
Inheritance (cont.)

CS 412/512
Old Dominion University

Steven J. Zeil

Oct. 4, 2000

Inheritance in Other Languages)

1. Inheritance in Smalltalk

2. Inheritance in Java

1

1 Inheritance in Smalltalk

• interpreted (usually)

• Everything is an object. (Even classes are objects!)

• All function calls are resolved dynamically.

• All classes are arranged into a single inheritance tree:

2

Object

Class Magnitude Collection

Char Number Point

Set Keyed
Collection

Integer Float Fraction

3

AShape subclass: #Rectangle
instanceVariableNames:
’theHeight theWidth’
classVariableNames:

setHeight: anInteger
"set the height of a rectangle"
theHeight +anInteger

setWidth: anInteger
"set the width of a rectangle"
theWidth +anInteger

4

height
"return the height of a rectangle"
^theHeight

width
"return the width of a rectangle"
^theWidth

5

draw
"draw the rectangle"
| aLine upperLeftCorner |
aLine + Line new.
upperLeftCorner +

theCenter x - (theWidth / 2)
@ (theCenter y - (theHeight / 2)).

ARectangle inherits a data member theCenter from AShape.
theCenter x means “send the “x” message to the theCenter
object”.

6

1

2 Inheritance in Java

Another hybrid, but purer than C++.

• Not all types are classes.

• All class member functions are dynamically bound.

• All classes organized into a single inheritance tree

7

2.1 Using Superclasses in Java

Java implementation of Shapes is very similar to C++:

class Point {
double x, y;

}

Since this declaration does not explicitly state a superclass, by
default it inherits from Object.

8

Object
Object is by no means a trivial class. Messages are:

• protected native Object clone()

Creates a new object of the same class as this object.

• public boolean equals(Object)

Compares two Objects for equality.

• finalize()

Called by the garbage collector on an object when there
are no more references to the object.

9

• public final Class getClass()

Returns the runtime class of an object.

• public native int hashCode()

Returns a hash code value for the object.

• public final native void notify()

Wakes up a single thread that is waiting on this object’s
monitor.

• public final native notifyAll()

Wakes up all threads that are waiting on this object’s mon-
itor.

10

• public String toString()

Returns a string representation of the object.

• public final native wait()
public final native wait(long)
public final native wait(long, int)

Waits to be notified by another thread of a change in this
object.

11

import Point;

class RectangularArea

{
private Point ul;

private Point lr;

RectangularArea (Point upperLeft,

Point lowerRight)

{
ul = new Point(upperLeft);

lr = new Point(lowerRight);

}

Point upperLeft() {return new Point(ul);}
Point upperRight() {return new Point(lr.x, ul.y);}
Point lowerLeft() {return new Point(ul.x, lr.y);}
Point lowerRight() {return new Point(lr);}

int width() {return lr.x - ul.x;}
int height() {return ul.y - lr.y;}

boolean isEmpty() {...}
static RectangularArea empty() {...}

boolean contains (Point p) {...}

boolean overlaps (RectangularArea r) {...}

void merge (RectangularArea r) {...}
}

12

2

As in C++, we often define abstract classes to establish a com-
mon protocol:

abstract
class Shape {
abstract void draw();
abstract void zoom (Point origin,

double factor);
abstract Point center();
abstract RectangularArea bound();

}

Establishes the common interface for all shapes.
13

class ShapeList {
Shape shape;
ShapeList next;

};

Since all class objects are assigned by reference, no need for
explicit pointers.

14

class Picture {
private ShapeList shapes;

Picture() {...}

void clear() {...}

void add (Shape s) {
ShapeList newNode = new ShapeList;

newNode.shape = s;

newNode.next = shapes;

shapes = newNode;

}

RectangularArea bound() {...}
void draw() {...}

void zoom (Point origin,

double factor) {...}
};

15

class Circle extends Shape {
private Point theCenter;
private double theRadius;

Circle (Point cent, double r) {...}

void draw() {...}
void zoom (double factor) {...}
RectangularArea bound() {...}
double radius () {return theRadius;}

}

16

Drawing a picture:

class Picture {
...
void draw() {
{
ShapeList s = shapes;
while (s != null) {
s.shape.draw();
s = s.next;
}

}
}

17

2.2 Interfaces In Java

Java offers an alternate mechanism for subtyping, the interface.
An interface declares a related set of

• member function declarations

• constant values

Classes may be declared to implement an interface indepen-
dently of where they are in the inheritance hierarchy.

18

Example: you would like to write a sorting routine for Java.

• Now all sorting algorithms require the ability to compare
objects.

• But class Object has no comparison function except
equalTo.

19

3

One solution is to define the “comparable” protocol as a class.

class Comparable {
public boolean comesBefore (Object o)
{return hashCode() < o.hashCode();}

}

(Not a very useful default.)
20

class Sorting {

public static void

insertionSort (Comparable[] array,

int nElements)

{
for (int i = 1; i < nElements; ++i) {

Object temp = array[i];

int p = i;

while ((i > 0)

&& temp.comesBefore(array[p-1])) {
array[p] = array[p-1];

p--;

}
array[p] = (Comparable)temp;

}
}
...

}

‡

21

class Student
extends Comparable

{
String name;
String id;
double gpa;
String school;

boolean comesBefore(Object o)
{
return gpa > ((Student)o).gpa;

}

}

22
Two big problems with this approach:

• What if, in the same program, we want to sort students by
name?

• What if Student is already inheriting from another class?

23

class Person
{
String name;
String id;

}

class Student
extends Person

{
double gpa;
String school;

}

Java only allows a class to have a single superclass, so we can’t
add extends Comparable ‡

24

2.2.1 Interfaces

One solution is to use an interface:

interface Comparable {
boolean comesBefore (Object o);

}

25

The code for the sort does not change:

• interfaces are types

public static void
insertionSort (Comparable [] array,

int nElements)
{
for (int i = 1; i < nElements; ++i) {

Object temp = array[i];
int p = i;
while ((p > 0)

&& temp.comesBefore(array[p-1])) {
array[p] = array[p-1];
p--;

}
array[p] = temp;

}
}

26

4

Now we indicate that Student implements the interface:

class Student
extends Person
implements Comparable

{
double gpa;
String school;

boolean comesBefore(Object o)
{
return gpa > ((Student)o).gpa;

}

}

27

Implementing an interface is NOT inheritance:

• You cannot inherit variables from an interface.

• You cannot inherit method implementations (function bod-
ies) from an interface.

• The interface hierarchy is independent of a the class hier-
archy.

• A Java class may implement many different interfaces, but
can only inherit from one superclass.

28

Of course, interfaces can be more complex than Comparable:

interface Collection {
int MAXIMUM = 500;

void add(Object obj);
void delete(Object obj);
Object find(Object obj);
int currentCount();

}

29

class FIFOQueue

implements Collection {
...

void add(Object obj) {
...

}
void delete(Object obj) {

...

}
Object find(Object obj) {

...

}
int currentCount() {

...

}
}

30

package java.util;

/**
* An object that implements the Enumeration interface generates a

* series of elements, one at a time. Successive calls to the
* nextElement method return successive elements of the
* series.
*

* For example, to print all elements of a vector <i>v</i>:
*

* for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
* System.out.println(e.nextElement());
* }
*

*/

31
public interface Enumeration {

/**
* Tests if this enumeration contains more elements.
*/
boolean hasMoreElements();

/**
* Returns the next element of this enumeration.
*/
Object nextElement();

}

32

5

public interface AudioClip {
/**
* Starts playing this audio clip. Each time this method is called,

* the clip is restarted from the beginning.
*/
void play();

/**
* Starts playing this audio clip in a loop.
*/
void loop();

/**
* Stops playing this audio clip.
*/
void stop();

}

33

2.2.2 Providing Multiple Methods

Remember that we identified two big problems in the sorting
program:

• What if, in the same program, we want to sort students by
name?

• What if Student is already inheriting from another class?

Interfaces help the second, but not the first.
34

Possible solutions:

1. Special-case subclasses

2. Special-case subclasses with Indirection

3. Functors

35

Special-case subclasses
We could make a special subclass of student that overrides the
comesBefore method:
class StudentsByName
extends Student {

StudentsByName (Student s) {
super(s); // invoke superclass’s constructor
}

boolean comesBefore (Object o) {
StudentsByName s

= (StudentsByName)o;
return name.compareTo(s.name) < 0;

}
}

36

So to sort a group of students by name, we must first copy them
to/from an array of StudentsByName.

void sortByName (Student[] sarray,

int nElements) {
StudentsByName[] tempArray

= new StudentsByName[nElements];

for (int i = 0; i < nElements; ++i) {
tempArray[i] = new

StudentsByName(sarray[i]);

}

Sorting.insertionSort (tempArray, nElements);

for (int i = 0; i < nElements; ++i) {
sarray[i] = new Student(tempArray[i]);

}
}

37

Special-case classes with Indirection
A somewhat cheaper solution (even more so in a language with
copy semantics) is to introduce a level of indirection.

Koenig’s fundamental theorem of software engi-
neering:
“We can solve any problem by introducing an extra
level of indirection.”

‡

38

6

class StudentsByName {

Student st;

boolean comesBefore (Object o)
{
StudentsByName s

= (StudentsByName)o;
return st.name.compareTo(s.st.name) < 0;

}
}

39
void sortByName (Student[] sarray, int nElements) {

StudentsByName[] tempArray

= new StudentsByName[nElements];

for (int i = 0; i < nElements; ++i) {
tempArray[i] = new StudentsByName;

tempArray[i].st = sarray[i];

}

Sorting.insertionSort (tempArray, nElements);

for (int i = 0; i < nElements; ++i) {
sarray[i] = tempArray[i].st;

}
}

This is cheaper because only references to the Student objects are
copied.

40
Functors
A still more elegant solution is to redesign the sorting function
to take a “functor” parameter:

• A functor is an object that simulates a function.

– In this case, a functor to compare two objects would
be expected by the sort routine.

– The application code would define functor classes that
compare students by name and by gpa.

Functors will be discussed at length in a few weeks.
41

7

	Inheritance in Smalltalk
	Inheritance in Java
	Using Superclasses in Java
	Interfaces In Java
	Interfaces
	Providing Multiple Methods

