arrival of a transaction to the system
and the completion of its processing. This time includes the waiting time in the queue and
reprocessing after a system failure. The response time is given by

W =

1
µ +A2

(
γ(µkτ)2 + E[C]2

τ

)

A− λ/µ
. (9.73)

The optimum checkpoint interval τW that minimises the transaction response time can be
approximated by the checkpoint interval that minimises γ(µkτ)2+E [C]2 /τ, the decisive term
in (9.73), as derived in [GD78]

τW =
3

√
E [C]2

2γ(µk)2
. (9.74)

Figure 9.19 shows different curves with their minima at different values of the checkpoint
interval for different transaction arrival rate. The fact that the transaction arrival rate is

204 9. Stochastic Models for Checkpointing

no factor in the formula computing the optimum checkpoint interval identifies τW as an
approximation.

Figure 9.19 shows the system availability and the transaction response time for different values
of the checkpoint interval length. As pointed out in [GD78] in transaction processing systems
not only the system availability but also the transaction response time is of interest. The

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

sy
st

em
 a

v
ai

la
b
il

it
y
,t

ra
n
sa

ct
io

n
 r

es
p
o
n
se

 t
im

e

checkpoint interval τ

availability
transaction response time (*0.1), λ = 0.2

transaction response time (*0.1), λ = 0.5 lw 3

Figure 9.19: Optimum checkpoint interval that maximises availability and transaction re-
sponse time

curves for the transaction response time in Figure 9.19 are scaled by a factor 10−1 for better
visualisation of all three curves together. The chosen parameters are mostly the same as those
used for Figure 9.18, γ = 10−3, µ = 1.0, k = 1.0,E [C] = 0.5. The arrival rate of transactions
is 0.2 and 0.5 as indicated in the plot. Since the service rate µ = 1 the transaction arrival
rate equals the utilisation of the transaction processing system. In normal operation the
utilisation of such systems is quite low. As shown in [Gel79] already for a utilisation of 0.65
the queue length explodes, even though system availability is still more than 0.7. Also the
transaction response time increases as the utilisation of the system increases. As suspected,
the optimum checkpoint interval that maximises system availability is significantly different
from the checkpoint interval length that minimises transaction response time. Furthermore,
the checkpoint interval that minimises transaction response time is not the same for different
system utilisation. It slightly increases for increasing load, as does of course the expected
transaction response time. As the load on the system grows, checkpointing should be done
slightly less frequently. This is because the checkpointing imposes additional load on the
system. The more the system is loaded, the less extra checkpointing cost it can take when
minimising the transactions’ response time.

For the parameters used in the plots in Figure 9.19 the optimum checkpoint interval to
minimise transaction response time, as given in (9.74), is τW = 6.3. for both values of λ. The

9.2. Checkpointing at System Level 205

curve using the higher load, λ = 0.5 clearly has a slightly larger optimum checkpoint interval.

Advanced queueing analysis is applied in [Bac81] in order to compute also the expected
waiting time of transactions and expected number of transactions in the system.

In [GH90] the model is extended to use an age dependent failure rate γ(y), which is a natural
choice and can be implemented using the Weibull distribution. Unfortunately, no closed-
form expression for the optimum checkpoint interval exists, which must then be computed
numerically. Numerical solutions are less attractive in practice.

In [KNT90] the task length, or work requirement of a task, is also considered, furthermore, idle
periods, first tasks after an idle period and busy periods are treated separately. If tasks arrive
during a busy period of the system in a Poisson process at rate λ and the total recovery time
of the system is denoted by the generally distributed random variable R, then the expected
completion time of the deterministic work requirement w can be expressed as

E [T (w)] = a ·
(

1

τ
+ γ

)
w + a · ln

(
1/τ + γe(1/τ+γ)w

1/τ + γ

)

, (9.75)

where

a = τ

(
1 +

E [C]

τ
+ γE [R]

)
.

For long tasks the model becomes similar to the completion time models of program level
checkpointing [Nic95] in Section 9.1.1. As w grows large one can use the limit

lim
w→∞

(
1/τ + γe(1/τ+γ)w

1/τ + γ

)
=

1

1 + γτ

as an approximation and the expected completion time in a system with checkpointing is a
linear function of the work requirement, i.e.

E [T (w)] ≈ a ·
(

1

τ
+ γ

)
w − a · ln (1 + γτ) . (9.76)

Figure 9.20 plots (9.76) for different parameter values. The constant parameters are the
task length w = 300, the expected repair time E [R] = 25 and the expected checkpoint cost
E [C] = 0.5. As usual a system with the low failure rate has a much longer optimal checkpoint
interval and most tasks do not require much more time than their work requirement. This
changes abruptly as the failure rate increases. The checkpoint interval becomes shorter and
the expected task completion time rapidly increases if a too long checkpoint interval is chosen.

In [KNT90] also an expression for the variance of task completion time as well as limiting
cases are given. Checkpointing strategies are evaluated by means of the stretch factor, the
relative overhead imposed by checkpointing,

µτ (w) =
E [T (w)]

w
,

206 9. Stochastic Models for Checkpointing

 310

 320

 330

 340

 350

 360

 370

 5 10 15 20 25 30 35 40 45 50

ex
p

ec
te

d
 t

as
k

 c
o

m
p

le
ti

o
n

 t
im

e

checkpoint interval τ

γ = 0.001
γ = 0.005

Figure 9.20: Optimum checkpoint interval with respect to the system failure rate

where τ > 0. Checkpointing is beneficial for those values of τ where µτ (w) < µ0(w). Unfortu-
nately, deriving conditions under which this inequality holds is very laborious [KNT90]. An
approximation for the optimum checkpoint interval which minimises the stretch factor is

τ∗ =

√
E [C]√

γ(1 + γE [R])
(9.77)

with corresponding lower bound on the stretch factor itself

inf
τ
µτ (w) =

(√
1 + γE [R] +

√
γE [C]

)2
. (9.78)

In [KNT90] these approximations are stated to provide good results, which cannot be easily
verified. Queueing analysis in [KNT90] leads to similar results for the expected task comple-
tion time and the optimum checkpoint interval.

9.3 A Trade-Off Metric for Optimal Checkpoint Selection

We have seen in the previous sections that for program level checkpointing a typical metric
is the expected completion time of a task, or its distribution. When evaluating system level
checkpointing strategies usually the system availability is the metric of interest. Using these
metrics optimal checkpoint intervals are determined. In [TR84] the equicost strategy is used
to determine optimal checkpoint interval length. The equicost strategy optimises not only
system availability but also its production time, which is the availability relative to the system
failure rate. Note that the equicost strategy yields an improvement only if the times between
failures are other than exponentially distributed.

In [KLS84] both the expected task completion time and the system availability are criticised
as being not appropriate. When looking at their computation in detail, both metrics average

9.3. A Trade-Off Metric for Optimal Checkpoint Selection 207

over all tasks and time. Checkpointing increases the completion time of all tasks, where tasks
that complete without failure perceive degraded service for the benefit of failed tasks. With
checkpointing failed tasks have shorter recovery time. But since relatively only very few tasks
experience a system failure very many tasks unnecessarily have prolonged completion time.
In the opinion of the authors of [KLS84] simply optimising completion time or availability
does not optimise the trade-off between the price non-failed tasks pay and the benefit failed
tasks receive. This statement is not obviously correct and not proven in the paper.

A trade-off ratio can be defined for program-level checkpointing. In [KLS84] program-level
checkpointing is applied to general purpose systems and the completion time of tasks is the
metric of interest.

The idea in [KLS84] is to divide the tasks into those that fail and those that do not fail. Then
the expected completion time for non-failed tasks when using n checkpoints E [T0(n)] and
the expected completion time of tasks that experience failure and use n checkpoints E [Tf (n)]
is computed individually. The trade-off ratio TR(n) relates the gain in both performance
metrics when increasing the number of checkpoints.

TR(n) =
E [Tf] (n− 1) − E [Tf (n)]

E [T0(n)] − E [T0(n− 1)]
. (9.79)

This ratio is positive as long as the expected completion time of the failed tasks decreases with
more checkpoints while the expected completion time of the tasks without failures increases
when using more checkpoints. It is worth realising that when the expected completion time
of both groups is weighed with the number of non-failed and the number of failed tasks
respectively then the overall completion time is obtained. In [KLS84] a failure rate of the
order of at most 10−3 per hour is assumed. But the trade-off ratio gives equal importance to
the one failed task and to the large number of non-failed tasks.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

p
er

fo
rm

an
ce

 m
et

ri
c

number of checkpoints

E{Tf} (70ms)
E{T0} (70ms)

trade-off ratio (70ms)
E{Tf} (90ms)
E{T0} (90ms)

trade-off ratio (90ms)

Figure 9.21: Number of checkpoints versus performance metrics

208 9. Stochastic Models for Checkpointing

Figure 9.21 uses data computed for a system with a failure rate of 10−4 and checkpointing
cost of 0.5 ms.

Figure 9.21 shows the expected completion time E [Tf] of failed tasks for two different task
lengths and increasing number of checkpoints, the expected completion time of non-failed
tasks with two different task lengths over increasing number of checkpoints and the trade-off
ratio for both task lengths. The trade-off ratio compares the change in the completion time
of a failed task when adding a checkpoint with the increase in completion time of non-failed
tasks when adding a checkpoint. Consequently, a large positive ratio indicates that either the
failed tasks considerably reduce their expected completion time with adding a checkpoint,
or the non-failed tasks experience very little overhead through an additional checkpoint, or
both. Desirable is, therefore, a large trade-off ratio.

The trade-off ratio shown in Figure 9.21 favours no checkpointing at all, while the expected
completion time of failed tasks is minimal when using 6 or 7 checkpoints. In [KLS84] these
certainly interesting results are merely listed.

For real-time control systems the important metric is the probability of completion before the
deadline, since typically completion after the deadline is of no use anymore. In [KLS84, KS83]
the probability of a dynamic failure pdyn(n) denotes the probability that a task misses its
hard deadline when using n checkpoints. The checkpointing cost on all tasks extends their
completion time. If f(t, n) denotes the response time distribution of a control task using n
checkpoints and c(t, n) the distribution of the checkpointing cost for n checkpoints associated
to the response time t of the control task then the mean cost E [Cn] can be expressed as

E [Cn] =

∫ ∞

0
f(t, n)c(t, n) dt.

The trade-off ratio (TR(n)) relates the improvement (be it positive or negative) of the mean
cost and the probability of a dynamic failure when increasing the number of checkpoints by
one as

TR(n) =
pdyn(n− 1) − pdyn(n)

E [Cn] − E [Cn−1]
. (9.80)

Figure 9.22 shows the probability of dynamic failure pdyn, the mean cost of task completion
E [C] as well as their ratio, the trade-off ratio, for a task length of 40 ms and 50 ms, respec-
tively, computed for a number of checkpoints ranging from zero to five. The data is taken
from Table 1 in [KLS84].

The considered system has a MTBF of 10 000 hours and failures occur in a Poisson process.
The checkpointing cost is 0.1 ms, the time for rollback and restart are each assumed to
take 2.0 ms. The points of the trade-off ratio are only shown in Figure 9.22 where its value is
greater than zero, meaning that an additional checkpoint reduces the probability of a dynamic
failure. If the probability of dynamic failures remains constant when increasing the number
of checkpoints, then the denominator in Equation (9.80) evaluates to zero and the trade-off
ratio equals zero.

Checkpointing in a system with the given parameters is beneficial only for tasks that are not
too short. Figure 9.22 illustrates the computed metrics for a task of 40 ms and one of 50 ms.
For zero checkpoints the mean cost of a task is already higher than its execution time, due

9.4. Summary 209

 0.01

 0.1

 1

 10

 0 1 2 3 4 5

p
er

fo
rm

an
ce

 a
n

d
 r

el
ia

b
il

it
y

 m
et

ri
c

number of checkpoints

mean cost (40ms)
pdyn*10

-7
 (40ms)

trade-off ratio*10
10

 (40ms)
mean cost (50ms)
pdyn*10

-7
 (50ms)

trade-off ratio*10
8
 (50ms)

Figure 9.22: Number of checkpoints versus metrics

to potential failures of the system. With an increasing number of checkpoints the mean cost
of the task of 40 ms hardly increases at all, while the mean cost of the task of length 50 ms
increases slightly. The probability of missing the hard deadline decreases as the number of
checkpoints increases. As expected, the longer task has a higher probability of missing the
deadline than the shorter task and it benefits more from checkpointing, i.e. it experiences a
more pronounced decrease of the probability of dynamic failures with increasing number of
checkpoints.

One should select the number of checkpoints with a high trade-off ratio. A high trade-off
ratio for i checkpoints means that adding the i−th checkpoint reduces the probability of
dynamic failures while not increasing the expected cost dramatically. In the example for a
task of 40 ms only one checkpoint should be taken, while for a task of 50 ms one should
use 4 checkpoints, as for five checkpoints the trade-off ratio abruptly drops. This conclusion
was not drawn in [KLS84] and it is not clear how the optimal number of checkpoints can
be determined automatically. The authors point out in [KLS84] that considering purely the
expected completion time in the given scenario no checkpoints would be used at all.

The issue of appropriate performance and reliability metrics for fault-tolerance mechanisms
is certainly very important. Therefore, existing work has been presented in a full subsection.
The work in [KLS84], however, is by no means exhaustive or conclusive. But it is an interesting
starting point for further work in the analysis of fault-tolerant systems.

9.4 Summary

This chapter has given an overview of existing stochastic models for checkpointing. The pur-
pose of the models is to determine optimal checkpoint intervals, with respect to maximum
system availability, minimum task completion time or minimal total recovery and checkpoint-
ing costs.

210 9. Stochastic Models for Checkpointing

We have seen that the considered metric plays an important role for the choice of the best
checkpoint strategy, and we have also seen that a very simple deterministic approximation in
most cases gives reasonably good results at very low cost. Very detailed models with high
flexibility often require highly complex solution procedures, while the solution as such differs
little from the simple approximations.

Checkpointing models were divided into program level checkpointing, which is concerned with
long-running tasks and aims at minimising their expected completion time and system level
checkpointing, where tasks are typically very short and system availability is more impor-
tant than expected completion time. Interestingly, for both types of checkpointing the same
approximate checkpointing strategy has been derived [You74, CBDU75].

The practical applicability of the models, however, has not been an issue in the context
of stochastic models. The algorithms to compute the optimum checkpoint interval must
perform in real time. All models use simplifications and abstractions of the real system and
only the implementation and test of checkpointing strategies can finally show whether those
are valid abstractions and whether the models lead to better checkpointing strategies than the
equidistant strategy with checkpoint intervals of 11 minutes IBM uses today (or 24 minutes
at Annex).

Chapter 10

Summary, Conclusion and Outlook

This thesis has been concerned with three different, but closely related, mechanisms of soft-
ware dependability. In this last chapter we will summarise, as well as highlight differences
and similarities of the three mechanisms.

The first method was restart, where repeatedly a task is stopped and then restarted from
its beginning. This method can be used to reduce task completion time but also to improve
the probability of task completion before a deadline. Stochastic models have been used to
determine the optimal restart time after which a task is aborted and restarted.

The second method was software rejuvenation, a method of preventive maintenance, which is
not concerned with individual tasks, but rather with a whole system. Software rejuvenation
requires all tasks on the system to be stopped such that the underlying system software can
be rebooted thus solving all memory leakage, buffer overflow and related problems. After
a reboot of the system software all processes are restarted and new transactions can be
processed. Stochastic models are used to determine the rejuvenation intervals such that a
system crash is avoided, or delayed as far as possible. The target function that is optimised
is a cost function which expresses the trade-off between rejuvenation costs and costs due to
system failure.

The third method was checkpointing, which is the most complex dependability mechanism
out of the three. For checkpointing the system state is saved at intermediate points in time
and when a failure occurs the affected tasks do not have to restart from beginning, but can
roll back to the most recent checkpoint. The system reloads the most recent checkpoint and
continues operation from there. The tasks that have been processed since the most recent
checkpoint until the system failure are logged in an audit trail, which has to be reprocessed
at system recovery. Checkpointing aims at reducing the amount of work lost with a system
failure. Checkpoint intervals optimise different criteria: often system availability is considered
as the metric of interest, but also transaction response time often is the chosen metric. One
can, furthermore, use a cost function which formulates the trade-off between the cost of
checkpointing and rollback recovery and the cost of failure and restoration after a failure.

Of the three mechanisms checkpointing usually has the most complex system model and the
largest variety of considered metrics. Restart has the simplest system model and can optimise
only metrics that are functions of the task completion time.

211

212 10. Summary, Conclusion and Outlook

We will now point out the differences and similarities of the three different methods. A
comparison is given in Table 10.1 and Table 10.2. Even though at first sight the three
mechanisms seem to be almost identical, or special cases of one another, on closer inspection
there exist fundamental differences. Let us first examine the similarities.

preventive reactive models metrics

restart no yes closed-form moments of compl. time
prob. of meeting a deadline

rejuvenation yes no Markovian downtime
downtime cost

non-Markovian availability
non-Markovian, PN expected loss

checkpointing yes yes analytical, queueing availability
Markovian, non-Markovian
closed-form (LST) distr. of completion time
analytical expected completion time
analytical prob. of task completion

cost

Table 10.1: Comparison of results for restart, rejuvenation and checkpointing

Software rejuvenation and restart both reprocess the halted tasks from the beginning. If
checkpointing uses zero checkpoints and upon a failure the task is restarted from the be-
ginning, then checkpointing becomes equivalent to restart and rejuvenation, if, in addition,
failures represent restarts. Restart and rejuvenation both intentionally stop and restart tasks,
while normally in checkpointing systems tasks are aborted and recovery is triggered only by
system failures. Checkpointing systems stop processing intentionally to take checkpoints,
which has no equivalent in neither restart nor rejuvenation. The equivalence of restart with a
special case of checkpointing becomes apparent, for example, in Theorem 1 on page 62, which
formulates a computational scheme for the moments of completion time. The scheme in fact
is a special case of checkpointing results in [Nic95] (with zero checkpoints and with failures
representing restarts).

optimisation parameter recovery
restart restart interval yes

rejuvenation rejuvenation interval no

checkpointing checkpoint interval yes

Table 10.2: Comparison of results for restart, rejuvenation and checkpointing

We have seen that restart, rejuvenation and checkpointing are similar in that all three optimise
the first moment of a metric by constant interval lengths. Only for restart higher moments of
completion time have been optimised, where it turned out that constant restart interval length
does not achieve the optimum metric. It would be interesting to see whether for rejuvenation
and checkpointing also variable interval lengths are necessary to optimise higher moments of
the considered metrics.

213

Restart is a method which should be applied in situations in which the educated guess assumes
a transient failure of the system and loss of the request or task. Even though failures are
not explicitly modelled, they are implicitly accounted for as very long completion or response
times. The assumption is that if a task does not finish within some time, then it very likely
has failed and will never finish and hence, it should be restarted. Assuming a transient failure,
the next trial is likely to be successful. Restart is about the one task out of very many that
fails. The mechanism is very similar to software rejuvenation, only that the latter operates
on the whole system, while the former only affects individual tasks. However, they differ in
the optimisation criteria. Restart is a mechanism to avoid the few catastrophic cases at the
expense of degraded performance of some tasks that perform reasonably well without restart.
But in contrast to the common fear restart does not significantly increase the system load.
If the restart interval is chosen well, not too many tasks are aborted just before completion.
Their completion time is prolonged unnecessarily but at the same time the failed tasks are
caught, whose completion time then is enormously reduced.

Rejuvenation also punishes the tasks that are processed when rejuvenation is issued. This is
never an issue in the models, because after rejuvenation all tasks are processed faster.

Let us now turn to the differences. The most fundamental difference between restart and
both other mechanisms is that the restart model does not allow for failures, while both,
rejuvenation and checkpointing do so. As a consequence, restart is not concerned with the
aging of a system, while rejuvenation and checkpointing both are. In the restart model
task completion time provides an upper bound and restart must only be applied if it can (at
least on the long-term average) reduce task completion time. Restart is a mechanism aimed at
reducing the considered metric, while rejuvenation rather has the dual purpose. Rejuvenation
aims at increasing system life time. Therefore, the acceptable cost of rejuvenation is bounded
by the cost of system failure, while the cost of restart is subject to a much tighter bound.
Only if the restart cost plus the second attempt together are less than the completion time
of the first does restart on an individual task pay off. This is a very restrictive condition and
restart is beneficial only for certain completion time distributions and very low restart cost.

In the same direction points a formal difference [vMW05]. While rejuvenation is appropriate in
first place for systems with aging behaviour, which are described by a probability distribution
with increasing failure rate, restart should be applied only for systems described by probability
distributions with decreasing hazard rate. Checkpointing can be applied successfully in both
cases.

When considering their behaviour as concerned with system failures the three mechanisms are
inherently different. Checkpoint recovery is the only immediately reactive method. Check-
pointing is used to react to failures and to mitigate the effects of system failures on processing
performance. Checkpointing can also be considered a fault-tolerance mechanism. However,
taking a checkpoint is a preventive action. Therefore, checkpointing has a preventive as well
as a reactive component. As opposed to this, rejuvenation only aims at acting before a failure
happens and hence is a proactive method to handle failures. This is not precise, as rejuve-
nation does not include failure treatment. It aims at creating a fault-free system through
maintenance. Restart, being the third mechanism, does not explicitly treat system failures,
other that a failure could be reason for long task completion time. Restart purely aims at
improving system performance without any direct failure detection or prediction.

214 10. Summary, Conclusion and Outlook

For the restart model computationally attractive expressions and algorithms have been devel-
oped and the restart model is being applied in practical experiments [RvMW04, RvMW06a].
This leads us to the open issues. It would be very interesting to implement the algorithm in
[TB84] and carry out experiments. Some detailed questions are still open, such as a when
are two checkpoint selections with equal number of checkpoints the same. This algorithm is
of particular interest since it seems to be very similar to the algorithms developed for restart.
Checkpointing always seems to be a very expensive and therefore practically rarely attrac-
tive fault-tolerance method. This issue could be tackled by using the algorithm in [TB84].
Throughout the text many research questions have been pointed out as those are apparent in
their respective context.

In systems where failures can be predicted reliably rejuvenation or checkpointing could be
combined with a prediction method. Analysis of possible combinations would be necessary to
decide whether the combined approach allows for less frequent rejuvenations and checkpoints
and is therefore attractive in computational complexity.

A more general research topic is the solution of timeout problems. As we have seen in
Chapter 3 restart can be applied in different contexts. If we generalise a further and look at
the problem of how to set a time-out then we have a question that arises in almost every area
of computing systems. In this thesis we have seen how restart, rejuvenation and checkpointing
relate and that all three are variations and extensions of the plain time-out problem. The
most challenging question that remains open is to what extent and in which way the available
results for restart, rejuvenation and checkpointing can be applied to the general time-out
problem and whether a generic solution and an algorithm can be found. We will study
further the fields of Internet services and communication networks and hope to come up with
answers and solutions in the near future.

Appendix A

Properties in Discrete Systems

Cumulative First Moment

Let f be the probability function of a discrete random variable and F (tn) =
∑n

i=1 f(ti) its
cumulative probability distribution function, then we prove the following theorem

Theorem 12.
n∑

i=1

tif(ti) = tnF (tn) −
n−1∑

i=1

F (ti). (A.1)

Without loss of generality we assume that in a discrete system ti = i and we must prove

n∑

i=1

if(i) = nF (n) −
n−1∑

i=1

F (i). (A.2)

Proof. Proof by induction. For the base case n = 1 the proposition is true since

1 · f(1) = 1 · F (1). (A.3)

Assume the proposition is true for arbitrary n, then the induction step shows it is also true
for n+ 1

n+1∑

i=1

if(i) =

n∑

i=1

if(i) + (n+ 1)f(n + 1)

= nF (n) −
n−1∑

i=1

F (i) + (n+ 1)f(n+ 1)

= (n+ 1) ·
n∑

i=1

f(i) −
n∑

i=1

f(i) + (n + 1)f(n + 1) −
n−1∑

i=1

F (i)

= (n+ 1) ·
n+1∑

i=1

f(i) −

n∑

i=1

f(i) +
i∑

j=1

f(j)

−
n∑

j=1

f(j)

= (n+ 1) ·
n+1∑

i=1

f(i) −
n∑

i=1

i∑

j=1

f(j) = (n+ 1) · F (n+ 1) −
n∑

i=1

F (i).

215

216 A. Properties in Discrete Systems

The Gamma Function

The Gamma function is defined as

Γ(x) =

∫ ∞

0
tx−1e−t dt. (A.4)

It is defined on the real numbers except for 0,−1,−2, For positive natural number the
Gamma function can be expressed as a factorial

Γ(n) = (n− 1)!

The incomplete Gamma function is defined as

Γ(x, y) =

∫ ∞

y
tx−1e−t dt. (A.5)

Appendix B

Important Probability Distributions

B.1 Discrete Probability Distributions

The Binomial Distribution

A random variable X is said to follow the binomial distribution with parameters n and p (i.e.
X ∼ B(n, p),) if the probability function of X is given by

Pr(X = j) =

(
n

j

)
pj(1 − p)n−j, j = 1, 2, . . . n. (B.1)

In this formula Pr(X = j) is the number of experiments where the event j occurs if a total of n
experiments are carried out and the probability of j in each experiment equals p. Expectation
and variance of the binomial distribution are

E(X) = np V (X) = np(1 − p).

The multinomial distribution

Assume we observe N events with n possible outcomes, each happening with probability pi.
The probability distributing th N trials over n possible outcomes is given by the multinomial
distribution.

P (X1 = j1,X2 = j2, . . . ,Xn = jn) =
N !

j1! · j2! · · · jn!
pj1
1 · pj2

2 · · · pjn
n (B.2)

For n = 2 we obtain the binomial distribution.

Expectation and variance of Xi are

E(Xi) = Npi V (Xi) = Npi(1 − pi).

217

218 B. Important Probability Distributions

The Geometric Distribution

Let X be a random variable describing the number of trials up to the first success, where
each experiment has success probability p. If the n-th trial is the first success, there have
been (n-1) unsuccessful trials before.

Pr(X = n) = p · (1 − p)(n−1), n = 0, 1, 2, . . . (B.3)

E[X] =
1 − p

p

V ar[X] =
1 − p

p2

The Poisson distribution

The Poisson distribution describes the probability of observing k events in the time interval
(0, t].

P (X = k) = e−λt (λt)
k

k!
x = 0, 1, 2, . . . , λ > 0 (B.4)

Expectation and variance of the Poisson distribution are equal, they are

E(X) = V (X) = λ

Figure B.1 shows the Poisson probability distribution for two different event rates (λ = 2 and

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.23

0.26

0.29

 0 1 2 3 4 5 6 7 8 9 10 11 12

k

lambda = 4
lambda = 2

Figure B.1: Probability distribution function of the Poisson distribution

λ = 4). Please note that this is a discrete distribution and the points are connected by lines
only for better visualisation.

B.2. Continuous Probability Distributions 219

B.2 Continuous Probability Distributions

The Exponential Distribution

The exponential distribution is widely used to describe times between events. Then the
cumulative distribution function (CDF) F indicates the probability of the random variable
having a value less or equal the observed time x.

F (x) = Pr(X ≤ x) =

{
1 − e−λx x ≥ 0

0 x < 0
(B.5)

The exponential distribution has one parameter λ and the mean time between two events is
1/λ.

f(x) =
dF (x)

dx
= λe−λx (B.6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

C
D

F

lambda = 0.5
lambda = 1
lambda = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

p
d

f

lambda = 0.5
lambda = 1
lambda = 2

Figure B.2: The exponential distribution. CDF on the left, density on the right

Expectation and variance of X are

E(X) =
1

λ
V (X) =

1

λ2
.

The hazard rate is defined as

H(x) =
f(x)

1 − F (x)
.

For the exponential distribution we obtain

H(x) = λ

220 B. Important Probability Distributions

The Erlang distribution and the hypo-exponential distribution

No straight forward expression for density and probability distribution function of the hypo-
exponential distribution exist. The Erlang distribution is a special case where X1, . . . ,Xn are
identical and independently distributed random variables. Then X =

∑n
i=1Xi has an n-stage

Erlang distribution. For x, λ > 0 and n = 1, 2, . . . we have

fX(x) =
λ(λx)n−1

(n− 1)!
e−λx (B.7)

and

FX(x) = 1 − e−λx
n−1∑

j=0

(λx)j

j!
. (B.8)

The hazard rate of the Erlang distribution is

hX(x) =
λnxn−1

(n− 1)!

n−1∑

j=0

(λx)j

j!
. (B.9)

The hypo-exponential distribution is obtained as a generalisation of the Erlang distribution,
where again the distribution of X =

∑n
i=1Xi is sought, but the Xi are distributed with

possibly different parameters λi.

A hypo-exponential distribution with two stages and parameters λ1 and λ2 has density and
probability distribution function

fX(x) =
λ1λ2

λ2 − λ1

(
e−λ1x − e−λ2x

)
, (B.10)

and

FX(x) = 1 − λ2

λ2 − λ1
e−λ1x +

λ1

λ2 − λ1
e−λ2x. (B.11)

The hazard rate of the hypo-exponential distribution is

fX(x) =
λ1λ2

(
e−λ1x − e−λ2x

)

λ2e−λ1x − λ1e−λ2x
(B.12)

The Hyperexponential Distribution

Let X1, . . . ,Xn be mutually independent exponentially distributed random variables with
parameters λ1, . . . , λn. Let X be a random variable that is distributed as Xi with probability
pi and

∑n
i=1 pi = 1. Then X has a n-stage hyperexponential distribution

fX(x) =
n∑

i=1

piλie
−λix, (B.13)

and

FX(x) =

n∑

i=1

pi(1 − e−λix) x ≥ 0. (B.14)

B.2. Continuous Probability Distributions 221

With hazard rate function

hX(x) =

∑n
i=1 piλie

−λix

∑n
i=1 pie−λix

x > 0. (B.15)

The hyperexponential distribution has higher variance than the exponential distribution. It
can be used to model a mixture of different classes of jobs that are distributed with different
parameters.

The mixed hyper/hypo-exponential Distribution

The mixed hyper/hypo-exponential distribution can be made to be never, always or sometimes
amenable to restart, depending on the chosen parameters. The mixed hyper/hypo-exponential
random variable takes with probability pi a value from an Erlang distribution with Ni phases
and parameter λi > 0, i = 1, 2, . . . ,M, and

∑M
i=1 pi = 1. So, we get for the distribution FM

and density fM (refer, for instance, to [Hav98]):

FM (t) =

M∑

i=1

pi(1 −
Ni−1∑

j=0

(λit)
j

j!
e−λit),

fM(t) =
M∑

i=1

piλ
Ni

i

tNi−1

(Ni − 1)!
e−λit.

In Section 4.2 we apply the following parameter values: M = 2, with p1 = 0.9, p2 = 0.1;
N1 = N2 = 2, with λ1 = 20, λ2 = 2; and c = 0, unless otherwise stated. This mixed
distribution has neither monotonically increasing or decreasing hazard rate, see Figure 4.6,
which implies that it depends on the chosen restart time whether restart improves completion
time.

The Weibull distribution

The Weibull distribution is used to model fatigue failure of components. Its density, proba-
bility distribution and hazard rate function are respectively

fX(x) = λααxα−1e−(λx)α

, (B.16)

and
FX(x) = 1 − e−(λx)α

x ≥ 0. (B.17)

With hazard rate function
hX(x) = λααxα−1 (B.18)

and cumulative hazard rate function

HX(x) = λαxα. (B.19)

In all functions x ≥ 0 and α, λ > 0. The hazard rate function of the Weibull distribution
can be either increasing, decreasing or constant, depending on the value of α, which makes it

222 B. Important Probability Distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

p
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n

x

α = 1
α = 2
α = 5

α = 0.5
α = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

p
ro

b
ab

il
it

y
 d

is
tr

ib
u

ti
o

n
 f

u
n

ct
io

n

x

α = 1
α = 2
α = 5

α = 0.5
α = 0.1

Figure B.3: The probability density (left) and probability distribution function of the Weibull
distribution (right) (λ = 1).

a very flexible distribution in describing life times. For α = 1 it reduces to the exponential
distribution, α > 1 implies increasing failure rate (aging), while α < 1 means decreasing
failure rate. The expectation of the Weibull distribution is

E[X] =
1

λ
· Γ(1 +

1

α
) (B.20)

and its Variance

V ar[X] =
1

λ2
·
(

Γ(1 +
1

α
) + Γ(1 +

2

α
)

)
(B.21)

where Γ denotes the Gamma function.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6

h
az

ar
d

 r
at

e

x

α = 1
α = 2
α = 5

α = 0.5
α = 0.1

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6

cu
m

u
la

ti
v

e
h

az
ar

d
 r

at
e

x

α = 1
α = 2
α = 5

α = 0.5
α = 0.1

Figure B.4: The hazard rate (left) and cumulative hazard rate function of the Weibull distri-
bution (right) (λ = 1).

The Lognormal distribution

A lognormal distribution relates closely to the normal distribution: one obtains a normal
distribution if one takes the logarithm of samples of a lognormal distributed random variable.

B.2. Continuous Probability Distributions 223

To define a lognormal distribution uniquely, we need two parameters, and usually one takes
the parameters µ and σ that correspond to the mean and standard deviation of the normal
distribution constructed as explained above.

A lognormal distributed random variable with parameters µ and σ has density

f(x) =
1

σx
√

(2π)
e

−(ln(x)−µ)2

2σ2 .

0.1 0.2 0.3 0.4 0.5
t

1

2

3

4

5

6

fHtL lognormal density function

0.2 0.4 0.6 0.8
t

2

4

6

8

hHtL lognormal hazard rate

Figure B.5: The probability density (left) and hazard rate (right) of a lognormal distribution
(µ = −2.3, σ = 0.97).

Appendix C

Estimating the Hazard Rate

C.1 Cumulative hazard rate

The cumulative hazard rate is estimated using the Nelson-Aalen estimator, which has espe-
cially good small sample performance. The Nelson-Aalen estimator is

Ĥ(t) =

{
0 if t ≤ t1∑

ti≤t
di

Yi
if t1 ≤ t.

(C.1)

The estimated variance of the Nelson-Aalen estimator is

σ2
H(t) =

∑

ti≤t

di

Y 2
i

. (C.2)

C.2 Epanechnikov kernel

For the kernel K(.) the Epanechnikov kernel is used

K(x) = 0.75(1 − x2) for − 1 ≤ x ≤ 1 (C.3)

as it is shown in [KM97] to be often more accurate than other kernel functions. When t−b < 0
or t+ b > tD the symmetric kernel must be transformed into an asymmetric one, which is at
the lower bound with q = t/b

Kq(x) = K(x)(α + βx), for − 1 ≤ x ≤ q, (C.4)

where

α =
64(2 − 4q + 6q2 − 3q3)

(1 + q)4(19 − 18q + 3q2)
(C.5)

β =
240(1 − q)2

(1 + q)4(19 − 18q + 3q2)
(C.6)

For time-points in the right-hand tail q = (tD − 1)/b the kernel function is Kq(−x).

224

C.3. Bandwidth Estimation 225

C.3 Bandwidth Estimation

The mean integrated squared error (MISE) of the estimated hazard rate ĥ over the range τmin

to τmax is defined by

MISE(b) = E

(∫ τmax

τmin

[ĥ(u) − h(u)]2 du

)

= E

(∫ τmax

τmin

ĥ2(u) du

)
− 2E

(∫ τmax

τmin

ĥ(u)h(u) du

)

+E

(∫ τmax

τmin

h2(u) du

)
. (C.7)

This function depends on the bandwidth b used in the Epanechnikov kernel. The last term
does not contain b and can be ignored when finding the best value of b. The first term is
estimated by

∫ τmax

τmin
ĥ2(u) du. We evaluate ĥ(u) at a not necessarily equi-distant grid of points

τmin = u1 < u2 < . . . < uM = τmax and apply the trapezoid rule. The second term we
approximate by a cross-validation estimate suggested by Ramlau-Hansen where we sum over
the event times between τmin and τmax.

Appendix D

The Laplace and the
Laplace-Stieltjes Transform

This summary is taken from [Tel94]. The Laplace transform (LT) and Laplace-Stieltjes trans-
form (LST) apply to functions F (t) satisfying F (t) = 0 for t > 0, F (0) is analytical and

∫ ∞

0−
|F (t)| e−ct dt <∞ ∀c > 0 ⇒ lim

t→∞
F (t) e−ct = 0 ∀c. (D.1)

The Laplace transform F ∗(t) of F (t) is defined as

F ∗(s) =

∫ ∞

0−
F (t) e−st dt (D.2)

and the Laplace-Stieltjes transform is defined as

F∼(s) =

∫ ∞

0−
e−st dF (t). (D.3)

In [Tel94] the relation of both transforms is shown to be

F∼(s) = sF ∗(s). (D.4)

The Laplace-Stieltjes transform is of particular interest since it allows the manipulation of
distributions when no analytical expression for the density exists.

The following table summaries the most important properties of the Laplace and the Laplace-
Stieltjes transform.

226

227

Time domain LT domain LST domain

F (t), t ≥ 0 F ∗(s) =
∞∫

0−
F (t)e−st dt F∼(s) =

∞∫

0−
e−st dF (t)

aF (t) + bG(t) aF ∗(t) + bG∗(t) aF∼(t) + bG∼(t)

F (t
a), a > 0 aF ∗(as) F∼(as)

F (t− a), a > 0 e−asF ∗(s) e−asF∼(s)

t∫

0−
F (τ)G(t − τ) dτ F ∗(s)G∗(s) 1

sF
∼(s)G∼(s)

t∫

0−
G(t− τ) dF (τ) sF ∗(s)G∗(s) F∼(s)G∼(s)

dF (t)
dt sF ∗(s) − F (0) s[F∼(s) − F (0)]

∞∫

0−
F (t) dt lim

s→0
F ∗(s) 1

s lim
s→0

F∼(s)

∞∫

0−
dF (t) = lim

t→∞
F (t) lim

s→0
sF ∗(s) lim

s→0
F∼(s)

lim
t→0

F (t) lim
s→∞

sF ∗(s) lim
s→∞

F∼(s)

Bibliography

[ABCD95] M. Ajmone Marsan, G. Balbo, G. Conte, and S. Donatelli. Modelling with
Generalized Stochastic Petri Nets. Series in Parallel Computing. John Wiley &
Sons, 1995.

[AGM+96] H. Alt, L. Guibas, K. Mehlhorn, R. Karp, and A. Wigderson. A Method for
Obtaining Randomized Algorithms with Small Tail Probabilities. Algorithmica,
16(4/5):543–547, 1996.

[AS72] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, 9th edition
edition, 1972.

[Avi85] A. Avizienis. N-Version Approach to Fault-Tolerant Software. IEEE Transac-
tions on Software Engineering, 11(12):1491–1501, Dec. 1985.

[AW97] A. Avritzer and E. J. Weyuker. Monitoring Smoothly Degrading Systems for
Increased Dependability. Empirical Software Engineering, 2(1):59–77, 1997.

[Bac81] F. Baccelli. Analysis of a Service Facility with Periodic Checkpointing. Acta
Informatica, 15:67–81, 1981.

[BGG+99] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno, and M. Telek.
Modeling Software Systems with Rejuvenation, Restoration and Checkpoint-
ing through Fluid Stochastic Petri Nets. In Proceedings of the international
conference on Petri Nets and Performance Models (PNPM’99), pages 82–91,
Zaragoza, Spain, Sept. 1999. IEEE CS Press.

[BMS02] M. Bertier, O. Marin, and P. Sens. Implementation and Performance Evalua-
tion of an Adaptable Failure Detector. In DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, pages 354–363,
Washington, DC, USA, 2002. IEEE Computer Society.

[BPTT98] A. Bobbio, A. Puliato, M. Telek, and K. Trivedi. Recent Developments in non-
Markovian Stochastic Petri Nets. Journal of Systems Circuits and Computers,
8(1):119–158, 1998.

[Bro79] A. Brock. An Analysis of Checkpointing. ICL Technical Journal, 1(3):211–228,
1979.

228

BIBLIOGRAPHY 229

[BSA01] A. Bobbio, M. Sereno, and C. Anglano. Fine grained software degradation
models for optimal rejuvenation policies. Performance Evaluation, 46(1):45–62,
2001.

[BT01] A. Bobbio and M. Telek. Performability Modelling: Techniques and Tools, chap-
ter 7: The Task Completion Time in Degradable Systems, pages 139 –161. Wiley,
2001.

[CBDU75] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig. Analytic Models
for Rollback and Recovery Strategies in Data Base Systems. IEEE Transactions
on Software Engineering, SE-1(1):100–110, March 1975.

[CBFP04] G. Candea, A. B. Brown, A. Fox, and D. A. Patterson. Recovery-Oriented
Computing: Building Multitier Dependability. IEEE Computer, 37(11):60–67,
2004.

[CCF+02] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda. Reducing
Recovery Time in a Small Recursively Restartable System. In Proceedings of
the International Conference on Dependable Systems and Networks (DSN-2002),
Washington, D.C., June 2002. IEEE Computer Society.

[CCF04] G. Candea, J. Cutler, and A. Fox. Improving Availability with Recursive Mi-
croreboots: A Soft-State System Case Study. Performance Evaluation, 56(1-
3):213–248, 2004.

[CDD+04] T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and W. H.
Sanders. The Möbius Modeling Environment: Recent Developments. In Proceed-
ings of the 1st International Conference on Quantitative Evaluation of Systems
(QEST 2004), pages 328–329, Enschede, The Netherlands, September 2004.

[CG90] E. G. Coffman Jr. and E. N. Gilbert. Optimal Strategies for Scheduling Check-
points and Preventive Maintenance. IEEE Transactions on Reliability, 39(1):9–
18, April 1990.

[Cha75] K. M. Chandy. A Survey of Analytic Models of Rollback and Recovery Strate-
gies. Computer, 8(5):40–47, 1975.

[CHH+01] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert. Proactive Management of Software Aging.
IBM Journal of Research and Development, 45(2):311–332, 2001.

[Cin75] E. Cinlar. Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs,
1975.

[CJSS98] P. Chalasani, S. Jha, O. Shehory, and K. Sycara. Query Restart Strategies for
Web Agents. In Proceedings of Agents98. AAAI Press, 1998.

[CKF+04] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot: A
Technique For Cheap Recovery. In 2004 USENIX/ACM Symposium on Operat-
ing Systems Design & Implementation (OSDI 2004), San Francisco, CA, USA,
December 2004.

230 BIBLIOGRAPHY

[CNT99] G. Ciardo, D. Nicol, and K.S. Trivedi. Discrete-event simulation of fluid stochas-
tic petri nets. IEEE Trans. Softw. Eng., 25(2):207–217, March/April 1999.

[CR72] K. M. Chandy and C. V. Ramamoorthy. Rollback and Recovery Strategies for
Computer Programs. IEEE Transactions on Computers, C-21(6):546–556, June
1972.

[CTA00] W. Chen, S. Toueg, and M. K. Aguilera. On the Quality of Service of Fail-
ure Detectors. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2000), pages 191–200, 2000.

[DGPT00a] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi. Analysis of Software Cost
Models with Rejuvenation. In Fifth IEEE International Symposium on High
Assurance Systems Engineering, (HASE 2000), pages 25–34, 2000.

[DGPT00b] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi. Statistical Non-Parametric
Algorithms to Estimate the Optimal Software Rejuvenation Schedule. In Pacific
Rim International Symposium on Dependable Computing, (PRDC 2000), pages
77–84, December 2000.

[Dud83] A. Duda. The Effects of Checkpointing on Program Execution Time. Informa-
tion Processing Letters, 16(5):221–229, 1983.

[DvB94] J. B. Dugan and R. van Buren. Reliability Evaluation of Fly-by-Wire Computer
Systems. Journal of Systems and Software, 25(1):109–120, 1994.

[EAWJ02] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys,
34(3):375–408, 2002.

[EP04] E. N. Elnozahy and J. S. Plank. Checkpointing for Peta-Scale Systems: A
Look into the Future of Practical Rollback-Recovery. IEEE Transactions on
Dependable and Secure Computing, 1(2):97–108, April-June 2004.

[FB05] L. Falai and A. Bondavalli. Experimental Evaluation of the QoS of Failure
Detectors on Wide Area Network. In DSN ’05: Proceedings of the 2005 In-
ternational Conference on Dependable Systems and Networks (DSN’05), pages
624–633, Washington, DC, USA, 2005. IEEE Computer Society.

[FP02] A. Fox and D. Patterson. When Does Fast Recovery Trump High Reliability.
In Proc.Second Workshop on Evaluating and Architecting System dependabilitY
(EASY), San Jose, CA, USA, October 2002.

[GC04] V. P. Guddeti and B. Y. Choueiry. An Empirical Study of a New Restart Strat-
egy for Randomized Backtrack Search. In Proc. Workshop on CSP Techniques
with Immediate Application (CP 04), pages 66–82, 2004.

[GD78] E. Gelenbe and D. Derochette. Performance of Rollback Recovery Systems under
Intermittent Failures. Communications of the ACM, 21(6):493–499, 1978.

BIBLIOGRAPHY 231

[GDT92] V. Grassi, L. Donatiello, and S. Tucci. On the Optimal Checkpointing of Critical
Tasks and Transaction-Oriented Systems. Transactions on Software Engineer-
ing, 18(1):72–77, January 1992.

[Gel79] E. Gelenbe. On the Optimum Checkpoint Interval. Journal of the ACM,
26(2):259–270, 1979.

[Ger94] R. German. Analysis of Stochastic Petri Nets with Non-Exponentially Dis-
tributed Firing Times. PhD thesis, TU Berlin, 1994.

[Ger00a] R. German. Performance of Communication Systems, Modeling with Non-
Markovian Stochastic Petri Nets. Wiley, 2000.

[Ger00b] I. Gertsbakh. Reliability Theory, With Applications to Preventive Maintenance.
Springer Verlag, Berlin, 2000.

[GH90] E. Gelenbe and M. Hernández. Optimum Checkpoints with Age Dependent
Failures. Acta Informatica, 27:519–531, 1990.

[GH02] M. Gribaudo and A. Horvath. Fluid Stochastic Petri Nets Augmented with
Flush-Out Arcs: A Transient Analysis Technique. IEEE Trans. Softw. Eng.,
28(10):944–955, 2002.

[GHKT95] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Time and Load Based Software
Rejuvenation: Policy, Evaluation and Optimality. In Proc. First Conference on
Fault-Tolerant Systems, IIT Madras, Dec. 1995.

[GHKT96] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimizing Completion
Time of a Program by Checkpointing and Rejuvenation. In SIGMETRICS
’96: Proceedings of the 1996 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 252–261, New York,
NY, USA, 1996. ACM Press.

[GNTT87] A. Goyal, V. F. Nicola, A. N. Tantawi, and K. S. Trivedi. Reliability of Systems
with Limited Repairs. IEEE Transactions on Reliability, R-36(2):202–207, 1987.

[GPTT95] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. Analysis of Software Reju-
venation using Markov Regenerative Stochastic Petri Net. In Proc. 6th Int.
Symposium on Software Reliability Engineering (ISSRE95), Toulouse, France,
October 1995.

[GPTT97] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. On the Analysis of Software
Rejuvenation Policies. In Proc. 12th Annual Conference on Computer Assurance
(COMPASS’97), Gaithersberg, MD, USA, June 1997.

[GPTT98] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. Analysis of Preventive Main-
tenance in Transactions Based Software Systems. IEEE Transactions on Com-
puters, 47(1):96–107, 1998.

[Gra86] J. Gray. Why do computers stop and what can be done about it? In Proc. 5th
Symp. on Reliability in Distributed Software and Database Systems, pages 3–12,
Jan. 1986.

232 BIBLIOGRAPHY

[Gra04] Getting Up to Speed: The Future of Supercomputing. The National Academies
Press, 2004.

[GRW88] A. Geist, R. Reynolds, and J. Westall. Selection of a Checkpoint in a Cirical-
Task Environment. IEEE Transactions on Reliability, 37(4):395–400, 1988.

[GSHB01] M. Gribaudo, M. Sereno, A. Horvath, and A. Bobbio. Fluid stochastic Petri
nets augmented with flush-out arcs: Modelling and Analysis. Discrete Event
Dynamic Systems: Theory and Applications, 11:97– 117, January 2001.

[GSK98] C. P. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through
Randomization. In Proc. Fifteenth National Conference on Artificial Intelligence
(AAAI’98), pages 431–437, Madison, WI, USA, 1998.

[GvMVT98] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi. A Methodology
for Detection and Estimation of Software Aging. In Proc. International Sympo-
sium on Software Reliability Engineering (ISSRE), pages 283–292, Paderborn,
Germany, Nov. 1998. IEEE Computer Society.

[Hav98] B. R. Haverkort. Performance of Computer Communication Systems: A Model-
Based Approach. John Wiley & Sons, Chichester, UK, 1998.

[HCLT02] Y. Hong, D. Chen, L. Li, and K. S. Trivedi. Closed Loop Design for Software Re-
juvenation. In Workshop on Self-Healing, Adaptive, and Self-Managed Systems
(SH AMAN, 2002.

[HKC02] J. Hong, S. Kim, and Y. Cho. Cost Analysis of Optimistic Recovery Model
for Forked Checkpointing. IEICE Transactions on Information and Systems,
E-85A(1), January 2002.

[HKKF95] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software Rejuvenation:
Analysis, Module and Applications. In Proc. 25th Symposium on Fault Tolerant
Computing, pages 381–390, Pasadena, CA, June 1995. IEEE.

[HKNT98] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. Fluid Stochastic
Petri Nets: Theory, Applications and Solution. European Journal of Operations
Research, 105(1):184–201, February 1998.

[Jac88] V. Jacobson. Congestion Avoidance and Control. ACM Computer Commu-
nication Review; Proceedings of the Sigcomm ’88 Symposium in Stanford, CA,
August, 1988, 18(4):314–329, 1988.

[KBGS05] S. Kowshik, G. Baliga, S. Graham, and L. Sha. Co-Design Based Approach to
Improve Robustness in Networked Control Systems. In International Conference
on Dependable Systems and Networks (DSN’05), pages 454–463, Kyoto, Japan,
2005.

[KLS84] C. M. Krishna, Y.-H. Lee, and K. G. Shin. Optimization Criteria for Checkpoint
Placement. Communications of the ACM, 27(10):1008–1012, 1984.

[KM97] J. P. Klein and M. L. Moeschberger. Survival Analysis, Techniques for Censored
and Truncated Data. Springer, 1997.

BIBLIOGRAPHY 233

[KNST86] V. G. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi. Numerical
Evaluation of Performability and Job Completion Time in Repairable Fault-
Tolerant Systems. In Proc. Sixteenth International Symposium on Fault-Tolerant
Computing, pages 252–257. IEEE, Computer Society Press, 1986.

[KNT87] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. The completion time of a job
on multimode systems. Advances in Applied Probability, 19:923–954, 1987.

[KNT90] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. Effects of Checkpointing
and Queueing on Program Performance. Communications of Stochastic Models,
6(4):615–648, 1990.

[KR00] S. Kalaiselvi and V. Rajaraman. A Survey of Checkpointing Algorithms for
Parallel and Distributed Computers. Sadhana, 25(5):489–510, October 2000.

[KR01] B. Krishnamurthy and J. Rexford. Web Protocols and Practice. Addison Wesley,
2001.

[KS83] C. M. Krishna and K. G. Shin. Performance Measures for Multiprocessor Con-
trollers. In Performance ’83: Proceedings of the 9th International Symposium
on Computer Performance Modelling, Measurement and Evaluation, pages 229–
250. North-Holland, 1983.

[KT87] R. Koo and S. Toueg. Checkpointing and Rollback-Recovery for Distributed
Systems. IEEE Transactions on Software Engineering, SE-13(1):23–31, 1987.

[Kul95] V. G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall,
Ltd., London, UK, 1995.

[LA92] M. Lyu and A. Avizienis. ”assuring design diversity in n-version software: A
design paradigm for n-version programming”. In J.F. Meyer and R.D. Schlicht-
ing, editors, Proc. Dependable Computing and Fault-Tolerant Systems, pages
197–218. Springer-Verlag/Wien, Austria, 1992.

[LC84] C. H. C. Leung and Q. H. Choo. On the Execution of Large Batch Programs in
Unreliable Computing Systems. IEEE Transactions on Software Engineering,
10(4):444–450, 1984.

[LCC00] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring Failure Transparency
and the Limits of Generic Recovery. In Proc. Fourth USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2000), pages 289–303,
San Diego, CA, USA, October 2000.

[LF90] C.-C.J. Li and W. K. Fuchs. CATCH-Compiler-Assisted Techniques for Check-
pointing. In Proc. 20th Internationall Symposium on Fault-Tolerant Computing,
pages 74–81. IEEE Computer Society, June 1990.

[LK91] A. M. Law and W. D. Kelton. Simulation Modeling & Analysis. Industrial
Engineering and Management Science. McGraw Hill, Inc., second edition, 1991.

234 BIBLIOGRAPHY

[LKF04] B. C. Ling, E. Kiciman, and A. Fox. Session State: Beyond Soft State. In Pro-
ceedings of the 1st Symposium on Network Systems Design and Implementation
(NSDI) , pages 295–308, San Francisco, CA, USA, March 2004.

[LM88] P. L’Ecuyer and J. Malenfant. Computing Optimal Checkpointing Strategies for
Rollback and Recovery Systems. IEEE Transactions on Computers, 37(4):491–
496, 1988.

[LSZ93] M. Luby, A. Sinclair, and D. Zuckerman. Optimal Speedup of Las Vegas Al-
gorithms. In Proc. Israel Symposium on Theory of Computing Systems, pages
128–133, 1993.

[LTM+02] Y. Liu, K. S. Trivedi, Y. Ma, J. J. Han, and H. Levendel. Modeling and Analysis
of Software Rejuvenation in Cable Modem Termination Systems. In Proc. 13th
International Symposium on Software Reliability Engineering (ISSRE 2002),
pages 159–170, Annapolis, MD, USA, November 2002.

[Lyu88] M. Lyu. ”A Design Paradigm for Multi-Version Software Mathematics Subject
Classification”. PhD thesis, University of California, Los Angeles, 1988.

[Mag83] M. J. Magazine. Optimality of Intuitive Checkpointing Policies. Information
Processing Letters, 17(2):63–66, 1983.

[McC65] J. J. McCall. Maintenance Policies for Stochastically Failing Equipment: A
Survey. Management Science, 11:493–521, 1965.

[MH01] S. M. Maurer and B. A. Huberman. Restart strategies and Internet congestion.
Journal of Economic Dynamics and Control, 25:641–654, 2001.

[Mit70] D. S. Mitrinovic. Analytic Inequalities. Springer Verlag, New York, 1970.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, 1995.

[MV96] D. F. McAllister and M. A. Vouk. Handbook of Software Reliability Engineer-
ing, chapter Fault-Tolerant Software Reliability Engineering, pages 567–614.
McGraw-Hill, New York, NY, USA, 1996.

[NBT92] V. F. Nicola, A. Bobbio, and K. S. Trivedi. A Unified Perfomance Reliability
Analysis of a System with a Cumulative Down Time Constraint. Microelectron-
ics Reliability, 32(1/2):49–65, 1992.

[Nic95] V. F. Nicola. Software Fault Tolerance, volume 3 of Trends in Software, chapter
7, Checkpointing and the Modeling of Program Execution Time, pages 167–188.
Wiley & Sons, Chichester, UK, 1995.

[ORS06] A. J. Oliner, L. Rudolph, and R. Sahoo. Cooperative Checkpointing Theory.
In Proc. Parallel and Distributed Processing Symposium, 2006. IEEE Computer
Society, ACM, IEEE Computer Society, January 2006.

BIBLIOGRAPHY 235

[OS06] A. J. Oliner and R. Sahoo. Evaluating Cooperative Checkpointing for Super-
computing Systems. In Proc. 2nd Workshop on System Management Tools
for Large-Scale Parallel Systems (SMTPS) at IPDPS. IEEE Computer Society,
ACM, IEEE Computer Society, January 2006.

[PA00] V. Paxson and M. Allmann. Computing TCP’s Retransmission Timer. RFC
2988, IETF, Nov. 2000. http://www.rfc-editor.org/rfc/rfc2988.txt.

[PGT+96] A. Pfening, S. Garg, M. Telek, A. Puliafito, and K. S. Trivedi. Optimal Software
Rejuvenation for Tolerating Soft Failures. Performance Evaluation, 27 & 28:491–
506, October 1996.

[Pon01] Marty Poniatowski. UNIX User’s Handbook. Prentice Hall, 2001.

[PV76] W. P. Pierskalla and J. A. Voelker. A Survey of Maintenance Models: The
Control and Surveillance of Deteriorating Systems. Naval Research Logistics
Quarterly, 23:353–388, 1976.

[Ran75] B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions
on Software Engineering, SE-1(2):221–232, 1975.

[RHK02] Y. Ruan, E. Horvitz, and H. Kautz. Restart Policies with Dependence among
Runs: A Dynamic Programming Approach. In Proceedings of the Eight In-
ternational Conference on Principles and Practice of Constraint Programming,
Ithaca, NY, USA, Sept. 2002.

[RvMW04] P. Reinecke, A. van Moorsel, and K. Wolter. A Measurement Study of the
Interplay between Application Level Restart and Transport Protocol. In Proc.
International Service Availability Symposium (ISAS), number 3335 in Lecture
Notes in Computer Science, Munich, Germany, May 2004. Springer.

[RvMW06a] P. Reinecke, A. P. A. van Moorsel, and K. Wolter. Experimental Analysis of the
Correlation of HTTP GET Invocations. In M. Telek and A. Horvath, editors,
Proc.3rd European Performance Engineering Workshop, volume 4054 of LNCS.
Springer, 2006.

[RvMW06b] P. Reinecke, A. P. A. van Moorsel, and K. Wolter. The Fast and the Fair: A
Fault-Injection-Driven Comparison of Restart Oracles for Reliable Web Services.
In Proc.3rd International Conference on the Quantitative Evaluation of SysTems
(QEST) 2006, Riverside, CA, USA, September 2006. IEEE.

[SB01] M. Schroeder and L. Buro. Does the Restart Method Work? Preliminary Re-
sults on Efficiency Improvements for Interactions of Web-Agents. In T. Wagner
and O. Rana, editors, Proc. Workshop on Infrastructure for Agents, MAS, and
Scalable MAS at the Conference Autonomous Agents, Montreal, Canada, 2001.
Springer Verlag.

[SHM05] F. Salfner, G. A. Hoffmann, and M. Malek. Prediction-based software avail-
ability enhancement. In O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer,
S. Leonardi, A. van Moorsel, and M. van Steen, editors, Self-Star Properties in
Complex Information Systems, volume 3460 of LNCS. Springer-Verlag, 2005.

236 BIBLIOGRAPHY

[SLL87] K. G. Shin, T-H. Lin, and Y-H. Lee. Optimal Checkpointing of Real-Time
Tasks. IEEE Transactions on Computers, C-36(11):1328–1341, 1987.

[SM01] W. H. Sanders and J. F. Meyer. Stochastic Activity Networks: Formal Defini-
tions and Concepts. In E. Brinksma, H. Hermanns, and J. P. Katoen, editors,
Lectures on Formal Methods and Performance Analysis, First EEF/Euro Sum-
mer School on Trends in Computer Science, number 2090 in Lecture Notes in
Computer Science, pages 315–343. Berlin: Springer, Berg en Dal, The Nether-
lands, July, 2000 2001. Revised Lectures.

[Spr] Sprint. http://www.sprintworldwide.com/english/solutions/sla/. last seen Jan.
06.

[SS82] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems: Design and
Evaluation. Digital Press, second edition, 1982.

[SSB+05] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove, and
E. Roman. The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing. International Journal of High Performance Computing Applica-
tions, 19(4):479–493, Winter 2005.

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, 1996.

[Tar04] A. Taraz, Dec. 2004. Personal Communication.

[TB84] S. Toueg and Ö. Babaog̃lu. On the Optimum Checkpoint Selection Problem.
SIAM Journal on Computing, 13(3):630–649, 1984.

[Tel94] M. Telek. Some Advanced Reliability Modelling Techniques. PhD thesis, Tech-
nical University of Budapest, Hungary, 1994.

[TK93] K. S. Trivedi and V. G. Kulkarni. FSPNs: Fluid Stochastic Petri Nets. In
Proc. 14th Int. Conf. on the Application and Theory of Petri Nets, pages 24–31,
Chicago, 1993.

[TPV86] S. Thanawastien, R. S. Pamula, and Y. L. Varol. Evaluation of Global Check-
point Rollback Strategies for Error Recovery in Concurrent Processing Systems.
In Proc. Sixteenth International Symposium on Fault-Tolerant Computing, pages
246–251. IEEE, Computer Society Press, 1986.

[TR84] A. N. Tantawi and M. Ruschitzka. Performance Analysis of Checkpointing
Strategies. ACM Transactions on Computer Systems, 2(2):123–144, May 1984.

[Tri01] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. John Wiley and Sons, 2001.

[TVGP00] K. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova. Modeling and Anal-
ysis of Software Aging and Rejuvenation. In Proc. 33 rd Annual Simulation
Symp., pages 270–279, Los Alamitos, CA, USA, 2000. IEEE Computer Society
Press.

BIBLIOGRAPHY 237

[Vai97] N. H. Vaidya. Impact of Checkpoint Latency on Overhead Ratio of a Check-
pointing Scheme. IEEE Transactions on Computers, 46(8):942–947, 1997.

[VFF89] C. Valedez-Flores and R. M. Feldman. A Survey of Preventive Maintenance
Models for Stochastically Deteriorating Single-Unit Systems. Naval Research
Logistics, 36:419–446, 1989.

[VHHT01] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi. Analysis and
Implementation of Software Rejuvenation in Cluster Systems. SIGMETRICS
Perform. Eval. Rev., 29(1):62–71, 2001.

[vMW03a] A. van Moorsel and K. Wolter. Optimization of Failure Detection Retry Times.
In Proc. The International Conference on Dependable Systems and Networks
(DSN 2003), San Francisco, CA, USA, 2003. fast abstract.

[vMW03b] A. van Moorsel and K. Wolter. Optimization of Failure Detection Retry Times.
In Proc. Performability Workshop, Monticello, IL, USA, September 2003.

[vMW04a] A. van Moorsel and K. Wolter. Analysis and Algorithms for Restart. In Proc. 1st
International Conference on the Quantitative Evaluation of Systems (QEST),
pages 195–204, Twente, The Netherlands, September 2004. Best paper award.

[vMW04b] A. van Moorsel and K. Wolter. Making Deadlines through Restart. In Proc.
12th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer
and Communication Systems (MMB 04), pages 155–160, Dresden, Germany,
September 2004. VDE.

[vMW04c] A. van Moorsel and K. Wolter. Optimal Restart Times for Moments of Comple-
tion Time. In Proc. UK Performance Engineering Workshop (UKPEW 2004),
Bradford, July 2004. Selected for a special issue of IEE Proceedings Software
Journal.

[vMW04d] A. P. A. van Moorsel and K. Wolter. Optimal restart times for moments of
completion time. IEE Proceedings Software, 151(5), 2004.

[vMW05] A. P. A. van Moorsel and K. Wolter. A Short Investigation into an Un-
derexplored Model for Retries. In Proc. Seventh International Workshop on
Performability of Computer and Communication Systems (PMCCS-7), Torino,
Italy, September 2005.

[vMW06] A. P. A. van Moorsel and K. Wolter. Analysis of restart mechanisms in soft-
ware systems. IEEE Transactions on Software Engineering, 2006. accepted for
publication.

[vN56] J. L. von Neumann. Probabilistic Logics and the Synthesis of Reliable Organisms
From Unreliable Components. Automata Studies, pages 43–98, 1956.

[VST02] K. Vaidyanathan, D. Selvamuthu, and K. S. Trivedi. Analysis of Inspection-
Based Preventive Maintenance in Operational Software Systems. In 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002), pages 286–295, Osaka,
Japan, 2002.

238 BIBLIOGRAPHY

[VT99] K. Vaidyanathan and K. S. Trivedi. A Measurement-Based Model for Esti-
mation of Resource Exhaustion in Operational Software Systems. In ISSRE
’99: Proceedings of the 10th International Symposium on Software Reliability
Engineering, pages 84–93, Washington, DC, USA, Nov. 1999. IEEE Computer
Society.

[Wal99] T. Walsh. Search in a Small World. In Proc. International Joint Conference on
AI (IJCAI), pages 1172–1177, 1999.

[WHV+95] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. M. R. Kintala. Check-
pointing and Its Applications. In Symposium on Fault-Tolerant Computing
(FTCS-25), pages 22–31. IEEE, June 1995.

[Wol97] K. Wolter. Second Order Fluid Stochastic Petri Nets: an Extension of GSPNs
for Approximate and Continuous modelling. In Proc. 1st World Congress on
Systems Simulation (WCSS’97), pages 328–332, Singapore, Sept. 1–3 1997.

[Wol99] K. Wolter. Jump Transitions in Second Order FSPNs. In Proc. 7th Int. Symp.
on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS’99), pages 156–163, Washington DC, USA, October 1999.
IEEE-CS Press.

[Wol05] K. Wolter. Self-Star Properties in Complex Information Systems, volume 3460
of Lecture Notes in Computer Science, chapter Self-Management of Systems
through Automatic Restart, pages 189–203. Springer, 2005.

[WvM04] K. Wolter and A.P.A. van Moorsel. Self-management of systems through auto-
matic restart. In SELF-STAR: International Workshop on Self-* Properties in
Complex Information Systems. Bertinoro, Italy, June 2004.

[WZ01] K. Wolter and A. Zisowsky. On Markov Reward Modelling with FSPNs. Per-
formance Evaluation, 44:165–186, 2001.

[You74] J. W. Young. A First Order Approximation to the Optimum Checkpoint Inter-
val. Communications of the ACM, 17(9):530–531, 1974.

[ZB97] A. Ziv and J. Bruck. An On-Line Algorithm for Checkpoint Placement. IEEE
Transactions on Computers, 46(9):976–985, September 1997.

[ZFGH00] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri Net Modelling
and Performability Evaluation with TimeNET 3.0. In TOOLS ’00: Proceed-
ings of the 11th International Conference on Computer Performance Evaluation:
Modelling Techniques and Tools, pages 188–202, London, UK, 2000. Springer-
Verlag.

Index

age replacement, 110

aging, 118

alert threshold, 136

algorithm

equidistant restart intervals, 87

equihazard restart interval, 85

rectangle equals surface rule, 95

approximation

bulk, 79

geometric, 64

left boundary, 79

right boundary, 79

availability

expected, 125

steady-state, 126

backward algorithm, 66

backward optimisation algorithm, 69

backward, forward and alternating optimi-
sation algorithm, 77

block replacement, 110

checkpoint

coordinated, 155

checkpointing

cooperative, 153

distributed systems, 154

equicost, 196

equidistant, 195

forked, 152, 159

modular, 173

random, 173

sequential, 151

completion time
moments of, 57

compression factor, 186

cost

downtime, 144

rejuvenation, 138, 144

repair, 138
cron daemon, 114
CTMC

subordinated, 131
cusp point, 80
cut, 154

degradation, 135
shock, 136, 141

distribution
Erlang, 59
exponential, 49, 59
Gamma, 59
hyper/hypo-exponential, 61
uniform, 49
Weibull, 50, 119

domino effect, 155
downtime

bounded, 25
cost, 121
number of, 29

DSPN, 130
DTMC, 125

Epanechnikov kernel, 94
expected completion time

under restart, 48

failure detector
heartbeat, 44
ping style, 44

fairness, 45
fluid stochastic Petri net, 134

GSPN, 130

hazard rate, 21, 54, 67, 84, 90
confidence interval, 94
estimate, 93

inspection model, 110, 136

239

240 INDEX

kurtosis, 59
kurtosis excess, 59

Las Vegas algorithm, see randomised algo-
rithm

loss probability, 125, 126
loss rate, 45

Möbius, 118, 143
microreboot, 115
minimal repair model, 110
moments

central, 58
raw, 58

Monte Carlo algorithm, see randomised al-
gorithm

MRGP, 124
MRSPN, 134
MTTF, 115, 122
MTTR, 115, 122

optimistic recovery, 167
overhead ratio, 166

pessimistic recovery, 167
Petri net, 130
preemptive repeat, 24
preemptive resume, 24

Quicksort, 42

randomised algorithm
expected runtime, 44
Las Vegas algorithm, 42
Monte Carlo algorithm, 42
universal strategy, 44

recovery line, 154
repairable system, 22
response time, 126

bound, 126
risk level policy, 142

shock model, 110
skewness, 59
SMP, 118
SRN, 134
stochastic activity network (SAN), 118
stretch factor, 205
surface equals rectangle rule, 90

system lifetime, 18
expected, 26, 31, 35
under bounded accumulated down-

time, 30
under bounded downtime, 26
under bounded number of failures, 34

task completion
cumulative uptime, 27
probability of, 28, 32, 35

task completion time
bound on, 24
expected, 24
exponentially distributed, 49

task reliability, 32
preemptive repeat identical, 33

TCP, 45
connection setup, 46

timeliness, 45
TimeNET, 132

unreliable system, 21

watchd, 114
work requirement, 22

Glossary

CDF cumulative distribution function also named probability distribution function. See
also PDF

compression factor ρ factor of proportionality in reprocessing the audit trail equals utili-
sation of the queue Page 186

CTMC continuous-time Markov chain Page 131

DSPN deterministic and stochastic Petri net Page 130

DTMC discrete-time Markov chain Page 125

ER emergency repair Page 111

FSPN fluid stochastic Petri net Page 134

γ failure rate

GSPN generalised stochastic Petri net Page 130

iid independent and identically distributed Page 21

kurtosis β2, normalized form of the fourth central moment which describes the degree of
peakedness of a distribution. Page 59

kurtosis excess γ2, scaled kurtosis, such that the normal distribution has kurtosis excess
zero. Page 59

λ transaction arrival rate and scale parameter of the Weibull distribution.

LST Laplace-Stieltjes transform

MRGP Markov-regenerative process Page 124

MRSPN Markov-regenerative stochastic Petri net Page 134

MTBF mean time between failures Page 105

MTTF mean time to failure Page 115

MTTR mean time to repair Page 115

µ task processing rate

241

242 INDEX

ν repair rate

PDF Probability Distribution Function also named cumulative distribution function. See
also CDF

PDF Probability Distribution Function also named cumulative distribution function. See
also CDF

pdf Probability density function

PM preventive maintenance Page 111

Preemptive repeat different failure (prd) Failure mode where the performed work is
lost the task is reprocessed in stochastic different sense. Page 15

Preemptive repeat identical failure (pri) Failure mode where the performed work is
lost and the task is reprocessed in stochastic identical sense. Page 15

Preemptive resume failure (prs) Failure mode where the performed work is saved and
only the remainin work must be processed. Page 15

Program level checkpointing checkpoint, rollback and recovery of a long-running task.
Page 16

R recovery after failure, or rejuvenation, deterministic or random variable Page 124

Reboot Possible update or reinstallation of application, restart and retry of tasks. Page 16

Restart Reload of an application and reprocessing of tasks. Page 16

Retry Repetition of stochastically identical request or task. Page 16

RTO retransmission timeout Page 45

RTT round-trip time Page 45

SAN stochastic activity net Page 118

skewness third central moment expressing the steepness of the slope of a distribution.
Page 59

SLA service-level agreement Page 45

SMP semi-Markov process Page 118

SRN stochastic reward net Page 134

System level checkpointing saving the system state in a checkpoint and the request list
in an audit trail, rollback and recovery of the system state, replay of the audit trail.
Page 16

TCP transmission control protocol Page 45

