
Systems Software Research is
Irrelevant

Rob Pike
Bell Labs

Lucent Technologies
rob@plan9.bell-labs.com

Feb 21, 2000



1A Polemic

This talk is a polemic that distills the pessimistic side of my
feelings about systems research these days. I won’t talk much
about the optimistic side, since lots of others can do that for
me; everyone’s excited about the computer industry. I may
therefore present a picture somewhat darker than reality.

However, I think the situation is genuinely bad and requires
action.



2Thesis

Systems software research has become a sideline to the
excitement in the computing industry.

When did you last see an exciting non-commercial demo?

Ironically, at a time when computing is almost the definition
of innovation, research in both software and hardware at
universities and much of industry is becoming insular,
ossified, and irrelevant.

There are many reasons, some avoidable, some endemic.

There may be ways to improve the situation, but they will
require a community-wide effort.



3Definitions

Systems

Software

Research

Is

Irrelevant



4A Field in Decline

1

2

3

4

5

6

7

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999

New Operating Systems at SOSP

� �

�

�

�

�

� �

� �

�

"Who needs new operating systems, anyway?" you ask.
Maybe no one, but then that supports my thesis.

"But now there are lots of papers in file systems, performance,
security, web caching, etc.," you say. Yes, but is anyone
outside the research field paying attention?



5Systems Research’s Contribution to the Boom

A high-end workstation:

_________________________________________________
1990 2000__________________________________________________________________________________________________

Hardware
33 MHz Mips R3000 600 MHz Alpha or Pentium III
32 megabytes of RAM 512 megabytes of RAM
10 Mbps Ethernet 100 Mbps Ethernet_________________________________________________
Software
Unix Unix
X Windows X Windows
Emacs Emacs
TCP/IP TCP/IP

Netscape_________________________________________________
Language
C C
C++ C++

Java
Perl (a little)_________________________________________________






































Hardware has changed dramatically; software is stagnant.



6Where is the Innovation?

Microsoft, mostly. Exercise: Compare 1990 Microsoft
software with 2000.

If you claim that’s not innovation, but copying, I reply that
Java is to C++ as Windows is to the Macintosh: an industrial
response to an interesting but technically flawed piece of
systems software.

If systems research was relevant, we’d see new operating
systems and new languages making inroads into the industry,
the way we did in the ’70s and ’80s.

Instead, we see a thriving software industry that largely
ignores research, and a research community that writes papers
rather than software.



7Linux

Innovation? New? No, it’s just another copy of the same old
stuff.

OLD stuff. Compare program development on Linux with
Microsoft Visual Studio or one of the IBM Java/web toolkits.

Linux’s success may indeed be the single strongest argument
for my thesis: The excitement generated by a clone of a
decades-old operating system demonstrates the void that the
systems software research community has failed to fill.

Besides, Linux’s cleverness is not in the software, but in the
development model, hardly a triumph of academic CS
(especially software engineering) by any measure.



8What is Systems Research these days?

Web caches, web servers, file systems, network packet delays,
all that stuff. Performance, peripherals, and applications, but
not kernels or even user-level applications.

Mostly, though, it’s just a lot of measurement; a
misinterpretation and misapplication of the scientific method.

Too much phenomenology: invention has been replaced by
observation. Today we see papers comparing interrupt latency
on Linux vs. Windows. They may be interesting, they may
even be relevant, but they aren’t research.

In a misguided attempt to seem scientific, there’s too much
measurement: performance minutiae and bad charts.

By contrast, a new language or OS can make the machinefeel
different, give excitement,novelty. But today that’s done by a
cool web site or a higher CPU clock rate or some cute little
device that should be a computer but isn’t.

Theart is gone.

But art is not science, and that’s part of the point. Systems
research cannot be just science; there must be engineering,
design, and art.



9What Happened?

A lot of things:

PC
Microsoft
Web
Standards
Orthodoxy
Change of scale
Unix
Linux
Startups
Grandma



10PC

Hardware became cheap, and cheap hardware became good.
Eventually, if it didn’t run on a PC, it didn’t matter because
the average, mean, median, and mode computer was a PC.

Even into the 1980s, much systems work revolved around new
architectures (RISC, iAPX/432, Lisp Machines). No more. A
major source of interesting problems and, perhaps, interesting
solutions is gone.

Much systems work also revolved around making stuff work
acrossarchitectures: portability. But when hardware’s all the
same, it’s a non-issue.

Plan 9 may be the most portable operating system in the
world. We’re about to do a new release, for the PC only. (For
old time’s sake, we’ll include source for other architectures,
but expect almost no one will use it.)

And that’s just the PC as hardware; as software, it’s the same
sort of story.



11Microsoft

Enough has been said about this topic. (Although people will
continue to say lots more.)

Microsoft is an easy target, but it’s a scapegoat, not the real
source of difficulty.

Details to follow.



12Web

The web happened in the early 1990s and it surprised the
computer science community as much as the commercial one.

It then came to dominate much of the discussion, but not to
much effect. Business controls it. (The web came from
physicists and prospered in industry.)

Bruce Lindsay of IBM: HDLC C HTTP/HTML; 3270s have
been replaced by web browsers. (Compare with Visicalc and
PC.)

Research has contributed little, despite a huge flow of papers
on caches, proxies, server architectures, etc.



13Standards

To be a viable computer system, one must honor a huge list of
large, and often changing, standards: TCP/IP, HTTP, HTML,
XML, CORBA, Unicode, POSIX, NFS, SMB, MIME, POP,
IMAP, X, ...

A huge amount of work, but if you don’t honor the standards
you’re marginalized.

Estimate that 90-95% of the work in Plan 9 was directly or
indirectly to honor externally imposed standards.

At another level, instruction architectures, buses, etc. have the
same influence.

With so much externally imposed structure, there’s little slop
left for novelty.

Plus, commercial companies that ‘own’ standards, e.g.
Microsoft, Cisco, deliberately make standards hard to comply
with, to frustrate competition. Academia is a casualty.



14Orthodoxy

Today’s graduating PhDs use Unix, X, Emacs, and Tex.
That’s their world. It’s often the only computing world
they’ve ever used for technical work.

Twenty years ago, a student would have been exposed to a
wide variety of operating systems, all with good and bad
points.

New employees in our lab now bring their world with them, or
expect it to be there when they arrive. That’s reasonable, but
there was a time when joining a new lab was a chance to
explore new ways of working.

Narrowness of experience leads to narrowness of imagination.

The situation with languages is a little better�many curricula
include exposure to functional languages, etc.�but there is
also a language orthodoxy: C++ and Java.

In science, we reserve our highest honors for those who prove
we were wrong. But in computer science...



15Change of scale

With so many external constraints, and so many things already
done, much of the interesting work requires effort on a large
scale. Many person-years are required to write a modern,
realistic system. That is beyond the scope of most university
departments.

Also, the time scale is long: from design to final version can
be five years. Again, that’s beyond the scope of most grad
students.

This means that industry tends to do the big, defining
projects�operating systems, infrastructure, etc.�and small
research groups must find smaller things to work on.

Three trends result:

1. Don’t build, measure. (Phenomenology, not new
things.)

2. Don’t go for breadth, go for depth. (Microspecialization,
not systemswork.)

3. Take an existing thing and tweak it.

I believe this is the main explanation of the SOSP curve.



16Unix

New operating systems today tend to be just ways of
reimplementing Unix. If they have a novel architecture�and
some do�the first thing to build is the Unix emulation layer.

How can operating systems research be relevant when the
resulting operating systems are all indistinguishable?

There was a claim in the late 1970s and early 1980s that Unix
had killed operating systems research because no one would
try anything else. At the time, I didn’t believe it. Today, I
grudgingly accept that the claim may be true (Microsoft
notwithstanding).

A victim of its own success: portability led to ubiquity. That
meant architecture didn’t matter, so now there’s only one.

Linux is the hot new thing... but it’s just another Unix.



17Linux�the Academic Microsoft Windows

The holy trinity: Linux,gcc , and Netscape.

Of course, it’s just another orthodoxy.

These have become icons not because of what they are, but
because of what they arenot: Microsoft.

But technically, they’re not that hot. And Microsoft has been
working hard, and I claim that on many (not all) dimensions,
their corresponding products are superior technically. And
they continue to improve.

Linux may fall into the Macintosh trap: smug isolation leading
to (near) obsolescence.

Besides, systems research is doing little to advance the trinity.



18Startups

Startups are the dominant competition for academia for ideas,
funds, personnel, and students. (Others are Microsoft, big
corporations, legions of free hackers, and the IETF.)

In response, government-funded and especially corporate
research is directed at very fast ‘return on investment’.

This distorts the priorities:

Research is bent towards what can make big money (IPO)
in a year.

Horizon is too short for long-term work. (There go
infrastructure and the problems of scale.)

Funding sources (government, industry) perceive the same
pressures, so there is a vicious circle.

The metric of merit is wrong.

Stanford now encourages students to go to startups because
successful CEOs give money to the campus. The new
president of Stanford is a successful computer entrepreneur.



19Grandma

Grandma’s on line. This means that the industry is designing
systems and services for ordinary people.

The focus is on applications and devices, not on infrastructure
and architecture, the domain of systems research.

The cause is largely marketing, the result a proliferation of
incompatible devices. You can’t make money on software,
only hardware, so design a niche gimmick, not a Big New
Idea.

Programmability�once the Big Idea in computing�has fallen
by the wayside.

Again, systems research loses out.



20Things to Do

Startups are too focused on short time scale and practical
results to try new things. Big corporations are too focused on
existing priorities to try new things. Startups suck energy
from research. But gold rushes leave ghost towns; be prepared
to move in.

Fiona’s story: "Why do you use Plan 9?"

Go back to thinking about andbuilding systems.Narrowness
is irrelevant; breadth is relevant: it’s the essence ofsystem.

Work on how systems behave and work, not just how they
compare. Concentrate on interfaces and architecture, not just
engineering.

Be courageous. Try different things; experiment.Try to give
a cool demo.

Funding bodies: fund more courageously, particularly long-
term projects. Universities, in turn, should explore ways to let
students contribute to long-term projects.

Measure success by ideas, not just papers and money. Make
the industrywantyour work.



21Things to Build

There are lots of valid, useful, interesting things to do. I offer
a small sample as evidence. If the field is moribund, it’s not
from a lack of possibilities.

Only one GUI has ever been seriously tried, and its best ideas
date from the 1970s. (In some ways, it’s been getting worse;
today the screen is covered with confusing little pictures.)
Surely there are other possibilities. (Linux’s interface isn’t
even as good as Windows!)

There has been much talk about component architectures but
only one true success: Unix pipes. It should be possible to
build interactive and distributed applications from piece parts.

The future is distributed computation, but the language
community has done very little to address that possibility.

The Web has dominated how systems present and use
information: the model is forced interaction; the user must go
get it. Let’s go back to having the data come to the user
instead.

System administration remains a deeply difficult problem.
Unglamorous, sure, but there’s plenty of room to make a huge,
even commercial, contribution.



22Conclusions

The world has decided how it wants computers to be. The
systems software research community influenced that decision
somewhat, but very little, and now it is shut out of the
discussion.

It has reached the point where I doubt that a brilliant systems
project would even be funded, and if funded, wouldn’t find the
bodies to do the work. The odds of success were always low;
now they’re essentially zero.

The community�universities, students, industry, funding
bodies�must change its priorities.

The community must accept and explore unorthodox ideas.

The community must separate research from market
capitalization.


