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Abstract

It is difficult to build user interfaces that must be
distributed over a set of dynamic and heterogeneous
I/O devices. This difficulty increases when we want to
split, merge, replicate, and relocate the UI across a set
of heterogeneous devices, without the application in-
tervention. Furthermore, using generic tools, e.g. to
search for UI compoments or to save/restore them, is
usually not feasible. We follow a novel approach for
building UIs that overcomes these problems: Using
distributed file systems that export widgets to appli-
cations. In this paper we describe Omero, a UI server
built along this line for the Plan B Operating System.

1. Introduction

Ubiquitous computing environments provide the
user with multiple displays, pointing devices, and key-
boards. Therefore, it is desirable that user interfaces
(UI) could work in this distributed and heterogeneous
environment and take advantage of the distribution.
There are many different toolkits, frameworks, and UI
management systems (UIMS) for implementing UIs,
e.g., [15, 14, 12, 11, 16, 7, 20]. The differences among
them are wide yet we found similar problems while
trying to build our smart space:

It is hard to simultaneously use different devices
when applications or users require to distribute the UI
among them. For example, a presentation viewer may
want to deploy a control panel on a phone’s display,
a slide viewer in a large graphical display, and accept
several audio commands. Doing this requires several

different frameworks that have to be programmed sep-
arately in a different way. Applications cannot usually
create a control panel that works both for the phone
and for the audio interface.

It is hard to split and merge the UI and place
different parts of it on whatever device is considered
appropriate. At most, we can combine a set of UI
components by using middleware. However, once pro-
grammed, we cannot split a given component into sep-
arate ones. For example, it is usually not feasible for
a user to move just the “next slide” button to a mobile
phone.

Replication of UI components is hard and re-
quires collaboration from the application. Considering
that it is now usual to have multiple displays and I/O
devices, it is desirable to be able to replicate, say, a
volume level gauge, without placing the burden on the
application.

General purpose tools do not work on UI ele-
ments. This is a big problem for a smart environment,
because it requires many programs to make it smart.
For UI elements, tasks already accomplished by gen-
eral purpose programs (e.g., searching with find or
grep, or copying with cp) requires writing specific
purpose software for the task and UI considered [25].
A related problem is that it is hard to consult and up-
date information about the UI itself; for example, ob-
taining the label for a button from a different program
or updating the label to something else.

While constructing the Plan B OS [3, 2], which sup-
ports our smart space, we have developed an architec-
ture for building UIs that overcomes these limitations.
Our approach is to implement and export UI compo-
nents (i.e., widgets of a high-level of abstraction) by



means of network file systems. The hierarchy of UI
elements found in a UI is represented by a file hierar-
chy, following the ideas in [10, 23]. Graphical displays
and other devices employed for UIs are supported by
UI file servers that implement a set of widgets and per-
mit their use through the file system interface.

As a result, the application can program and use its
UI in the same way it uses regular files, and it can be
mostly unaware of the actual set of devices used to de-
ploy the UI. Furthermore, external programs can rely
on the file interface to inspect and operate on exist-
ing UI components. Different devices are accessed by
mounting their UI servers and using their file trees to
build and use different UI components.

The Plan B’s UI service, Omero, was built using this
approach and has been in use in production for half a
year. It has been used only by a few users on Plan B
terminals, but its approach can be applied to any other
system considered.

In what follows, we describe both omero and our
approach. Section 2 describes omero from the user’s
point of view. Section 3 describes our approach in
more detail. Sections 4 discusses the replication and
distribution of UIs using omero. Multimodal UIs and
heterogeneity are addressed in section 5. We address
screen space donation in section 6, and the use of gen-
eral purpose tools in section 7. Sections 8 and 9 de-
scribe the implementation and evaluation for the sys-
tem. After discussing related work in section 10, we
conclude in section 11.

2. Omero

Omero is the Plan B window system and the User
Interface service. The current implementation works
both on Plan 9 [23] and Plan B [3, 2]. A typical
user employs multiple screens, serviced by different
omeros, that may look like the one shown in figure
1. Unlike in other systems, omero implements both
window management and the set of GUI components
available. In this respect, it is both a window system
or UIMS and a GUI toolkit. The user interacts with
omero using any keyboard and pointing device avail-
able in the network. Applications interface with omero
using the files it provides.

A screen handled by omero consists of a tree of UI
elements known as panels. There are three kind of pan-

els: rows, columns, and atoms. Rows and columns
group inner panels and handle their layout. A row ar-
ranges for inner panels to be disposed in a row. A col-
umn does what can be expected. Atoms include text,
images, gauges, and the like.

All panels, including rows and columns, are con-
sidered the same by omero, like in Morphic [13].
They can be moved around, copied, pasted, hidden,
deleted, and so on. For omero it does not matter if a
panel is part of an application’s UI, the entire UI, or a
row/column created by the user to group other panels.

In the same way, all text shown by omero is consid-
ered the same (although some text may be read-only
and cannot be edited), following the design of Acme
[21]. This includes buttons, labels, tag-lines, and text
frames. As a result, we can type some text and use it as
a button, we can copy text from buttons or labels and
paste it at some other place, etc.

The interaction with the mouse and the keyboard
happens within omero, without the intervention of the
application. Therefore, most text editing and mouse
actions are handled by the same program, omero, and
consequently all the edition process feels the same (no
matter the application). The mode of interaction is
very similar to that of Acme [21], which can be con-
sidered a direct ancestor for omero.

Any panel may have a tag (a square near its top-left
corner). By default, rows and columns have tags, and
atoms do not. This can be changed through the file
system interface. The tag permits certain mouse op-
erations in the panel, and provides information about
the data shown on it. When a panel has hidden panels
within it, its tag is shown as a vertical rectangle instead
of a square box. A panel may be in a dirty state, when
the application using it considers that it has unsaved
state. In this case, the tag is shown in a light green
color.

A central client program for omero is ox, which
is responsible for file editing, directory browsing, and
command execution. It can be considered the shell un-
derlying omero. Figure 2 shows a omero screen with
three panels (below the row at the top) created by ox:
An edition for omero.ms, a listing for the directory
/usr/nemo, and the output for the View command.
Using a separate program instead of implementing this
functionality within omero permits executing omero at
one machine and ox at another. This is common when



Figure 1. A typical Plan B screen, serviced by the omero UI service.

accessing the system from devices like PDAs that may
have slow connections: Commands actually run at a
machine well connected to the rest of the system and
we keep just the interface at the end of the connection.
The idea is not new, but taken from Sam [22] and its
ancestors.

For each file being edited, ox creates a column that
has a tag panel (single line of editable text, in bold
face) and a text panel below the tag that shows the file.
Ox initializes the tag to contain the name of the file be-
ing edited, some commands understood by ox, a verti-
cal bar, and space for the user to type further text.

To help programs started from ox. Ox sets the vari-
able $file to the path of the file being edited in
the ox’s panel where the command execution was re-
quested. This permits the creation of programs that op-
erate on the file being edited, like View, which opens
a viewer to see $file as it would be sent to a printer.

3. Architecture and ideas

The graphical representation of panels in the screen
corresponds to the file tree serviced by omero to its

clients. For example, a screen that contains two rows
has two corresponding files in its root directory. If the
user moves one row within the other using the mouse,
the same would happen to their respective files; and
vice-versa. Rearranging the tree (e.g. due to a user’s
mouse operation) requires the application to learn of
the new paths for its UI files, but it has the benefit of
expressing layouts in a simple way by means of the file
hierarchy.

The file tree is exported using the 9P file system
protocol [1] and can be mounted from anywhere in the
network. Several devices supporting UIs can be used
together by mounting their respective servers. Appli-
cations, like the client process in figure 3, operate the
service by mounting one or more omero’s file systems
(small trees in the figure) on their name space and us-
ing the standard file operations.

Much of the design effort went on deciding how to
represent widgets as files. Many designs would match
what has been said so far. To narrow the design space,
we imposed two requirements:

� It should be simple to create and operate an UI
from the system shell.



Figure 2. Ox creates panels to edit files, browse directories, and show command output.
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Figure 3. Omero serves widgets as files.

� It should be simple to split, merge, move, and
copy an interface to a different device.

The first requirement suggested us that in those
cases where the file name could easily express what
widget we want, we should rely just on the file name to
determine the widget properties. The second require-
ment suggested that the design should permit a precise
replication of a given UI by copying its file tree to a
different server. This lead to the file system design
guidelines that we show next.

� No streaming data may come out of an UI file.
Otherwise, reading that file during a copy opera-
tion would block the copy, because a read would
wait for further data on the stream. This does not

mean that widgets from streaming data are for-
bidden, only that their corresponding files cannot
be the source of data. No events may come out of
an UI file, because of the same reason1

� Reading an UI file must return all its state. The
state must include whatever is necessary to recre-
ate the involved widget, with the same attributes,
at a different location.

� Writing an UI file must allow updating all the
properties of the widget involved. Otherwise, the
interface could not be recreated by copying.

1UIs generate events, of course, but events have to be sent
through a different channel. Omero uses a network connection
independent of the file system to deliver events, as discussed later.



� Directory listing order must be coherent with the
creation order of inner files. Or a copied UI might
lead a different layout of widgets, because we de-
cided to maintain the correspondence between the
file hierarchy and the screen layout.

3.1. Widgets as files

Omero represents each panel by a directory that
contains a ctl and a data file (see figure 4). Panels
can be created and deleted by making and removing
such directories. Once the user has created a directory,
omero automatically provides the data and control files
on it. What the application can do with these files de-
pends on the type of panel, although most operations
work for all the panels.

The name of a directory determines the type of
panel it represents. A name is of the form type:name
(eg. text:ox.3442) where type is any of the type
names shown in table 1. Usually, name is a string ran-
domized by the application to permit any two names to
share the same directory (i.e., to share the same con-
tainer panel).

Panel type Description
row Groups inner panels in a row
col Groups inner panels in a column
text Editable text frame
label Read only, single line of text

button Read only, single line of text
tag Editable text line

image Fixed size image in Plan 9 format
gauge Graphical gauge for a value in [0,100]
slider Editable gauge
page Variable size image with panning
draw Vector graphics

Table 1. Types of panels in Omero.

The data file contains a portable representation of
the panel, text for text elements and Plan 9 images for
images. The ctl file contains a textual representation
of the panel attributes. Both files are complete descrip-
tions (i.e. they are not streams), which means that tools
like tar or zip can be used to copy a hierarchy of
panels from one place to another (maybe across differ-
ent machines), and the resulting GUI would be similar.

To permit selective updates of individual attributes, the
textual representation for an attribute may be used as a
control request by writing it to the control file.

Besides the two files mentioned above, directories
representing rows and columns have one extra subdi-
rectory for each one of the panels they contain. The
order of the files contained in a directory is represen-
tative and corresponds to the order used to show their
panels in the screen, which is usually the order of their
creation. The order in the screen is left to right for rows
and top to down for columns. As an example, figure 4
shows a typical menu in omero and its corresponding
file tree.

To complete the discussion of the file system inter-
face, we describe now the text and draw panels, that
are similar to other panels not discussed here.

3.2. The text panel

The data file for a text panel appears to contain all
the text being edited in the panel, not just the portion
shown in the screen. In this way, omero can perform
most of the editing locally. Operations like undo and
redo, inserting and deleting text, cut, paste, and so on,
are performed by omero without the intervention of
the application. Copying some text into the data file
causes omero to reload all the text in the panel. To
retrieve the text from omero (e.g., after an edition), the
data file is read. To help with programming, the initial
text for buttons and labels is set by omero to be just
their names (without the type prefix, as seen in figure
4).

The control file for a text panel contains one line for
each attribute of the panel. But for size, all the other
attributes may be changed by a write to the control file
using the same format. This is an example ctl file:

addr tcp!nautilus!17218
notag
show
dirty
font R
mark 28689
sel 28067 28067
size 65 39

The first attribute in the example is the network
address where omero delivers events for the panel.
When this attribute is set, omero dials the given ad-
dress and starts delivering events. If the connection
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Figure 4. The file tree for the omero menu shown in most user screens.

breaks, omero assumes that the application has exited
and removes the panel. The notag attribute and its
complement, tag, determine if the panel is given a tag
or not. Panels with a tag can be moved around with the
mouse and accept all the mouse commands for tags.

3.3. The draw panel

The draw panel supports drawing of vector graph-
ics. Its control file is similar to the one of the previous
section, but its data file is very different. The data file
contains a series of drawing commands specified as
text. The panel interprets the commands and performs
them. For example, copying this text to the file would
draw a simple analog clock, similar to the one in figure
1:

ellipse 40 40 35 35 grey
line 40 40 20 57 1 blue
line 40 40 52 28 1 blue

In this panel we see an example of how omero tries
to maintain a high level of abstraction for its interface.
These commands for drawing are easily implemented
on any platform supporting graphics, and the format
used by the application to issue the requests is very
portable.

3.4 Events and event channels

Events shown at table 2 are delivered from omero
to each application responsible for a panel. All events
are delivered as strings and carry the path for the panel
involved, the event name, the size of their only argu-
ment, and an argument string. As we will see, events
have a high level of abstraction to easy the portability
for the API.

The most important events are look and exec,
which usually result from a user’s mouse operation.
Most applications attend just these two events and ig-
nore others. Look is sent when the user asked to look

Event Argument Description
look text Look for the argument
exec text Execute the argument
data value Reports new data in the panel
ins pos text Text inserted at position
del pos n N runes of text deleted at pos.

click x y buttons Mouse event
keys text The keys in text were pressed
addr netaddr Network addr. was set
path newpath The panel moved to a new path
exit - Panel deleted by the user

Table 2. Events sent by Omero.

for something. This may be a file name or a piece of
text to be found in a panel. Exec is sent when the
user asked to execute something. The argument for
both events is the text involved in the mouse operation,
which is sent verbatim to the application.

There are several events used to notify of changes in
the data for the panel. Data is sent for simple panels
like sliders, and reports the changes in the value (which
is also available through the file system). Some pan-
els (e.g. image and draw) deliver all keyboard and
mouse events to the application. The corresponding
omero events are click and keys. Other events are
discussed later.

The event channel used to deliver events is a net-
work connection established from omero to those ap-
plications that request event reception (by setting the
addr attribute). We do not use the file system inter-
face to deliver events to avoid stream-like files within
the UI file system. The event channel between the ap-
plication and omero is also used to garbage collect the
interface for dead applications.

An interesting point is that it is useful to create pan-
els without setting the addr attribute. These panels



stay around forever, until the user deletes them with
a mouse operation, or a file system command. The
omero image viewer uses this technique to load an im-
age into omero and exit. Once the image is loaded,
there is no point in keeping the viewer around. This
technique is used by several other programs, includ-
ing our mail reader and a weather information program
(seen at the top of figure 1).

3.5. Clipboard and selection

The user clipboard and selection are maintained by
a different file server, Omero uses /dev/snarf as
the clipboard, writes on it the relevant data from cut or
copy operations, and reads from it the data for paste
operations. This file is usually shared among Plan B
terminals for the same user, which means that oper-
ations that involve the clipboard, may be performed
across different machines.

The file /dev/sel is updated by omero with the
file system path for the last panel where some text was
selected by the user. This is a helper for implement-
ing external commands that operate on selected text
regions.

4. Distributed and replicated interfaces.

Creating a distributed interface is easy with omero.
Panels can be created at different machines just by
creating the corresponding files at different file sys-
tems. Because all the panels are the same (i.e. files)
and omero accepts the same mouse interface for all of
them. The user can move any part of an application’s
interface to a different place. Furthermore, the user
can create with the mouse a row or column and put
into it either copies or original controls coming from
different applications.

When the user moves a panel using the mouse its
corresponding directory moves as well. The path
event notifies the application of the new position for
the files affected. Movements of panels between dif-
ferent machines are handled by replicating the panels
at the target and then removing the ones at the origin.

A panel can be replicated by using the mouse to
copy and paste it (perhaps at a different machine). The
command underlying this operation is actually tar,
which is used to archive the file hierarchy for the panel

and then to extract it at the target directory.
While the files are being extracted, each directory

creation causes a new panel to be built. The relative
position for the panels extracted is preserved because
the omero file system lists files in the order used for
the screen layout.

At the point when the control files are extracted, any
addr attribute set for the original panels will be set
for the new ones as well. The update of the addr
attribute causes omero to establish a connection to the
application and to send an addr event, notifying of
the new replica for the panel and also of its path.

In most UIMSs, the application establishes the con-
nection to the UIMS. In our case, omero is the one that
dials the application’s address to establish the event
channel. This simplifies replication, because event
connections are established as a side effect of copy-
ing a UI file hierarchy. The application can handle the
replication following three simple guidelines:

� To read a file from omero, it can be read from any
of the replicas.

� To write a file into omero, it must be written at
all the replicas. This also applies for creating and
removing files.

� When omero reports using an event that data
changed in a panel, the other replicas must be up-
dated with the data change reported in the event.

The Plan B graph library provides a canned in-
terface for omero that operates in this way. The li-
brary handles addr and path events to maintain the
set of replicas for each panel. Applications using the
library can ignore any replication of their interfaces.
The library also creates a network listener process to
accept event connections from omeros, and mounts
those omeros whose files are not found in the appli-
cation’s name space. Doing so permits the replication
of UI components into omeros not yet known by the
application.

To improve latency in the replication of text panels
(which may hold large text files), Ins and del events
are sent to report the insertion and deletion of text. The
graph library handles these events as well. They lead
to updates for other replicas of the panel being edited.



5. Multimodal and heterogeneous interfaces

Each omero is free to implement the panels row
and col in an appropriate way for the device. For ex-
ample, on displays with limited screen space, it is sen-
sible to show only one set of controls at a time. The
mouse interface can be used to navigate through the hi-
erarchy of rows and columns. It would be also straight-
forward to port omero for text output devices. In fact,
most of the omero interface shown in the screen is just
text.

The high level of abstraction in the API permits
implementing multimodal interfaces to a limited ex-
tent. What matters for the application is that the panels
mean the same and the event and file formats remain
the same. For example, a server for voice menus can
accept the creation of button panels within a hierarchy
of columns (or rows). This structure may be handled
by the server by reading the button labels to the user
and asking him to select an option, perhaps by saying
a number. When the user selects a button, the server
may deliver an exec event to the application as omero
does.

Note that the user has a very precise control over the
application’s interface. For example, part of a given
graphical UI could be copied to the file system for a
voice interface server. The user can choose which part
(i.e. which files to copy), yet the application would
be unaware of the replication for the interface. Even
though a replica is not even using a graphics device.

6. Donation of screen space

On pervasive environments, it is usually useful to
be able to donate screen space to users present in the
(physical) space. This can be safely achieved by omero
just by changing ownership of a panel to a visiting
user. The chgrp system command may be used to
perform the task, and no further tools are necessary. To
reclaim the ownership of the space, the initial owner
may simply remove the donated panel from the file
system.

7. General purpose tools

A powerful consequence of both using files and
mapping the interface elements to them is that general

purpose tools can be built to operate on any UI consid-
ered. We already mentioned how tar is used to copy
interfaces. Examples are countless, rm can be used to
remove them, ls can list the panels used, chgrp can
be used to donate screen space, iostats can take
statistics on UI usage (as it would do with any other
file I/O), etc.

An example is the ofiles shell script, which lists
the files being edited by the user. This script, shown in
figure 5, recursively lists the files in omero to find tag
panels, which by convention contain the names for the
files being edited. For each tag panel, its data file is
read to retrieve the name of the user’s file.

As another example, a prototype voice command
system, that we built for Plan B, accepts commands
to press arbitrary buttons shown in omero. The com-
mand takes the text resulting from speech processing
and scans for sentences like press stop . At that point,
du is used (like in the script in figure 5) to find but-
tons that contain the word of interest, e.g. stop, and
a write to the button’s control file instructs omero to
simulate an exec on it.

Note how the applications owning the panels af-
fected may run unaware of any of the external com-
mands used on them. No code must be included to
provide support for these commands, because all that
is needed is to be able to use files.

8. Implementation

Omero is implemented by 6340 lines of C code and
two libraries. One of the libraries (taken from Plan 9)
provides support for text frames and has 1231 lines of
C code. The other one (adapted from one in Plan 9)
provides support for the file system and has 2085 lines
of C code. This makes a total of 9656 lines in C, to
give an idea of what it would take to port omero to a
different platform.

The structure of the program is shown in figure 6.
The fs module includes the data structure for the file
system (a file tree), the code to speak 9P to export the
file system to network clients, and the code to authen-
ticate them. Close to this module is panel, that main-
tains the data structures for the panels in cooperation
with the file tree. Individual panels are implemented
by modules text, gauge, draw, and image. Some
of them implement several ones. For example, text



# Use du to list the trees in all the omeros (/devs/*ui).
# Put in $tagfiles the paths for the data file of all tag panels.
tagfiles=‘{du -a /devs/*ui | grep ’tag:.*/data’ | awk ’{print $2}’}

# for each file in $tagfiles...
for (f in $tagfiles){

# ...print the path at the beginning of the file
sed ’s| .*||’ < $f

}

Figure 5. Retrieving information from the UI using scripts.
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Figure 6. Modules used to implement omero

is responsible for all text panels. Different panels (e.g.
buttons and tags) have a different set of flags that de-
termine their behavior (e.g. buttons are read-only, tags
can be edited). Gui is responsible for handling the
screen and accepting user input. The layout process-
ing is hard enough to get right that it is kept separated
into the layout module.

Mouse input comes from cook, which is a mod-
ule that accepts raw mouse events and provides cooked
events decorated with time stamps and flags to recog-
nize repeated clicks. The cooking process also sup-
plies quiet (virtual) mouse events to notify that the
mouse has been quiet for a while.

Panels are implemented by objects that provide
these operations: Init and close are called on
panel creation and destruction time. Ctlio and
dataio are called to implement read/write for the
panel control and data file. Finally, mouse and key-
board perform mouse and keyboard processing.

Regarding the client library, it accounts for 1065
lines of C code and provides a handful of routines to
create and destroy panels, and to read and write their
files. The unconventional part of this library is that it
creates a process to listen for omero connections, to re-
ceive events from panels and handle replication as said
before. The client’s data structure for a panel contains
a list of replicas and, for each one, the absolute path

of the corresponding UI directory. The library handles
addr and path events to keep the list of replicas and
their paths updated. Most other events are sent directly
to the application through the event channel.

9. Experience and Evaluation

Omero is young and has suffered only minor opti-
mizations, most of them have to do with redrawing in
the screen only what is necessary. Overall, we are sat-
isfied both with its behavior and with its performance.
There are several demonstrations and screenshots at
http://lsub.org/ls/demos.html.

Most of the applications we use for daily work have
been ported to omero, or rewritten to exploit its bene-
fits. This includes simple tools like clocks and statis-
tics meters, and also more complex programs like mail
readers, audio players, image viewers, several games,
and other tools.

When used on several machines that share the same
room, omero integrates nicely with the Plan B facil-
ity to redirect mouse and keyboard devices to different
machines. Our users are accustomed to copy omero
panels at one machine, then redirect (pressing a but-
ton) the mouse and keyboard to another machine, and
then paste the panels there.

The ability to operate on individual panels, indepen-



dently of which application they belong to, and to re-
group then as desired into another panel, has proven to
be invaluable to save screen space on machines with
very small screens. For example, screens of Pocket-
PCs can be used to hold just the indispensable controls
needed by the user.

Regarding quantitative evaluation, it is hard to com-
pare omero with other systems, because of the differ-
ent approach it follows, and also because the imple-
mentation we have runs on a different operating sys-
tem. Therefore, comparative experiments would be
measuring differences between the systems involved,
and not between omero and other UI systems. Nev-
ertheless, we include some measures below to give a
glance of how it performs.

All measures are the mean of several experiments
performed on a Pentium Xeon and a Pentium 6 con-
nected through 100Mbps ethernet. Both machines
were running a standard Plan B system, including
omero. No machine had swap configured. Exper-
iments involving only one omero were performed
across the network, because that is its common usage.
All measures correspond to real time measured with
time, and account for all the relevant screen update
operations, because omero performs them before re-
plying to the client programs. To put measurements
in context, a delay of 200ms is perceived as instan-
taneous by the user [5] when using a mouse oriented
user interface (400ms for operations involving several
screens).

The time needed to copy the user interface for the
player program shown in figure 1 (on the left, bot-
tom half of the figure) from one machine to another
is 365ms. This experiment uses the standard omero
script for copying panels, which relies on tar to per-
form the work. The time needed to read all the UI from
the file system was 60ms, which leaves 305ms as the
time used to create the interface and update the screen.
This is what could be expected, because the creation
of an interface involves rather slow screen operations,
while accessing the data for the interface does not.

The time to remove the same interface from a differ-
ent machine, using rm, is 790ms. It is higher than the
time to create the interface because most panel dele-
tions lead to layout recalculations, while some panel
creations can be performed without recomputing the
layout (and updating the screen!).

The time to hide one of the Weather panels of fig-
ure 1 (near the top) is 8ms. The command was echo
hidewith stdout redirected to the panel’s control file.
The time to show the panel again is also 8ms. Most of
the time is spent on the screen updating. If we operate
on one of two large columns shown in figure 2, 6ms
are needed for hide and 8ms for show.

The time to update an attribute which does not in-
volve screen operations was 4ms when using echo
and 7ms when using cp to perform the copy of the
new attribute values. This time was independent of the
number of such attributes updated by the request (the
measures involved up to 10 attribute updates per re-
quest). This suggests that the performance of omero
is reasonable for attribute handling, because other fac-
tors (e.g. the program used to copy new data) are more
significative in the measures.

The performance of omero seems reasonable to pro-
vide user interfaces, as our experience using it for daily
work during the past six months confirms. Most of the
latency comes from the series of RPCs generated by
the underlying system to satisfy the file system calls
made by the application. The time to update the screen
seems to be the dominant factor, as it could be ex-
pected.

10. Related Work

Research on user interfaces and UIMSs (both for
pervasive and traditional environments) has been very
intensive and still is. We mention here only the most
significative contenders to our work, and leave oth-
ers behind because the differences with respect to our
work fall in one or more of the points stated below.

An important difference between omero and most
systems mentioned below is that omero provides a ex-
treme flexibility for users, allowing them to pick up
any panel and move it, copy it, or rearrange the set of
controls in any way desired. The use of general pur-
pose commands to operate on the UIs is also a big dif-
ference between omero and these systems, which rely
on more complex formats and require specific purpose
tools to operate on the application’s UI.

UBI [17] and Migratable UIs [6] support the mi-
gration of UIs, like we do. They do not permit us-
ing general purpose tools (as we do) and they require
the introduction of even more complexity close to the



toolkit (e.g., GTK) used by the application. Instead,
our approach is to simplify and abstract the service to
make migration easy.

Acme [21] is the direct ancestor for omero. Like
omero, it provides a programmer’s interface accessed
through a file system. Also, many of the ideas for the
screen layout, mouse processing, and several heuris-
tics are taken from it. Unlike Acme, omero provides
a more abstract interface, and takes into account the
needs for graphics. Besides, omero permits distribut-
ing the user interface.

Omero takes from both Sam [22], the Blit [19] and
Protium [29] the idea of separating the program pro-
cessing from the user interface. The separation of the
program into ox and omero results from this. Sam is
only a text editor, and does not provide a general win-
dow system. The blit was a window system for UNIX,
to multiplex a terminal, and was heavily tied to the
model of operation in UNIX: A single server machine
with terminals connected. Omero on the other hand
permits distributed user interfaces and is more flexible
in letting the user control the applications interfaces.
Protium uses a rather different approach and does not
allow general purpose tools to be used on UI compo-
nents.

Regarding window systems, X [27] and Photon [24]
permit applications to create UI components remotely,
but their API is rather low-level, unlike in omero. Fur-
thermore, once created, UI components are tied to the
particular server used and cannot move. The same hap-
pens to window systems like Rio and its ancestor 8

�

�

[1, 20], which despite using files to provide their APIs,
do not consider mobility and replication for user in-
terfaces nor distribution of the application’s interface
(further than done in X).

Toolkits like GTK+ [28], Tcl/Tk [18], simplify the
construction of the application’s UI, but still lead to
the same difficulties mentioned above. Another differ-
ence between our approach and these systems is that it
is not feasible to implement browser applications just
by loading the relevant information into the window
system and then exiting.

Systems like Fresco [8], Morphic [13], Gaia [26],
and Interactive Workspaces [9], provide middleware
components for programming distributed UIs. Unlike
omero, they require the application to use the mid-
dleware choosen by the platform developers. Omero

just requires using files, and therefore we can use gen-
eral purpose tools on UI elements. Furthermore, is not
clean how these systems deal with protection and do-
nation of screen space in a safe way. Our approach, on
the other hand, relies on well-known distributed file
system technology to authenticate and perform access
control for the users. This difference also holds for
most component based middlewares for distributed in-
terfaces, (e.g. that in the .NET framework).

There are systems like [16, 11, 7, 4] that use XML
or similar declarative descriptions to encode specifica-
tions for user interfaces, to permit their adaptation to
the peculiarities of the devices used, e.g. screen size.
In our case, it is the server that services the screen
who is free to adapt the implementation of the pro-
vided panels to the needs of the device. For example,
Pocket-PCs may show only one outer column/row at a
time, or use heuristics to overlay them. Our approach
is different in that the high level of abstraction in the
interface and its portability makes tools like XML un-
necessary. Besides, we use the same approach for all
other system services [3], they do not.

11. Conclusions and Future Work

We have described an architecture for organizing
system support for user interfaces based on using files
to represent the UI components. We have shown how
this can permit distribution and replication of UI com-
ponents in a simple way. The architecture makes it
easier to use different devices at the same time and per-
mits the user to split and merge UI components with-
out placing the burden in the application. We did show
how general purpose tools can be used for UI com-
ponents as well. The implementation for a working
system that uses this approach (used to write this pa-
per) has been described as well, together with several
examples of use.

In the future it would be interesting to explore how
to use our approach for applications that use conven-
tional UI toolkits, to provide backward compatibility
for them. The heuristics used by omero may also re-
quire further experimentation. Porting omero to other
systems is also desirable.
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