
Matt Porter 
Mentor Graphics 



 Android platform enablement is a hot topic, 
everybody seems to want Android on their part/
board/system  

 We test several Android questions today: 
  Is Android “Linux”? What does that mean? 
  Does Android “Just Work™”? 
  What/where is the Android community? 

   
 Looking at some examples will help us answer 
these questions 





  Linux kernel 
  Android patches 

  Ashmem 
  binder 
  Android PM 

  Arch support 

  Android “distro” 
  AOSP 
  Building 

  Deploy! 



  Bionic is Android’s libc 
  Not glibc 
  BSD derived 
  ARM/x86 support only 
  Partial pthreads support 
  No SysV IPC support 
  No STL support 
  Prelink is unique to bionic/Android 



  No linux-headers package 
  Makes adding new native binaries to Android 

an annoyance 
  Minimal “scrubbed” set of headers 

  Why? 

  Results in a lot of this: 
diff --git a/libc/kernel/common/linux/uinput.h b/libc/kernel/common/linux/uinput.h 
new file mode 100644 
index 0000000..827d99d 
--- /dev/null 
+++ b/libc/kernel/common/linux/uinput.h 



  Sorry, no udev here 
  Android’s new init replaces udev…poorly 

static struct perms_ devperms[] = { 
    { "/dev/null",          0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/zero",          0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/full",          0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/ptmx",          0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/tty",           0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/random",        0666,   AID_ROOT,       AID_ROOT,       0 }, 
    { "/dev/urandom",       0666,   AID_ROOT,       AID_ROOT,       0 }, 

… 

  Yes, that’s policy hardcoded into the init binary 



  No hotplug scripts or udev/hal 
  Init/Vold replaces that infrastructure 
  Types of hotplug events processed are hardcoded in init 

 /* this should probably be configurable somehow */ 
        if(!strncmp(uevent->subsystem, "graphics", 8)) { 
            base = "/dev/graphics/"; 
            mkdir(base, 0755); 
        } else if (!strncmp(uevent->subsystem, "oncrpc", 6)) { 
            base = "/dev/oncrpc/"; 
            mkdir(base, 0755); 
        } else if (!strncmp(uevent->subsystem, "adsp", 4)) { 
            base = "/dev/adsp/"; 
            mkdir(base, 0755); 
      } else if(!strncmp(uevent->subsystem, "input", 5)) { 
            base = "/dev/input/"; 
            mkdir(base, 0755); 
        } else if(!strncmp(uevent->subsystem, "mtd", 3)) { 
            base = "/dev/mtd/"; 
            mkdir(base, 0755); 
        } else if(!strncmp(uevent->subsystem, "misc", 4) && 
                    !strncmp(name, "log_", 4)) {  

… 



  Storage devices are not managed by HAL 
  Replacement is vold 

  vold only designed to handle mount/unmount of an 
MMC subsystem device 

  Needs help to handle a USB Mass Storage device 

 if (!(d = opendir(SYSFS_CLASS_MMC_PATH))) { 
        LOG_ERROR("Unable to open '%s' (%m)", 

SYSFS_CLASS_MMC_PATH); 
        return -errno; 
    } 



  Android input uses standard Linux Input 
  EventHub auto-discovers input devices 

  At boot 
  Upon event queue creation (hotplug usb HID) 

  Input devices categorized by probing EV_* 
capabilities 
  Keyboard 
  Trackball 
  Touchscreen 
  Mouse (by non-mainline patch from Android-x86) 



  Key mapping handled using a key layout and key character map infrastructure 
  Problem: key layout/charmap used is matched by the input device name string 

if (err <= 0) { 
            // a more descriptive name 
            ioctl(mFDs[mFDCount].fd, EVIOCGNAME(sizeof(devname)-1), devname); 
            devname[sizeof(devname)-1] = 0; 
            device->name = devname; 
            strcpy(tmpfn, devname); 
            // replace all the spaces with underscores 
            for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' ')) 
                *p = '_'; 
        } 

        // find the .kl file we need for this device 
        const char* root = getenv("ANDROID_ROOT"); 
        snprintf(keylayoutFilename, sizeof(keylayoutFilename), 
                 "%s/usr/keylayout/%s.kl", root, tmpfn); 

  This doesn’t work at all for USB keyboards! 



  Touchscreen support makes no use of tslib 
  Touchscreen events from the kernel driver are passed on uncooked directly to the 

Android “key event queue” 

if(ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGABS(axis), &info)) { 
        LOGE("Error reading absolute controller %d for device %s fd %d\n", 
             axis, device->name.string(), mFDs[id_to_index(device->id)].fd); 
        return -1; 
    } 
    *outMinValue = info.minimum; 
    *outMaxValue = info.maximum; 
    *outFlat = info.flat; 
    *outFuzz = info.fuzz; 
    return 0; 

  This results in kernel drivers being hacked for one-off calibration of absolute events 
being returned 

  Patches exist to add tslib support now 



  Running Android on Framebuffers with larger 
resolutions (1024x768+) quickly runs into this: 

 // create the surface Heap manager, which manages the 
heaps 

    // (be it in RAM or VRAM) where surfaces are 
allocated 

    // We give 8 MB per client. 
    mSurfaceHeapManager = new 

SurfaceHeapManager(this, 8 << 20); 

  On higher resolution FB’s this hardcoded limit results 
in surfaceflinger allocation failures and the eventual 
restart of Android 



  Assumes a certain set of peripherals 
  Telephony (3G signal indicator hardcoded) 
  Wifi (Wifi signal indicator hardcoded 
  Ringer volume slider assumes telephony present 

  Settings screen option assumes a handset 
  USB debugging option 
  SD card mount/unmount 

services/java/com/android/server/status/StatusBarPolicy.java: 
 // phone_signal 

        mPhone = 
(TelephonyManager)context.getSystemService(Context.TELEPHONY_SERVICE); 

        mPhoneData = IconData.makeIcon("phone_signal", 
                null, com.android.internal.R.drawable.stat_sys_signal_null, 0, 0); 
        mPhoneIcon = service.addIcon(mPhoneData, null); 

 service.setIconVisibility(mPhoneIcon, !hwNoPhone); 



  Installation of non-marketplace .apks 
  Custom Android-based product may want this out-

of-the-box instead of a settings option 

  Enabling adb debugging 
  Many devices may want this enabled by default, 

except for a closed device 



  Dalvik VM internal structures 
  JValue is implemented in a LE specifc way: 

 typedef union JValue { 
    u1      z; 
    s1      b; 
    u2      c; 
    s2      s; 
    s4      i; 
    s8      j; 
    float   f; 
    double  d; 
    void*   l; 
 } JValue; 

  Requirement to access same value stored as byte as an integer 

JValue *jv = foo; 
jv‐>b = 0x54; 

print jv‐>i ‐> should output 0x54; 

  Key Character maps are LE 
  Prebuilt icu4c LE maps 
  Lots of missing htons/htonl use 



  Off the shelf Android doesn’t have good Ethernet 
support 

  Early efforts just used a script to run the cmdline 
Android netcfg app to force dhcp configuration 

  Requires registration of new connection type to 
manage link status and network available 
information similar to Wifi 

  android-x86 project has a partially working 
Ethernet monitor 
  Problems with not always detecting link changes and re-

dhcping 
  Doesn’t update Android-specific DNS properties 

  Yes, resolv.conf isn’t used in Android 



  Android Open Source Project (AOSP) 
  Relatively immature compared to traditional Linux 

communities 
  Huge lag in code being used by OHA member and 

what is dumped into the AOSP trees 
  Google developers generally don’t develop in the 

AOSP tree 
  Slowness in accepting code into the AOSP tree 
  OTOH, Google people on the AOSP lists are very 

responsive and helpful 
  Alternative architectures (x86) are hosted at 

different sites 



  Codeflinger JIT designed with  ARM opcodes 
in mind 

  Other arches are able to be supported (MIPS/
PPC), but it is significant work 



  Android layers its PM model on top of standard 
Linux PM 
  Android wakelock concept 

  Applications can hold wakelocks to prevent system from 
sleeping 

  Once wakelocks are released cpu and peripherals may sleep 

  Android PM policy is hardcded to a handset model 
  Full wakelock keeps CPU active and backlights at full 

brightness 
  Partial wakelock allows bakclights to dim while CPU 

acive 
  Modifying this policy for non handset designs requires 

modification of the PowerManager code. 



  Google provides lots of nice unit tests using the 
JUnit framework and a harness to execute them 

  Unfortunately, many of them fail on the AOSP 
tree 
  Even on the emulator! 

Goldfish results (1.5r1 release) 
passed: 67 test(s) 
failed: 4 test(s) 
failed: 044-proxy 
failed: 057-iteration-performance 
failed: 062-character-encodings 
failed: 071-dexfile 



  Running Android on your device does not 
mean you can leverage the Marketplace 

  Google’s App suite is proprietary software and 
use in devices is carefully controlled 
  Marketplace 
  Maps 
  CalendarProvider 

  Cyanogen learned this in a widely publicized 
manner (http://android-
developers.blogspot.com/2009/09/note-on-
google-apps-for-android.html) 



  Android is different from traditional Linux 
  When most people think of Linux, they think of a 

GNU/Linux distro 
  Departure from accepted userspace components 

(HAL, udev, etc.) 
  Android has a lot of handset-focused policies 

hardcoded in the userspace code 
  This is better than policy in kernel space 

  Solution is to continue to grow the AOSP 
community 
  Community will need to unify 



  Questions 


