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4.10 Dirichlet problem in the circle and the Poisson kernel
Note: 2 lectures, , §9.7 in [EP], §10.8 in [BD]

4.10.1 Laplace in polar coordinates
Perhaps a more natural setting for the Laplace equation Δu = 0 is the circle rather than the square.
On the other hand, what makes the problem somewhat more difficult is that we need to use polar
coordinates.

Recall the polar coordinates for a plane

θ
r

(r, θ)
x = r cos θ, y = r sin θ,

where r ≥ 0 and −π < θ ≤ π.
Now that we know our coordinates, let us give the problem that we wish

to solve. We have a circular region of radius 1, and we are interested in the
Dirichlet problem for the Laplace equation for this region. Let u(r, θ) denote the temperature at the
point (r, θ) in polar coordinates. Then we have the problem:

u(1, θ) = g(θ)

radius 1

Δu = 0

Δu = 0, for r < 1,
u(1, θ) = g(θ), for −π < θ ≤ π. (4.25)

The first problem we face is that we do not know what
the Laplacian is in polar coordinates. Normally we would
find uxx and uyy in terms of the derivatives in r and θ. We
would need to solve for r and θ in terms of x and y. While
this is certainly possible. It happens to be more convenient
to do this in reverse. Let us instead compute derivatives in r
and θ in terms of derivatives of x and y and then solve. The
reason is that the computations are easier. First

xr = cos θ, xθ = −r sin θ, yr = sin θ, yθ = r cos θ.

Next by chain rule we obtain

ur = uxxr + uyyr = cos(θ)ux + sin(θ)uy,

urr = cos(θ)(uxxxr + uxyyr) + sin(θ)(uyxxr + uyyyr) = cos2(θ)uxx + 2 cos(θ) sin(θ)uxy + sin2(θ)uyy.

Similarly for the θ derivative. Note that we have to use product rule for the second derivative.

uθ = uxxθ + uyyθ = −r sin(θ)ux + r cos(θ)uy,
uθθ = −r cos(θ)ux − r sin(θ)(uxxxθ + uxyyθ) − r sin(θ)uy + r cos(θ)(uyxxθ + uyyyθ)
= −r cos(θ)ux − r sin(θ)uy + r2 sin2(θ)uxx − r22 sin(θ) cos(θ)uxy + r2 cos2(θ)uyy.
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Let us now try to solve for uxx + uyy. We start with 1
r2uθθ to get rid of those pesky r

2. If we add urr
and use the fact that cos2(θ) + sin2(θ) = 1, we get

1
r2
uθθ + urr = uxx + uyy − 1r cos(θ)ux −

1
r
sin(θ)uy.

We’re not quite there yet, but we notice that all we are lacking is 1
r ur. We therefore obtain the

Laplacian in polar coordinates:

1
r2
uθθ +

1
r
ur + urr = uxx + uyy = Δu.

Notice that the Laplacian in polar coordinates no longer has constant coefficients.

4.10.2 Series solution
Let us separate variables as usual. That is let us try u(r, θ) = R(r)Θ(θ). Then

0 = Δu =
1
r2
RΘ�� +

1
r
R�Θ + R��Θ.

Let us put R on one side and Θ on the other and then conclude that both sides must be constant.

1
r2
RΘ�� = −

�
1
r
R� + R��

�
Θ.

Θ��

Θ
= −rR

� + r2R��

R
= −λ.

We get two equations:

Θ�� + λΘ = 0,

r2R�� + rR� − λR = 0.

Let us first focus on Θ. We know that u(r, θ) ought to be 2π-periodic in θ, that is, u(r, θ) = u(r, θ+2π).
Therefore, the solution to Θ�� + λΘ = 0 must be 2π-periodic. We conclude that λ = 0, 1, 4, 9, . . ..
That is, λ = n2 for a nonnegative integer n = 0, 1, 2, 3, . . .. The equation becomes Θ�� + n2Θ = 0.
When n = 0 the equation is just Θ�� = 0. For convenience let us write down its solution as

Θ0 =
a0
2

for some constant a0. For positive n, the solution to Θ�� + n2Θ = 0 is

Θn = an cos(nθ) + bn sin(nθ),
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for some constants an and bn.
We next consider the equation for R,

r2R�� + rR� − n2R = 0.

This equation has appeared in exercises before—we solved it in Exercise 2.1.6 and Exercise 2.1.7.
The idea is to try a solution rs and if that does not work out try a solution of the form rs ln r. When
n = 0 we obtain

R0 = Ar0 + Br0 ln r = A + B ln r,

and if n > 0, we get
Rn = Arn + Br−n.

The function u(r, θ) must be finite at the origin, that is, when r = 0. Therefore, B = 0 in both cases.
Let us set A = 1 in both cases as well, the constants in Θn will pick up the slack so we do not lose
anything. Therefore let

R0 = 1, and Rn = rn.

Hence our building block solutions are

u0(r, θ) =
a0
2
, un(r, θ) = anrn cos(nθ) + bnrn sin(nθ).

Putting everything together our solution is:

u(r, θ) =
a0
2
+

∞�

n=1

anrn cos(nθ) + bnrn sin(nθ).

We look at the boundary condition in (4.25),

g(θ) = u(1, θ) =
a0
2
+

∞�

n=1

an cos(nθ) + bn sin(nθ).

Therefore, the solution to (4.25) is to expand g(θ), which is a 2π-periodic function as a Fourier
series, and then the nth coordinate is multiplied by rn. In other words, to compute an and bn from
the formula we can, as usual, compute

an =
1
π

� π

−π
g(θ) cos(nθ) dθ, and bn =

1
π

� π

−π
g(θ) sin(nθ) dθ.

Example 4.10.1: Suppose we wish to solve

Δu = 0, 0 ≤ r < 1, −π < θ ≤ π,
u(1, θ) = cos(10 θ), −π < θ ≤ π.
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Figure 4.23: The solution of the Dirichlet problem in the disc with cos(10 θ) as boundary data.

The solution is
u(r, θ) = r10 cos(10 θ).

See the plot in Figure 4.23. The thing to notice in this example is that the effect of a high
frequency is mostly felt at the boundary. In the middle of the disc, the solution is very close to zero.
That is because r10 becomes very small as r tends to 0.

Example 4.10.2: Let us solve a more difficult problem. Suppose we have a long rod with circular
cross section of radius 1 and we wish to solve the steady state heat problem. If the rod is long
enough we simply need to solve the Laplace equation in two dimensions. Let us put the center of
the rod at the origin and we have exactly the region we are currently studying—a circle of radius 1.
For the boundary conditions, suppose in Cartesian coordinates x and y, the temperature is fixed at 0
when y < 0 and at 2y when y > 0.

First we set the problem up. As y = r sin(θ), then on the circle of radius 1 we have 2y = 2 sin(θ).
The problem becomes

Δu = 0, 0 ≤ r < 1, −π < θ ≤ π,

u(1, θ) =


2 sin(θ) if 0 ≤ θ ≤ π,
0 if −π < θ < 0.
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We must now compute the Fourier series for the boundary condition. By now the reader has
plentiful experience in computing Fourier series and so we simply state that

u(1, θ) =
2
π
+ sin(θ) +

∞�

n=1

−4
π(4n2 − 1) cos(2nθ).

Exercise 4.10.1: Compute the series for u(1, θ) and verify that it really is what we have just claimed.
Hint: Be careful, make sure not to divide by zero.

We now simply write the solution (see Figure 4.24) by multiplying by rn in the right places.

u(r, θ) =
2
π
+ r sin(θ) +

∞�

n=1

−4r2n
π(4n2 − 1) cos(2nθ).
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Figure 4.24: The solution of the Dirichlet problem with boundary data 0 for y < 0 and 2y for y > 0.
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4.10.3 Poisson kernel
There is another way to solve the Dirichlet problem with the help of an integral kernel. That is, we
will find a function P(r, θ, α) called the Poisson kernel∗ such that

u(r, θ) =
1
2π

� π

−π
P(r, θ, α) g(α) dα.

While the integral will generally not be solvable analytically, it can be evaluated numerically. In fact,
unless the boundary data is given as a Fourier series already, it will be much easier to numerically
evaluate this formula as there is only one integral to evaluate.
The formula also has theoretical applications. For instance, as P(r, θ, α) will have infinitely

many derivatives, then via differentiating under the integral we find that the solution u(r, θ) has
infinitely many derivatives, at least when inside the circle, r < 1. By infinitely many derivatives
what you should think of is that u(r, θ) has “no corners” and all of its partial derivatives too exist
and have “no corners”.

We will compute the formula for P(r, θ, α) from the series solution, and this idea can be applied
anytime you have a convenient series solution where the coefficients are obtained via integration.
Hence you can apply this reasoning to obtain such integral kernels for other equations, such as the
heat equation. The computation is long and tedious, but not overly difficult. Since the ideas are
often applied in similar contexts, it is good to understand how this computation works.

What we do is start with the series solution and replace the coefficients with the integrals that
compute them. Then we try to write everything as a single integral. We must use a different dummy
variable for the integration and hence we use α instead of θ.

u(r, θ) =
a0
2
+

∞�

n=1

anrn cos(nθ) + bnrn sin(nθ)

=
1
2π

� π

−π
g(α) dα

+

∞�

n=1

�
1
π

� π

−π
g(α) cos(nα) dα

�
rn cos(nθ) +

�
1
π

� π

−π
g(α) sin(nα) dα

�
rn sin(nθ)

=
1
2π

� π

−π

g(α) + 2
∞�

n=1

g(α) cos(nα)rn cos(nθ) + g(α) sin(nα)rn sin(nθ)

 dα

=
1
2π

� π

−π

1 + 2
∞�

n=1

rn
�
cos(nα) cos(nθ) + sin(nα) sin(nθ)

�
 g(α) dα

OK, so we have what we wanted, the expression in the parentheses is the Poisson kernel, P(r, θ, α).
However, we can do a lot better. It is still given as a series, and we would really want to have a nice

∗Named for the French mathematician Siméon Denis Poisson (1781 – 1840).
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simple expression for it, so we work a little harder. The trick is to rewrite everything in terms of
complex exponentials. Let us now work just on the kernel.

P(r, θ, α) = 1 + 2
∞�

n=1

rn
�
cos(nα) cos(nθ) + sin(nα) sin(nθ)

�

= 1 + 2
∞�

n=1

rn cos
�
n(θ − α)�

= 1 +
∞�

n=1

rn
�
ein(θ−α) + e−in(θ−α)

�

= 1 +
∞�

n=1

�
rei(θ−α)

�n
+

∞�

n=1

�
re−i(θ−α)

�n
.

In the above expression we recognize the geometric series. That is, recall from calculus that as long
as |z| < 1 then

∞�

n=1

zn =
z

1 − z .

Note that n starts at 1 and that is why we have the z in the numerator. It is the standard geometric
series multiplied by z. Let us continue with the computation.

P(r, θ, α) = 1 +
∞�

n=1

�
rei(θ−α)

�n
+

∞�

n=1

�
re−i(θ−α)

�n

= 1 +
rei(θ−α)

1 − rei(θ−α) +
re−i(θ−α)

1 − re−i(θ−α)
=

�
1 − rei(θ−α)��1 − re−i(θ−α)� + �1 − re−i(θ−α)�rei(θ−α) + �1 − rei(θ−α)�re−i(θ−α)�

1 − rei(θ−α)��1 − re−i(θ−α)�

=
1 − r2

1 − rei(θ−α) − re−i(θ−α) + r2
=

1 − r2
1 − 2r cos(θ − α) + r2 .

Now that’s a forumla we can live with. The solution to the Dirichlet problem using the Poisson
kernel is

u(r, θ) =
1
2π

� π

−π

1 − r2
1 − 2r cos(θ − α) + r2 g(α) dα.

Sometimes the formula for the Poisson kernel is given together with the constant 1
2π , in which case

we should of course not leave it in front of the integral. Also, often the limits of the integral are
given as 0 to 2π; everything inside is 2π-periodic in α, this does not change the integral.
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Let us not leave the Poisson kernel without explaining its geometric meaning. Let r̄ be the
distance from (r, θ) to (1, α). You may recall from calculus that this distance r̄ in polar coordinates
is given precisely by the square root of 1 − 2r cos(θ − α) + r2. That is, the Poisson kernel is really
the formula

1 − r2
r̄2
.

One final note we make about the formula is to note that it

r
1

(1, α) r̄
(r, θ)is really a weighted average of the boundary values. First let us

look at what happens at the origin, that is when r = 0.

u(0, 0) =
1
2π

� π

−π

1 − 02
1 − 2(0) cos(θ − α) + 02 g(α) dα

=
1
2π

� π

−π
g(α) dα.

This is precisely the average value of g(θ) on the boundary. This
is a general feature of harmonic functions, their value at some
point p is equal to the average of its values on a circle centered
at p.
What the formula says is that the value of the solution at any point in the circle is a weighted

average of the boundary data g(θ). The kernel is bigger when (r, θ) is closer to (1, α), and therefore
we give more weight to the values g(α) closer to (r, θ) and less weight to the values g(α) when (1, α)
far from (r, θ).

4.10.4 Exercises
Exercise 4.10.2: Using series solve Δu = 0, u(1, θ) = |θ|, for −π < θ ≤ π.
Exercise 4.10.3: Using series solve Δu = 0, u(1, θ) = 1/2 + 3 sin(θ) + cos(3θ).

Exercise 4.10.4: Using the Poisson kernel, give the solution to Δu = 0, where u(1, θ) is zero for θ
outside the interval [−π/4, π/4] and u(1, θ) is 1 for θ on the interval [−π/4, π/4].
Exercise 4.10.5: a) Draw a graph for the Poisson kernel as a function of α when r = 1/2 and θ = 0.
b) Describe what happens to the graph when you make r bigger. c) Knowing that the solution u(r, θ)
is the weighted average of g(θ) with Poisson kernel as the weight, explain what your answer to part
b means.

Exercise 4.10.6: Take the function g(θ) to be the function xy = cos θ sin θ on the boundary. Use the
series solution to find a solution to the Dirichlet problem Δu = 0, u(1, θ) = g(θ). Now convert the
solution to Cartesian coordinates x and y. Is this solution surprising? Hint: use your trig identities.

Exercise 4.10.7: Carry out the computation we needed in the separation of variables and solve
r2R�� + rR� − n2R = 0, for n = 0, 1, 2, 3, . . ..
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Exercise 4.10.8 (challenging): Derive the series solution to the Dirichlet problem if the region is a
circle of radius ρ rather than 1. That is, solve Δu = 0, u(ρ, θ) = g(θ).

Exercise 4.10.101: Using series solve Δu = 0, u(1, θ) = 1 +
�∞

n=1
1
n2 sin(nθ).

Exercise 4.10.102: Using the series solution find the solution to Δu = 0, u(1, θ) = 1 − cos(θ).
Express the solution in Cartesian coordinates (that is, using x and y).

Exercise 4.10.103: Try and guess a solution to Δu = −1, u(1, θ) = 0. Hint: try a solution that only
depends on r. Also first, don’t worry about the boundary condition.

Exercise 4.10.104 (challenging): Derive the Poisson kernel solution if the region is a circle of
radius ρ rather than 1. That is, solve Δu = 0, u(ρ, θ) = g(θ).
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4.6.103: u(x, t) = eλteλx for some λ
4.6.104: u(x, t) = Aex + Bet

4.7.101: y(x, t) = sin(x)
�
sin(t) + cos(t)

�

4.7.102: y(x, t) = 1
5π sin(πx) sin(5πt) +

1
100π sin(2πx) sin(10πt)

4.7.103: y(x, t) =
∞�
n=1

2(−1)n+1
n sin(nx) cos(n

√
2 t)

4.7.104: y(x, t) = sin(2x) + t sin(x)

4.8.101: y(x, t) = sin(2π(x−3t))+sin(2π(3t+x))
2 +

cos(3π(x−3t))−cos(3π(3t+x))
18π

4.8.102: a) y(x, 0.1) =



x − x2 − 0.04 if 0.2 ≤ x ≤ 0.8
0.6x if x ≤ 0.2
0.6 − 0.6x if x ≥ 0.8

b) y(x, 1/2) = −x + x2 c) y(x, 1) = x − x2

4.8.103: a) y(1, 1) = −1/2 b) y(4, 3) = 0 c) y(3, 9) = 1/2

4.9.101: u(x, y) =
∞�
n=1

1
n2 sin(nπx)

�
sinh(nπ(1−y))
sinh(nπ)

�

4.9.102: u(x, y) = 0.1 sin(πx)
�
sinh(π(2−y))
sinh(2π)

�

4.10.101: u = 1 +
∞�
n=1

1
n2 r

n sin(nθ)

4.10.102: u = 1 − x
4.10.103: u = −14 r

2 + 1
4

4.10.104: u(r, θ) =
1
2π

� π

−π

ρ2 − r2
ρ − 2rρ cos(θ − α) + r2 g(α) dα

5.1.101: λn = (2n−1)π
2 , n = 1, 2, 3, . . ., yn = cos

�
(2n−1)π
2 x
�

5.1.102: a) p(x) = 1, q(x) = 0, r(x) = 1
x , α1 = 1, α2 = 0, β1 = 1, β2 = 0. The problem is not

regular. b) p(x) = 1 + x2, q(x) = x2, r(x) = 1, α1 = 1, α2 = 0, β1 = 1, β2 = 1. The problem is
regular.
5.2.101: y(x, t) = sin(πx) cos(4π2t)
5.2.102: 9yxxxx + ytt = 0 (0 < x < 10, t > 0), y(0, t) = yx(0, t) = 0, y(10, t) = yx(10, t) = 0,
y(x, 0) = sin(πx), yt(x, 0) = x(10 − x).

5.3.101: yp(x, t) =
∞�
n=1
n odd

−4
n4π4

�
cos(nπx) − cos(nπ)−1

sin(nπ) sin(nπx) − 1
�
cos(nπt).

5.3.102: Approximately 1991 centimeters

6.1.101: 8
s3 +

8
s2 +

4
s

6.1.102: 2t2 − 2t + 1 − e−2t


