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6.4 Dirac delta and impulse response
Note: 1 or 1.5 lecture, §7.6 in [EP], §6.5 in [BD]

6.4.1 Rectangular pulse
Often in applications we study a physical system by putting in a short pulse and then seeing what
the system does. The resulting behaviour is often called impulse response. Let us see what we mean
by a pulse. The simplest kind of a pulse is a simple rectangular pulse defined by

ϕ(t) =



0 if t < a,
M if a ≤ t < b,
0 if b ≤ t.

See Figure 6.3 for a graph. Notice that

ϕ(t) = M
�
u(t − a) − u(t − b)

�
,

where u(t) is the unit step function.
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Figure 6.3: Sample square pulse with a = 0.5, b = 1 and M = 2.

Let us take the Laplace transform of a square pulse,

L {ϕ(t)} = L �M�u(t − a) − u(t − b)
��
= M

e−as − e−bs

s
.

For simplicity let us take a = 0, and it is convenient to require
� ∞

0
ϕ(t) dt = 1.
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To achieve this we let M = 1/b. For such a pulse we compute

L {ϕ(t)} = L �M�u(t − a) − u(t − b)
��
=

1 − e−bs

bs
.

We generally want that b is very small. That is, we wish to have the pulse be very short and very
tall. By letting b go to zero we come to the concept of the Dirac delta function.

6.4.2 The delta function
The Dirac delta function∗ is not exactly a function, it is sometimes called a generalized function.
We avoid unnecessary details and simply say that it is an object that does not really make sense
unless you integrate it. The motivation is that we would like a “function” δ(t) such that for any
continuous function f (t) we have

� ∞

−∞
δ(t) f (t) dt = f (0).

The formula should hold if we integrate over any interval that contains 0, not just (−∞,∞). So δ(t)
is a “function” with all its “mass” at the single point t = 0. In other words, for any interval [c, d]

� d

c
δ(t) dt =


1 if the interval [c, d] contains 0, i.e. c ≤ 0 ≤ d,
0 otherwise.

Unfortunately there is no such function in the classical sense. You could informally think that δ(t)
is zero for t � 0 and somehow infinite at t = 0.

A good way to think about δ(t) is as a limit of short pulses whose integral is 1. For example,
suppose that we have a square pulse ϕ(t) as above with a = 0, M = 1/b, that is ϕ(t) = u(t)−u(t−b)

b .
Compute � ∞

−∞
ϕ(t) f (t) dt =

� ∞

−∞

u(t) − u(t − b)
b

f (t) dt =
1
b

� b

0
f (t) dt.

If f (t) is continuous at t = 0, then for small b, the function f (t) is approximately equal to f (0) on
the interval [0, b]. We approximate the integral

1
b

� b

0
f (t) dt ≈ 1

b

� b

0
f (0) dt = f (0).

Therefore,

lim
b→0

� ∞

−∞
ϕ(t) f (t) dt = lim

b→0

1
b

� b

0
f (t) dt = f (0).

∗Named after the English physicist and mathematician Paul Adrien Maurice Dirac (1902–1984).
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Let us therefore accept δ(t) as an object that is possible to integrate. We often want to shift δ to
another point, for example δ(t − a). In that case we have

� ∞

−∞
δ(t − a) f (t) dt = f (a).

Note that δ(a − t) is the same object as δ(t − a). In other words, the convolution of δ(t) with f (t) is
again f (t),

( f ∗ δ)(t) =
� t

0
δ(t − s) f (s) ds = f (t).

As we can integrate δ(t), let us compute its Laplace transform.

L {δ(t − a)} =
� ∞

0
e−stδ(t − a) dt = e−as.

In particular,
L {δ(t)} = 1.

Remark 6.4.1: Notice that the Laplace transform of δ(t − a) looks like the Laplace transform of
the derivative of the Heaviside function u(t − a), if we could differentiate the Heaviside function.
First notice

L�u(t − a)
�
=

e−as

s
.

To obtain what the Laplace transform of the derivative would be we multiply by s, to obtain e−as,
which is the Laplace transform of δ(t − a). We see the same thing using integration,

� t

0
δ(s − a) ds = u(t − a).

So in a certain sense
“

d
dt
�
u(t − a)

�
= δ(t − a) ”

This line of reasoning allows us to talk about derivatives of functions with jump discontinuities. We
can think of the derivative of the Heaviside function u(t − a) as being somehow infinite at a, which
is precisely our intuitive understanding of the delta function.

Example 6.4.1: Let us compute L−1
�

s+1
s

�
. So far we have always looked at proper rational

functions in the s variable. That is, the numerator was always of lower degree than the denominator.
We write,

L−1
�

s + 1
s

�
= L−1

�
1 +

1
s

�
= L−1 {1} +L−1

�
1
s

�
= δ(t) + 1.

The resulting object is a generalized function and only makes sense when put underneath an integral.
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6.4.3 Impulse response
As we said before, in the differential equation Lx = f (t), we think of f (t) as input, and x(t) as the
output. Often it is important to find the response to an impulse, and then we use the delta function
in place of f (t). The solution to

Lx = δ(t)

is called the impulse response.

Example 6.4.2: Solve (find the impulse response)

x�� + ω2
0x = δ(t), x(0) = 0, x�(0) = 0. (6.3)

We first apply the Laplace transform to the equation. Denote the transform of x(t) by X(s).

s2X(s) + ω2
0X(s) = 1, and so X(s) =

1
s2 + ω2

0

.

Taking the inverse Laplace transform we obtain

x(t) =
sin(ω0t)
ω0

.

Let us notice something about the above example. We have proved before that when the input
was f (t), then the solution to Lx = f (t) was given by

x(t) =
� t

0
f (τ)

sin
�
ω0(t − τ)�
ω0

dτ.

Notice that the solution for an arbitrary input is given as convolution with the impulse response. Let
us see why. The key is to notice that for functions x(t) and f (t),

(x ∗ f )��(t) =
d2

dt2

�� t

0
f (τ)x(t − τ) dτ

�
=

� t

0
f (τ)x��(t − τ) dτ = (x�� ∗ f )(t).

We simply differentiate twice under the integral∗, the details are left as an exercise. And so if we
convolve the entire equation (6.3), the left hand side becomes

(x�� + ω2
0x) ∗ f = (x�� ∗ f ) + ω2

0(x ∗ f ) = (x ∗ f )�� + ω2
0(x ∗ f ).

The right hand side becomes
(δ ∗ f )(t) = f (t).

Therefore y(t) = (x ∗ f )(t) is the solution to

y�� + ω2
0y = f (t).

This procedure works in general for other linear equations Lx = f (t). If you determine the impulse
response, you also know how to obtain the output x(t) for any input f (t) by simply convolving the
impulse response and the input f (t).

∗You should really think of the integral going over (−∞,∞) rather than over [0, t] and simply assume that f (t) and
x(t) are continuous and zero for negative t.
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6.4.4 Three-point beam bending
Let us give another quite different example where delta functions turn up. In this case representing
point loads on a steel beam. That is suppose we have a beam of length L, resting on two simple
supports at the ends. Let x denote the position on the beam, and let y(x) denote the deflection of the
beam in the vertical direction. The deflection y(x) satisfies the Euler-Bernoulli equation∗,

EI
d4y
dx4 = F(x),

where E and I are constants† and F(x) is the force applied per unit length at position x. The situation
we are interested in is when the force is applied at a single point as in Figure 6.4.

x

y Fδ(x − a)

Figure 6.4: Three-point bending.

In this case the equation becomes

EI
d4y
dx4 = −Fδ(x − a),

where x = a is the point where the mass is applied. F is the force applied and the minus sign
indicates that the force is downward in the negative y direction. The end points of the beam satisfy
the conditions,

y(0) = 0, y��(0) = 0,
y(L) = 0, y��(L) = 0.

See § 5.2, for further information about endpoint conditions applied to beams.

Example 6.4.3: Suppose that length of the beam is 2, and suppose that EI = 1 for simplicity.
Further suppose that the force F = 1 is is applied at x = 1. That is, we have the equation

d4y
dx4 = −δ(x − 1),

∗Named for the Swiss mathematicians Jacob Bernoulli (1654 – 1705), Daniel Bernoulli —nephew of Jacob— (1700
– 1782), and Leonhard Paul Euler (1707 – 1783).

†E is the elastic modulus and I is the second moment of area. Let us not worry about the details and simply think
of these as constants.
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and the endpoint conditions are

y(0) = 0, y��(0) = 0, y(2) = 0, y��(2) = 0.

We could integrate, but using the Laplace transform is even easier. We apply the transform in
the x variable rather than the t variable. Let us again denote the transform of y(x) as Y(s).

s4Y(s) − s3y(0) − s2y�(0) − sy��(0) − y���(0) = −e−s.

We notice that y(0) = 0 and y��(0) = 0. Let us call C1 = y�(0) and C2 = y���(0). We solve for Y(s),

Y(s) =
−e−s

s4 +
C1

s2 +
C2

s4 .

We take the inverse Laplace transform utilizing the second shifting property (6.1) to take the inverse
of the first term.

y(x) =
−(x − 1)3

6
u(x − 1) +C1x +

C2

6
x3.

We still need to apply two of the endpoint conditions. As the conditions are at x = 2 we can simply
replace u(x − 1) = 1 when taking the derivatives. Therefore,

0 = y(2) =
−(2 − 1)3

6
+C1(2) +

C2

6
23 =

−1
6
+ 2C1 +

4
3

C2.

and
0 = y��(2) =

−3 · 2 · (2 − 1)
6

+
C2

6
3 · 2 · 2 = −1 + 2C2.

Hence C2 =
1
2 and solving for C1 using the first equation we obtain C1 =

−1
4 . Our solution for the

beam deflection is

y(x) =
−(x − 1)3

6
u(x − 1) − x

4
+

x3

12
.

6.4.5 Exercises
Exercise 6.4.1: Solve (find the impulse response) x�� + x� + x = δ(t), x(0) = 0, x�(0) = 0.

Exercise 6.4.2: Solve (find the impulse response) x�� + 2x� + x = δ(t), x(0) = 0, x�(0) = 0.

Exercise 6.4.3: A pulse can come later and can be bigger. Solve x�� + 4x = 4δ(t − 1), x(0) = 0,
x�(0) = 0.

Exercise 6.4.4: Suppose that f (t) and g(t) are differentiable functions and suppose that f (t) =
g(t) = 0 for all t ≤ 0. Show that

( f ∗ g)�(t) = ( f � ∗ g)(t) = ( f ∗ g�)(t).
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Exercise 6.4.5: Suppose that Lx = δ(t), x(0) = 0, x�(0) = 0, has the solution x = e−t for t > 0. Find
the solution to Lx = t2, x(0) = 0, x�(0) = 0 for t > 0.

Exercise 6.4.6: Compute L−1
�

s2+s+1
s2

�
.

Exercise 6.4.7 (challenging): Solve Example 6.4.3 via integrating 4 times in the x variable.

Exercise 6.4.8: Suppose we have a beam of length 1 simply supported at the ends and suppose that
force F = 1 is applied at x = 3

4 in the downward direction. Suppose that EI = 1 for simplicity. Find
the beam deflection y(x).

Exercise 6.4.101: Solve (find the impulse response) x�� = δ(t), x(0) = 0, x�(0) = 0.

Exercise 6.4.102: Solve (find the impulse response) x� + ax = δ(t), x(0) = 0, x�(0) = 0.

Exercise 6.4.103: Suppose that Lx = δ(t), x(0) = 0, x�(0) = 0, has the solution x(t) = cos(t) for
t > 0. Find (in closed form) the solution to Lx = sin(t), x(0) = 0, x�(0) = 0 for t > 0.

Exercise 6.4.104: Compute L−1
�

s2

s2+1

�
.

Exercise 6.4.105: Compute L−1
�

3s2e−s+2
s2

�
.



294 SOLUTIONS TO SELECTED EXERCISES

6.3.101: 1
2 (cos t + sin t − e−t)

6.3.102: 5t − 5 sin t
6.3.103: 1

2 (sin t − t cos t)

6.3.104:
� t

0
f (τ)
�
1 − cos(t − τ)� dτ

6.4.101: x(t) = t
6.4.102: x(t) = e−at

6.4.103: x(t) = (cos ∗ sin)(t) = 1
2 t sin(t)

6.4.104: δ(t) − sin(t)
6.4.105: 3δ(t − 1) + 2t
7.1.101: Yes. Radius of convergence is 10.
7.1.102: Yes. Radius of convergence is e.

7.1.103: 1
1−x = − 1

1−(2−x) so 1
1−x =

∞�
n=0

(−1)n+1(x − 2)n, which converges for 1 < x < 3.

7.1.104:
∞�

n=7

1
(n−7)! xn

7.1.105: f (x) − g(x) is a polynomial. Hint: Use Taylor series.
7.2.101: a2 = 0, a3 = 0, a4 = 0, recurrence relation (for k ≥ 5): ak = −2ak−5, so:
y(x) = a0 + a1x − 2a0x5 − 2a1x6 + 4a0x10 + 4a1x11 − 8a0x15 − 8a1x16 + · · ·
7.2.102: a) a2 =

1
2 , and for k ≥ 1 we have ak = ak−3 + 1, so

y(x) = a0+a1x+ 1
2 x2+(a0+1)x3+(a1+1)x4+ 3

2 x5+(a0+2)x6+(a1+2)x7+ 5
2 x8+(a0+3)x9+(a1+3)x10+· · ·

b) y(x) = 1
2 x2 + x3 + x4 + 3

2 x5 + 2x6 + 2x7 + 5
2 x8 + 3x9 + 3x10 + · · ·

7.2.103: Applying the method of this section directly we obtain ak = 0 for all k and so y(x) = 0 is
the only solution we find.


